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Abstract
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premium. The resulting estimator can capture sudden shifts in density that may occur

during financial crises or in response to significant policy events. It also provides an estimate

of the early exercise premium that is of independent interest. We illustrate the proposed
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1 Introduction

Equilibrium prices of financial assets reflect both uncertainty and the market’s collective pref-

erences regarding potential payoffs. This relationship is summarized by a State Price Density

(SPD) in the form of a probability distribution. Intuitively, the SPD allocates weights to various

states of potential economic outcomes, with a larger value indicating a higher likelihood and/or

a greater preference for positive asset returns in that state. The SPD plays a central role in asset

pricing theories, particularly in derivative pricing and term structure modeling. Its importance is

also well recognized by central banks, as it provides a predictive distribution that yields insights

into future economic conditions. For example, the Federal Reserve Bank of Minneapolis main-

tains SPD estimates across diverse markets, including commodities, equities, exchange rates,

inflation, and interest rates.1

The options market represents an ideal setting for estimating SPDs for several reasons: (1)

Option contracts have a simple payoff structure; (2) their strike prices encompass a wide range

of economic states; and (3) their maturities span from a few days to over a year, offering insights

into various future horizons. In practice, index options are primarily European-style, which have

a fixed exercise date. In contrast, American-style options, which allow exercise at any time before

contract expiration, are more common and cover a broader array of assets. These assets include

equities such as individual stocks, market index futures, and equity ETFs; commodities such as

gold, silver, and agricultural products; energy commodities including natural gas and crude oil;

and fixed-income securities such as US Treasuries and European government bonds. Researchers

often work with American options when estimating SPDs for this diverse set of assets.

Many methods exist to estimate SPDs using European-style options. These include: Jack-

werth and Rubinstein’s (1996) binomial tree-based approach; Jarrow and Rudd’s (1982) and

Longstaff’s (1995) Gram-Charlier based estimator; Ait-Sahalia and Lo’s (1998) and Dalderop’s

(2020) kernel-based estimators; Ait-Sahalia and Duarte’s (2003) constrained local polynomial

estimator; Shimko’s (1993) global polynomial method; and Figlewski’s (2010) spline method. As

these methods were designed for European options, they do not account for the early exercise

premium inherent in American options. Therefore, applying these methods directly to Amer-

ican options can result in biased estimates, especially when considering horizons that extend

beyond a few months. Section 4 of this paper quantifies this potential bias through calibrated
1Federal Reserve Bank of Minneapolis, "Current and Historical Market-Based Probabilities,"

https://www.minneapolisfed.org/banking/current-and-historical-market–based-probabilities.
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simulations. The bias issue is further examined in the empirical section using actual data, which

confirms that the bias can indeed be substantial (See Figure 7 for a visual comparison and the

empirical section for more details). These findings underscore the importance of considering the

early exercise feature, especially in environments of rising interest rates, as the premium for put

options can be sizable in such situations.

In contrast, few methods are available for estimating SPDs using American options. The

two main approaches include the method developed by Melick and Thomas (1997), which ap-

proximates the price of an American option as a weighted average of upper and lower bounds

related to European option prices, and the method introduced by Tian (2011), which iteratively

estimates the early exercise premium and the SPD using a binomial-tree model. In empirical

studies, researchers often apply Melick and Thomas’s (1997) method or assume that the early

exercise premium is negligible and resort to methods designed for European options. However,

the latter approach requires the exclusion of in-the-money options or limiting the analysis to

short horizons to mitigate potential bias. There exists a demand for new methods capable of

providing SPD estimates for both short and long horizons without discarding data and that can

facilitate a better understanding of the early exercise premium in this context.

This paper introduces a nonparametric estimator to recover SPDs from American options.

The proposed approach consists of two components: a Gauss-Hermite series expansion and a

recursive equation characterizing the early exercise premium. The estimation entails determining

the coefficients of this expansion and solving the recursive equation iteratively. For data input,

we require only a single cross-section of American option prices with a common maturity, a

proxy for the risk-free interest rate, and an estimate of the dividend rate. Unlike methods that

apply temporal smoothing, it can capture sudden shifts in the SPD, such as those resulting from

financial crises or major market events. It is suitable for both low- and high-frequency data and

also provides an estimate of the early exercise premium that is of independent interest. The

estimator generalizes the method of Lu and Qu (2021) from European to American options,

incorporating additional steps to account for the early exercise premium.

We evaluate the method’s performance using empirically calibrated simulations and compare

it with the estimators of Melick and Thomas (1997) and Tian (2011). We then proceed to an

empirical application with two objectives: to assess the performance of the proposed estimator

using real data and to evaluate whether the recovered SPD can predict future asset returns at

various horizons up to one year. The first objective presents a challenge because, for most assets,
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we do not observe their European and American options simultaneously, making it difficult to

assess issues related to the early exercise premium. Nevertheless, we have identified a pair of

assets that provide valuable insights: the S&P 500 index (SPX) and an ETF, called SPY, designed

to track the SPX. Importantly, the S&P 500 index provides European-style options, while the

SPY options are American-style. This means that we can view SPY options as nearly equivalent

to SPX options, with the difference in their prices primarily reflecting the early exercise premium.

Therefore, the SPD derived from the SPX options can serve as a reference point for evaluating

the accuracy of our method in recovering both the SPD and the early exercise premium.

The empirical results indicate that our methods effectively recover the SPDs, as the estimates

based on the SPY options tend to closely mirror those based on the SPX. The results also confirm

that accounting for the early exercise feature is indeed important at extended horizons. For

example, for the transaction date 02/17/2023, at which the London Inter-Bank Offered Rate

(LIBOR) is at 5.6%, ignoring the early exercise premium resulted in a sizable estimation bias at

the one-year horizon, consistent with the findings from our simulation analysis.

For the predictive analysis, we examine both predictive mean and quantile regressions for

future SPY returns, using a quantile of the SPD as the predictor. We present results across three

sample periods to assess potential shifts in predictability due to extreme market conditions:

a benchmark sample from 2009.06 to 2020.02, an extended sample that includes the COVID

pandemic period (2009.06-2023.02), and a further extended sample which includes the 2008

financial crisis (2007.01-2023.02). For each sample period, we consider four different horizons, at

approximately one month, three months, six months, and one year.

The predictive mean regressions indicate a statistically significant predictive relationship (at

the 10% level) for the first two sample periods. The evidence is clear-cut at monthly to semi-

annual horizons and becomes more mixed at the annual horizon. Lower quantiles consistently

display stronger predictive power than upper quantiles. Intuitively, a substantial decrease in the

lower quantiles is usually triggered by a negative market event (e.g., the onset of the COVID

pandemic). Over the past 20 years, the market has generally recovered well from large market

declines. As a result, such shifts in lower quantiles often signaled an investment opportunity,

which, on average, produced higher subsequent returns over various horizons.

The predictive quantile regressions yield clear-cut results for the monthly, quarterly, and semi-

annual horizons for all three sample periods. Specifically, when a quantile above the median is

used to predict the same quantile of the return distribution, the slope coefficients are mostly
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significant. In contrast, when using a quantile below the median as the predictor, the estimates

are often insignificant. This asymmetry reflects the same intuition as in the mean regression

case: given that the market has generally rebounded from significant declines or crashes, the

real market outcomes often exceeded initial pessimistic expectations. In other words, the lower

quantiles of the SPD captured a fear (or risk premium) that was accompanied by higher rather

than lower subsequent returns. These lower quantiles did not have a strong correlation with the

lower quantiles of the actual return distribution.

Our empirical results add to the extensive literature examining the relationship between the

options market and subsequent stock returns. Bollerslev, Gibson, and Zhou (2011) demonstrate

that the volatility risk premium predicts excess returns on the S&P500 index at monthly and

quarterly horizons from 1990Q1 to 2003Q2. An, Ang, Bali, and Cakici (2014) find that stocks

with large prior increases in call (put) implied volatilities subsequently exhibit high (low) future

returns, a pattern most pronounced at the monthly horizon and persisting up to six months

for the sample period 1996-2011. Xing, Zhang, and Zhao (2010) examine the predictability

of the implied volatility skewness of individual stock options from 1996-2005. They find that

the predictability weakens after one month but can extend up to half a year. Some studies

have used the tails of the SPD to forecast future returns; see Andersen, Fusari, and Todorov

(2015) by parametric methods and Andersen, Todorov, and Ubukata (2021) by nonparametric

methods. Since our methods allow us to extract the SPD from American options, they facilitate

the assessment of the predictive power of the SPD for a broader range of markets than those

analyzed using European options.

