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Abstract

We develop targeted specification tests for Dynamic Stochastic General Equilibrium

(DSGE) models, which can separately examine a model’s steady state properties, its overall

dynamic properties, and its properties in selected frequency bands, such as business cycle

frequencies. These tests can be applied to a subset of variables alongside the full model to

pinpoint the sources of misspecification. We address the issues of indeterminacy and weak

identification. Our empirical results indicate that a small-scale DSGE model is rejected

based on the full spectrum test over the period from 1960 to 2007, revealing issues related

to inflation dynamics and comovements between variables over business cycle frequencies.

The same model is not rejected when a regime change is allowed in 1979. The Smets-

Wouters model is not rejected over the same period. Furthermore, a medium-scale model

incorporating news shocks is rejected based on business cycle frequencies, and issues related

to hours worked are detected. These proposed methods are also applicable to Gaussian

(factor augmented) Vector Autoregressions.

Keywords: DSGE, misspecification, frequency domain methods, weak identification.

JEL classification: C3, C52, E1.

∗We are grateful to the participants at the BU, Penn, SMU econometric seminars and the Netherlands Study
Group Annual Meeting for their comments that have improved the paper. We thank Samuel Messer for research
assistance.

†Department of Economics, Boston University (qu@bu.edu).
‡Department of Economics, National University of Singapore (ecstd@nus.edu.sg).



1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) models aim to provide a comprehensive frame-
work for analyzing business cycles, understanding monetary and fiscal policies, and making fore-
casts. Despite significant improvements over the past two decades, important misspecifications
may still persist in various parts of these models. For instance, Schorfheide (2013) documented
that DSGE models tend to underperform in capturing low-frequency fluctuations, which could
lead to erroneous conclusions about the drivers of business cycles. As new versions of DSGE
models continue to be proposed, it is crucial for practitioners to have a robust set of statistical
methods to diagnose the compatibility of DSGE models with the data, as well as to identify key
areas for further improvement.

This paper introduces a family of specification tests for diagnosing misspecifications in DSGE
models. We call these tests "targeted tests" because they can separately examine a model’s steady
state properties, overall dynamic properties, and properties in selected frequency bands, such as
business cycle frequencies. The ability to focus on specific aspects means that the tests do not
require the DSGE model to match the dynamic behavior of the data in every fine detail. The
tests can be applied to a subset of variables in addition to the full model, e.g., testing inflation
and GDP dynamics without involving interest rates. This feature is helpful for pinpointing the
variables most affected by misspecification, suggesting directions for model improvement.

The tests are constructed in the frequency domain based on weighted integrated periodograms.
Bartlett (1955) and Grenander and Rosenblatt (1957) considered a periodogram-based approach
to specification testing for univariate models. We generalize their idea to a multivariate setting
to examine the specification of DSGE models. We first introduce a Kolmogorov-Smirnov test
for checking the dynamic specification over the full spectrum. The test can be motivated from
a likelihood perspective, as it is related to the divergence between frequency domain Gaussian
likelihood and its expected value under the correct model specification. Subsequently, the test is
generalized in several directions to: 1) allow weights over frequencies, 2) test the model’s prop-
erties over a selected frequency band such as the business cycle frequencies; 3) test the model’s
steady state properties; and 4) test any of the above for a subset of the observables rather than all
the variables. We tabulate the relevant 10%, 5%, and 1% critical values. The tests are consistent
against global alternatives.

The tests can be computed at any given structural parameter value. Subsequently, we propose
a two-step procedure to address parameter uncertainty. In the first step, we obtain a set of plau-
sible parameter values via an inference method. In the second step, we check the compatibility of
these parameter values with the data using the proposed tests, controlling the overall significance
level with a Bonferroni correction. If all parameters are rejected, we reject the model. Otherwise,
the model is not rejected, and the remaining parameter values offer a chance to re-evaluate the
model’s implications. In the second step, we consider selected frequency bands and subsets of
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variables to further understand the source of misspecification.
We obtain the set of plausible parameter values in two ways. The first is by inverting a

statistic robust to weak identification. For this purpose, we use the score test of Qu (2014),
although the tests of Guerron-Quintana et al. (2013) and Andrews and Mikusheva (2015) may
also be useful. The second is by using draws from a proper Bayesian posterior distribution.
Although the latter do not have a frequentist interpretation in this context, they enable us
to examine whether the findings regarding misspecification are sensitive to particular parameter
values. Moreover, considering these parameter values fosters a dialogue with the Bayesian DSGE
literature since posterior distributions are commonly used to formulate policy recommendations.
In particular, we may gain insights into whether these policy recommendations can withstand
model testing.

Our framework encompasses both determinacy and indeterminacy in order to accommodate
a wide range of empirical applications. Lubik and Schorfheide (2004) have found that indeter-
minacy is a feature of US monetary policy practices during 1960-1979. Other related studies ex-
amining monetary or fiscal policies include, among others, Leeper (1991), Clarida, et al. (2000),
Benhabib, et al. (2001), Boivin and Giannoni (2006), Benati and Surico (2009), Mavroeidis
(2010), Cochrane (2011, 2014), and Leeper et al. (2017). In our empirical application, we use
the specification tests to compare a model’s fit under different policy regimes within the same
sample period and to evaluate its fit across different subsample periods after introducing a change
in policy regimes. A related analysis, undertaken from a Bayesian perspective, is found in Lubik
and Schorfheide (2004).

We evaluate the size and power properties of the tests using the small-scale model of Lubik
and Schorfheide (2004) as the data generating process. We consider both determinacy and
indeterminacy. The results indicate that the tests have excellent size properties even in small
samples. We also examine the tests’ power in diverse scenarios, including evaluating the complete
model, subsets of variables, and specific frequency ranges.

We then move on to the empirical applications, where we examine three DSGE models: the
small-scale model by Lubik and Schorfheide (2004), and two medium-scale models - the Smets and
Wouters (2007) model and the news shocks model of Schmitt-Grohé and Uribe (2012). The Lu-
bik and Schorfheide (2004) model contrasts determinacy and indeterminacy within a small-scale
framework. The Smets and Wouters (2007) model extends the standard New Keynesian model
by incorporating additional frictions and real rigidities and allows us to examine how model spec-
ification improves compared to the baseline small-scale model. Additionally, the Schmitt-Grohé
and Uribe (2012) model provides an opportunity to evaluate whether the proposed information
structure generates dynamics that fit the data adequately, as well as how the proposed structure
compares to the standard structure assumed in the small- and medium-scale models.

Our results indicate that the small-scale DSGE model is rejected at the 10% significance
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level for both determinacy and indeterminacy specifications for the period 1960-2007 based on
the full spectrum test, and it is nearly rejected based on the business cycle frequencies only
(with only 0.08% draws surviving the test). Further analysis reveals misspecifications in most
segments of the model, particularly in the inflation dynamics and comovements between variables.
Specifically, the imaginary parts of the cross-spectra, which measure the lead and lag relationships
between variables, deviate the most from the data. These conclusions are reinforced by using
draws from posterior distributions. By splitting the full sample at 1979:II, we find that the model
is no longer rejected if indeterminacy is used for the first subsample and determinacy for the
second. This supports Lubik and Schorfheide’s (2004) conclusion that U.S. monetary policy post-
1982 is consistent with determinacy, while the pre-Volcker period exhibits greater uncertainty.
We also analyze changes in data dynamics, especially the cross-spectrum, that bring the data
closer to alignment with the model.

For the Smets and Wouters (2007) model, we find that it is not rejected at either full spectrum
or business cycle frequencies at the 10% significance level using the full sample 1960:I-2007:IV.
This contrasts with the case of the small-scale model examined earlier. Using draws from the
posterior distribution produces qualitatively similar results. Regardless of which set of draws is
used, over 60% and 80% of the draws are rejected based on the weighted spectrum and business
cycle frequencies, respectively, indicating significant room for model improvement. We found
qualitatively similar results on Smets and Wouters’ original sample 1965:I-2004:IV.

Moving on to the news shocks model, our results show that it is rejected by the business cycle
frequency test at the 10% significance level using the original Schmitt-Grohé and Uribe (2012)
sample, while the weighted full spectrum test produces a near-rejection. Further examination
reveals that the main source of incompatibility between the model and the data is the per capita
labor hours and its comovements with all the other observables.

Our analysis builds on the literature of diagnosing DSGE models. In this literature, a common
practice is to compare models based on marginal likelihoods or forecasting accuracy. A model
is preferred over another if its marginal likelihood value or forecasting accuracy is significantly
higher. This approach is informative if the purpose is to rank models; however, it does not show
if the preferred model is consistent with the data. An alternative approach is to use a structural
vector autoregression (SVAR) as a benchmark and compare the impulse responses of the DSGE
model with those of the SVAR; see, e.g., Christiano et al. (2005). However, the identification
conditions for impulse responses may not be compatible between the DSGE and SVAR models,
as discussed in Del Negro et al. (2007). Recent studies have investigated alternative methods
to overcome these limitations. Del Negro et al. (2007) developed a hybrid DSGE-VAR model
to evaluate DSGE models. Del Negro and Schorfheide (2009) applied this framework to assess
the DSGE model’s policy predictions. Inoue et al. (2020) introduced stochastic specification
errors into DSGE models and evaluated the improvement in model fit through forecasting error
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decompositions and marginal likelihood comparisons. Our methods differ from the above in
several aspects: the tests do not involve a parametric reference model, they examine subsets of
variables and selected frequency bands to pinpoint misspecification, and they address the issue
of weak identification. To our knowledge, our methods are among the first to test DSGE models
with valid frequentist coverage properties.

Our analysis also draws insights from the literature that evaluates rational expectations mod-
els from a frequency domain perspective. Key studies in this area include Watson (1993), King
and Watson (1996), and Diebold et al. (1998). Watson (1993) recommended the use of model
and data spectra plots as diagnostic tools. Diebold et al. (1998) underscored the importance
of examining model fit across frequencies and highlighted the benefits of adopting a graphical
approach. We aim to extend this line of inquiry to the current generation of DSGE models, using
new tests while accounting for weak identification.

The rest of the paper is structured as follows. In Section 2, we explain how to compute a
DSGE model’s spectrum allowing for indeterminacy, and highlighting the issue of weak iden-
tification. Section 3 introduces the specification tests, provides a likelihood perspective, and
characterizes their asymptotic properties under the null and alternative hypotheses. This section
also describes a model-dependent prewhitening filter that improves the tests’ finite sample prop-
erties under the null hypothesis. In this section, the parameter values are assumed to be known,
and the issue of parameter uncertainty is addressed in Section 4. Section 5 provides calibrated
simulations for finite sample properties. Section 6 presents three empirical applications, and
Section 7 provides concluding remarks. The Appendix includes proofs of the results, details on
the empirical applications, and additional tables and figures that complement the main analysis.

2 The spectrum of a DSGE model

In this section, we describe the spectrum of a log linearized DSGE model to provide a basis for
our analysis. Consider a DSGE model, log linearized around its steady state (Sims, 2002):

Γ0St = Γ1St−1 + Ψεt + Πηt, (1)

where St is a vector that includes endogenous variables, conditional expectations, and variables
from exogenous shock processes if they are serially correlated. The vector εt contains serially
uncorrelated structural shocks and ηt contains expectation errors. The elements of Γ0,Γ1,Ψ
and Π are functions of structural parameters of the model. Depending on the values of Γ0 and
Γ1, the system can have none, a unique, or multiple stable solutions (indeterminacy). Under
indeterminacy, the structural parameters alone do not uniquely determine the dynamics of the
model. The above formulation is sufficiently flexible and it allows for medium-scale model such
as Smets and Wouters (2007) and Schmitt-Grohé and Uribe (2012).
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Lubik and Schorfheide (2003) show that the full set of solutions to the above model is repre-
sentable as

St = Φ1St−1 + Φεεt + Φϵϵt, (2)

or equivalently,

St = (1 − Φ1L)−1[Φε Φϵ]

 εt

ϵt

 ,
where L is the lag operator. In (2), Φ1, Φε and Φϵ depend only on Γ0,Γ1,Ψ and Π, therefore, are
functions of the structural parameters only. The term ϵt contains the sunspot shocks, which arises
only under indeterminacy. The DSGE model alone imposes few restrictions on ϵt, i.e., it needs
to be a martingale difference, so that Etϵt+1 = 0, but it can be arbitrarily contemporaneously
correlated with the fundamental shocks εt. Intuitively, the properties of ϵt depend on how agents
form their expectations, which is not fully revealed by the DSGE model under indeterminacy. To
capture these features, Qu and Tkachenko (2017) adopted the following parameterization which
expresses ϵt as an orthogonal projection onto εt and a residual term ϵ̃t:

ϵt = Mεt + ϵ̃t,

where M is a matrix of constants and ϵ̃t is uncorrelated with εt, with V ar(ϵ̃t) = Σϵ. Let θD be a p-
by-1 vector consisting of all the structural parameters in (1). Let θU be a q-by-1 vector consisting
of the sunspot parameters θU = (vec (Σϵ)′ , vec (M)′)′. We define an augmented parameter vector
as follows:

θ =

 θD

θU

 .
This augmented parameter vector uniquely determines the dynamics of the model under both
determinacy and indeterminacy.

In practice, the estimation is typically based on a subset of St or some linear transformations
involving its current and lagged values. To be consistent with this practice, we use a matrix
A(L) of finite-order lag polynomials to specify the observables and define

Yt (θ) = A(L)St = H(L; θ)(ε′
t ϵ

′
t)′,

with
H(L; θ) = A(L)(1 − Φ1L)−1[Φε Φϵ]. (3)

Using this notation, the spectral density of Yt(θ) is given by

fθ(ω) = 1
2πH(exp(−iω); θ)Σ(θ)H(exp(−iω); θ)∗, (4)
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where ∗ denotes the conjugate transpose and

Σ(θ) =

 I 0

M I


 Σε 0

0 Σϵ


 I 0

M I


′

.

In practice, estimation and model diagnosis are always based on comparing the properties of
Yt (θ) implied by the model with that of the data.

Turning to the data, we let {Yt} denote realizations from a stochastic process, which will be
used for model diagnosis. The process {Yt} is usually assumed to be stationary after model-
dependent detrending operations. (For example, its elements might contain GDP growth and
inflation.) However, its population mean, related to the model’s steady state, is typically nonzero.
To capture this, we let µ(θ0) denote the mean of {Yt} implied by the model and write

Yt = µ(θ0) + Yt (θ0) .

The above provides a system of equations connecting the data (i.e., the left hand side) to the
model (i.e., the right hand side). The model is fully correctly specified if these equations hold
at some θ0 for all t. The model’s steady-state properties are correctly specified if the mean of Yt

equals µ(θ0). The model’s overall dynamic properties are correctly specified if the spectral density
of Yt aligns with that of Yt(θ0). Moreover, the model is correctly specified over a frequency band
if the two spectral densities agree with each other over that band. These connections enable us
to develop targeted tests for various aspects of the DSGE model in a unified framework.

Before proceeding further, we present two examples to illustrate the interplay between pa-
rameter identification, equilibrium indeterminacy, and model specification analysis.

Example 1 Suppose Etxt+1 = αxt, where xt is a scalar random variable (e.g., inflation), and
α is a structural parameter. Assume limk→∞ Etxt+k is finite. The solution to this model de-
pends on whether |α| > 1 or |α| ≤ 1. If |α| > 1, solving the model forward yields xt =
limk→∞(1/α)kEtxt+k = 0. In this regime, the model has a unique equilibrium and α is not
identified; that is, it is impossible to uniquely determine α′s value, even with infinite sample
size. If |α| ≤ 1, solving the model forward is no longer informative. Instead, we can introduce a
sunspot shock, ϵt+1 = xt+1 − Etxt+1, and solve the model backward to obtain

xt+1 = αxt + ϵt+1, with Etϵt+1 = 0.

In this regime, the model exhibits indeterminacy (multiple equilibria) because xt displays stochastic
fluctuations in the absence of any shocks to fundamentals. Furthermore, if ϵt is stationary with a
positive variance, then α is globally identified because xt follows an AR(1) process. In summary,
this simple example highlights three properties that, in fact, apply to general DSGE models:
a) parameters can fail to be identified in DSGE models; b) identification properties can differ
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across regimes; and c) a model’s dynamic properties can differ across regimes, and, as a result,
alternative regimes can produce different fits to empirical data. Recent studies have examined
these issues; see, e.g., Canova and Sala (2009), Qu and Tkachenko (2017), and Lubik and
Schorfheide (2004) on these three issues, respectively.

Figure 1: Log likelihood surface with respect to Taylor rule coefficients.