The rest of the paper is organized as follows: Section 2 provides an overview of concepts

related to American options in preparation for subsequent analyses. Section 3 introduces the

SPD estimator. In Section 4, we evaluate the estimator’s performance using simulations, with

parameters calibrated to empirical estimates. Section 5 presents an empirical application related

to SPDs implied by the SPX index and the SPY ETF, and Section 6 offers the conclusion.

Additional results and details are available in an online appendix.

2 American options and the early exercise premium

This section reviews basic properties of American options needed for subsequent analyses. Our

estimator utilizes a cross-section of call and put options with the same maturity date.

An American option is a financial contract granting holders the right to buy or sell an un-
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derlying asset at a predetermined price (i.e., the strike price) at any time before a specified

expiration date. Throughout the analysis, we denote present time by t, and the expiration date

by T . We let Sv be the price of the option’s underlying asset at time-v for any t ≤ v ≤ T . Using

this notation, the arbitrage-free price of an American call option with a strike price K can be

expressed as

AmCallt = sup
t≤v≤T

e−r(v−t)E
[
(Sv − K)+ |Ft

]
,

where (X)+ = max(X, 0); r is the risk-free rate; and Ft is the information set used by the market

to price the option at time t. The conditional expectation is always taken with respect to the

risk-neutral probability measure, and the supremum operator indicates that the option can be

exercised at any time prior to the expiration date.

Our SPD estimator is based on the following well-known decomposition of the equilibrium

price:

AmCallt = EuCallt + EECt, (1)

where EuCallt is the price of a European call option for the same asset with the same strike

price and expiration date, given by

EuCallt = e−r(T −t)E
[
(ST − K)+ |Ft

]
, (2)

and EECt is the early exercise premium, equal to

EECt =
∫ T

t
e−r(v−t)E

[
(δSv − rK) 1(Sv≥Bv)|Ft

]
dv, (3)

where δ denotes the dividend rate.

The early exercise premium reflects a trading strategy of borrowing cash of amount K at the

rate r and holding one share of the underlying asset when its price is above the exercise boundary

Bv for v ∈ [t, T ]; see Carr, Jarrow, and Myneni (1992). An option holder is indifferent between

exercising the option or not at the exercise boundary, therefore the following recursive equation

must hold when Sv = Bv:

Bv − K = EuCallv + EECv for any v ∈ [t, T ). (4)

The left hand side of the equation represents the revenue from exercising the option, and the

right hand side represents the continuing value of the option if it is not exercised at time v. In

particular, EuCallv is the European call option price in (2) at time v when the underlying asset
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price equals Bv, and EECv is the corresponding early exercise premium as in (3), which depends

on the remaining path of the early exercise boundary. Kim and Yu (1996) and Detemple and

Tian (2002) verified (1) and (3) for general diffusion models. For geometric Brownian motions,

more explicit expressions are available and are provided by Kim (1990), Jacka (1991), and Carr,

Jarrow, and Myneni (1992). For jump diffusions, the equation (1) continues to hold; however, (3)

requires modifications; see Gukhal (2001). For our analysis, we first derive the SPD estimator

assuming no jumps in asset prices and then examine the estimator’s performance when there are

jumps via empirically calibrated simulations.

Similar decompositions as those in (1)-(4) hold for put options: The arbitrage-free price of a

put option is the sum of a European put option and an early exercise premium:

AmPutt = EuPutt + EEPt,

where

EuPutt = e−r(T −t)E
[
(K − ST )+ |Ft

]
, (5)

EEPt =
∫ T

t
e−r(v−t)E

[
(rK − δSv) 1(Sv≤Bv)|Ft

]
dv.

The resulting early exercise boundary Bv satisfies

K − Bv = EuPutv + EEPv for any v ∈ [t, T ), (6)

where EuPutv is the European put option price at time v when the underlying asset price equals

Bv, and EEPv is the corresponding early exercise premium.

The conditional expectations in these expressions all involve the SPD. We denote its value for

the time-v distribution conditional on time-s information as f ∗
s (Sv) = f ∗(Sv|Fs). For instance,

in the case of (2), the equation now reads explicitly as

E
[
(ST − K)+ |Ft

]
=
∫

(ST − K)+ f ∗
t (ST )dST .

Once f ∗
s (Sv) is specified for any (s, v) in t ≤ s ≤ v ≤ T , all the expressions between (1) and (6)

can be computed numerically or through simulations. In essence, our estimation represents an

inverse problem, in which we infer the SPD from these expressions using observed option prices

as input.
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3 Proposed estimator

Our proposed estimator has two components: a Gauss-Hermite series approximation to the SPD

and a recursive equation for the early exercise premium. We first describe these two components

and then present the main steps of the estimation procedure.

3.1 Approximations to the SPD and the early exercise premium

It is well known that the shape of an SPD, especially its dispersion, systematically varies with

market conditions, asset types, and time-to-maturity. Its variance can increase sharply during

market stress and decreases to zero as the option approaches maturity. Consequently, utilizing

a fixed set of basis functions, without any data-dependent standardization, will not capture this

density accurately across diverse applications. To address this, we follow Lu and Qu (2021) to

implement a change-of-variables technique before introducing any approximation.

Specifically, let St be the spot price of the underlying asset at time t. We define the following

change-of-variables operations:

x = log(ST /St) − rτ

σ
√

τ
(7)

and

z = log(K/St) − rτ

σ
√

τ
. (8)

Here, r is the risk-free rate, τ = T − t represents time to maturity, ST is the potential price

of the underlying asset at maturity, K is the strike price, and σ is the Black-Scholes implied

volatility, computed using the at-the-money call option price. We let ft(x) denote the SPD of

the transformed variable x. Using ft(x), the European call and put option prices in (2) and (5)

can be expressed as, respectively,

EuCallt =
∫ ∞

−∞
St

[
e

√
τσx − e

√
τσz
]+

ft(x)dx (9)

and

EuPutt =
∫ ∞

−∞
St

[
e

√
τσz − e

√
τσx
]+

ft(x)dx.

The transformation in (7) achieves two goals simultaneously. First, the division by
√

τσ

acts as a variance-stabilizing transformation. For instance, if the variance of f ∗
t (x) increases

abruptly during a market crash, then σ will rise immediately, ensuring the variance of ft(x)

remains relatively stable and close to one. Second, the logarithmic transformation, log(ST /St),

shifts the support of the density from the positive axis to the real line. Thus, if f ∗
t (x) is close to
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a log-normal density, ft(x) will be close to a normal density due to this transformation. These

two properties are crucial for achieving an effective approximation using the standard normal

distribution as the center of the series expansion. Additionally, the z in (8) is frequently used as

a measure of moneyness for how many standard deviations the option is in- or out-of-the-money;

see, for example, Carr and Wu (2003) and Beber and Brandt (2006). In our estimation, we first

estimate ft(x) and then we reverse the transformation in (7) to obtain f ∗
t (x) as follows:

f ∗
t (ST ) = 1

σ
√

τST

f

(
log(ST /St) − rτ

σ
√

τ

)
.

After the change-of-variable operation, we approximate ft(x) in (9) using a Gauss-Hermite

series expansion. Although we follow the same approach as in Lu and Qu (2021), we provide

full details here to ensure clarity. Recall that the Hermite functions {hj} are the complete

orthonormal system in L2(−∞, ∞), given by

hj(x) = [Hj(x)/(2jj!π1/2)1/2]e−x2/2

with
∫∞

−∞ h2
j(x)dx = 1 for all j = 0, 1, 2, ...;

∫∞
−∞ hi(x)hj(x)dx = 0 for all i ̸= j; and {Hj(x)}

are the standard physicist’s Hermite polynomials given by Hj(x) = (−1)j ex2(dj/dxj)e−x2 . By

expressing ft(x) in terms of hj(x), we obtain

ft(x) =
∞∑

j=0
βjhj(x), (10)

where

βj =
∫ ∞

−∞
ft(x)hj(x)dx. (11)

Applying a truncation to (10), we obtain a Gauss-Hermite series approximation to ft(x):

ft(x) ≈
J∑

j=0
βjhj(x), (12)

where βj is defined in (11), and J is the truncation order. The center of this approximation

is proportional to a standard normal density, and the additional terms capture deviations from

normality such as a thick left tail. Finally, after reversing the change-of-variables, we obtain:

f ∗
t (ST ) ≈ 1

σ
√

τST

J∑
j=0

βjhj

(
log(ST /St) − rτ

σ
√

τ

)
. (13)

We now turn to the early exercise premium. Recall that the equation determining this

premium is given by (c.f.(3))

EECt =
∫ T

t

∫ ∞

0
e−r(v−t) (δSv − rK) 1(Sv≥Bv)f

∗
s (Sv)dSvdv.
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Thus, f ∗
s (Sv) is required to compute EECt. For this purpose, we use the same Gauss-Hermite

series approximation as in (13):

f ∗
s (Sv) ≈ 1

σ
√

v − sSv

J∑
j=0

βjhj

(
log(Sv/Ss) − r(v − s)

σ
√

v − s

)
,

where the truncation order J and the Gauss-Hermite coefficients are as in (12). Using this

approximation, we obtain the early exercise boundary by solving the nonlinear equation in (4) and

computing the integration in (3) numerically. The overall approximation is internally consistent

because f ∗
s (Sv) converges to f ∗

t (ST ) as s → t and v → T .

3.2 Estimation procedure

We now present the estimation procedure. Let yi and zi (i = 1, ..., n) denote the observed option

prices and transformed strike prices at time t (c.f. (7) and (8)). The t index is omitted here and

in subsequent discussions to simplify the notation. We assume the data are arranged such that

the first nc observations are call options, and the remaining n − nc observations are put options.

Then, we have

yi =

 EuCalli + EECi + εi

EuPuti + EEPi + εi

for i = 1, ..., nc,

for i = nc + 1, ..., n.

In each equation, the first two terms represent the theoretical option price, and εi accounts for

pricing errors. We define

xi,j =


∫∞

−∞ S
(
e

√
τσx − e

√
τσzi

)+
hj(x)dx for i = 1, ..., nc,∫∞

−∞ S
(
e

√
τσzi − e

√
τσx
)+

hj(x)dx for i = nc + 1, ..., n.

for j = 0, ..., J . Those xi,j terms will serve as the regressors in our regression. Let

xi = (xi,0, ..., xi,J)′.

The estimation procedure consists of three steps:

STEP 1. Obtain an initial estimate of the SPD: Assume EECi = EEPi = 0 and solve

min
β∈HJ

n∑
i=1

(yi − x′
iβ)2

, (14)

with

HJ =

β ∈ RJ+1: inf
x∈R

J∑
j=0

βjhj(x) ≥ η

 , (15)
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where η is a small negative constant introduced to account for the Gauss-Hermite approximation

error. Let (β̂0, ..., β̂J) be the estimate of β, and compute

f̂(x) =
J∑

j=0
β̂jhj(x).

STEP 2. Compute the early exercise boundary and the early exercise premium using this SPD

estimate: Let

f̂ ∗
s (Sv) = 1

σ
√

v − sSv

J∑
j=0

β̂jhj

(
log(Sv/Ss) − r(v − s)

σ
√

v − s

)
.

To determine the early exercise boundary of a call option with strike price Ki, solve numerically

for Bv using

B̂v − Ki = ÊuCallv + ÊECv for any v ∈ [t, T ),

where ÊuCallv and ÊECv correspond to EuCallv and EECv, but with f ∗
v (·) and Bv(·) replaced

by f̂ ∗
v (·) and B̂v(·), respectively. The resulting estimate for the early exercise premium is

ÊECi =
∫ T

t

∫ ∞

−∞
e−r(v−t) (δSv − rK) 1(Sv≥B̂v)f̂

∗(Sv)dSvdv.

Compute the early exercise premium for put options, denoted ÊEP i, in a similar way.

STEP 3. Update the SPD estimate and the early exercise premium: First, use the early exercise

premium from STEP 2 to re-estimate the SPD. Specifically, re-solve (14) after replacing yi with

yi−ÊECi for call options and replacing yi with yi−ÊEP i for put options. Next, use the updated

SPD estimate to recompute the early exercise premium as in STEP 2. Repeat this process until

changes in the SPD estimate are small.

Remark 1 STEP 1 of the procedure produces an initial estimate of the SPD by treating American

options as their European counterparts. STEP 2 calculates expressions associated with the early

exercise feature based on this initial estimate. STEP 3 refines these estimates in an iterative

manner. This sequential approach breaks the computation into simple segments, avoiding an

otherwise complex nonlinear problem.

Remark 2 By (10), the Gauss-Hermite approximation error equals f(x) − ∑J
j=0 βjhj(x) =∑∞

j=J+1 βjhj(x), which can be negative for some x ∈ R. Therefore, in HJ , the parameter η should

be slightly negative to account for the effect of the truncation. We suggest setting it to η =-1E-3.

The optimization problem in Step 2 is strictly convex because HJ is a convex set and the crite-

rion function (14) is strictly convex. We use the solve.QP routine in R to implement this step.
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The parameter J controls the approximation error in (12). We suggest choosing J using ten-fold

cross-validation over the set J = {J∗, J∗ + 1, J∗ + 2} with J∗ = ceiling(2 ∗ (n/log(n))0.2). These

recommendations follow Lu and Qu (2021). The estimator presented in this paper extends the

methodology of Lu and Qu (2021) from European options to American options by incorporating

STEPs 2 and 3 to account for the early exercise premium.

4 Empirically calibrated simulations

In this section, we evaluate the performance of the proposed SPD estimator using five well-known

parametric models as data generating processes. These five models span diverse markets: equity

index options, equity index futures options, volatility index options, and commodity options. We

generate data using empirically calibrated parameter values. A summary of these data-generating

processes is provided below, with more details available in the appendix.

Heston’s stochastic volatility (SV) model. This is a benchmark model used for pricing

equity and equity index options. The model specifies the risk-neutral dynamics of the spot price

of the underlying asset as

dSt = (r − δ)Stdt +
√

VtStdWt,

dVt = κ(θ − Vt)dt + σ
√

VtdUt,

where r represents the risk-free rate, δ represents the dividend rate, Wt and Ut are two Brownian

motions with a correlation coefficient ρ. The parameter θ determines the long-run variance

level, κ affects the speed of mean-reversion, and σ is the volatility-of-volatility parameter. For

simulations, we use the parameters from the SV panel of Table 1 of Lu and Qu (2021), estimated

using S&P500 index options from the period 2013.06–2013.12.

Two-factor SV model. As a generalization of the basic SV model, this model allows two

factors in the volatility process (i = 1, 2):

dSt/St = rdt +
√

V1,tdW1,t +
√

V2,tdW2,t,

dVi,t = (αi − βiVi,t)dt + σi

√
Vi,tdUi,t,

Cov(dWi,t, dUi,t) = ρidt,

Cov(dW1,t, dW2,t) = Cov(dU1,t, dU2,t) = 0.

For simulations, we use parameter values from Bates (2000, p.203), which are estimated using

S&P500 futures options.
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DMR model. This model is mainly used for variance swaps, currency options, and interest

rates, and it appeared in Bates (2012), Mencia and Sentana (2013), and Xiu (2014). Our DGP

is the same as that in Mencia and Sentana (2013):

dVt = β(θt − Vt)dt + σ
√

VtdWt,

dθt = ξ(α − θt)dt + κ
√

θtdUt,

where Vt is a variance instrument, and the correlation between the Wiener processes W and U

is zero. The parameter values are taken from Table 4 of Mencia and Sentana (2013), where the

authors conducted an empirical analysis of VIX derivative valuation models.

CEV model. The constant elasticity of variance (CEV) model, introduced by Cox (1996), is a

generalization of the Geometric Brownian Motion, which allows the conditional variance of asset

returns to depend on the price level. This model has been applied in various contexts, such as

modeling short-term interest rates and pricing commodity options. We use the following DGP:

dVt/Vt = (r − δ)dt + σVt
βdWt.

The parameter values are taken from Geman and Shih (2008), estimated based on crude oil over

the period 01/01/2000 to 12/11/2007, which were also used in Carlos Dias and Pedro Vidal

Nunes (2011).