Example 2 An and Schorfheide (2007) used the following model to showcase the Bayesian anal-
ysis of DSGE models, where yt, πt, and rt are log deviations of output, inflation, and interest rate
from their steady states:

yt = Etyt+1 + gt − Etgt+1 − 1
τ

(rt − Etπt+1 − Etzt+1),

πt = βEtπt+1 + κ(yt − gt),

rt = ρrrt−1 + (1 − ρr)ψ1πt + (1 − ρr)ψ2(yt − gt) + εrt,

where gt = ρggt−1 + εgt, zt = ρzzt−1 + εzt, εrt
iid∼ N(0, σ2

r), εgt
iid∼ N(0, σ2

g), εzt
iid∼ N(0, σ2

z), and
the three shocks are mutually independent. This model exhibits both determinate and indetermi-
nate regimes as in the previous example. For the determinate regime, it has been shown that the
four parameters in the Taylor equation (ρr, ψ1, ψ2, and σr) are not separately identified, meaning
that their values can be moved along a curve without altering the model’s dynamic properties
(Qu and Tkachenko, 2012). To illustrate the effect of this property on inference, we plot the log
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likelihood surface with respect to ψ1 and ψ2 while fixing all other parameters at their posterior
mean values reported in An and Schorfheide (2007) for a simulated sample of size 1000. Note
that, if the model were well identified, we would expect the log likelihood to resemble an elliptical
dome, uniquely peaked at the maximum likelihood estimate (MLE) and displaying curvature in
all directions. Instead, here the surface displays a ridge, which becomes nearly flat when mov-
ing the two parameters in opposite directions. Furthermore, if all four Taylor rule parameters
(ρr, ψ1, ψ2, and σr) are allowed to change, then the likelihood surface will be completely flat along
one direction, which means that the MLE is inconsistent and the information matrix is singular.
Consequently, we expect that a specification test will likely have a nonstandard distribution (e.g.,
non Chi-square) if it requires the consistent estimation of the model’s parameters.

The above two examples demonstrate the importance of considering indeterminacy and weak
identification when conducting specification analysis for DSGE models.

3 Frequency domain specification tests

In this section, we present the frequency domain tests and examine their asymptotic properties
under null and alternative hypotheses. The value of θ0 is assumed known and fixed. We address
the issue of parameter uncertainty in the next section.

3.1 Proposed tests

We propose a family of tests based on integrated periodograms. The use of integrated peri-
odograms for misspecification testing in the univariate case dates back to Grenander and Rosen-
blatt (1957) and Bartlett (1955). We extend this idea to the multivariate setting to test the
specification of a DSGE model.

Suppose we have a sample of T observations: {Y1, Y2, ..., YT }, for which the Fourier frequencies
are given by ωj = 2πj/T (j = 0, 1, ..., T−1). The Fourier transform and periodogram are defined,
respectively, as follows:

wT (ωj) = (2πT )−1/2∑T
t=1(Yt − µ(θ0)) exp (−iωjt) ,

and
IT (ωj) = wT (ωj)wT (ωj)∗ .

The Fourier transform projects the process Yt − µ(θ0) onto the frequency domain, preserving all
the information contained in the original series. Since the Fourier transform of a constant is
equal to zero for any nonzero frequency, we can omit µ(θ0) and equivalently express wT (ωj) as
(2πT )−1/2∑T

t=1 Yt exp (−iωjt) for j = 1, ..., T − 1.
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We first consider the testing of the model’s dynamic properties (i.e., variance and serial
correlation properties), which corresponds to the following null and alternative hypotheses:

H0 : The spectral density of Yt equals fθ0(ω) over ω ∈ [−π, π],

H1 : The spectral density of Yt differs from fθ0(ω) for some ω ∈ [−π, π].

Recall that if the model’s dynamic properties are correctly specified, then IT (ωj) − fθ0(ωj) are
approximately uncorrelated across frequencies with a zero mean. Based on this property, we
propose the following Kolmogorov-Smirnov test for checking the model’s dynamic specification:

HdT (θ0) = sup
r∈[0,1]

∥∥∥(T/2)−1/2∑[T r/2]
j=1 vec

{
fθ0(ωj)−1/2 (IT (ωj) − fθ0(ωj)) fθ0(ωj)−1/2

}∥∥∥
∞
.

The main part of the test is IT (ωj)−fθ0(ωj), where fθ0(ωj) is the spectral density function implied
by the model, IT (ωj) is the periodogram computed from the data, and the division by fθ0(ωj) acts
as a normalization to ensure that the test is asymptotically pivotal. The norm ∥.∥∞ represents
the supremum norm, which is used to search for the strongest evidence over frequencies against
the null hypothesis, i.e., for a generic vector z = (z1, ..., zk) ∈ Ck, ∥z∥∞ = max (|z1| , ..., |zk|). The
zero frequency is excluded, therefore, the test is invariant to the model’s steady state properties.
The test is straightforward to compute. No simulation is needed.

An immediate generalization of HdT (θ0) is to assign weights to different frequencies. This
feature is useful because DSGE models are not intended to capture high frequency fluctuations
in the data. Let W (ωj) be a smooth scalar-valued function or an indicator function to select the
target frequencies. We propose the weighted test statistic

HW
dT (θ0) = sup

r∈[0,1]

∥∥∥(T/2)−1/2∑[T r/2]
j=1 W (ωj) vec

{
fθ0(ωj)−1/2 (IT (ωj) − fθ0(ωj)) fθ0(ωj)−1/2

}∥∥∥
∞
.

(5)
We consider two specifications for W (ωj). In the first case, W (ω) equals one for business cycle
frequencies (π/16 ≤ ω ≤ π/3 for quarterly data), and zero otherwise. In the second case, W (ω)
is a linear decreasing function that assigns lower weights to high frequencies (W (ω) = 1 − ω/π).
Note that the variance of the partial sum in (5) grows linearly with r, and setting W (ω) = 1−ω/π
counterbalances this tendency by putting more emphasis on business cycle and lower frequencies.
We provide critical values for these two cases and provide code for simulating critical values for
other choices.

Now we turn to the model’s steady state properties. In this case, the null and alternative
hypotheses are:

H0 : The mean of Yt equals µ(θ0),

H1 : The mean of Yt differs from µ(θ0).

Under the null hypothesis, the Fourier transform at the zero frequency, wT (0) = (2πT )−1/2∑T
t=1(Yt−

µ(θ0)), is asymptotically normally distributed with a zero mean. The transformed values at
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nonzero Fourier frequencies are irrelevant for testing µ(θ0) because they are invariant to a loca-
tion shift. We obtain a test for the model’s steady state properties as follows:

HsT (θ0) = sup
r∈[0,1]

∥∥∥(2πTfθ0(0))−1/2∑[T r]
j=1 (Yt−µ(θ0))

∥∥∥
∞
.

This statistic has been used previously to test for structural changes in the mean of an otherwise
stationary time series. The test has power even if E(Yt) = µ(θ0) is violated for only a portion of
the sample.

Finally, we can combine the aforementioned statistics to obtain a joint test for the model’s
static and dynamic specifications:

HT (θ0) = max (HsT (θ0),HdT (θ0)) .

Alternatively, using weights, the joint test can be expressed as:

HW
T (θ0) = max

(
HsT (θ0),HW

dT (θ0)
)
.

The tests presented above are for the full model. In practice, there might be an interest in
closely examining a subset of variables. For instance, King and Watson (1996) compared three
rational expectations models based on their ability to capture the comovement of a real (GDP)
and a nominal (interest rate) variable. This kind of analysis becomes particularly valuable when
the full model is rejected, as it can help pinpoint the source of the rejection. Doing this in our
framework is straightforward. Let A be a variable selection matrix. For example, if the model
comprises three variables and we aim to examine the first two, then set A = [1, 0, 0; 0, 1, 0].
Similarly, to focus on the difference between the first and second variable, set A = [1,−1, 0]. To
analyze the relationship between their growth rates, set A = [1 − L, 0, 0; 0, 1 − L, 0], where L
represents the lag operator. After defining A, we formulate the tests by replacing Yt and fθ0(ω)
with AYt and Afθ0(ω)A′, respectively. The subsequent analysis remains the same.

3.1.1 A likelihood perspective

The tests can be derived from a likelihood perspective. Recall that the Whittle likelihood is a
frequency domain approximation to the time domain Gaussian likelihood. For a DSGE model,
the Whittle likelihood (using dynamic properties only and omitting an additive constant) has
the expression

LT (θ) = − 1
2T

∑T −1
j=1

[
log det (fθ(ωj)) + tr

(
f−1

θ (ωj)IT (ωj)
)]
.

Suppose the true spectral density generating the data is given by f0(·), which may differ from
the DSGE model-implied spectral density fθ(·). The Whittle log likelihood computed using the
true spectral density is

L0,T = − 1
2T

∑T −1
j=1

[
log det (f0(ωj)) + tr

(
f−1

0 (ωj)IT (ωj)
)]
,
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whose expected value is

E(L0,T ) = − 1
2T

∑T −1
j=1 [log det(f0(ωj)) + nY )] + o

(
T−1/2

)
,

where nY is dimension of Yt, and the o
(
T−1/2

)
term arises because E(IT (ωj))−f0(ωj) = o(T−1/2).

The divergence T 1/2(LT (θ) − E(L0,T )) is therefore equal to

1
2T 1/2

∑T −1
j=1 tr

{
fθ(ωj)−1/2 (fθ(ωj) − IT (ωj)) fθ(ωj)−1/2

}
+ 1

2T 1/2
∑T −1

j=1 [log det(f0(ωj)) − log det(fθ(ωj))] + o (1) .

The second term is independent of the data, and the first term yields the HdT (θ0) test upon
replacing the trace operator with the vec operator and taking the supremum. Therefore, the
HdT (θ0) statistic is based on the divergence between the log likelihood and its expected value
under the true data generating process (DGP), with the sup operator acting as a searching
mechanism for the strongest evidence of model misspecification. This likelihood interpretation
also provides insight into why the test is consistent against global alternatives, a result that will
be proved later in this section.

3.1.2 Applications beyond DSGE models

The above tests are applicable to other linear models such as Gaussian SVARs and Factor
Augmented VARs. We highlight these connections below.

Structural Vector Autoregressions. A typical SVAR model (Sims, 1980) is

Φ0Yt = µ+
p∑

j=1
ΦjYt−j + εt,

where Yt is an n-dimensional column vector, Φ0,Φ1, ...,Φp are coefficient matrices, and εt is an
n-by-1 vector of serially uncorrelated structural disturbances with V ar(εt) = Σ. We define
θ = (Φ0,Φ1, ...,Φp, Σ) and Π(L; θ) = Φ0 −∑p

j=1 ΦjL
j. The spectral density of Yt is given by

fθ(ω) = 1
2π

[
Π(exp(−iω); θ)−1

]
Σ
[
Π(exp(−iω); θ)−1

]∗
.

For any given parameter value θ, the proposed tests can be constructed using Yt and fθ(ω), or
AYt and Afθ(ω)A′ for a subset of variables, where A is a selection matrix as defined previously.

Factor Augmented VAR. A typical model (see, e.g., Stock and Watson (2005)) is

Yt = λ(L)ft +D(L)Yt−1 + vt,

ft = Γ(L)ft−1 + ζt,
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where Yt is an n-by-1 vector of observables, ft comprises the latent factors, ζt is a serially
uncorrelated structural disturbance with V ar (ζt) = I, V ar (vt) = Σ and E(ζtv

′
s) = 0 for all t

and s. λ(L), D(L) and Γ(L) are matrix lag polynomials with D(L) typically being diagonal.
The parameter vector θ consists of the elements in λ(L), D(L),Γ(L) and Σ. Under station-

arity, Yt has the following moving average representation:

Yt = H1(L; θ)ζt +H2(L; θ)vt,

where H1(L; θ) = [I −D(L)L]−1 λ(L) [I − Γ(L)L]−1 and H2(L; θ) = [I −D(L)L]−1. The spec-
tral density of Yt is thus given by

fθ(ω) = 1
2πH1(exp(−iω); θ)H1(exp(−iω); θ)∗ + 1

2πH2(exp(−iω); θ)ΣH2(exp(−iω); θ)∗.

Stock and Watson (2005) discussed several identification strategies for this model, including
(1) contemporaneous timing restrictions on the zero-order term in H1(L; θ), (2) long-run restric-
tions on H1(1; θ), (3) factor loading restrictions on λ(L) and (4) Uhlig’s (2005) sign restrictions
on the coefficients of H1(L; θ). Since these restrictions only affect fθ(ω), they are implementable
in the frequency domain, and model diagnostics can be carried out under such restrictions. Im-
portantly, our framework works directly with the structural parameter vector, so we can avoid
making assumptions about the reduced form parameters. However, it is important to note that
our framework assumes that the dimension of Yt, n, is finite, which excludes the direct analysis
of high-dimensional factor models. One potential generalization in that direction is to estimate
the factors first and then treat them as part of the data, which can be implemented in a two-step
procedure in the time domain (Stock and Watson, 2005). It would be interesting to explore these
aspects in the frequency domain as well.

3.2 Asymptotic properties under null and alternative hypotheses

We need the following assumptions in order to study the tests’ asymptotic properties under the
null hypothesis of correct model specification.
Assumption 1. θ0 ∈ Θ ⊂ Rq with Θ compact.
Assumption 2. The model solution can be written as

Yt(θ) = H(L; θ)ut(θ) with H(L; θ) = ∑∞
j=0 hj(θ)Lj,

where ut(θ) is serially uncorrelated with a nonsingular covariance matrix denoted by Σ(θ).
Assumption 3. For all ω ∈ [−π, π] and θ ∈ Θ, there exist positive constants CL and CU such
that: (i) the eigenvalues of fθ(ω) satisfy CL ≤ eig(fθ(ω)) ≤ CU ; (ii) fθ(ω) belongs to the Lipschitz
class of order β (Lip(β)) with β > 1/2; (iii) ||∂ vec fθ(ω)/∂θ′|| ≤ CU ; (iv) ∂ vec fθ(ω)/∂θ belongs
to Lip(β) with β > 1/2; (v) ||∂µ(θ)/∂θ′|| ≤ CU .
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Assumption 4. {Yt}T
t=1 are multivariate normal random vectors.

Assumption 1 is standard. Assumption 2 states that the model solution is a linear process as
in (3). Assumptions 3(i)-(ii) are satisfied by stationary finite-order VARMA processes with finite
variances, which are typically the forms of solutions in linearized DSGE models. Assumptions
3(iii)-(iv) hold if parameters enter smoothly into fθ(ω) and µ(θ). Qu and Tkachenko (2017) used
assumptions similar to 1-3 in their study of the identification properties of log linearized DSGE
models. Assumption 4 imposes normality, a common specification in DSGE models. Without
this assumption, it remains feasible to derive the tests’ distributions but they will depend on the
third and fourth cumulants of the shocks ut(θ).

To present the limiting distributions under the null hypothesis, let

B̃(r) = (B1(r) + iB2(r)) /
√

2,

where i is the imaginary unit and B1(r) and B2(r) are two independent Wiener processes.

Theorem 1 Suppose {Yt}T
t=1 is a covariance stationary process with spectral density fθ0(ω) over

ω ∈ [−π, π] (or over the frequencies selected by W (·) if HW
dT is computed). Under Assumptions

1-4, and assuming E(Yt) = µ(θ0) when testing the steady state, we have

1. HdT (θ0) ⇒ supr∈[0,1] ∥Gd(r)∥∞, where Gd(r) is an nY (nY + 1) /2 vector of independent
processes, with the first nY elements being independent Wiener processes and the last
nY (nY − 1) /2 elements being independent copies of B̃(r).

2. HW
dT (θ0) ⇒ supr∈[0,1] ∥

∫ r
0 W (s)dGd(s)∥∞, where W (s) is an indicator function or a bounded

smooth function specified by the user.

3. HsT (θ0) ⇒ supr∈[0,1] ∥Gs(r)∥∞, where Gs(r) is an nY vector of independent Wiener pro-
cesses.

4. HT (θ0) ⇒ max
(
supr∈[0,1] ∥Gd(r)∥∞ , supr∈[0,1] ∥Gs(r)∥∞

)
, where the elements of [Gd(r), Gs(r)]

are mutually independent.

The first two results do not involve the steady state. The elements of Gd(r) can be divided
into two parts: the first nY elements represent the diagonal elements in IT (.), and the remain-
ing nY (nY − 1) /2 elements represent the off-diagonal elements. The limiting distributions of
HdT (θ0), HsT (θ0) and HT (θ0) are pivotal, meaning that they depend only on the number of vari-
ables being tested (nY ) and they can be easily simulated. Table 1 presents the 10%, 5%, and 1%
critical values for nY ranging from 1 to 10. When a subset of model variables is tested, nY refers
to the dimension of AYt. Critical values for HW

dT depend on W (ω), and they need to be tabulated
on a case-by-case basis. In the table, we provide the values for two cases: a smooth function
that underweights high frequencies and an indicator function that only selects business cycle
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frequencies. We provide computer code for simulating other scenarios that supports user-defined
functions W (ω).

Table 1: Critical values of the specification tests

Test Size Number of observables tested (nY )
1 2 3 4 5 6 7 8 9 10

Full Spectrum 10 1.946 2.261 2.423 2.529 2.615 2.677 2.735 2.779 2.816 2.856
HdT (θ0) 5 2.231 2.510 2.649 2.748 2.832 2.885 2.930 2.976 3.010 3.045

1 2.804 3.015 3.143 3.219 3.287 3.339 3.373 3.403 3.440 3.475
Full Spectrum 10 0.867 0.981 1.040 1.081 1.110 1.136 1.155 1.172 1.187 1.201
Weighted by 5 0.977 1.077 1.128 1.167 1.196 1.216 1.235 1.251 1.264 1.277

1 − ω/π 1 1.190 1.271 1.311 1.347 1.372 1.387 1.403 1.418 1.428 1.447
Business Cycle 10 1.004 1.166 1.253 1.310 1.351 1.384 1.415 1.436 1.459 1.478

Frequencies 5 1.151 1.295 1.370 1.424 1.460 1.491 1.519 1.540 1.558 1.579
1 1.446 1.559 1.619 1.668 1.705 1.724 1.756 1.766 1.787 1.804

Steady State 10 1.944 2.219 2.357 2.466 2.540 2.605 2.659 2.703 2.744 2.771
HsT (θ0) 5 2.224 2.480 2.614 2.709 2.778 2.845 2.894 2.937 2.968 2.989

1 2.794 3.017 3.117 3.199 3.275 3.310 3.370 3.403 3.433 3.456
Steady State and 10 2.218 2.485 2.624 2.722 2.799 2.858 2.907 2.953 2.983 3.012

Full Spectrum 5 2.478 2.729 2.851 2.944 3.014 3.060 3.114 3.153 3.186 3.214
HT (θ0) 1 3.012 3.217 3.326 3.395 3.460 3.502 3.552 3.591 3.609 3.640

Note. The critical values are obtained through simulation using a sample size of 1000 and 100,000
replications. nY denotes the number of variables being tested.

The tests have power against local alternatives of order T−1/2. The next result shows that
they are consistent against stationary global alternatives.

Theorem 2 Suppose {Yt} is a covariance stationary process with E(Yt) = µ0 and spectral density
f0(ω) that satisfy Assumptions 1-4. Let µ(θ0) and fθ0(ω) be the mean and spectral density of
{Yt} implied by the DSGE model, satisfying Assumption 3. Let δ > 0 be an arbitrary constant
independent of T. Then:

1. HdT (θ0) → ∞ if ∥f0(ω) − fθ0(ω)∥ > δ for some ω ∈ [0, π].

2. HW
dT (θ0) → ∞ if ∥f0(ω) − fθ0(ω)∥ > δ for some ω with W (ω) = 1.

3. HsT (θ0) → ∞ if ∥µ0 − µ(θ0)∥ > δ.

4. HT (θ0) → ∞ if ∥f0(ω) − fθ0(ω)∥ > δ for some ω ∈ [0, π] or ∥µ0 − µ(θ0)∥ > δ.

The power of HdT approaches 1 when the model and data spectra differ significantly over a set
of frequencies. Similarly, the power of HW

dT approaches 1 when there is a significant difference in
spectra within the frequencies selected by W (ω). The HsT test is consistent for misspecification
in the mean, while the HT test combines information from both the mean and spectrum and is
consistent in detecting misspecification when either of them differs significantly.
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3.2.1 Improving finite sample properties with prewhitening

Periodograms are known to be downward biased relative to the spectral density near the zero
frequency for persistent time series, which can affect our tests. The fully parametric nature
of a DSGE model provides a simple solution to address this issue. By using the model to
simulate a long time series at θ0 (denoted as Yt(θ0), where t = 1, ..., T̄ ), we can construct a
filter to prewhiten the empirical data, flattening the spectral density near the zero frequency and
significantly reducing the bias even in small samples. It is crucial to use the DSGE model, rather
than the actual empirical data, to compute the filter, which ensures that the filtering procedure
does not influence the test distributions by choosing a large T̄ .

The steps of the filtering operation are as follows: (i) Simulate a long time series using the
DSGE model at θ0, denoted by Yt(θ0) for t = 1, ..., T̄ . (ii) Estimate a VAR(1) model using
the simulated data: Yt(θ0) = BYt−1(θ0) + et. (iii) Use the estimated value of B, denoted as
B̂, and the actual empirical data to compute the filtered data (I − B̂L)Yt for t = 1, ..., T .
(iv) Compute the tests using the filtered data by replacing Yt and fθ0(ω) with (I − B̂L)Yt and
(I−B̂ exp(−iω))fθ0(ω)(I−B̂ exp(−iω))∗, respectively. To test a subset of variables, we estimate
a VAR(1) for AYt(θ0) and apply the filtering to AYt. Other aspects of the procedure remain the
same. The asymptotic null distributions of the tests remain unchanged if T̄ is sufficiently large
(i.e., T̄ /T → ∞) because the estimation uncertainty of the filter is asymptotically negligible.
The tests remain consistent against stationary global alternatives. We use this prewhitening
procedure when presenting our results for both simulations and empirical applications.

4 Accounting for parameter uncertainty

In the previous section, we considered a prespecified θ0. In this section, we propose a testing
procedure that accounts for parameter uncertainty and addresses the issue of weak identification.
The main idea is to implement the test in two steps with a Bonferroni correction. First, we obtain
an identification-robust confidence set for θ at the αS level. This is achieved by inverting (i.e.,
sampling) the identification-robust score test proposed by Qu (2014), although other statistics
such as those proposed by Guerron-Quintana et al. (2013) and Andrews and Mikusheva (2015)
may also be used. Next, we compute the specification test at the αH = (α − αS) level using all
sampled values in this confidence set. If the model is not rejected, the parameter values that
pass the specification checks are obtained. These values are valuable as they offer a chance to
re-evaluate the model’s implications. We begin by describing Qu’s (2014) test.
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4.1 The score test of Qu (2014)

The test is based on the Whittle likelihood. For any θ0, the score function of the Whittle
likelihood is equal to

DT (θ0) = 1
2
√
T

T −1∑
j=0

W (ωj)
(
∂ vec fθ0(ωj)

∂θ′

)∗ (
f−1

θ0 (ωj)′ ⊗ f−1
θ0 (ωj)

)
vec (IT (ωj) − fθ0(ωj))

+ 1
2π

√
T

T∑
t=1

W (0)∂µ(θ0)′

∂θ
f−1

θ0 (0)(Yt−µ(θ0)). (6)

A consistent approximation to the information matrix under normality is given by

MT (θ0) = 1
2T

T −1∑
j=0

W (ωj)
(
∂ vec fθ0(ωj)

∂θ′

)∗ (
f−1

θ0 (ωj)′ ⊗ f−1
θ0 (ωj)

) ∂ vec fθ0(ωj)
∂θ′ (7)

+ 1
2πW (0)∂µ(θ0)′

∂θ
f−1

θ0 (0)∂µ(θ0)
∂θ′ ,

where W (.) is the same weighting function as before, which is symmetric around ωj = π, to
select the frequencies, and W (0) is set to zero if only dynamic properties are used to compute
the score test. Using this notation, the score test for testing the null hypothesis of θ = θ0 can be
expressed as

ST (θ0) = DT (θ0)′ M+
T (θ0)DT (θ0) , (8)

where M+
T (θ) denotes the Moore-Penrose generalized inverse of MT (θ). The generalized inverse

is needed because MT (θ) is not full rank if some parameters are unidentified. Qu (2014) showed
that ST (θ0) is related to a linear multivariate regression. The dependent variables are related
to vec (IT (ωj) − fθ0(ωj)), and the regressors to ∂ vec fθ0 (ωj)

∂θ′ . The rank of the regressors matrix is
always bounded from above by the dimension of the structural parameter vector, irrespective
of the strength of identification. When some parameters are unidentified, some columns of the
regressor matrix become linearly dependent. Consequently, the dependent variables are projected
onto a lower-dimensional space, resulting in a smaller test value. Formally, for any 0 ≤ c < ∞,

lim
T →∞

Pr (ST (θ0) ≤ c) → Pr
(
χ2

q−q1 ≤ c
)

≤ Pr
(
χ2

q ≤ c
)
,

where q = dim(θ0) and q1 is the number of unidentified parameter directions (i.e., the number
of zero eigenvalues of MT (θ0)). If the number of unidentified parameters is unknown, using the
critical value of a χ2

q distribution results in conservative inference.

4.2 Implementation

We explain the implementation of the tests using HdT as an example. Suppose the desired
significance level is α%. We first define positive constants αS and αH such that α = αS + αH.
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Next, we invert (i.e., sample) the ST (θ0) test to obtain an (1 − αS)% confidence set for the
parameters, denoted by Cθ (1 − αS). Then, we calculate

inf
θ∈Cθ(1−αS)

HdT (θ),

and reject the null hypothesis if it exceeds the αH% critical value of supr∈[0,1] ∥Gd(r)∥∞. This
two-step procedure first identifies a set of plausible parameter values and then assesses whether
the most favorable model among them is supported by the data. In our implementation, for a
10% test, we set αH = αS = 5, although other combinations might yield better power properties
depending on the model. We leave such a power analysis for future work.

To determine the confidence set Cθ (1 − αS), a grid search is not feasible for even small-scale
DSGE models. Instead, we employ a modified version of a Markov chain Monte Carlo (MCMC)
algorithm as described in Qu (2014). This algorithm uses Metropolis steps to generate frequent
draws from areas in the parameter space where the values of ST (θ) are low, and infrequent draws
where ST (θ) are high, creating an adaptive grid that is dense in important regions and sparse in
unimportant areas. As in Qu (2014), we adjust the algorithm to account for any potential ridges
or local minima in the surface of ST (θ). The algorithm uses different proposal distributions to
generate new parameter values. Specifically, the new draw is written as θ∗ = θ(j) + ε, where the
first distribution gives ε ∼ N(0, cMT (θ(j))) with c being a tuning constant, and the second gives
ε = cVT (θ(j)) or −cVT (θ(j)) with VT (θ(j)) being the eigenvector corresponding to the smallest
eigenvalue of MT (θ(j)). These two distributions produce draws that move both across and along
the ridges of ST (θ). The tuning parameter c is also allowed to take on multiple values to avoid
getting stuck in a small neighborhood around a local minimum. Finally, multiple Markov chains
are run with different initial values, and the confidence set is obtained by merging the accepted
values from all chains. This set can then be approximated using the values of θ for which ST (θ)
does not exceed the critical value of the Chi-square distribution.

The reason for implementing the testing in two steps is two-fold. The first is computational:
it becomes challenging to find the minimum of HdT when the number of parameters is high.
The second arises from a modeling perspective: researchers often have interests in both inference
and model testing. Our procedure provides both results: the score test provides confidence sets
for the parameters, while the specification test subsequently checks whether any of them are
compatible with the data. The parameters that survive the testing can then be further analyzed,
for example, by plotting their impulse responses, to gain insights into the model implications
that are not rejected by the data.

Note that the confidence sets in the first step can be computed in various ways: using both the
mean and the spectrum, using the spectrum only, or focusing solely on business cycle frequencies.
This flexibility is useful. For instance, it can help determine if a model would still be rejected
based on the spectrum test when we avoid estimating its steady state properties. We examine
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this in the empirical application section.
In our empirical applications, we also apply the specification tests to Bayesian posterior distri-

butions of DSGE models. In this case, we first obtain the posterior distribution under informative
priors and then apply our test to the parameters within the credible region. This analysis pro-
vides additional insights into the results obtained from the frequentist two-step procedure. If
both methods lead to a rejection or acceptance of the model, we have greater confidence in
the conclusion. If the posterior distribution results in a rejection while the frequentist two-step
procedure does not, we can further investigate the surviving parameter values to assess their
economic interpretations.

5 Simulations of size and power properties

We evaluate the size and power properties of our proposed specification tests using the model
from Lubik and Schorfheide (2004) with empirically calibrated parameter values. The model is

yt = Etyt+1 − τ(rt − Etπt+1) + gt, (9)

πt = βEtπt+1 + κ(yt − zt),

rt = ρrrt−1 + (1 − ρr)ψ1πt + (1 − ρr)ψ2(yt − zt) + εrt,

gt = ρggt−1 + εgt, zt = ρzzt−1 + εzt,

where yt, πt, and rt are log deviations of output, inflation, and nominal interest rate from their
steady states, respectively. The shocks εrt, εgt, and εgt are independently and identically dis-
tributed as N(0, σ2

r), N(0, σ2
g), and N(0, σ2

z), respectively, and εgt and εzt are cross correlated
with correlation coefficient ρgz. The observables are log levels of output, inflation, and interest
rate (both annualized), which are represented as Yt = (0, π∗, π∗ + r∗)′ + (yt, 4πt, 4rt)′, where the
output is detrended, and π∗ and r∗ are annualized steady state rates of inflation and real interest
rate with β = (1 + r∗/100)−1/4. Under determinacy, the parameters and their values (posterior
mean estimates from Lubik and Schorfheide, 2004) are

θ = (τ, β, κ, ψ1, ψ2, ρr, ρg, ρz, σr, σg, σz, ρgz, π
∗)′

= (0.54, 0.992, 0.58, 2.19, 0.30, 0.84, 0.83, 0.85, 0.18, 0.18, 0.64, 0.36, 3.43)′.

Under indeterminacy, the sunspot parameters are added, so that

θ = (τ, β, κ, ψ1, ψ2, ρr, ρg, ρz, σr, σg, σz, ρgz,Mrϵ,Mgϵ,Mzϵ, σϵ, π
∗)′

= (0.69, 0.997, 0.77, 0.77, 0.17, 0.60, 0.68, 0.82, 0.23, 0.27, 1.13, 0.14,−0.68, 1.74,−0.69, 0.20, 4.28).

Lubik and Schorfheide (2004) transformed the model’s solution to ensure that its impulse re-
sponses are continuous at the boundary between the determinacy and indeterminacy regions.
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The transformation applied is St = Θ1St−1 + Θ̃εεt + Θϵϵt with Φ̃ε = Φε + Φϵ(Φ′
ϵΦϵ)−1Φ′

ϵ(Φb
ε − Φε),

where Φb
ε is the counterpart of Φε with ψ1 replaced by ψ̃1 = 1 − (βψ2/κ) (1/β − 1). We apply

the same transformation in order to be consistent with their analysis. Finally, the sunspot shock
ϵt and the sunspot parameter are specified in the same way as described previously.

5.1 Size properties

We examine the size properties of the tests under both determinacy and indeterminacy, consider-
ing tests of the full model as well as subsets of one or two observables. The tests are based on the
business cycle frequencies only, the full spectrum, the full spectrum with the weighting function
W (ω) = 1 −ω/π and, finally, the mean and spectrum, with all test statistics computed with the
prewhitening procedure described in Subsection 3.2.1. The sample sizes are chosen to reflect the
typical values in practice when working with DSGE models. All simulations are conducted over
5000 replications.

Table 2: Rejection frequencies under the null hypothesis (testing all variables)

Level T BC frequencies Full spectrum Weighted spectrum Mean and spectrum
Determinacy

10% 80 0.099 0.085 0.105 0.085
160 0.098 0.083 0.100 0.088
240 0.090 0.087 0.098 0.101
320 0.096 0.085 0.090 0.096

5% 80 0.061 0.045 0.070 0.048
160 0.063 0.044 0.065 0.046
240 0.046 0.044 0.057 0.049
320 0.052 0.042 0.053 0.049

Indeterminacy
10% 80 0.106 0.088 0.122 0.108

160 0.102 0.097 0.111 0.102
240 0.104 0.092 0.109 0.099
320 0.104 0.091 0.095 0.098

5% 80 0.072 0.049 0.081 0.059
160 0.058 0.047 0.070 0.050
240 0.059 0.048 0.064 0.051
320 0.060 0.044 0.057 0.047

Note. T: sample size; all tests computed with prewhitening.

Table 2 shows the results for testing all three observables. In the determinate case, at the
10% nominal level, the tests using business cycle frequencies and weighted full spectrum have size
close to the nominal level for all sample sizes. The full spectrum and mean and spectrum tests
tend to be slightly conservative for smaller sample sizes, but improve with larger sample sizes.
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At the 5% nominal level, the mean and spectrum and full spectrum based tests have size close to
nominal, while the business cycle frequencies and weighted full spectrum based tests have slight
upward size distortions at 80 and 160 observations. This is improved for larger samples. In the
indeterminate case, all tests generally perform well at the 10% nominal level. At the 5% nominal
level, small upward size distortions are seen in the business cycle frequencies and weighted full
spectrum based tests for smaller samples, while the size is well-controlled for the rest. Overall,
the tests show good size control across various sample sizes and policy regimes of the DGP when
all observables are tested. We report the results for testing pairs of variables and three variables
individually in the Appendix as they are very similar to the full model case. See Tables A1 and
A2 for these two cases, respectively.

In conclusion, our examination of empirical sizes for tests of the full model and subsets of
observables suggests that the proposed tests exhibit good size control across various sample sizes
and regimes of the DGP. It is important to emphasize that prewhitening the data before per-
forming the tests is a critical step in maintaining accurate size control, as substantial distortions
were observed when using unfiltered data. For example, without prewhitening, the rejection rates
corresponding to the first row of Table 2 were 0.183, 0.285, 0.217, and 0.268, respectively. The
fact that a DSGE model is fully parametric enables us to stabilize the size properties without
introducing additional estimation uncertainty.

5.2 Power properties

We next examine the empirical power properties of the proposed tests. To do so, we compute
the size-adjusted power at the 10% level, against alternatives that perturb a random element of
the parameter vector by a fixed percentage (we consider 20% and 40%). The tests are computed
using prewhitening, as in the previous section.