SVCJ model. This is a stochastic volatility model with contemporaneous jumps in return and

volatility, proposed by Duffie, Pan, and Singleton (2000):

dSt/St = rdt +
√

VtdWt + (eZs
t − 1)dNt − λµdt

dVt = κ(θ − Vt)dt + σ
√

VtdUt + Zv
t dNt,

where the definitions of the variables are the same as in the SV case, Nt ∼ Poi(λ) is a Poisson

counting process with a constant intensity λ; Zs
t denotes jump in return with Zs

t ∼ N (µs, σ2
s);

and Zv
t denotes jump in volatility which follows an exponential distribution: Zv

t ∼ Exp(µv).

Amongst the parameters, θ determines the long-run variance level, κ affects the speed of mean

reversion, σ is the volatility-of-volatility parameter, and −λµ, with µ = exp(µs + σ2
s/2) − 1,

compensates for the instantaneous change in the expected return due to the presence of Zs
t . For

parameter values, we use the SVCJ panel of Table 1 from Lu and Qu (2021). This DGP is

included here to assess the estimation accuracy when jumps are present.

We divide the analysis into two parts. In the first part, we evaluate the estimation meth-

ods in an environment when the pricing relationship is exact – meaning there are no pricing
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errors or noise in option prices. This allows us to examine the adequacy of the Gauss-Hermite

approximation and the early exercise premium approximation, without the interference of esti-

mation uncertainty. It also enables us to assess the magnitude of the estimation bias when the

early exercise feature is disregarded, i.e., treating American options as if they were European

options. Then, in the second part of the analysis, we introduce noises to option prices and

evaluate the finite sample performance of the proposed methods. In all cases, the truncation

order of the Hermite approximation is determined via a ten-fold cross-validation over the set

J = {J∗, J∗ + 1, J∗ + 2} with J∗ = ceiling(2 ∗ (n/log(n))0.2). The option prices are generated

using Longstaff and Schwartz’s (2001) method. The maturity is set to one year, and the results

for a six-month horizon are reported in the appendix.

Figure 1: SPD and EEP estimates for the SV model
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 European options
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(b) Preliminary SPD estimate based on 
 American options
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 American options
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(d) The true and estimated EEP

Note. SPD: state price density for the return. EEP: early exercise premium. Horizon: 1-
year. Solid curve: true value. Dashed line: estimates. In (d), the increasing part is the put
option EEP. See Appendix for more details about the DGP.

4.1 Adequacy of approximations

We present the results in five figures, Figures 1-5, for the five models respectively. Each of these

figures consists of four panels. Panel (a) displays the SPD estimate using European option prices,
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which serves as a benchmark for comparison. Panel (b) displays the conventional approach that

treats American options as European options, resulting in biased estimates. Panel (c) reports the

proposed estimator, while panel (d) displays the estimated and the true early exercise premiums.

In each case, the true value is shown by the red solid curve, and the estimate is represented by

the black dashed line. For panels (a) and (b), the estimates are obtained using the sieve method

of Lu and Qu (2021).

Figure 1 shows that large estimation biases are present when ignoring the early exercise

feature (Panel b of Figure 1). It also shows that accounting for the early exercise premium using

the proposed methods improves the results substantially (Panel c). The resulting estimates are

close to the infeasible estimates (Panel a), for which the unknown early exercise premium is

replaced by its true value. The recovered early exercise premium sometimes deviates from the

true value for in-the-money put options. Nevertheless, this difference has no visible detrimental

effect on the SPD estimation; it appears that for the estimation of the SPD, what matters is the

approximate value of the early exercise premium rather than its exact value.

Figure 2: SPD and EEP estimates for the two-factor SV model
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 American options
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 American options
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(d) The true and estimated EEP

Note. Horizon: 1-year. Solid curve: true value. Dashed line: estimates. In (d), the
increasing part is the put option EEP. See Appendix for more details about the DGP.

Figures 2-5 indicate similar conclusions as Figure 1. In particular, ignoring the early exercise

premium can lead to large biases, and accounting for it using the proposed methods can improve

the results substantially. The methods perform well in the SVCJ model case, despite the fact
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Figure 3: SPD and EEP estimates for the DMR model
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(d) The true and estimated EEP

Note. 1-year horizon. Solid curve: true value. Dashed line: estimates. In (d), the increasing
part is the put option EEP. See Appendix for more details about the DGP.

Figure 4: SPD and EEP estimates for the CEV model
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(d) The true and estimated EEP

Note. 1-year horizon. Solid curve: true value. Dashed line: estimates. In (d), the increasing
part is the put option EEP. See Appendix for more details about the DGP.

that the early exercise boundary formula does not explicitly account for jumps. Figures A.1-A.5

in the appendix provide further evidence that incorporating the early exercise premium can be
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Figure 5: SPD and EEP estimates for the SVCJ model
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Note. 1-year horizon. Solid curve: true value. Dashed line: estimates. In (d), the increasing
part is the put option EEP. See Appendix for more details about the DGP.

important even at the six-month horizon. In particular, for the SV, two-factor SV, and SVCJ

models, neglecting the early exercise premium results in significant biases and the proposed

methods are able to reduce them effectively.

4.2 Finite sample performance

We now introduce noise to option prices. For each of the five models described above, we first

generate option prices as in Section 4.1 and then add an independent noise term that is uniformly

distributed between -10% and 10% of the price level. We further assume that the noise is capped

by an upper bound. Specifically, for Heston’s SV model, the two-factor SV model, and the SVCJ

model, we set an upper bound of either five dollars or ten dollars. For the DMR model and the

CEV model, we set a cap of either fifty cents or one dollar because the option prices are lower

(with maximum option prices being approximately 149 and 77 in these two cases, respectively).

This simulation design is similar to that in Lu and Qu (2021).

We compare our methods with those of Melick and Thomas (1997) and Tian (2011). Melick

and Thomas (1997) specified the SPD as a mixture of three lognormal distributions (the MLN
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estimator):

fMLN
t (ST ) =

3∑
i=1

πi√
2πσiST

exp
−1

2

(
log(ST ) − µi

σi

)2
,

where ∑3
i=1 πi = 1, and πi > 0 for i = 1, 2, 3. To address the issue of the early exercise

premium, Melick and Thomas (1997) derived bounds of American option prices relative to their

European counterparts and subsequently estimated the nine parameters (πi, µi, σi) , i = 1, 2, 3,

by minimizing the sum of squared option pricing errors. Tian’s (2011) method is based on

estimating a binomial tree (hereafter, the iIB estimator). Starting with an initial value for the

SPD, this method calculates the implied early exercise premium and subtracts this value from

the American option prices to get an estimate of the European option prices. Afterward, it fits

the resulting European option prices to a binomial tree. Tian (2011) did not explicitly provide

the number of iterations in the paper but did state that convergence is fast. In our comparison,

we implement this method for four iterations, the same as our proposed method.

Table 1 presents the mean integrated squared errors (MISEs) based on 5,000 simulation

replications for the five models, for a total of ten cases. The lowest MISE in each case is

highlighted in bold. The results show that the proposed method produces the smallest MISE in

eight out of ten cases. The reduction in MISE is often substantial, with a decrease of at least

30% relative to the second-best method in seven of these eight cases. For the remaining two

cases (DMR model and CEV model with an error bound of $1), the sieve method produces the

second-lowest MISE. These MISE values are only marginally higher than the best values in these

instances.

5 Empirical application

We carry out this empirical application with two objectives. First, we use an actual dataset to

evaluate whether the method can adequately recover the SPD and the early exercise premium.

Second, we examine whether the recovered SPD is useful for predictive purposes, specifically for

forecasting future realized asset returns at various horizons.

The first objective presents a challenge because most financial assets do not have both Eu-

ropean and American options issued on them simultaneously, making it difficult to assess issues

related to the early exercise premium. Nevertheless, we have identified a pair of assets that can

offer valuable insights: the S&P500 index (SPX), and an ETF, called SPY, designed to track the

SPX. These two assets co-move closely and are barely distinguishable from each other, as illus-
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Table 1: Mean Integrated Squared Errors

A. SV model
Method Error bound: $5 Error bound: $10

Proposed 0.0132 0.0179
iIB 0.0503 0.0503

MLN 0.0287 0.0325
B. Two-factor SV model

Method Error bound: $5 Error bound: $10
Proposed 0.0129 0.0166

iIB 0.0239 0.0239
MLN 0.0440 0.0445

C. DMR model
Method Error bound: $0.5 Error bound: $1

Proposed 0.0107 0.0138
iIB 0.0112 0.0113

MLN 0.0381 0.0420
D. CEV model

Method Error bound: $0.5 Error bound: $1
Proposed 0.0039 0.0066

iIB 0.0052 0.0052
MLN 0.0200 0.0204

E. SVCJ model
Method Error bound: $5 Error bound: $10

Proposed 0.0139 0.0176
iIB 0.0535 0.0535

MLN 0.0325 0.0366
Note. In each panel, the first row corresponds to the proposed estimator, the second row to
the iIB estimator of Tian (2011), and the third row to the MLN estimator of Melick and
Thomas (1997). The lowest MISE is highlighted in bold.

trated in Figure 6, which displays these two series from 01/01/2007 to 02/28/2023. Importantly,

the S&P500 index carries European-style options, while the SPY options are American-style.