Table 3 displays the results of testing all observables. The tests that use the full spectrum
and the combination of the spectrum and mean have the highest rejection rates. The rejection
frequencies for the mean and spectrum tend to be similar or lower than the full spectrum, likely
due to the presence of an extra parameter in the steady state. In the determinate case, tests
based on the business cycle frequencies have a power of 52-62% compared to the full spectrum,
and tests based on the weighted full spectrum achieve 62-67% of the full spectrum’s power when
the parameter is perturbed by 20%. These ranges become 47%-75% and 56-84%, respectively,
when the perturbation is 40%. In the indeterminate case, the rejection frequencies are often lower
because of the additional four parameters in the model. Otherwise, the patterns are similar to
the determinate case: the business cycle frequencies and the weighted full spectrum tests have
60-70% and 68-82% of the full spectrum’s power, respectively, when the random parameter is
perturbed by 20%. These ranges become 63-79% and 70-89% when the perturbation is 40%. The
reason why the tests based on weighting functions appear to be more powerful (measured as a
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percentage of the full spectrum based test) in the indeterminate case is likely because the spectral
densities of observables under indeterminacy have much more mass at lower and business cycle
frequencies. Since these frequencies receive higher weight, the business cycle and weighted full
spectrum based tests become relatively more informative compared to the determinate case.

Table 3: Rejection frequencies under the alternative hypothesis (10%, testing all variables)

T BC frequencies Full spectrum Weighted spectrum Mean and spectrum
Determinacy

Perturb a random element of θ by 20%
80 0.210 0.341 0.228 0.305
160 0.266 0.506 0.312 0.425
240 0.330 0.627 0.413 0.520
320 0.384 0.691 0.458 0.598

Perturb a random element of θ by 40%
80 0.290 0.618 0.345 0.544
160 0.459 0.790 0.536 0.700
240 0.566 0.833 0.666 0.752
320 0.653 0.872 0.729 0.780

Indeterminacy
Perturb a random element of θ by 20%

80 0.232 0.332 0.271 0.317
160 0.299 0.436 0.324 0.394
240 0.332 0.525 0.358 0.448
320 0.348 0.576 0.416 0.497

Perturb a random element of θ by 40%
80 0.320 0.510 0.359 0.480
160 0.403 0.644 0.481 0.579
240 0.502 0.688 0.571 0.635
320 0.577 0.731 0.648 0.671

Note. T: sample size; all tests computed with prewhitening.

Tables A3 and A4 in the Appendix contain the results for pairs of observables and individual
observables, respectively. The tests are informative as the rejection frequencies show nontrivial
power even at small sample sizes.

In summary, the results above show that the proposed tests have nontrivial power in em-
pirically relevant sample sizes, that the tests using weighting functions, such as business cycle
frequency indicator or a smoothing function de-emphasizing higher frequencies, can be infor-
mative, and that the tests still have power when considering subsets of observables. The power
properties can depend on the structure of the DGP, e.g., business cycle based tests could be more
informative if the model implies that the spectral densities of observables have a substantive mass
in that band.
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6 Empirical applications

In this section, we examine three DSGE models: a small-scale model of Lubik and Schorfheide
(2004), previously considered in Section 5, and two medium-scale models: the Smets and Wouters
(2007) model and the news shocks model of Schmitt-Grohé and Uribe (2012). The Lubik and
Schorfheide (2004) model is a popular choice for contrasting determinacy and indeterminacy
within a small-scale framework. The Smets and Wouters (2007) model is a benchmark medium-
scale New Keynesian model in academia and central banks. This model extends the standard
New Keynesian model by incorporating additional frictions and real rigidities, allowing us to
examine how model specification improves compared to the baseline small-scale model. The
Schmitt-Grohé and Uribe (2012) model provides an opportunity to evaluate whether the proposed
information structure generates dynamics that fit the data adequately.

6.1 The small-scale model

We perform specification testing on the model described in Section 5 at the 10% level under both
determinacy and indeterminacy. The data are linearly detrended US log GDP, and annualized
inflation and interest rates for the period 1960:I-2007:IV. We do not use the Hodrick-Prescott
filter to avoid potential filtering-induced discrepancies near the zero frequency. We consider this
full sample period as a starting point, and to evaluate to what extent the results are driven by
potential differences in monetary policy regimes over time, we also consider two subsamples: the
pre-Volcker period (1960:I-1979:II) and the post-Volcker period (1979:III-2007:IV), which are
associated with indeterminate and determinate policy regimes, respectively, see Clarida et al.
(2000) and Lubik and Schorfheide (2004). The partitioning of the sample using 1979:II is the
same as in Clarida et al. (2000).

We obtain results using the two-step procedure outlined in Subsection 4.2. First, a 95%
confidence set is obtained by inverting the score test of Qu (2014) in (8), using information from
both the mean and the spectrum (we also compute the 95% confidence set using information
from the spectrum only and repeat the subsequent analysis). The modified Metropolis algorithm
from Qu (2014) is used to generate 100 Markov chains from different initial values, each of which
is run until 1000 draws are accepted and subsequently merged. Then, the specification tests
based on the weighted full spectrum, business cycle frequencies, and mean and full spectrum
are conducted at the 5% level for each parameter vector in the confidence set to examine the
specification of the full model, each observable separately and their pairs. The test statistic,
critical value, and the percentage of draws rejected are reported for each case. All specification
test statistics are computed with prewhitening and the test statistics based on the full spectrum
are computed as HW

dT (θ0) in (5) with the weight function W (ω) = 1 − ω/π that puts less weight
on higher frequencies that DSGE models are not designed to capture. Note that the test statistic
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for the mean and spectrum case is HT (θ0), i.e., it does not apply the weight function. Otherwise,
the steady state test HsT (θ0) would dominate due to the critical values for the static test being
much higher, essentially reducing the test to focusing on the steady state only. Finally, to relate
our results to Bayesian DSGE literature, we obtain 200,000 draws from the posterior distribution
with the likelihood under informative priors, drop 5% of the draws corresponding to the lowest
density regions, and apply our specification tests to these parameters.

Below, for each case, we first summarize the main findings and then provide numerical details.

Result 1 When using the full sample 1960:I-2007:IV, the model is rejected at the 10% level based
on the full spectrum analysis for both determinacy and indeterminacy specifications. Limiting
the analysis to just business cycle frequencies, the model continues to be rejected for determinacy
and is nearly rejected for the indeterminacy specification. Subsequent analysis reveals that mis-
specification impacts most segments of the model, and, in particular, inflation dynamics and its
comovements with GDP are incompatible with the data at these parameter values over business
cycle frequencies. Using the MCMC draws from posterior distributions reinforces these conclu-
sions.

Table 4 presents the 95% confidence intervals for the 1960:I-2007:IV sample based on the
mean and full spectrum for the determinacy specification. The intervals are most informative

Table 4: 95% confidence intervals, 1960:I-2007:IV, determinacy

θ Parameter Bounds CI
τ intertemporal substitution elasticity [0.10, 1.00] [0.10, 0.99]
β discount factor [0.98, 0.999] [0.984, 0.999]
κ Phillips curve slope [0.01, 2.00] [0.01, 1.998]
ψ1 inflation target [1.01, 3.00] [1.01, 2.56]
ψ2 output target [0.01, 5.00] [0.01, 4.99]
ρr interest rate smoothing [0.10, 0.90] [0.68, 0.90]
ρg exogenous spending AR [0.10, 0.98] [0.88, 0.98]
ρz technology shock AR [0.10, 0.98] [0.92, 0.98]
σr monetary policy shock SD [0.01, 3.00] [0.20, 0.40]
σg exogenous spending SD [0.01, 3.00] [0.03, 0.15]
σz technology shock SD [0.01, 3.00] [0.64, 2.09]
ρgz exogenous spending-technology CORR [-0.90, -0.90] [-0.45, 0.90]
π∗ steady state inflation [2.00, 8.00] [2.00, 7.95]

Note. Values are based on the mean and full spectrum. Column 2: parameter inter-
pretation. Column 3: bounds for permissible parameter values. Column 4: confidence
intervals, obtained by sampling the score test and applying projections.

about the autoregressive coefficients and standard deviations for the exogenous shock processes,
with the standard deviation of the technological shock having a relatively wider interval. Thus,
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the confidence set includes models with widely varying behavioral and policy parameters, but
relatively restricted exogenous shock behavior.

Examining the specification test results in Table 5, the first notable conclusion is that 100%
of all parameter values in the confidence set are rejected when considering either the weighted
full spectrum or only business cycle frequencies. Therefore, the null of correct model specification
is rejected at the 10% significance level in both cases. In order to pinpoint the sources of this
misspecification, further tests based on individual and pairs of observables can be considered.
Based on the full spectrum, all parameter draws are rejected for inflation and the GDP/inflation
pair and less than 1% of draws survive for the GDP/interest rate pair. The results at business
cycle frequencies are qualitatively similar, with only 1% of draws surviving for inflation and less
than 1% surviving for the two pairs.

Table 5: Specification test results, 1960:I-2007:IV, determinacy

Weighted spectrum BC frequencies Mean and spectrum
Test CV Rej. Test CV Rej. Test CV Rej.

Full model 1.239 1.128 100 1.779 1.370 100 2.614 2.851 99.97
GDP 0.619 0.977 93 0.452 1.151 82 1.715 2.478 30
Inflation 0.964 0.977 100 0.710 1.151 99 2.402 2.478 99.98
Interest rate 0.320 0.977 31 0.306 1.151 6 0.807 2.478 65
GDP-Inflation 1.140 1.077 100 1.086 1.295 99.95 2.286 2.729 99
GDP-Interest rate 0.953 1.077 99.91 1.090 1.295 99.69 1.894 2.729 98
Inflation-Interest rate 0.877 1.077 85 0.979 1.295 67 2.654 2.729 99.99
Note. The significance level is 10%. Test: the specification test value; CV: critical value; Rej.:
percentage of parameter draws rejected by the specification test.

To help visualize these results, Figure 2 contrasts nonparametrically estimated log spectral
densities against the model-implied log spectra using the parameter values of the 95% confidence
set. It is clear that there is a significant lack of overlap between the nonparametric 95% confidence
interval and the model-implied spectral density for inflation within the business cycle frequency
band. Specifically, the model overpredicts the distribution of the variation at these frequencies,
which explains why both full spectrum and business cycle frequency-based specification tests
reject the model when only inflation is considered. In comparison, the fit for GDP within the
business cycle frequencies is slightly better, while the agreement for interest rates is much higher,
consistent with the results in the table, where only 6% of the draws are rejected based on business
cycle frequency tests.

Figures 3 and 4 plot nonparametrically estimated real and imaginary parts of cross-spectra
against their counterparts implied by the confidence set at business cycle frequencies. The real
part of the cross-spectrum at frequency ω, also called the cospectrum, shows which portion of
the covariance is due to cycles at that frequency. The imaginary part of the cross-spectrum, also
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Figure 2: Log spectra under determinacy, 1960-2007.

called the quadrature spectrum, indicates whether one series leads or lags the other series, as
determined by its sign relative to the real part (i.e., a positive sign in both cases indicates that the
first leads the second series). The figures show visible discrepancies between the inflation/output
and output/interest rate pairs. For inflation/output, the data suggest that output leads inflation
at business cycle frequencies (Figure 4(c)), whereas the model is ambiguous in this regard. For
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Figure 3: Cross-spectra (real part) under determinacy, 1960-2007.

output/interest, the data suggest stronger out-of-phase comovement between these two variables
than what is implied by the model (Figure 4(a)). Thus, the model struggles to capture dynamic
correlations between two pairs of the three observables, suggesting limitations in its ability to
explain the data. Finally, for the inflation/interest rate pair, the fit is better, with both the
model and the data indicating that inflation leads interest rates. Nevertheless, the model still

26



Figure 4: Cross-spectra (imaginary part) under determinacy, 1960-2007.

tends to signal a stronger relationship than in the data.
Next, we examine the model specification for the full sample under indeterminacy. The rele-

vant 95% confidence intervals are reported in Table 6. It can be seen that the intervals, again, are
most informative about the parameters governing the dynamics of exogenous shocks. Compared
to the determinacy case, all these intervals are wider. Different from the determinacy case, the
interval for the slope of the Phillips curve is much tighter. Among the sunspot parameters, only
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the interval for the standard deviation of the sunspot shock is somewhat informative.

Table 6: 95% confidence intervals, 1960:1-2007:IV, indeterminacy

θ Parameter Bounds CI
τ intertemporal substitution elasticity [0.10, 1.00] [0.10, 0.9999]
β discount factor [0.98, 0.999] [0.989, 0.999]
κ Phillips curve slope [0.01, 2.00] [0.01, 0.458]
ψ1 inflation target [0.01, 0.99] [0.01, 0.952]
ψ2 output target [0.01, 5.00] [0.14, 4.999]
ρr interest rate smoothing [0.10, 0.90] [0.10, 0.90]
ρg exogenous spending AR [0.10, 0.98] [0.72, 0.97]
ρz technology shock AR [0.10, 0.98] [0.88. 0.98]
σr monetary policy shock SD [0.01, 3.00] [0.01, 0.39]
σg exogenous spending SD [0.01, 3.00] [0.04, 0.68]
σz technology shock SD [0.01, 3.00] [0.65, 2.69]
ρgz exogenous spending-technology CORR [-0.90, -0.90] [-0.90, 0.83]
Mrϵ sunspot-monetary coeff [-3.00, 3.00] [-2.956, 2.999]
Mgϵ sunspot-exogenous spending coeff [-3.00, 3.00] [-3.00, 2.48]
Mzϵ sunspot-technology coeff [-3.00, 3.00] [-0.54, 0.96]
σϵ sunspot shock SD [0.01, 3.00] [0.01, 0.84]
π∗ steady state inflation [2.00, 8.00] [2.00, 8.00]

Note. Values are based on the mean and full spectrum. Column 2: parameter inter-
pretation. Column 3: bounds for permissible parameter values. Column 4: confidence
intervals, obtained by sampling the score test and applying projections.

Proceeding to specification testing, results in Table 7 show that 100% and 99.92% of parameter
values are rejected based on the weighted full spectrum and business cycle band, respectively
– this conclusion is qualitatively similar to that under determinacy. It is apparent from Table
7 that comovements between variables are identified as a primary source of misspecification at
both frequencies. Interest rate dynamics remain the model component that is most compatible
with the data, particularly at business cycle frequencies, where 97% of draws cannot be rejected.
Figures A1, A2, and A3 in the Appendix show plots of estimated versus model-implied log spectra
and real and imaginary parts of estimated versus model-implied cross-spectra, respectively. The
plots are qualitatively similar to those under determinacy. The main difference is that the model-
implied confidence bands tend to be substantially wider, consistent with the wider confidence
intervals in Table 6. These results show that the model fit has not fundamentally changed by
switching from determinacy to indeterminacy for the entire sample period.

We also consider parameter values from a posterior distribution using priors from Lubik and
Schorfheide (2004), and retain all posterior draws that are in the 95% highest density region.
Specification test results under determinacy and indeterminacy can be found in Tables A5 and
A6 in the Appendix, respectively. The overall conclusion remains unchanged: the full model is
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Table 7: Specification test results, 1960:I-2007:IV, indeterminacy

Weighted spectrum BC frequencies Mean and Spectrum
Test CV Rej. Test CV Rej. Test CV Rej.

Full model 1.137 1.128 100 1.277 1.370 99.92 2.504 2.851 98
GDP 0.471 0.977 97 0.302 1.151 16 1.359 2.478 41
Inflation 1.101 0.977 100 1.190 1.151 100 2.534 2.478 100
Interest rate 0.324 0.977 16 0.293 1.151 3 0.727 2.478 21
GDP-Inflation 1.214 1.077 100 1.300 1.295 100 2.556 2.729 99.67
GDP-Interest rate 0.662 1.077 95 0.799 1.295 86 1.521 2.729 35
Inflation-Interest rate 1.106 1.077 100 0.957 1.295 99.88 2.556 2.729 99.85

Note. The significance level is 10%. Test: the specification test value; CV: critical value; Rej.:
percentage of parameter draws rejected by the specification test.

rejected based on the weighted full spectrum in both cases, with comovements between variables
identified as a primary source of misspecification. However, a difference from the previous results
is that inflation dynamics are no longer rejected when considered individually under determinacy,
with 38% and 44% of draws surviving based on full spectrum and business cycle frequencies,
respectively. Under indeterminacy, inflation dynamics have 4% and 19% of draws surviving in
the respective cases. This finding suggests that incorporating an informative prior can alter the
fit of the model in some dimensions, but it does not make the model fully compatible with the
data. Diagnostic plots for log spectra and cross-spectra can be found in Figures A4-A9 in the
Appendix. As before, the imaginary parts of the output/interest and inflation/output pairs show
the largest discrepancies, with their nonparametric counterparts remaining largely outside the
95% model-implied confidence sets. The model-implied confidence sets are smaller than their
frequentist counterparts, reflecting the effect of the prior.

In summary, our analysis has shown that both determinacy and indeterminacy specifications
are rejected based on the weighted full spectrum test when applied to the 1960-2007 period. It
has also revealed that dynamic correlations, particularly the leads and lags relationships, are
often at odds with data. Moreover, the analysis suggests that examining the imaginary part of
the spectra is informative, particularly for understanding the leads and lags relationships.

Lubik and Schorfheide (2004) have convincingly demonstrated that a determinate regime
fits better for the post-Volcker subsample, while an indeterminate regime fits the data better
for the earlier subsample with heightened parameter uncertainty. Therefore, it is appropriate to
examine the model specification that matches the two monetary policy regimes to their respective
subsamples. Our findings for the 1979-2007 period are summarized below:

Result 2 For the subsample 1979:III-2007:IV under determinacy, the model is no longer re-
jected when using weighted full spectrum or using business cycle frequencies. Further analysis
revealed that the model-implied dynamic properties remain similar to the full sample determinacy
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estimates. However, in this part of the data, the comovements between variables are stronger be-
tween inflation and interest rate and weaker otherwise than those measured using the full sample,
which results in a closer match between the model and the data. Using the MCMC draws from
posterior distributions delivers qualitatively similar conclusions.

Figure 5: Log spectra under determinacy, 1979-2007.
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Figure 6: Cross-spectra (real part) under determinacy, 1979-2007.

The 95% confidence intervals for this case are collected in Appendix Table A7. Qualitatively,
their pattern is similar to the full sample case under determinacy - the most informative intervals
pertain to autoregressive coefficients and standard deviations of the shock processes. Most of
those intervals are moderately wider, owing most likely to smaller sample size.

Turning to the specification tests in Table A8 in the Appendix, we observe that the tests
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Figure 7: Cross-spectra (imaginary part) under determinacy, 1979-2007.

reject only 15% and 39% of draws for the weighted full spectrum and business cycle frequencies,
respectively. Examining the results for individual variables and their comovements, it becomes
clear that the model specification substantially improves, except for inflation dynamics and its
comovement with GDP, which have the highest proportions of rejected draws based on the full
spectrum (97% and 86%, respectively) that remain high at business cycle frequencies (92% and
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76%, respectively).
Figures 5-7 show diagnostic spectral plots for this case. Figure 5 shows the model-implied

spectra now visibly overlap more with the 95% confidence intervals of their nonparametrically
estimated counterparts. Among them, the overlap in the inflation case is the smallest, which is
consistent with the high rejection rates observed in Table A8. For the cross-spectrum, the data
and model-implied cross-spectra of the inflation/interest rates pair agree well with each other
because the contemporaneous comovement between these two variables (i.e., the real part of the
cross-spectrum) is stronger in this part of the sample (Figure 6(b)). Additionally, the out-of-phase
comovement between output and interest in the data is weaker in this part of the sample (Figure
7(a)), bringing the model closer to mirroring the data. Finally, for the inflation/output pair, the
real part of the cross-spectrum is closer (Figure 6(c)), however, the lead-lag relationship in the
data remains in tension with the model, in the sense that the nonparametric estimate partly lies
outside of the model-implied confidence band (Figure 7(c)), consistent with the test rejecting
most of the draws for this pair.

Table A9 contains the test results for this sample period using the Bayesian posterior draws.
We obtain similar overall conclusions: the model is not rejected using either the full spectrum or
business cycle frequencies; the comovement between inflation and interest rate is well-captured by
the model, and inflation/output comovement constitutes a major tension between the model and
data, with 78% of posterior draws rejected based on the weighted full spectrum. The spectra are
displayed in Figures A10-A12. The marginal spectra results are comparable to their frequentist
counterparts, while the model-implied intervals for the cross-spectra are significantly narrower,
reflecting the effect of the prior. Next, we turn to the 1960-1979 period.

Result 3 When examining the subsample from 1960:I to 1979:II under indeterminacy, the model
is not rejected. An important contributing factor to this result is the wider model-implied con-
fidence intervals, which can encompass richer patterns in the data. Meanwhile, using MCMC
draws from posterior distributions results in a much higher percentage of rejected draws, specif-
ically 99.99% when using the weighted full spectrum test for the full model. This may reflect
the effect of the prior on a small sample size. Therefore, the use of frequentist confidence sets
yields a more favorable evaluation of the model specification than using the Bayesian posterior
distribution for this sample period.

The 95% confidence intervals for this case are presented in Appendix Table A10. Compared
to the full sample indeterminacy case, the pattern of the most informative intervals remains the
same (slope of the Phillips curve, exogenous shock parameters and the sunspot shock standard
deviation), however, the intervals become substantially longer than those in Table 6, most likely
due to reduced sample size. Table A11 contains the specification test results, which show that the
model is not rejected at the 10% level based on both the weighted full spectrum (55% of draws
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rejected) and the business cycle band (44% of draws rejected). Examining tests for specification
of separate aspects of the model, it can be seen the agreement with data of the individual variables
and their comovements is improved compared to the full sample case. Inflation dynamics and its
comovement with GDP still have the highest proportions of rejected draws using the full spectrum
(61% and 64%, respectively), however, these fall when only the business cycle band is used, to
11% and 49%, respectively. The plots in Figures A13-A15 further corroborate these findings.
Table A12 and Figures A16-A18 provide results of using the Bayesian posterior distribution. The
credible sets for the spectra plots are substantially narrower than the frequentist case, consistent
with the high rejection rates of the tests.

We note that the data suggest that interest rates lead inflation over business cycle frequencies
(Figure A18(b)), which is different from the lagging pattern observed during the 1979-2007 period
(Figure A12(b)). The model tends to indicate the opposite relationship for this period, regardless
of whether frequentist (Figure A15(b)) or Bayesian confidence sets (Figure A18(b)) are used.
Still, this tension is insufficient to cause a rejection of the model.

So far in the analysis, we have used information from both the mean and spectrum to compute
the parameter confidence sets. This is done to obtain sharp results; however, it might also
introduce contamination. For instance, if the model’s steady state is incomparable with the
data, the estimation might skew other parameters, leading to a rejection of the model’s dynamic
properties. To examine this, we obtain the confidence sets using the spectrum only and recompute
the rejection frequencies of the specification tests. The results for the full sample case are reported
in Appendix Tables A13 and A14. For determinacy specification, the model is nearly rejected
using the full spectrum weighted test (99.99% of draws rejected) and is rejected fully at business
cycle frequencies. GDP and inflation are rejected individually as well as the GDP/inflation
pair when using full spectrum. For the indeterminacy specification, the full spectrum rejects
the model, while business cycle frequencies still have a few surviving draws (99.95% rejected).
Inflation and GDP/inflation subsets are rejected for both frequency ranges. These results are
broadly similar to those obtained previously, and the main difference is that we now obtain a
near-rejection instead of a full rejection for the for determinacy case using the weighted full
spectrum test. In conclusion, various aspects of the model remain at odds with the data even if
we discard information from the steady state properties.

In summary, we have applied our specification tests to a small-scale DSGE model and provided
a detailed analysis of the results combining numerical and graphical methods. One part of our
findings reaffirms Lubik and Schorfheide’s (2004) results obtained from a Bayesian perspective.
Specifically, our tests support that the post-Volcker sample is consistent with a determinate
monetary regime, while the earlier sample is consistent with an indeterminacy regime, albeit
with heightened parameter uncertainty. Furthermore, our results show that the comovements
between variables, particularly the lead and lag relationships indicated by the imaginary part
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of the cross-spectra, often constitute a significant source of tension between model and data.
Comparing the model and data spectra, along with their confidence intervals, offers a useful
way to gain insights into the model’s specification. Finally, for this model, both frequentist
and Bayesian confidence sets yield qualitatively similar conclusions. The most notable difference
occurs for the pre-Volcker subsample, where the use of frequentist confidence sets leads to a
more favorable evaluation of the model’s specification properties compared to using the Bayesian
posterior distribution.

6.2 The Smets and Wouters model

The next model we consider is the medium-scale model of Smets and Wouters (2007), which is
described in the Appendix Section A.2. This model includes 36 free parameters and is estimated
on seven observables: consumption growth, investment growth, output growth, labor hours,
inflation, wage growth, and interest rate. Unlike the previous subsection, the variables including
inflation and interest rate are not annualized here as in the Smets and Wouters’ original analysis.

We perform specification testing at the 10% level using the same two-step procedure. Given
the model’s larger dimension, the confidence set is formed via merging output from 100 Markov
chains each of which produces 5000 accepted draws. The specification testing proceeds in the
same way as in the previous subsection. To relate to the Bayesian literature, the specification tests
are also run on 0.5 million draws from the posterior distribution. In order to evaluate the contrast
in specification for common observables such as inflation and interest rate, the application first
considers US data for the same sample period of 1960:I-2007:IV as in the previous subsection.
Subsequently, the tests are repeated on the subsample 1965:I-2004:IV, which corresponds to the
original Smets and Wouters (2007) data.

Result 4 The model is not rejected at either the full spectrum or business cycle frequencies at
the 10% significance level on the full sample 1960:I-2007:IV. This contrasts with the case of
the small-scale model examined earlier. Using draws from the posterior distribution produces
qualitatively similar results. Regardless of which set of draws is used, over 60% and 80% of the
draws are rejected based on the weighted spectrum and business cycle frequencies, respectively,
indicating significant room for model improvement. Qualitatively similar results are found on the
subsample 1965:I-2004:IV.

Table 8 presents the results of specification tests using the 1960:I-2007:IV sample for the
same variables as in the small-scale model. Results for the full set of variables are reported in
the Appendix (Table A15). Panel (a) uses parameter values from the score test and (b) uses
values from the 95% highest density region of the posterior distribution under Smets and Wouters’
prior. In (a), the null of a correct specification cannot be rejected at the 10% level using either
the weighted full spectrum or business cycle frequencies. Nonetheless, since the majority of the
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Table 8: Specification test results for the SW model, 1960:I-2007:IV

(a) Frequentist set (b) Posterior distribution
Test CV Rej. Test CV Rej.

Full model, weighted spectrum 0.849 1.235 78 0.878 1.235 67
Full model, BC frequencies 1.18 1.519 97 1.128 1.519 81
GDP growth 0.303 0.977 44 0.317 0.977 20
Inflation 0.393 0.977 56 0.398 0.977 58
Interest rate 0.332 0.977 19 0.372 0.977 30
GDP-Inflation 0.561 1.077 40 0.597 1.077 26
GDP-Interest rate 0.614 1.077 65 0.673 1.077 55
Inflation-Interest rate 0.509 1.077 64 0.552 1.077 81

Note. Each row represents a set of variables tested. The significance level is 10% for each
case. Test: the specification test value, based on the weighted full spectrum unless indicated
otherwise; CV: critical value; Rej.: percentage of parameter draws rejected by the specification
test. For (a) the parameter values are obtained by sampling the score test, and for (b) they are
values from the 95% highest density region of the posterior distribution using SW’s prior.

draws are rejected, additional testing for variable subsets is conducted to reveal the dimensions
along which the model and the data are most at odds with each other. The results based on
the frequentist confidence set reveal that the draws are most frequently rejected for consumption
and its comovements with other variables. On the other hand, for the posterior distribution, the
draws are frequently rejected for inflation dynamics and its comovements with other variables.
Therefore, the prior can matter as in the small-scale model case.

Table 9: Specification test results for the SW model, 1965:I-2004:IV

Frequentist set Posterior distribution
Test CV Rej. Test CV Rej.

Full model 0.867 1.235 68 0.901 1.235 89
Full model, BC frequencies 1.083 1.519 92 1.048 1.519 71
GDP growth 0.213 0.977 18 0.194 0.977 0.3
Inflation 0.319 0.977 22 0.371 0.977 42
Interest rate 0.310 0.977 20 0.331 0.977 47
GDP-Inflation 0.494 1.077 20 0.516 1.077 10
GDP-Interest rate 0.562 1.077 39 0.626 1.077 52
Inflation-Interest rate 0.454 1.077 32 0.628 1.077 88

Note. Each row represents a set of variables tested. The significance level is 10% for each
case. Test: the specification test value, based on the weighted full spectrum unless indicated
otherwise; CV: critical value; Rej.: percentage of parameter draws rejected by the specification
test. For (a) the parameter values are obtained by sampling the score test, and for (b) they are
values from 95% highest density region of the posterior distribution using SW’s prior.

Table 9 presents the specification test results for the sample period of 1965:I-2004:IV for the
same subset of variables. Those for the entire set of variables are reported in Table A16. The
results show that the correct specification null cannot be rejected at the 10% level for all the
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tests considered. The rejection frequencies overall are lower than in the full sample case. Using
the Bayesian credible set yields similar conclusions.

The spectrum plots of individual variables for the two samples are reported in Figures A19
and A20 of the Appendix. The model-implied spectra (computed using parameter values in
the frequentist confidence set) exhibit varying degrees of agreement with the nonparametric
estimates. The pairwise comparisons (21 cases) are not included to save space, but they are
available upon request.

Finally, one might be interested in re-examining the model’s applications using the non-
rejected parameter values. To illustrate this, we compute the impulse responses of the model
using the surviving parameter values from the frequentist confidence set for the 1960:I-2007:IV
sample; see Appendix Figure A21 for the responses of the output variable to the seven shocks.
We report the median of these responses along with their 5th and 95th percentiles. The response
computed using the posterior mean is also included, as this is what the Bayesian approach using
Smets and Wouters’ prior would have reported. An important message emerging from these
plots is that the Bayesian posterior estimates always fall between the 5th and 95th percentiles
of the frequentist values. Therefore, a researcher would not strongly disagree with the Bayesian
conclusions regarding these responses after applying the model specification test. In a sense,
these conclusions are robust.

6.3 A model with news shocks

We now turn to the model of Schmitt-Grohé and Uribe (2012). The model features anticipated
shocks, the quantitative importance of which is actively investigated in the literature; see Milani
and Treadwell (2012), Christiano et al. (2014), and Forni et al. (2017), among others. We outline
the model in the Appendix Section A.3. There are seven exogenous shocks in the model, and
all of them are assumed to have anticipated components. They are: 1) the stationary neutral
productivity shock zt, 2) the nonstationary neutral productivity shock Xt, 3) the stationary
investment-specific productivity shock zi

t, 4) the nonstationary investment-specific productivity
shock At, 5) the government spending shock Gt, 6) the wage markup shock µt, 7) the preference
shock ζt. The shocks Xt and At are made stationary using growth rates, with the respective
variables being µx

t = Xt/Xt−1 and µa
t = At/At−1. Gt is detrended to form gt ≡ Gt/X

G
t ,

where XG
t = (XG

t−1)ρxg(Xt−1A
αK/(αK−1)
t−1 )1−ρxg is the trend in government spending. All seven

processes xt (x = {z, µx, zi, µa, g, µ, ζ}) are assumed to follow ln(xt/x) = ρx ln(xt−1/x) + εx,t

with εx,t = ε0
x,t + ε4

x,t−4 + ε8
x,t−8, where x denote the steady state values of the variables and

εj
x,t

iid∼ N(0, σj
x). The total number of shocks is 21.

After log linearization, Schmitt-Grohé and Uribe (2012) estimate the model on seven de-
meaned observables: real GDP growth, real consumption growth, real investment growth, labor
hours, real government spending growth, TFP growth, and relative price of investment growth;

37



Table 10: Specification test results for the SGU model, 1955:II-2006:IV

Test CV Rej.
Full model, weighted spectrum 1.220 1.235 99.99
Full model, BC frequencies 1.643 1.519 100
GDP growth 0.254 0.977 15
Consumption growth 0.243 0.977 33
Investment growth 0.237 0.977 0.3
Labor hours growth 0.603 0.977 98
Government spending growth 0.334 0.977 26
TFP growth 0.297 0.977 51
Rel. price of investment growth 0.343 0.977 11
GDP-Consumption 0.662 1.077 50
GDP-Investment 0.768 1.077 75
GDP-Labor hours 1.212 1.077 100
GDP-Gov. spending 0.449 1.077 30
GDP-TFP 0.671 1.077 38
GDP-Rel. price of Investment 0.530 1.077 11
Consumption-Investment 0.547 1.077 20
Consumption-Labor hours 0.827 1.077 98
Consumption-Gov. spending 0.403 1.077 37
Consumption-TFP 0.510 1.077 19
Consumption-Rel. price of Investment 0.626 1.077 28
Investment-Labor hours 1.090 1.077 100
Investment-Gov. spending 0.423 1.077 17
Investment-TFP 0.766 1.077 50
Investment-Rel. price of Investment 0.382 1.077 6
Labor hours-Gov. spending 0.641 1.077 99
Labor hours-TFP 0.674 1.077 98
Labor hours-Rel. price of Investment 0.601 1.077 97
Gov. spending-TFP 0.610 1.077 48
Gov. spending-Rel. price of Investment 0.419 1.077 18
TFP-Rel. price of Investment 0.469 1.077 42

Note. Parameter values obtained by sampling the score test. Results based on the
weighted full spectrum test unless indicated otherwise. Each row represents a set of
variables being tested. Significance level: 10%. Test: the specification test value; CV:
critical value; Rej.: percentage of parameter draws rejected.

we use the same set of variables and transformations. Consequently, the information from the
steady state properties is not utilized in the analysis. The full vector of structural parameters is
given by:

ϕ = [θ, γ, κ, δ2, b, ρxg, ρµa , ρµx , ρzi , ρz, ρµ, ρg, ρζ , σ
0
µa , σ4

µa , σ8
µa , σ0

µx , σ4
µx , σ8

µx , σ0
zi , σ4

zi , σ8
zi ,

σ0
z , σ

4
z , σ

8
z , σ

0
µ, σ

4
µ, σ

8
µ, σ

0
g , σ

4
g , σ

8
g , σ

0
ζ , σ

4
ζ , σ

8
ζ , σ

me
gy ].