Given the strong linkage between these two series, we can view SPY options as approximately

equivalent to SPX options, with the difference in their prices primarily reflecting the early ex-

ercise premium. This implies that we can use the SPD computed from the SPX options as

a reference point to assess the accuracy of our method in recovering the SPD from American

options based on SPY.

We collect daily observations from OptionMetrics and process the data as follows: (1) Remove

18



Figure 6: SPX and SPY from 01/01/2007 to 02/28/2023
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Note. Daily log price levels. SPY: the SPY ETF series; SPX: the S&P500
index. The SPY series is multipled by 10 before taking the log.

all options with zero open interest to exclude outdated information. (2) Retain only option

contracts that expire on the third Friday of any month. (3) For these Fridays, keep option

contracts with maturities of roughly 1, 3, 6, and 12 months, or equivalently, with τ = 30, 91, 182,

or 365 days. Specifically, when τ equals 30 or 91 days, retain contracts expiring in [τ -2, τ+2]

days, and when τ is 182 or 365 days, retain those expiring in [τ -5, τ+5] days. The usage of a

window ensures that actual return horizons do not deviate significantly from their targets. If

two contracts are equidistant from maturity (e.g., 28 days and 32 days when τ = 30), select

the contract with more available strikes. (4) Exclude trading days with fewer than 40 available

contracts. The resulting sample sizes are detailed in Table 2.

Table 2: Sample sizes for different maturities

τ = 30 τ = 91 τ = 182 τ = 365
SPX 192 182 90 68
SPY 192 164 89 73
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5.1 SPDs implied by SPX and SPY options

In this subsection, we compare the SPDs estimated from SPX (European-style) and SPY (American-

style) options. We first examine an example date closely and then present a summary of the

estimates for the entire sample period.

The example date is 02/17/2023, which is the most recent Friday available in the data at the

time of writing this paper. On that date, the short-term interest rate stood at 5.6%, following

the Fed’s efforts to control inflation after COVID. The option maturity is 336 days.

Panel (a) of Figure 7 displays three sets of SPD estimates: the solid black curve represents

the SPD estimate based on SPX (European-style) options; the solid red curve is produced by

the proposed estimator using SPY ETF (American-style) options; and the dashed blue curve

represents the estimate using SPY ETF options but ignoring the early exercise feature. The

results show that the proposed estimator yields an SPD close to that obtained from the European

options, while ignoring the early exercise feature leads to significant estimation bias. Panel (b)

displays the estimated early exercise premiums (represented by the solid curve) relative to their

true values computed as differences between SPY and SPX option prices (denoted by circles).

The estimates adequately capture the put option early exercise premiums, and they also correctly

indicate that the call premiums are nearly zero. In Panel (c), the actual SPY ETF option values

(circles) are plotted alongside the fitted values produced by the proposed method (solid line).

The fitted values are close to the actual option values across the entire range of strike prices.

Next, we summarize the entire set of SPD estimates for this sample period. Specifically, we

plot the 0.1, 0.25, 0.5, 0.75, and 0.9 quantiles of these SPDs, alongside the actual realized future

returns for comparison. We report the results for τ equal to 1 month and 1 year in the main

text and include the cases for three and six months in the appendix (Figures A.6 and A.7). Note

that the option expiration dates for SPX and SPY available in the data do not always align

perfectly with one another, especially for longer horizons; for example, in the annual horizon

case, SPX has 68 available transaction dates while SPY has 73. This leads to some variations in

the return series and the SPD estimates, but it does not affect the overall patterns observed in

the estimates.

Figure 8 confirms that the SPDs implied by SPX and SPY options resemble each other at

the one-month horizon, with both distributions displaying clear leftward skewness. The 10th

percentile tends to show more extreme negative values than the 90th percentile does positive

values, particularly during periods of market stress, such as the recent financial crisis and the
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Figure 7: SPD and EEP estimates 02/17/2023
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Note. In panel (a), the solid black curve represents the SPD estimate derived from the SPX index options; the
solid red curve is the estimate using SPY ETF options; and the dashed blue curve shows the estimate using
SPY ETF options that ignores the early exercise feature. In panel (b), the red curves denote the estimated
early exercise premiums, while the black circles represent the empirical EEP values, computed as differences
between ETF and index option prices. In panel (c), the red solid curves display the fitted option values based
on the estimated SPD and EEP using our methodology. The black circles are actual American option prices.
The expiration spans 336 days, with the SPX and SPY spot prices being 4079.1 and 4072.6, respectively.
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Figure 8: SPD estimates for τ = 30 days

(a) SPY ETF implied densities

(b) SPX implied densities

COVID pandemic. The results also reveal that the distribution’s upper and lower tails undergo

sharp fluctuations during times of economic turmoil, while the median remains stable. This

pattern suggests that the tails may offer more predictive information about future returns than

the distribution’s center can provide. These findings are in line with those reported by Lu and

Qu (2021), who analyzed SPDs implied by S&P 500 index options over the 2007-2016 period.

Figure 9 displays the SPD estimates for τ = 1 year. As in the monthly case, the densities

implied by SPX and SPY closely resemble each other. The leftward skewness is even more

pronounced when contrasting the 10th percentile with the 90th percentile. The movement of
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Figure 9: SPD estimates for τ = 365 days

(a) SPY ETF implied densities

(b) SPX implied densities

the median of the distribution continues to remain stable throughout the sample, while the

tails widen considerably during market stress, especially during the 2008 crisis and the COVID

pandemic period. Appendix Figures A.6 and A.7 present the results for τ = 1 quarter and τ = 6

months, respectively. The observations from these figures reaffirm the conclusions drawn from

the monthly and annual horizon cases.

These figures provide insights into the characteristics of the SPDs across different time hori-

zons. Next, we turn to a formal analysis in the context of predictive regressions.
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5.2 Predictive power of the state price density

Each SPD represents a distribution, offering the opportunity to use various features, such as

the mean, variance, higher-order moments, or quantiles, as predictors of future asset returns.

Given the observed comovements between the quantiles of the SPD and future realized returns

in Figures 8 and 9, we focus on using the quantiles of the SPD as predictors. A similar analysis

was reported by Lu and Qu (2021), focusing on a monthly horizon from 2007 to 2016 using S&P

500 index options. In contrast, the analysis here is based on American options, spans longer

horizons up to one year, and incorporates the recent COVID period into the analysis.

Table 3: Predictive regression using a quantile of the SPD as predictor (τ=30 days)

Quantile 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
(a) 06/2009-02/2020

Estimate -0.42 -0.84 -1.32 -1.85 1.49 1.68 1.16 0.86 0.62
s.e. 0.12 0.31 0.57 1.08 1.09 0.52 0.34 0.24 0.17

t-value -3.54 -2.69 -2.34 -1.72 1.37 3.25 3.41 3.65 3.69
p-value 0.00 0.01 0.02 0.09 0.17 0.00 0.00 0.00 0.00

R2 0.05 0.04 0.03 0.02 0.01 0.03 0.04 0.04 0.04
(b) 06/2009-02/2023

Estimate -0.46 -0.79 -1.52 -2.96 2.09 1.81 1.21 0.89 0.64
s.e. 0.12 0.15 0.44 1.33 1.21 0.67 0.39 0.26 0.19

t-value -3.98 -5.26 -3.43 -2.22 1.73 2.72 3.10 3.40 3.46
p-value 0.00 0.00 0.00 0.03 0.09 0.01 0.00 0.00 0.00

R2 0.09 0.09 0.08 0.06 0.02 0.06 0.07 0.08 0.08
(c) 01/2007-02/2023

Estimate -0.21 -0.43 -0.75 -1.63 0.50 0.79 0.57 0.41 0.30
s.e. 0.17 0.24 0.45 0.86 1.42 0.80 0.47 0.33 0.23

t-value -1.20 -1.81 -1.69 -1.90 0.36 0.98 1.20 1.27 1.32
p-value 0.23 0.07 0.09 0.06 0.72 0.33 0.23 0.21 0.19

R2 0.03 0.04 0.03 0.03 0.00 0.01 0.02 0.02 0.03
Note. Dependent variable: return on SPY. Independent variable: a quantile of the SPD implied
by SPY options. An intercept is always included. The standard errors account for heteroscedas-
ticity and autocorrelation. The estimates significant at the 10% level are in bold.

We consider both mean and quantile predictive regressions. In each mean regression, we use

a quantile of the SPD to predict the future realized return on the SPY. We present estimates

from nine regressions, each utilizing one of the nine deciles as the predictor. In each quantile

regression, we use a specific quantile, such as the 10th percentile of the SPD, to predict the
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corresponding percentile of the future return distribution. These mean and quantile regressions

are complementary as they enable us to assess the predictive power for the central tendency

and the shape of the return distribution, respectively. In all regressions, the dependent variable

is the return on the SPY ETF, while the predictor corresponds to the SPDs implied by SPY

options. The dividend rate from the previous year is used when computing the SPD, which

ensures that all conditioning information is available when making the predictions. We also

conducted regressions using SPX returns and SPX options, and the results were similar.

Table 4: Predictive regression using a quantile of the SPD as predictor (τ=91 days)

Quantile 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
(a) 06/2009-02/2020

Estimate -0.45 -1.24 -2.25 -4.00 -0.28 1.70 1.40 1.03 0.77
s.e. 0.20 0.40 0.74 1.76 1.85 0.76 0.48 0.35 0.26

t-value -2.30 -3.12 -3.04 -2.28 -0.15 2.23 2.91 2.93 2.92
p-value 0.02 0.00 0.00 0.02 0.88 0.03 0.00 0.00 0.00

R2 0.09 0.10 0.10 0.08 0.00 0.03 0.06 0.06 0.07
(b) 06/2009-02/2023

Estimate -0.49 -1.34 -2.64 -5.05 1.33 1.86 1.43 1.06 0.80
s.e. 0.21 0.47 0.93 1.80 2.20 1.10 0.67 0.45 0.32

t-value -2.31 -2.86 -2.83 -2.81 0.60 1.70 2.15 2.36 2.49
p-value 0.02 0.00 0.01 0.01 0.55 0.09 0.03 0.02 0.01

R2 0.13 0.15 0.15 0.11 0.01 0.07 0.10 0.11 0.12
(c) 01/2007-02/2023

Estimate -0.39 -0.69 -1.42 -2.99 -0.49 0.81 0.72 0.55 0.42
s.e. 0.23 0.56 0.93 1.55 2.38 1.33 0.83 0.57 0.40

t-value -1.68 -1.24 -1.53 -1.93 -0.21 0.61 0.86 0.98 1.04
p-value 0.10 0.22 0.13 0.06 0.84 0.55 0.39 0.33 0.30

R2 0.06 0.04 0.05 0.04 0.00 0.01 0.02 0.03 0.03
Note. Dependent variable: return on SPY. Independent variable: a quantile of the SPY-
implied SPD. An intercept is always included. The standard errors account for heteroscedas-
ticity and autocorrelation. The estimates significant at the 10% level are in bold.

We report results for three sample periods to evaluate how predictability might change in

response to extreme market conditions: a benchmark sample from 2009.6 to 2020.2, an extended

sample that includes the COVID pandemic period (2009.6-2023.2), and a further extended sample

which includes the 2008 financial crisis (2007.1-2023.2). This choice reflects the prior belief that

predictability, even if it exists, might break down under extreme market conditions. We consider
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four different maturities for each sample period as in the previous subsection: τ = 30, 91, 182, and

365 days. The standard errors are computed allowing for heteroscedasticity and serial correlation.

Tables 3-6 report the results from the mean regressions, with each table representing a sep-

arate predictive horizon. Each column of the table corresponds to a distinct least-squares re-

gression. For instance, in the first column of Table 3, the monthly realized return on the SPY

is regressed on the 10th percentile of the lagged SPD. P-values significant at the 10% level are

highlighted in bold.

Table 5: Predictive regression using a quantile of the SPD as predictor (τ=182 days)

Quantile 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
(a) 6/2009-2/2020

Estimate -0.30 -0.99 -1.86 -3.02 -1.29 1.46 1.37 0.99 0.70
s.e. 0.21 0.35 0.62 1.18 2.53 1.52 0.79 0.50 0.33

t-value -1.42 -2.82 -3.01 -2.55 -0.51 0.96 1.74 1.97 2.11
p-value 0.16 0.01 0.00 0.01 0.61 0.34 0.09 0.05 0.04

R2 0.04 0.13 0.14 0.11 0.01 0.03 0.06 0.07 0.08
(b) 6/2009-2/2023

Estimate -0.58 -1.50 -3.04 -4.42 0.81 2.12 1.67 1.25 0.91
s.e. 0.29 0.39 1.07 1.64 2.08 1.53 0.96 0.65 0.42

t-value -1.99 -3.87 -2.85 -2.69 0.39 1.39 1.75 1.93 2.16
p-value 0.05 0.00 0.01 0.01 0.70 0.17 0.08 0.06 0.03

R2 0.15 0.25 0.23 0.14 0.00 0.09 0.13 0.15 0.17
(c) 1/2007-2/2023

Estimate -0.55 -1.01 -2.02 -4.14 -2.63 0.39 0.73 0.65 0.52
s.e. 0.27 0.41 0.67 0.78 2.89 1.83 1.04 0.65 0.42

t-value -2.08 -2.44 -3.00 -5.30 -0.91 0.21 0.71 1.01 1.22
p-value 0.04 0.02 0.00 0.00 0.36 0.83 0.48 0.32 0.23

R2 0.10 0.11 0.12 0.15 0.04 0.00 0.02 0.03 0.05
Note. Dependent variable: return on SPY. Independent variable: a quantile of the SPY-
implied SPD. An intercept is always included. The standard errors account for heteroscedas-
ticity and autocorrelation. The estimates significant at the 10% level are in bold.

First, consider the benchmark sample period corresponding to panels (a) in these tables. The

p-values consistently indicate a statistically significant predictive relationship at the 10% level,

except for quantiles near the center of the distribution. Coefficient estimates are negative at

lower quantiles and positive at upper quantiles. The regression R-squares are predictably low,

but they tend to increase with a longer horizon: for the monthly horizon, the R-squares range
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between 1% and 5%, while for the annual horizon, they vary from 1% to 13%. Taken together,

these results indicate a significant predictive relationship between the SPD and future returns

during this sample period, and the signs of the coefficients are consistent with a risk-expected

return trade-off interpretation.

Next, consider panels (b) in these tables which incorporate the COVID pandemic period

into the analysis. For the monthly to semi-annual horizons, the results are very similar to the

2009-2020 sample case, consistently showing a significant predictive relationship. For the annual

horizon, the point estimates and R-squares are comparable to those in panel (a), but only the

lower quantiles (τ = 0.2, 0.3, 0.4) remain statistically significant. Therefore, the evidence of

predictability is uncertain in this annual horizon case.

Table 6: Predictive regression using a quantile of the SPD as predictor (τ=365 days)

Quantile 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
(a) 06/2009-02/2020

Estimate -0.49 -0.65 -1.23 -1.39 -0.96 0.58 1.41 1.11 0.77
s.e. 0.21 0.23 0.57 0.79 1.11 1.10 0.68 0.48 0.34

t-value -2.32 -2.86 -2.14 -1.77 -0.87 0.52 2.08 2.33 2.30
p-value 0.02 0.01 0.04 0.08 0.39 0.60 0.04 0.02 0.03

R2 0.08 0.13 0.11 0.07 0.02 0.01 0.06 0.08 0.09
(b) 06/2009-02/2023

Estimate -0.52 -0.98 -2.02 -2.41 -1.10 0.54 1.06 0.88 0.67
s.e. 0.38 0.18 0.69 0.98 1.19 1.69 1.27 0.85 0.52

t-value -1.36 -5.59 -2.93 -2.45 -0.92 0.32 0.83 1.04 1.28
p-value 0.18 0.00 0.00 0.02 0.36 0.75 0.41 0.30 0.20

R2 0.08 0.28 0.17 0.11 0.02 0.01 0.05 0.07 0.09
(c) 01/2007-02/2023

Estimate -0.66 -0.95 -1.90 -3.06 -3.15 -0.92 0.40 0.54 0.49
s.e. 0.25 0.14 0.37 0.76 1.38 1.62 0.99 0.58 0.34

t-value -2.65 -7.02 -5.12 -4.01 -2.29 -0.57 0.40 0.93 1.46
p-value 0.01 0.00 0.00 0.00 0.03 0.57 0.69 0.35 0.15

R2 0.13 0.24 0.19 0.19 0.14 0.02 0.01 0.03 0.05
Note. Dependent variable: return on SPY. Independent variable: a quantile of the SPY-
implied SPD. An intercept is always included. The standard errors account for heteroscedas-
ticity and autocorrelation. The estimates significant at the 10% level are in bold.