Similar to the previous subsection, we use the two-step procedure to perform specification
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testing at the 10% level. The data sample used corresponds to that considered in Schmitt-Grohé
and Uribe (2012) : 1955:II-2006:IV. The annotated parameter list and the corresponding robust
95% confidence intervals can be found in Table A17.

Result 5 The model is rejected by the the business cycle frequencies test and nearly rejected
by the weighted full spectrum test (99.99% of draws rejected) at the 10% significance level using
the original Schmitt-Grohé and Uribe (2012) sample. This is in contrast with the case of the
medium-scale model of Smets and Wouters (2007), where neither frequency range produced a
rejection. Further examination reveals that the main source of incompatibility between the model
and the data is the per capita hours worked and its comovements with all the other observables.

Table 10 presents the specification test results. The business cycle frequencies results show
that 100% of the draws are rejected when the full model is considered. Furthermore, only three
draws are narrowly not rejected by the weighted full spectrum test. Testing individual observ-
ables reveals that only 2% of the draws survive for labor hours growth, while the other observables
generate much lower rejection frequencies. Testing of pairs shows that all the comovements be-
tween labor hours and other observables are at odds with the data, with all draws rejected for
their comovements with GDP and investment growth, while less than 2% of the draws survive for
those with government spending growth, consumption growth, and TFP. These findings can be
related to those of Schmitt-Grohé and Uribe (2012), whose Table III presented the model’s pre-
dictions regarding standard deviations, correlations with output growth, and serial correlations
of the seven observables. Their results indicated that the model’s predicted second moments
were overall similar to empirical second moments, but notable discrepancies were found in the
serial correlation of the growth rate of hours and, to a lesser extent, in the correlation of hours
and output. Our results show that these discrepancies are large enough from a statistical testing
perspective to cause a rejection of the model over business cycle frequencies.

7 Conclusion

We have introduced new methods for assessing the specification of DSGE models. Our approach
involves proposing a set of plausible parameter values and evaluating their compatibility with
data. The methods can examine a model’s steady state properties, overall dynamic properties,
and behavior in selected frequency bands, such as business cycle frequencies, and they can focus
on a subset of variables in addition to the full model. We have illustrated these methods through
applications to both small- and medium-scale DSGE models. In future research, we hope to
apply these methods to newly proposed DSGE models to assess their fit to the data and the
robustness of their policy implications.
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Supplementary Appendix: Proofs, Model Details,
and Additional Tables and Figures

A.1 Proofs of results in the paper
Proof of Theorem 1. Consider HdT (θ0). We first prove finite dimensional convergence and
then verify tightness.1 The term inside the norm can be equivalently represented as

ΨT (r) =
(
T

2

)−1/2 [T r/2]∑
j=1

φT (ωj)

with
φT (ω) =

(
f

−1/2
θ0 (ω)′ ⊗ f

−1/2
θ0 (ω)

)
vec (IT (ω) − fθ0(ω)) .

For a fixed r, the asymptotic normality of ΨT (r) follows directly from Lemma 2 in Qu (2014),
by replacing ϕT (ω) with (f−1/2

θ0 (ωj)′ ⊗ f
−1/2
θ0 (ωj)). We now verify that the covariance matrix of

ΨT (r) has the desired structure. Note that φT (ωj) are asymptotically independent in j, having
zero mean and satisfying

E (φT (ωj)φT (ωj)∗) = In2
Y

+O(T−1/2),

where the last equality follows from

E (vec {IT (ωj) − fθ0(ωj)} vec {IT (ωj) − fθ0(ωj)}∗) = fθ0(ωj)′ ⊗ fθ0(ωj) +O(T−1/2).

Therefore, for any fixed r ∈ [0, 1],

E (ΨT (r)ΨT (r)∗) = rIn2
Y

+O(T−1/2). (A.1)

Further, because
fθ0(ωj)−1/2 (IT (ωj) − fθ0(ωj)) fθ0(ωj)−1/2 (A.2)

is a Hermitian matrix, the elements of ΨT (r) take particular forms. The element is real valued if
it corresponds to a diagonal entry in (A.2) and is complex valued otherwise. For a closer look, we
consider the special case with nY = 2. Then, ΨT (r) takes the form (a11, a21 + ib21, a21 − ib21, a22)′,
where a11, a21, b21 and a22 are real numbers. Because of (A.1), we must have a11 and a22 converg-
ing to N(0, 1) random variables and a21 and b21 converging to independent N(0, 1/2) random
variables. The case with a general nY follows similarly. Thus, we have established the finite
dimensional convergence.

We now verify tightness, i.e., prove that for any ε > 0, there exists constants C and T0, such
that

P (HdT (θ0) > C) ≤ ε for all T > T0.
1See P. 37 in Billingsley (1968) for the definition of tightness.
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Applying Assumption 2, we have

IT (ωj) − fθ0(ωj) = H(exp (−iωj) ; θ0)Iϵ (ωj)H(exp (−iωj) ; θ0)∗ − fθ0(ωj) +R (ωj) ,

where Iϵ (ωj) denotes the periodogram ϵt(θ0) at the frequency ωj and R (ωj) is a remainder term.
Let Rkl (ωj) denote the (k,l)-th element of R (ωj), then Proposition 11.7.4 in Brockwell and Davis
(1991, p. 445-446) implies

max
ωj∈[0,π]

E(|Rkl (ωj)|2) = O(T−1). (A.3)

Applying the above decomposition, ΨT (r) can be written as

ΨT (r) = ΨT,1(r) + ΨT,2(r)

with

ΨT,1(r) =
(
T

2

)−1/2 [T r/2]∑
j=1

(
f

−1/2
θ0 (ωj)′ ⊗ f

−1/2
θ0 (ωj)

)
vec

{
H(e−iωj ; θ0)Iϵ (ωj)H(e−iωj ; θ0)∗ − fθ0(ωj)

}
,

ΨT,2(r) =
(
T

2

)−1/2 [T r/2]∑
j=1

(
f

−1/2
θ0 (ωj)′ ⊗ f

−1/2
θ0 (ωj)

)
vec (R (ωj)) .

We now analyze the two terms separately. The summands of ΨT,1(r) form a sequence of martin-
gale differences. Applying a standard functional central limit theorem, we have

P

(
sup

r∈[0,1]
∥ΨT,1(r)∥∞ >

C

2

)
≤ ε for some C and all T > T0.

For ΨT,2(r), because of Assumption 3, there exists a finite constant D>0 such that∥∥∥vec
(
f

−1/2
θ0 (ωj)′ ⊗ f

−1/2
θ0 (ωj)

)∥∥∥
∞
< D,

which implies

∥ΨT,2(r)∥∞ ≤
(
T

2

)−1/2
D

nY∑
k,l=1

[T r/2]∑
j=1

|Rkl (ωj)|

because of the Cauchy-Schwarz inequality. Thus,

P

(
sup

r∈[0,1]
∥ΨT,2(r)∥∞ >

C

2

)
≤ P

(T/2)−1/2 D
nY∑

k,l=1

T/2∑
j=1

|Rkl (ωj)| >
C

2


≤ 16T−1D2

∑nY
k,l,u,v=1

∑T/2
j,h=1 E (|Rkl (ωj)| |Ruv (ωh)|)

C2 ,

where the first inequality is because |Rkl (ωj)| are nonnegative and the second is due to the
Chebyshev inequality. Applying (A.3), the numerator in the preceding display is of order O(T ).
Therefore, the whole term is of order O(1), which can be made small by choosing a large C. The
above results imply the tightness.

The second result follows from the same argument. The third result follows from a standard
functional central limit theorem. For the fourth result, the independence between Gd(r) and
Gs(r) is implied by the Normality (Assumption 4). The proof is complete. ■
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Proof of Theorem 2. Consider HdT (θ0). Let HdT (θ0; r) denote HdT (θ0) before taking the
supremum, i.e.,

HdT (θ0; r) =

∥∥∥∥∥∥(T/2)−1/2
[T r/2]∑
j=1

vec
{
fθ0(ωj)−1/2 (IT (ωj) − fθ0(ωj)) fθ0(ωj)−1/2

}∥∥∥∥∥∥
∞

.

Then, for any fixed r ∈ [0, 1],

(T/2)−1/2HdT (θ0; r)

=

∥∥∥∥∥∥ 2
T

[T r/2]∑
j=1

vec
{
fθ0(ωj)−1/2 (f0(ωj) − fθ0(ωj)) fθ0(ωj)−1/2

}∥∥∥∥∥∥
∞

+ op(1)

=
∥∥∥∥ 1
π

∫ πr

0
vec

(
fθ0(ω)−1/2 (f0(ω) − fθ0(ω)) fθ0(ω)−1/2

)
dω
∥∥∥∥

∞
+ op(1), (A.4)

where the first equality is because of the law of large numbers and the second is due to the
smoothness of the functions in ω.

Because ∥f0(ω) − fθ0(ω)∥ > δ for some ω, there exists a constant C > 0 such that∥∥∥vec
(
fθ0(ω)−1/2 (f0(ω) − fθ0(ω)) fθ0(ω)−1/2

)∥∥∥
∞
> Cδ

holds for the same ω because of the positive definiteness of fθ0(ω)−1/2. By the property of the
supremum norm, one of the elements of vec

(
fθ0(ω)−1/2 (f0(ω) − fθ0(ω)) fθ0(ω)−1/2

)
must have a

modulus greater than Cδ. Without loss of generality, assume it is the first element and denote
it by ζθ0(ω). Then, because of the continuity in ω, there is an interval with positive radius on
which ζθ0(ω) > Cδ/2. Denote this interval by [ωL, ωU ].

Consider (A.4) with r = ωU/π,

(T/2)−1/2HdT (θ0;ωU/π)

=
∥∥∥∥ 1
π

∫ ωU

0
vec

(
fθ0(ω)−1/2 (f0(ω) − fθ0(ω)) fθ0(ω)−1/2

)
dω
∥∥∥∥

∞
+ op (1)

≥
∣∣∣∣ 1π
∫ ωU

0
ζθ0(ω)dω

∣∣∣∣+ op (1)

≥ 1
π

∫ ωU

ωL

ζθ0(ω)dω −
∣∣∣∣ 1π
∫ ωL

0
ζθ0(ω)dω

∣∣∣∣+ op (1)

≥ Cδ

2π (ωU − ωL) −
∣∣∣∣ 1π
∫ ωL

0
ζθ0(ω)dω

∣∣∣∣+ op (1)

≥ Cδ

4π (ωU − ωL) −
∣∣∣∣ 1π
∫ ωL

0
ζθ0(ω)dω

∣∣∣∣ , (A.5)

where the first inequality uses the definition of ζθ0(ω) and the property of the supremum norm,
the second uses the triangle inequality, the third is because ζθ0(ω) is greater than Cδ/2 over the
interval and the last is because Cδ

4π
(ωU − ωL) is positive, thus dominating the op (1) term. We

now apply (A.5) to find a lower bound for (T/2)−1/2HdT (θ0). There are only two possibilities:

Case 1:
∣∣∣∣ 1π
∫ ωL

0
ζθ0(ω)dω

∣∣∣∣ < Cδ

8π (ωU − ωL) ,

Case 2:
∣∣∣∣ 1π
∫ ωL

0
ζθ0(ω)dω

∣∣∣∣ ≥ Cδ

8π (ωU − ωL) .
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In Case 1,

(T/2)−1/2HdT (θ0) = (T/2)−1/2 sup
r∈[0,1]

HdT (θ0; r) ≥ (T/2)−1/2HdT (θ0;ωU/π) ≥ Cδ

8π (ωU − ωL) > 0,

where the equality uses the definition of HdT (θ0), the first inequality is because the supremum
norm must be no less than any of its admissible values and the second inequality is because (A.5)
and the definition of Case 1. In Case 2,

(T/2)−1/2HdT (θ0) = (T/2)−1/2 sup
r∈[0,1]

HdT (θ0; r) ≥ (T/2)−1/2HdT (θ0;ωL/π) ≥ Cδ

8π (ωU − ωL) > 0,

where the second inequality uses the definition of Case 2. Therefore, in both cases, HdT (θ0) →p

∞.
Now consider the order of HsT (θ0) under global alternatives.

T−1/2HsT (θ0) ≥

∥∥∥∥∥∥f−1/2
θ0 (0)T−1

T∑
j=1

(Yt−µ(θ0))

∥∥∥∥∥∥
∞

→ p
∥∥∥f−1/2

θ0 (0) (µ0 − µ(θ0))
∥∥∥

∞

≥
√
n−1

Y

∥∥∥f−1/2
θ0 (0) (µ0 − µ(θ0))

∥∥∥2

=
√
n−1

Y

∥∥∥(µ0 − µ(θ0))′ f−1
θ0 (0) (µ0 − µ(θ0))

∥∥∥2

> C,

where C is a positive constant and the last inequality follows because f−1
θ0 (0) is positive definite.

Therefore, HsT (θ0) →p ∞. The property of HT (θ0) follows by combining the results for HsT (θ0)
and HdT (θ0). ■

A.2 Smets and Wouters (2007) model equations
The vector of observable variables includes output growth (∆yt), consumption growth (∆ct),
investment growth (∆it), wage growth (∆wt), labor hours (lt), inflation (πt) and the interest rate
(rt). As in Smets and Wouters (2007), five parameters are fixed as follows: ϵp = ϵw = 10, δ =
0.025, gy = 0.18, ϕw = 1.50. The analysis allows the remaining 36 structural parameters to vary.
They are ordered as

θD = (ρga, µw, µp, α, ψ, φ, σc, λ, ϕp, ιw, ξw, ιp, ξp, σl, rπ, r∆y, ry, ρ, ρa, ρb, ρg,

ρi, ρr, ρp, ρw, σa, σb, σg, σi, σr, σp, σw, γ, 100(1/β − 1), π, l)′.

Below is the log linearized system consistent with Smets and Wouters’ (2007) code.

The aggregate resource constraint: It satisfies

yt = cyct + iyit + zyzt + εg
t .
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Output (yt) is composed of consumption (ct), investment (it), capital utilization costs as a func-
tion of the capital utilization rate (zt), and exogenous spending (εg

t ). The latter follows an AR(1)
model with an i.i.d. Normal error term (ηg

t ), and is also affected by the productivity shock (ηa
t )

as follows:
εg

t = ρgε
g
t−1 + ρgaη

a
t + ηg

t .

The coefficients cy, iy and zy are functions of the steady state spending-output ratio (gy), steady
state output growth (γ), capital depreciation (δ), household discount factor (β), intertemporal
elasticity of substitution (σc), fixed costs in production (ϕp), and share of capital in production
(α): iy = (γ − 1 + δ)ky, cy = 1 − gy − iy, and zy = Rk

∗ky. Here, ky is the steady state
capital-output ratio, and Rk

∗ is the steady state rental rate of capital: ky = ϕp (L∗/k∗)α−1 =
ϕp

[
((1 − α)/α)

(
Rk

∗/w∗
)]α−1

with w∗ =
(
αα(1 − α)(1−α)/[ϕp

(
Rk

∗

)α
]
)1/(1−α)

, and Rk
∗ = β−1γσc −

(1 − δ).

Households: The consumption Euler equation is

ct = c1ct−1 + (1 − c1)Etct+1 + c2(lt − Etlt+1) − c3(rt − Etπt+1) − εb
t , (A.6)

where lt is hours worked, rt is the nominal interest rate, and πt is inflation. The disturbance εb
t

follows
εb

t = ρbε
b
t−1 + ηb

t .

The relationships of the coefficients in (A.6) to the habit persistence (λ), steady state labor
market markup (ϕw), and other structural parameters highlighted above are

c1 = λ/γ

1 + λ/γ
, c2 =

(σc − 1)
(
wh

∗L∗/c∗
)

σc (1 + λ/γ) , c3 = 1 − λ/γ

(1 + λ/γ)σc

,

where
wh

∗L∗/c∗ = 1
ϕw

1 − α

α
Rk

∗ky
1
cy

,

where Rk
∗ and ky are defined as above, and cy = 1 − gy − (γ − 1 + δ)ky.

The dynamics of households’ investment are given by

it = i1it−1 + (1 − i1)Etit+1 + i2qt + εi
t,

where εi
t is a disturbance to the investment-specific technology process, given by

εi
t = ρiε

i
t−1 + ηi

t.