Finally, consider panels (c), which incorporate the 2008 financial crisis into the sample period.

Here, the quantiles above the median are consistently insignificant, while those below the median
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display varied levels of significance. The evidence of predictability is most pronounced at the

semi-annual and annual horizons, where all quantiles below the median are significant, and is

least evident at the quarterly horizon, where only the 10th and 40th percentiles are significant.

Therefore, the results are mixed. If any conclusion is to be drawn, one might suggest that the

lower quantiles appear to be overall more relevant predictors than the upper quantiles for this

sample period.

In summary, these regressions suggest the existence of a predictive relationship between quan-

tiles of the SPD and future realized returns on average when the 2008 financial crisis is not

included in the sample. This evidence is clear at the monthly to semi-annual horizons and more

mixed at the annual horizon. Lower quantiles exhibit stronger predictive power than upper

quantiles. Intuitively, a downward shift in the lower quantiles of the SPD is often triggered by

a negative market event (e.g., 2008 financial crisis or the onset of the COVID pandemic). Over

the past 20 years, the market has generally recovered well from large market declines or crashes.

As a result, such declines in lower quantiles signaled an investment opportunity that, on average,

yielded higher subsequent returns over short to medium horizons up to one year.

We next turn to predictive quantile regressions. Appendix Tables A.1-A.4 report the results

for the four predictive horizons. The results reveal clear patterns for the monthly, quarterly, and

semi-annual horizons. Specifically, for quantiles above the median, the estimates are statistically

significant with two exceptions only (see panels (a) and (c) in Table A.3), regardless of whether

the COVID period or the 2008 financial crisis is included in the sample. For quantiles below

the median, the estimates are insignificant in most cases. Lu and Qu (2021) documented this

tendency for S&P500 options for a horizon of 30 days. Here, our results show that this finding is

robust in the sense that it also holds for SPY options and that it holds for longer horizons up to

six months. Finally, for the annual horizon case, the results are mixed: for quantiles above the

median, half of the estimates are significant, while the remaining half are insignificant, therefore

not leading to clear conclusions.

The results from the mean and quantile regressions have shown that the lower quantiles of

the SPD predict future returns on average but may not predict the corresponding quantile of

this distribution. These two findings do not contradict each other. As noted earlier, a decline in

lower quantiles is typically triggered by a negative market event. Since the market has generally

recovered well from significant declines or crashes, the actual market outcomes were often better

than what the market had feared. In other words, the lower quantiles of the SPD captured a fear

28



(or risk premium) that was accompanied by higher rather than lower subsequent returns. As a

result, they do not correlate closely with the lower quantiles of the actual return distribution.

Our empirical results contribute to the literature that examines the connection between the

options market and subsequent stock returns. Since our methods allow us to extract the SPD

from American options, they facilitate the assessment of the predictive power of the SPD for a

broader range of markets than those analyzed using European options.

6 Conclusion

This paper introduces a new method for estimating state price densities implicit in American-style

options. The method involves estimating the parameters of a Gauss-Hermite series expansion and

solving recursive equations for the early exercise premium. Because the method does not involve

smoothing over time, it can capture sudden shifts in density that might occur during financial

crises or in response to influential policy events. It also provides an estimate of the early exercise

premium that is of independent interest. We examined the predictive power of the state price

density implied by S&P 500 ETF options up to a one-year horizon using both mean and quantile

regressions. The mean regressions indicate a significant predictive relationship between quantiles

of the SPD and future expected returns when the 2008 financial crisis is excluded from the

sample. The quantile regressions show clear patterns for horizons up to six months, where the

quantiles above the median consistently demonstrate significant predictive power, irrespective of

whether the 2008 financial crisis period is included in the sample. We hope to conduct a more

comprehensive analysis of the predictive power of the state price densities across a broad range

of asset types in future work.
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Supplementary Appendix: Model Details
and Additional Tables and Figures

A.1 Additional details related to the simulation analysis

This subsection provides additional details related to the data generating processes used in the

simulation analysis.

SV Model. We use the parameter values from the SV panel of Table 1 of Lu and Qu (2021),

which are estimated using S&P500 options, with r = 5%, δ = 2.5%, ρ = −0.5268, St = 1300,

κ = 4.2340, θ = 0.0243, σ = 0.5121, and Vt = 0.0243. The spans of the put and call strikes are

both [900, 1700], with 79 call and 79 put options.

Two-factor SV model. The parameters are taken from Bates (2000), with α1 = 0.028, α2 =

0.130, β1 = 0, β2 = 5.58, σ1 = 1.039, σ2 = 0.667, ρ1 = −0.775, ρ2 = −0.382, V1,0 = 0.01, V2,0 =

0.01, r = 5%, and the initial value of the future price is set to F0 = 500. The spans of the strikes

for the put and call options are [300, 800], generating 111 call and 111 put options.

DMR Model. The parameter values are taken from Table 4 in Mencia and Sentana (2013) and

correspond to an empirical analysis of VIX derivative valuation models. These parameters were

estimated using the sample period from March 2006 to August 2008, with β = 2.575, σ = 3.732,

ξ = 0.446, α = 19.795, and κ = 1.360 and the correlation between W and U is 0. The initial

values of Vt and θt are set to 25. The risk-free rate is 5%. Under this DGP, the future price of Vt

is given by (see Mencia and Sentana, 2013) F (T ) = α + δ(τ)[θt − α] + exp(−βτ)[Vt − θt], where

τ = T − t, and δ(τ) = (β/(β − ξ))exp(−ξτ) − (ξ/(β − ξ))exp(−βτ). The implied spot price is

S(t) = exp(−rτ)F (T ). Using these formulas, we generate the data as follows. First, we simulate

the Vt process. For each simulated Vt, we compute its future price F (T ) and discount it to obtain

S(t). As a result, for each simulated Vt process, we have an S(t) process. We repeat this for 1

million times and we obtain one million independent S(t) process. Finally, we use these S(t) as

the underlying asset and obtain European and American option prices as we have done for other

models, e.g., the SV model. The spans of the strikes for the put and call options are [10, 100],

with 51 call options and 51 put options.

CEV Model. The parameter values are taken from Geman and Shih (2009) for crude oil for
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the period 01/01/2000 to 12/11/2007, with δ = 0.025, σ = 0.19, β = 0.68, and V0 = 100. The

spans of call and put option strikes are [10,250], with 57 calls and 57 puts.

SVCJ Model. Parameter values are taken from Lu and Qu (2021), estimated using S&P500

index options: S0 = 1300, V0 = 0.0223, θ = 0.0223, κ = 3.285, σ = 0.4084, µ = 5.01e−4, ρ =

−0.6108, λ = 1.2775, µs = −0.0308, and σs = 0.0248. The spans of call and put option strikes

are [900,1700], with 79 calls and 79 puts.

A.2 Figures and Tables

This subsection provides additional tables and figures for the simulation and empirical analyses

in the paper.