The coefficients satisfy

i1 = 1
1 + βγ(1−σc) , i2 = 1

(1 + βγ(1−σc)) γ2φ
,

where φ is the steady state elasticity of the capital adjustment cost function. The corresponding
arbitrage equation for the value of capital is given by

qt = q1Etqt+1 + (1 − q1)Etr
k
t+1 − (rt − Etπt+1) − 1

c3
εb

t , (A.7)

with q1 = βγ−σc (1 − δ) = (1 − δ)/(Rk
∗ + 1 − δ).
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Final and intermediate goods market: The aggregate production function is

yt = ϕp (αks
t + (1 − α) lt + εa

t ) ,

where α captures the share of capital in production, and the parameter ϕp is one plus the fixed
costs in production. Total factor productivity follows the AR(1) process

εa
t = ρaε

a
t−1 + ηa

t .

The current capital service usage (ks
t ) is a function of capital installed in the previous period

(kt−1) and the degree of capital utilization (zt):

ks
t = kt−1 + zt.

Furthermore, the capital utilization is a positive fraction of the rental rate of capital (rk
t ):

zt = z1r
k
t , where z1 = (1 − ψ)/ψ,

and ψ is a positive function of the elasticity of the capital utilization adjustment cost function
and normalized to be between zero and one. The accumulation of installed capital (kt) satisfies

kt = k1kt−1 + (1 − k1) it + k2ε
i
t,

where εi
t is the investment-specific technology process as defined before, and k1 and k2 satisfy

k1 = 1 − δ

γ
, k2 =

(
1 − 1 − δ

γ

)(
1 + βγ(1−σc)

)
γ2φ.

The price markup satisfies
µp

t = α (ks
t − lt) + εa

t − wt,

where wt is the real wage. The New Keynesian Phillips curve is

πt = π1πt−1 + π2Etπt+1 − π3µ
p
t + εp

t ,

where εp
t is a disturbance to the price markup, following the ARMA(1,1) process given by

εp
t = ρpε

p
t−1 + ηp

t − µpη
p
t−1.

The MA(1) term is intended to pick up some of the high frequency fluctuations in prices. The
Phillips curve coefficients depend on price indexation (ιp) and stickiness (ξp), the curvature of
the goods market Kimball aggregator (ϵp), and other structural parameters:

π1 = ιp
1 + βγ(1−σc)ιp

, π2 = βγ(1−σc)

1 + βγ(1−σc)ιp
, π3 = 1

1 + βγ(1−σc)ιp

(
1 − βγ(1−σc)ξp

)
(1 − ξp)

ξp ((ϕp − 1) ϵp + 1) .

Finally, cost minimization by firms implies that the rental rate of capital satisfies

rk
t = − (ks

t − lt) + wt.
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Labor market: The wage markup is

µw
t = wt −

(
σllt + 1

1 − λ/γ
(ct − (λ/γ)ct−1)

)
,

where σl is the elasticity of labor supply. Real wage wt adjusts slowly according to

wt = w1wt−1 + (1 − w1) (Etwt+1 + Etπt+1) − w2πt + w3πt−1 − w4µ
w
t + εw

t ,

where the coefficients are functions of wage indexation (ιw) and stickiness (ξw) parameters, and
the curvature of the labor market Kimball aggregator (ϵw):

w1 = 1
1 + βγ(1−σc) , w2 = 1 + βγ(1−σc)ιw

1 + βγ(1−σc) , w3 = ιw
1 + βγ(1−σc) ,

w4 = 1
1 + βγ(1−σc)

(
1 − βγ(1−σc)ξw

)
(1 − ξw)

ξw ((ϕw − 1) ϵw + 1) .

The wage mark-up disturbance follows an ARMA(1,1) process:

εw
t = ρwε

w
t−1 + ηw

t − µwη
w
t−1.

Monetary policy: The empirical monetary policy reaction function is

rt = ρrt−1 + (1 − ρ) (rππt + ry (yt − y∗
t )) + r∆y

((yt − y∗
t ) −

(
yt−1 − y∗

t−1

)
) + εr

t .

The monetary shock εr
t follows an AR(1) process:

εr
t = ρrε

r
t−1 + ηr

t .

The variable y∗
t stands for the time-varying optimal output level that is the result of a flexible

price-wage economy. Since the equations for the flexible price-wage economy are essentially the
same as above, but with the variables µp

t and µw
t set to zero, we omit the details.

A.3 Outline of the Schmitt-Grohé and Uribe (2012) model
The economy is populated with agents maximizing lifetime utility E0

∑∞
t=0 β

tζtU(Vt), where ζt is
an exogenous preference shock, and U(Vt) = (V 1−σ

t − 1)/(1 − σ) with Vt = Ct − bCt−1 − ψhθ
tSt,

where St = (Ct−bCt−1)γS1−γ
t−1 , so that consumer preferences are defined over Vt , which represents

a bundle of consumption (Ct), labor (ht) and an additional variable St. Jaimovich and Rebelo
(2009) found that this form of preferences, together with other real rigidities, is key for generating
aggregate comovement in response to news about fundamental shocks. Households own physical
capital stock Kt, which evolves according to Kt = (1−δ(ut))Kt−1 +zI

t It [1 − S (It/It−1)], where It

is gross investment and ut measures capacity utilization, so that the effective amount of capital
supplied to firms is utKt−1. The depreciation rate δ(ut) satisfies δ(ut) = δ0 + δ1(ut − 1) +
(δ2/2)(ut −1)2. The investment adjustment cost function S(·), due to Christiano et al. (2005), is
given by S(x) = (κ/2)(x− µi)2, where µi is the steady state growth rate of investment. Finally,
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the stationary exogenous shock zI
t affects the technology transforming investment goods into

capital goods.
The production function is of Cobb-Douglas form:

Yt = zt(utKt−1)αk(Xtht)αh(XtL)1−αk−αh , (A.8)
where Yt is output, zt is an exogenous productivity shock, Xt is a nonstationary labor-augmenting
productivity shock, and L is a fixed factor of production. The capital and labor shares satisfy
αk, αh ∈ (0, 1), αk + αh ≤ 1. The aggregate resource constraint is given by Yt = Ct + AtIt +
Gt, where Gt is government spending and At is a nonstationary shock to investment-specific
technology.

The model features an imperfectly competitive labor market. The households supply labor to
monopolistically competitive labor unions, which sell differentiated labor inputs to the final good
producers. The elasticity of substitution between differentiated labor inputs is time-varying, with
the wage markup denoted µt. In equilibrium, the wage rate paid by the union to its members is
smaller than the wage rate firms pay to unions, and all unions charge the same wage rate.

A.4 Tables and figures

Table A1: Rejection frequencies under the null hypothesis (pairwise testing)

Level T BC frequencies Full spectrum Weighted spectrum Mean and spectrum
Determinacy

(π, y) (π, r) (y, r) (π, y) (π, r) (y, r) (π, y) (π, r) (y, r) (π, y) (π, r) (y, r)
10% 80 0.079 0.073 0.086 0.079 0.081 0.081 0.081 0.090 0.087 0.084 0.094 0.083

160 0.085 0.079 0.092 0.087 0.082 0.090 0.082 0.089 0.088 0.081 0.091 0.083
240 0.085 0.090 0.088 0.078 0.087 0.085 0.086 0.090 0.087 0.084 0.092 0.083
320 0.092 0.094 0.082 0.093 0.092 0.085 0.090 0.095 0.093 0.089 0.094 0.093

5% 80 0.044 0.044 0.052 0.038 0.042 0.041 0.052 0.058 0.056 0.041 0.046 0.042
160 0.047 0.041 0.055 0.046 0.042 0.044 0.046 0.053 0.051 0.041 0.049 0.042
240 0.044 0.045 0.047 0.039 0.042 0.043 0.047 0.052 0.046 0.043 0.042 0.038
320 0.044 0.050 0.044 0.048 0.044 0.041 0.045 0.050 0.047 0.049 0.048 0.042

Indeterminacy
10% 80 0.091 0.106 0.087 0.082 0.098 0.079 0.090 0.115 0.090 0.072 0.106 0.081

160 0.086 0.098 0.089 0.089 0.093 0.090 0.085 0.096 0.088 0.083 0.115 0.079
240 0.092 0.091 0.091 0.090 0.095 0.097 0.093 0.096 0.091 0.077 0.100 0.082
320 0.097 0.098 0.086 0.092 0.095 0.094 0.078 0.097 0.091 0.086 0.102 0.086

5% 80 0.058 0.065 0.054 0.045 0.053 0.041 0.057 0.080 0.055 0.035 0.061 0.045
160 0.047 0.056 0.051 0.043 0.052 0.047 0.052 0.057 0.051 0.043 0.061 0.040
240 0.049 0.050 0.050 0.047 0.044 0.048 0.054 0.056 0.051 0.037 0.048 0.038
320 0.049 0.055 0.045 0.044 0.045 0.046 0.041 0.051 0.051 0.041 0.053 0.045

Note. T: sample size; all tests are computed with prewhitening. π, y, and r denote inflation,
output, and interest rate, respectively.
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Table A2: Rejection frequencies under the null hypothesis (single variable testing)

Level T BC frequencies Full spectrum Weighted spectrum Mean and spectrum
Determinacy

π y r π y r π y r π y r
10% 80 0.068 0.066 0.068 0.078 0.080 0.084 0.066 0.067 0.072 0.096 0.074 0.066

160 0.080 0.081 0.080 0.090 0.081 0.081 0.079 0.074 0.078 0.093 0.077 0.080
240 0.083 0.081 0.092 0.096 0.091 0.094 0.081 0.087 0.082 0.086 0.085 0.085
320 0.087 0.086 0.092 0.091 0.096 0.093 0.083 0.080 0.086 0.096 0.081 0.086

5% 80 0.035 0.039 0.038 0.042 0.038 0.039 0.037 0.038 0.044 0.048 0.039 0.034
160 0.032 0.045 0.040 0.042 0.044 0.037 0.042 0.039 0.041 0.049 0.037 0.042
240 0.045 0.040 0.050 0.047 0.044 0.046 0.042 0.050 0.043 0.046 0.042 0.047
320 0.046 0.041 0.047 0.043 0.046 0.047 0.043 0.039 0.041 0.051 0.040 0.042

Indeterminacy
10% 80 0.074 0.066 0.074 0.091 0.080 0.088 0.079 0.069 0.065 0.075 0.083 0.067

160 0.085 0.081 0.079 0.085 0.087 0.093 0.080 0.075 0.080 0.076 0.086 0.073
240 0.082 0.086 0.091 0.094 0.092 0.098 0.091 0.080 0.086 0.081 0.089 0.088
320 0.086 0.085 0.085 0.087 0.089 0.098 0.089 0.094 0.083 0.088 0.089 0.079

5% 80 0.042 0.035 0.043 0.044 0.038 0.045 0.047 0.037 0.039 0.037 0.046 0.036
160 0.048 0.041 0.041 0.042 0.042 0.047 0.043 0.041 0.044 0.037 0.046 0.037
240 0.040 0.042 0.049 0.051 0.044 0.050 0.044 0.041 0.047 0.039 0.041 0.046
320 0.039 0.043 0.046 0.043 0.046 0.050 0.043 0.050 0.043 0.044 0.043 0.039

Note. T: sample size; all tests are computed with prewhitening. π, y, and r denote inflation,
output, and interest rate, respectively.
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Table A3: Rejection frequencies under the alternative hypothesis (pairwise testing; 10%)

T BC frequencies Full spectrum Weighted spectrum Mean and spectrum
(π, y) (π, r) (y, r) (π, y) (π, r) (y, r) (π, y) (π, r) (y, r) (π, y) (π, r) (y, r)

Determinacy
Perturb a random element of θ by 20%

80 0.184 0.218 0.212 0.353 0.346 0.283 0.213 0.235 0.219 0.281 0.268 0.253
160 0.256 0.269 0.252 0.492 0.469 0.381 0.304 0.307 0.302 0.427 0.380 0.327
240 0.331 0.330 0.316 0.571 0.550 0.484 0.427 0.372 0.369 0.505 0.444 0.410
320 0.361 0.365 0.344 0.631 0.599 0.498 0.474 0.419 0.400 0.563 0.510 0.453

Perturb a random element of θ by 40%
80 0.255 0.283 0.276 0.600 0.553 0.456 0.319 0.316 0.318 0.512 0.466 0.396
160 0.445 0.411 0.409 0.737 0.679 0.576 0.531 0.465 0.473 0.658 0.596 0.528
240 0.555 0.494 0.481 0.800 0.724 0.626 0.646 0.561 0.504 0.704 0.644 0.582
320 0.617 0.555 0.500 0.834 0.759 0.658 0.700 0.605 0.549 0.742 0.675 0.592

Indeterminacy
Perturb a random element of θ by 20%

80 0.165 0.212 0.184 0.226 0.284 0.296 0.185 0.209 0.228 0.227 0.248 0.290
160 0.213 0.264 0.258 0.343 0.368 0.406 0.230 0.276 0.308 0.299 0.330 0.373
240 0.220 0.296 0.283 0.401 0.415 0.463 0.292 0.314 0.365 0.332 0.369 0.416
320 0.276 0.305 0.331 0.459 0.443 0.496 0.323 0.350 0.412 0.406 0.403 0.450

Perturb a random element of θ by 40%
80 0.267 0.287 0.299 0.439 0.421 0.479 0.284 0.332 0.333 0.416 0.380 0.443
160 0.361 0.371 0.400 0.572 0.536 0.580 0.416 0.409 0.478 0.511 0.472 0.534
240 0.433 0.435 0.494 0.630 0.608 0.641 0.518 0.452 0.567 0.581 0.524 0.589
320 0.514 0.460 0.539 0.685 0.629 0.685 0.578 0.528 0.602 0.639 0.577 0.609

Note. T: sample size; all tests are computed with prewhitening. π, y, and r denote inflation,
output, and interest rate, respectively.
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Table A4: Rejection frequencies under the alternative hypothesis (single variable testing; 10%)

T BC frequencies Full spectrum Weighted spectrum Mean and spectrum
π y r π y r π y r π y r

Determinacy
Perturb a random element of θ by 20%

80 0.204 0.121 0.235 0.334 0.196 0.268 0.224 0.162 0.240 0.296 0.180 0.247
160 0.253 0.167 0.271 0.432 0.271 0.333 0.308 0.209 0.305 0.358 0.223 0.303
240 0.318 0.182 0.305 0.506 0.327 0.378 0.370 0.235 0.309 0.432 0.285 0.347
320 0.349 0.191 0.319 0.550 0.343 0.430 0.409 0.252 0.338 0.485 0.309 0.372

Perturb a random element of θ by 40%
80 0.282 0.164 0.272 0.547 0.283 0.372 0.355 0.174 0.305 0.456 0.244 0.316
160 0.398 0.222 0.333 0.647 0.381 0.443 0.479 0.268 0.375 0.566 0.334 0.401
240 0.467 0.247 0.381 0.703 0.423 0.507 0.553 0.287 0.416 0.623 0.391 0.449
320 0.520 0.291 0.398 0.747 0.462 0.518 0.614 0.323 0.458 0.654 0.391 0.467

Indeterminacy
Perturb a random element of θ by 20%

80 0.135 0.136 0.166 0.178 0.181 0.259 0.155 0.158 0.207 0.188 0.174 0.244
160 0.163 0.165 0.219 0.239 0.241 0.340 0.199 0.203 0.273 0.227 0.221 0.297
240 0.197 0.167 0.254 0.302 0.272 0.368 0.231 0.227 0.310 0.271 0.252 0.337
320 0.219 0.217 0.295 0.336 0.309 0.417 0.266 0.265 0.355 0.300 0.265 0.358

Perturb a random element of θ by 40%
80 0.225 0.192 0.270 0.337 0.274 0.379 0.238 0.237 0.322 0.321 0.245 0.360
160 0.289 0.244 0.350 0.450 0.369 0.443 0.347 0.305 0.398 0.400 0.324 0.425
240 0.337 0.281 0.398 0.488 0.403 0.526 0.380 0.338 0.432 0.447 0.364 0.467
320 0.369 0.303 0.416 0.534 0.440 0.546 0.429 0.394 0.445 0.484 0.403 0.515

Note. T: sample size; all tests are computed with prewhitening. π, y, and r denote inflation,
output, and interest rate, respectively.

Table A5: Test results for the LS model using posterior draws, 1960:I-2007:IV, determinacy.

Weighted spectrum BC frequencies Mean and spectrum
Test CV Rej. Test CV Rej. Test CV Rej.

Full model 1.214 1.128 100 1.629 1.370 100 2.306 2.851 99
GDP 0.875 0.977 99.98 0.442 1.151 50 2.068 2.478 73
Inflation 0.641 0.977 62 0.554 1.151 56 1.180 2.478 43
Interest rate 0.337 0.977 4 0.369 1.151 0.01 0.819 2.478 15
GDP-Inflation 0.963 1.077 99.91 0.927 1.295 75 1.988 2.729 58
GDP-Interest rate 0.902 1.077 99.92 0.957 1.295 98 2.132 2.729 79
Inflation-Interest rate 0.832 1.077 94 0.809 1.295 36 1.987 2.729 95

Note. The significance level is 10%. Test: the specification test value; CV: critical value; Rej.:
percentage of parameter draws rejected by the specification test.
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Table A6: Test results for the LS model using posterior draws, 1960:I-2007:IV, indeterminacy

Weighted spectrum BC frequencies Mean and spectrum
Test CV Rej. Test CV Rej. Test CV Rej.