Figure A.1: SPD and EEP estimates for the SV model

−0.4 −0.2 0.0 0.2 0.4

0
1

2
3

4
5

x

(a) SPD estimate based on 
 European options

−0.4 −0.2 0.0 0.2 0.4

0
1

2
3

4
5

x

(b) Preliminary SPD estimate based on 
 American options

−0.4 −0.2 0.0 0.2 0.4

0
1

2
3

4
5

x

(c) Final SPD estimate based on 
 American options

1000 1200 1400 1600

0
5

10
15

20
25

K

pm
ax

(E
E

P
_P

[, 
1]

, 0
)

(d) The true and estimated EEP

Note. Six-month horizon. Red curve represents the true value, and the dashed
line corresponds to the estimate. In (d), the increasing function denotes the
put option EEP. See the Appendix for more details about the DGP.
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Figure A.2: SPD and EEP estimates for the two-factor SV model

−0.4 −0.2 0.0 0.2 0.4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

x

(a) SPD estimate based on 
 European options

−0.4 −0.2 0.0 0.2 0.4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

x

(b) Preliminary SPD estimate based on 
 American options

−0.4 −0.2 0.0 0.2 0.4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

x

(c) Final SPD estimate based on 
 American options

300 400 500 600 700

0
5

10
15

K

pm
ax

(E
E

P
_P

[, 
1]

, 0
)

(d) The true and estimated EEP

Note. Six-month horizon. Red curve represents the true value, and the dashed
line corresponds to the estimate. In (d), the increasing function denotes the
put option EEP. See the Appendix for more details about the DGP.
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Figure A.3: SPD and EEP estimates for the DMR model

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

x

(a) SPD estimate based on 
 European options

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

x

(b) Preliminary SPD estimate based on 
 American options

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

x

(c) Final SPD estimate based on 
 American options

20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

K

pm
ax

(E
E

P
_P

[, 
1]

, 0
)

(d) The true and estimated EEP

Note. Six-month horizon. Red curve represents the true value, and the dashed
line corresponds to the estimate. In (d), the increasing function denotes the
put option EEP. See the Appendix for more details about the DGP.
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Figure A.4: SPD and EEP estimates for the CEV model
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Note. Six-month horizon. Red curve represents the true value, and the dashed
line corresponds to the estimate. In (d), the increasing function denotes the
put option EEP. See the Appendix for more details about the DGP.
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Figure A.5: SPD and EEP estimates for the SVCJ model
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Note. Six-month horizon. Red curve represents the true value, and the dashed
line corresponds to the estimate. In (d), the increasing function denotes the
put option EEP. See the Appendix for more details about the DGP.
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Figure A.6: SPD estimates for τ = 91 days

(a) SPY ETF implied densities

(b) SPX implied densities
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Figure A.7: SPD estimates for τ = 182 days

(a) SPY ETF implied densities

(b) SPX implied densities

A-8



Table A.1: Quantile regression using a quantile of the SPD as the predictor (τ=30 days)

Quantile 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
(a) 06/2009-02/2020

Estimate -0.56 -0.28 -0.73 -0.63 1.69 1.77 1.68 1.10 0.65
s.e. 0.20 0.67 0.76 0.79 1.02 0.66 0.35 0.06 0.11

t-value -2.83 -0.41 -0.96 -0.80 1.66 2.70 4.83 18.82 5.94
p-value 0.00 0.68 0.34 0.43 0.10 0.01 0.00 0.00 0.00

(b) 06/2009-02/2023
Estimate -0.61 -0.36 -0.84 -1.06 1.43 1.77 1.57 1.13 0.78

s.e. 0.29 0.53 0.59 0.52 0.89 0.53 0.42 0.28 0.26
t-value -2.13 -0.67 -1.42 -2.04 1.61 3.34 3.75 4.01 2.99
p-value 0.03 0.50 0.15 0.04 0.11 0.00 0.00 0.00 0.00

(c) 01/2007-02/2023
Estimate 0.39 0.29 0.06 -0.76 1.36 1.21 1.22 0.97 0.70

s.e. 0.26 0.39 0.85 0.91 0.82 0.41 0.31 0.18 0.10
t-value 1.47 0.73 0.07 -0.84 1.66 2.93 3.97 5.30 7.00
p-value 0.16 0.46 0.94 0.40 0.10 0.00 0.00 0.00 0.00

Note. The standard errors allow for heteroscedasticity and autocorrelation. The estimates that
are significant at the 10% level are in bold.

Table A.2: Quantile regression using a quantile of the SPD as the predictor (τ=91 days)

Quantile 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
(a) 06/2009-02/2020

Estimate -0.64 -1.03 -1.32 -1.55 0.68 1.66 1.58 1.12 0.96
s.e. 0.45 0.68 0.91 1.52 1.14 0.63 0.49 0.41 0.30

t-value -1.40 -1.52 -1.45 -1.02 0.60 2.62 3.25 2.70 3.23
p-value 0.16 0.13 0.15 0.31 0.55 0.01 0.00 0.01 0.00

(b) 06/2009-02/2023
Estimate -0.61 -1.13 -1.49 -2.71 1.44 1.87 1.39 1.11 1.08

s.e. 0.66 0.48 0.82 1.57 1.54 0.82 0.67 0.47 0.48
t-value -0.93 -2.36 -1.81 -1.73 0.94 2.29 2.08 2.37 2.25
p-value 0.35 0.02 0.07 0.08 0.35 0.02 0.04 0.02 0.02

(c) 01/2007-02/2023
Estimate 0.36 -0.48 -1.14 -2.83 0.06 1.63 1.42 1.10 0.98

s.e. 0.45 0.92 0.86 1.00 1.32 0.78 0.44 0.42 0.30
t-value 0.80 -0.52 -1.33 -2.83 0.05 2.10 3.21 2.62 3.33
p-value 0.42 0.60 0.18 0.00 0.96 0.04 0.00 0.01 0.00

Note. The standard errors allow for heteroscedasticity and autocorrelation. The estimates that
are significant at the 10% level are in bold.
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Table A.3: Quantile regression using a quantile of the SPD as the predictor (τ=182 days)

Quantile 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
(a) 06/2009-02/2020

Estimate -0.03 -0.59 -2.21 -3.90 0.40 1.96 1.53 1.20 0.72
s.e. 0.60 0.67 1.23 1.67 2.16 1.09 0.70 0.54 0.61

t-value -0.06 -0.88 -1.80 -2.34 0.19 1.80 2.20 2.22 1.18
p-value 0.95 0.38 0.07 0.02 0.85 0.07 0.03 0.03 0.24

(b) 06/2009-02/2023
Estimate -0.67 -1.33 -2.21 -4.13 -0.48 2.69 1.97 1.41 1.17

s.e. 0.73 0.78 0.73 1.31 2.28 1.62 0.63 0.38 0.30
t-value -0.93 -1.70 -3.04 -3.14 -0.21 1.66 3.13 3.75 3.91
p-value 0.35 0.09 0.00 0.00 0.83 0.10 0.00 0.00 0.00

(c) 01/2007-02/2023
Estimate -0.31 -0.43 -1.99 -4.27 -1.14 1.73 1.96 1.57 1.05

s.e. 1.37 0.56 1.10 0.84 1.27 1.60 0.76 0.27 0.20
t-value -0.23 -0.76 -1.81 -5.10 -0.90 1.08 2.58 5.80 5.14
p-value 0.82 0.45 0.07 0.00 0.37 0.28 0.01 0.00 0.00

Note. The standard errors allow for heteroscedasticity and autocorrelation. The estimates that
are significant at the 10% level are in bold.

Table A.4: Quantile regression using a quantile of the SPD as the predictor (τ=365 days)

Quantile 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
(a) 06/2009-02/2020

Estimate -0.96 -1.10 -1.19 -0.90 0.27 0.67 1.41 0.80 0.91
s.e. 0.44 0.34 1.11 1.46 1.76 1.18 0.90 0.64 0.61

t-value -2.16 -3.25 -1.07 -0.62 0.15 0.57 1.57 1.24 1.50
p-value 0.03 0.00 0.28 0.54 0.88 0.57 0.12 0.21 0.13

(b) 06/2009-02/2023
Estimate -0.80 -1.17 -1.43 -1.18 0.67 2.38 2.75 1.83 1.07

s.e. 0.87 0.60 0.89 1.48 1.58 1.34 1.17 0.62 0.62
t-value -0.92 -1.95 -1.60 -0.80 0.42 1.78 2.36 2.94 1.72
p-value 0.36 0.05 0.11 0.43 0.67 0.07 0.02 0.00 0.09

(c) 01/2007-02/2023
Estimate -0.07 -1.18 -1.94 -2.22 -2.57 -1.34 1.42 1.31 1.07

s.e. 0.46 0.19 0.38 0.74 1.61 1.58 0.91 0.65 0.18
t-value -0.14 -6.17 -5.09 -2.99 -1.60 -0.85 1.56 2.01 5.83
p-value 0.89 0.00 0.00 0.00 0.11 0.40 0.12 0.04 0.00

Note. The standard errors allow for heteroscedasticity and autocorrelation. The estimates that
are significant at the 10% level are in bold.
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