Full model 1.694 1.128 100 2.073 1.370 100 3.448 2.851 100
GDP 0.359 0.977 90 0.280 1.151 83 0.875 2.478 18
Inflation 0.592 0.977 96 0.431 1.151 81 1.499 2.478 83
Interest rate 0.308 0.977 28 0.382 1.151 14 0.907 2.478 18
GDP-Inflation 0.909 1.077 99.61 0.953 1.295 95 1.854 2.729 79
GDP-Interest rate 1.439 1.077 100 1.675 1.295 100 3.051 2.729 100
Inflation-Interest rate 0.859 1.077 98 0.751 1.295 88 1.891 2.729 87

Note. The significance level is 10%. Test: the specification test value; CV: critical value; Rej.:
percentage of parameter draws rejected by the specification test.

Table A7: 95% confidence intervals for the LS model, 1979:III-2007:IV, determinacy.

θ Parameter Bounds CI
τ intertemporal substitution elasticity [0.10, 1.00] [0.10, 0.996]
β discount factor [0.98, 0.999] [0.980, 0.999]
κ Phillips curve slope [0.01, 2.00] [0.02, 1.999]
ψ1 inflation target [1.01, 3.00] [1.010, 2.999]
ψ2 output target [0.01, 5.00] [0.010, 4.999]
ρr interest rate smoothing [0.10, 0.90] [0.62, 0.90]
ρg exogenous spending AR [0.10, 0.98] [0.70, 0.98]
ρz technology shock AR [0.10, 0.98] [0.85, 0.98]
σr monetary policy shock SD [0.01, 3.00] [0.22, 0.51]
σg exogenous spending SD [0.01, 3.00] [0.03, 0.38]
σz technology shock SD [0.01, 3.00] [0.46, 1.47]
ρgz exogenous spending-technology CORR [-0.90, -0.90] [-0.46, 0.90]
π∗ steady state inflation [2.00, 8.00] [2.00, 8.00]

Note. The results are obtained using the mean and the full spectrum.

Table A8: Specification test results, 1979:III-2007:IV, determinacy.

Weighted spectrum BC frequencies Mean and spectrum
Test CV Rej. Test CV Rej. Test CV Rej.

Full model 0.682 1.128 15 0.769 1.370 39 2.519 2.851 99.93
GDP 0.468 0.977 7 0.306 1.151 0.03 2.180 2.478 99.99
Inflation 0.500 0.977 97 0.381 1.151 92 2.021 2.478 84
Interest rate 0.286 0.977 54 0.350 1.151 82 0.596 2.478 60
GDP-Inflation 0.597 1.077 86 0.424 1.295 76 2.356 2.729 99.82
GDP-Interest rate 0.581 1.077 45 0.639 1.295 72 2.612 2.729 99.99
Inflation-Interest rate 0.558 1.077 42 0.640 1.295 70 2.027 2.729 92

Note. The significance level is 10%. Test: the specification test value; CV: critical value; Rej.:
percentage of parameter draws rejected by the specification test.
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Table A9: Test results for the LS model using posterior draws, 1979:III-2007:IV, determinacy.

Weighted spectrum BC frequencies Mean and spectrum
Test CV Rej. Test CV Rej. Test CV Rej.

Full model 0.794 1.128 86 0.809 1.370 12 1.866 2.851 62
GDP 0.563 0.977 89 0.336 1.151 7 1.432 2.478 29
Inflation 0.401 0.977 16 0.337 1.151 10 0.729 2.478 32
Interest rate 0.279 0.977 2 0.339 1.151 1.5 0.556 2.478 2
GDP-Inflation 0.572 1.077 78 0.348 1.295 5 1.290 2.729 12
GDP-Interest rate 0.603 1.077 78 0.634 1.295 2 1.558 2.729 31
Inflation-Interest rate 0.537 1.077 26 0.354 1.295 2 1.515 2.729 47

Note. The significance level is 10%. Test: the specification test value; CV: critical value; Rej.:
percentage of parameter draws rejected by the specification test.

Table A10: 95% confidence intervals for the LS model, indeterminacy, 1960:I-1979:II.

θ Parameter Bounds CI
τ intertemporal substitution elasticity [0.10, 1.00] [0.10, 0.9999]
β discount factor [0.90, 0.999] [0.984, 0.999]
κ Phillips curve slope [0.01, 2.00] [0.01, 1.01]
ψ1 inflation target [0.01, 0.99] [0.01, 0.989]
ψ2 output target [0.01, 5.00] [0.01, 5.00]
ρr interest rate smoothing [0.10, 0.90] [0.10, 0.90]
ρg exogenous spending AR [0.10, 0.98] [0.26, 0.98]
ρz technology shock AR [0.10, 0.98] [0.52, 0.98]
σr monetary policy shock SD [0.01, 3.00] [0.01, 0.75]
σg exogenous spending SD [0.01, 3.00] [0.03, 1.23]
σz technology shock SD [0.01, 3.00] [0.42, 2.99]
ρgz exogenous spending-technology CORR [-0.90, -0.90] [-0.90, 0.90]
Mrϵ sunspot-monetary coeff [-3.00, 3.00] [-3.00, 3.00]
Mgϵ sunspot-exogenous spending coeff [-3.00, 3.00] [-3.000, 2.999]
Mzϵ sunspot-technology coeff [-3.00, 3.00] [-3.00, 1.66]
σϵ sunspot shock SD [0.01, 3.00] [0.01, 1.68]
π∗ steady state inflation [2.00, 8.00] [2.00, 8.00]

Note. The results are obtained using the mean and the full spectrum.
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Table A11: Test results for the LS model, 1960:I-1979:II, indeterminacy.

Weighted spectrum BC frequencies Mean and spectrum
Test CV Rej. Test CV Rej. Test CV Rej.

Full model 0.716 1.128 55 0.712 1.370 44 1.725 2.851 54
GDP 0.306 0.977 46 0.210 1.151 47 0.786 2.478 18
Inflation 0.440 0.977 61 0.315 1.151 11 1.063 2.478 94
Interest rate 0.315 0.977 17 0.190 1.151 2 1.071 2.478 93
GDP-Inflation 0.749 1.077 64 0.746 1.295 49 1.471 2.729 84
GDP-Interest rate 0.581 1.077 57 0.644 1.295 55 1.536 2.729 91
Inflation-Interest rate 0.650 1.077 9 0.682 1.295 1 1.458 2.729 66

Note. The significance level is 10%. Test: the specification test value; CV: critical value; Rej.:
percentage of parameter draws rejected by the specification test.

Table A12: Test results for the LS model using posterior draws, 1960:I-1979:II, indeterminacy.

Weighted spectrum BC frequencies Mean and spectrum
Test CV Rej. Test CV Rej. Test CV Rej.

Full model 1.085 1.128 99.99 1.127 1.370 99 2.317 2.851 99
GDP 0.303 0.977 60 0.231 1.151 48 0.791 2.478 5
Inflation 0.239 0.977 4 0.255 1.151 4 0.420 2.478 3
Interest rate 0.277 0.977 61 0.193 1.151 73 0.971 2.478 31
GDP-Inflation 0.466 1.077 65 0.639 1.295 71 0.961 2.729 12
GDP-Interest rate 0.714 1.077 99.66 1.038 1.295 99.68 1.496 2.729 81
Inflation-Interest rate 0.566 1.077 86 0.748 1.295 91 1.209 2.729 63

Note. The significance level is 10%. Test: the specification test value; CV: critical value; Rej.:
percentage of parameter draws rejected by the specification test.

Table A13: Specification test results using spectrum only confidence set, 1960:I-2007:IV, determinacy

Weighted spectrum BC frequencies
Test CV Rej. Test CV Rej.

Full model 1.126 1.128 99.99 1.742 1.370 100
GDP 0.988 0.977 100 0.953 1.151 99
Inflation 1.001 0.977 100 0.639 1.151 57
Interest rate 0.310 0.977 0.01 0.377 1.151 0
GDP-Inflation 1.186 1.077 100 1.130 1.295 96
GDP-Interest rate 0.875 1.077 98 1.141 1.295 99
Inflation-Interest rate 0.865 1.077 82 0.969 1.295 57

Note. The significance level is 10%. Test: the specification test value; CV: critical value; Rej.:
percentage of draws rejected. The "Mean and spectrum" tests are not reported because only spectrum
information is used to compute the confidence set.
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Table A14: Specification test results using spectrum only confidence set, 1960:I-2007:IV, indeterminacy

Weighted spectrum BC frequencies
Test CV Rej. Test CV Rej.

Full model 1.141 1.128 100 1.091 1.370 99.95
GDP 0.442 0.977 97 0.334 1.151 94
Inflation 1.093 0.977 100 1.230 1.151 100
Interest rate 0.309 0.977 10 0.292 1.151 2
GDP-Inflation 1.193 1.077 100 1.334 1.295 100
GDP-Interest rate 0.644 1.077 97 0.816 1.295 92
Inflation-Interest rate 1.088 1.077 100 0.909 1.295 99.80

Note. The significance level is 10%. Test: the specification test value; CV: critical value; Rej.:
percentage of draws rejected. The "Mean and spectrum" tests are not reported because only spectrum
information is used to compute the confidence set.
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Table A15: Specification test results for the SW model, 1960:I-2007:IV

(a) Frequentist set (b) Posterior distribution
Test CV Rej. Test CV Rej.

Full model, weighted spectrum 0.849 1.235 78 0.878 1.235 67
Full model, BC frequencies 1.18 1.519 97 1.128 1.519 81
GDP growth 0.303 0.977 44 0.317 0.977 20
Inflation 0.393 0.977 56 0.398 0.977 58
Interest rate 0.332 0.977 19 0.372 0.977 30
Consumption growth 0.226 0.977 82 0.229 0.977 18
Investment growth 0.276 0.977 75 0.242 0.977 2
Labor hours 0.169 0.977 1 0.175 0.977 6
Wage growth 0.261 0.977 45 0.264 0.977 10
Consumption-Labor hours 0.741 1.077 95 0.718 1.077 61
Consumption-GDP 0.683 1.077 94 0.732 1.077 67
Consumption-Inflation 0.581 1.077 86 0.581 1.077 38
Consumption-Investment 0.622 1.077 80 0.552 1.077 9
Consumption-Wages 0.393 1.077 61 0.342 1.077 4
Consumption-Interest rate 0.652 1.077 89 0.613 1.077 65
Investment-GDP 0.671 1.077 92 0.573 1.077 59
Investment-Labor hours 0.401 1.077 49 0.325 1.077 2
Investment-Inflation 0.491 1.077 62 0.506 1.077 26
Investment-Wages 0.542 1.077 54 0.375 1.077 0.3
Investment-Interest rate 0.681 1.077 75 0.627 1.077 42
GDP-Labor hours 0.419 1.077 33 0.489 1.077 39
GDP-Inflation 0.561 1.077 40 0.597 1.077 26
GDP-Wages 0.452 1.077 13 0.452 1.077 1
GDP-Interest rate 0.614 1.077 65 0.673 1.077 55
Labor hours-Inflation 0.460 1.077 41 0.469 1.077 65
Labor hours-Wages 0.494 1.077 19 0.548 1.077 26
Labor hours-Interest rate 0.515 1.077 7 0.496 1.077 7
Inflation-Wages 0.456 1.077 19 0.447 1.077 10
Inflation-Interest rate 0.509 1.077 64 0.552 1.077 81
Wages-Interest rate 0.424 1.077 41 0.458 1.077 63

Note. Each row represents a set of variables tested. The significance level is 10% for each
case. Test: the specification test value, based on the weighted full spectrum unless indicated
otherwise; CV: critical value; Rej.: percentage of parameter draws rejected by the specification
test. For (a) the parameter values are obtained by sampling the score test, and for (b) they are
values from the 95% highest density region of the posterior distribution using SW’s prior.
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Table A16: Specification test results for the SW model, 1965:I-2004:IV

(a) Frequentist set (b) Posterior distribution
Test CV Rej. Test CV Rej.

Full model, weighted spectrum 0.867 1.235 68 0.901 1.235 89
Full model, BC frequencies 1.083 1.519 92 1.048 1.519 71
GDP growth 0.214 0.977 18 0.194 0.977 0.3
Inflation 0.319 0.977 22 0.371 0.977 42
Interest rate 0.310 0.977 20 0.331 0.977 47
Consumption growth 0.198 0.977 60 0.181 0.977 1
Investment growth 0.308 0.977 82 0.304 0.977 7
Labor hours 0.217 0.977 8 0.240 0.977 26
Wage growth 0.266 0.977 4 0.270 0.977 0.3
Consumption-Labor hours 0.669 1.077 85 0.584 1.077 28
Consumption-GDP 0.635 1.077 69 0.729 1.077 26
Consumption-Inflation 0.579 1.077 78 0.610 1.077 22
Consumption-Investment 0.578 1.077 62 0.538 1.077 0.6
Consumption-Wages 0.307 1.077 25 0.281 1.077 0.8
Consumption-Interest rate 0.552 1.077 81 0.605 1.077 80
Investment-GDP 0.524 1.077 77 0.431 1.077 3
Investment-Labor hours 0.455 1.077 63 0.394 1.077 12
Investment-Inflation 0.550 1.077 64 0.514 1.077 16
Investment-Wages 0.411 1.077 60 0.365 1.077 6
Investment-Interest rate 0.737 1.077 82 0.707 1.077 62
GDP-Labor hours 0.501 1.077 58 0.456 1.077 47
GDP-Inflation 0.494 1.077 20 0.516 1.077 10
GDP-Wages 0.358 1.077 7 0.351 1.077 9
GDP-Interest rate 0.562 1.077 39 0.626 1.077 52
Labor hours-Inflation 0.443 1.077 25 0.526 1.077 42
Labor hours-Wages 0.381 1.077 10 0.456 1.077 41
Labor hours-Interest rate 0.482 1.077 7 0.491 1.077 51
Inflation-Wages 0.427 1.077 6 0.470 1.077 8
Inflation-Interest rate 0.455 1.077 32 0.628 1.077 88
Wages-Interest rate 0.355 1.077 31 0.415 1.077 69

Note. Each row represents a set of variables tested. The significance level is 10% for each
case. Test: the specification test value, based on the weighted full spectrum unless indicated
otherwise; CV: critical value; Rej.: percentage of parameter draws rejected by the specification
test. For (a) the parameter values are obtained by sampling the score test, and for (b) they are
values from the 95% highest density region of the posterior distribution using SW’s prior.
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Table A17: 95% confidence intervals, SGU model, 1955:II-2006:IV

Parameter Bounds CI
θ Frisch elasticity of labor supply (when γ = b = 0 ) [1.00, 6.00] [1.36, 6.00]
γ Governs wealth elasticity of labor supply [1E-06, 0.999] [4E-04, 0.76]
κ Investment adjustment cost parameter [1.00, 30.00] [5.58, 29.97]
δ2δ1 Ratio of depreciation parameters [0.01, 3.00] [0.01, 2.92]
b Habit parameter [1E-05, 0.98] [0.74, 0.95]
ρxg AR coeff. of government spending trend [0.00, 0.98] [0.27, 0.98]
ρµa AR coeff. of nonstationary investment-specific prod. shock [0.00, 0.70] [0.28, 0.70]
ρµx AR coeff. of nonstationary neutral productivity shock [0.00, 0.70] [5E-05, 0.70]
ρzi AR coeff. of stationary investment shock [0.00, 0.98] [9E-04, 0.98]
ρz AR coeff. of stationary neutral productivity shock [0.00, 0.99] [0.02, 0.99]
ρµ AR coeff. of wage markup shock [0.00, 0.99] [0.89, 0.99]
ρg AR coeff. of gov. spending shock [0.00, 0.99] [0.89, 0.99]
ρζ AR coeff. of the preference shock [0.00, 0.70] [1E-05, 0.70]
σ0

µa Std. dev. of unanticipated shock in µa
t [0.01, 1.00] [0.01, 0.42]

σ4
µa Std. dev. of 4-period anticipated shock in µa

t [0.01, 1.00] [0.01, 0.41]
σ8

µa Std. dev. of 8-period anticipated shock in µa
t [0.01, 1.00] [0.01, 0.41]

σ0
µx Std. dev. of unanticipated shock in µx

t [0.01, 1.00] [0.01, 0.97]
σ4

µx Std. dev. of 4-period anticipated shock in µx
t [0.01, 1.00] [0.01, 0.62]

σ8
µx Std. dev. of 8-period anticipated shock in µx

t [0.01, 1.00] [0.01, 0.65]
σ0

zi Std. dev. of unanticipated shock in zi
t [0.01, 40.00] [4.36, 40.00]

σ4
zi Std. dev. of 4-period anticipated shock in zi

t [0.01, 20.00] [0.01, 19.94]
σ8

zi Std. dev. of 8-period anticipated shock in zi
t [0.01, 20.00] [0.01, 19.98]

σ0
z Std. dev. of unanticipated shock in zt [0.01, 2.00] [0.01, 0.93]
σ4

z Std. dev. of 4-period anticipated shock in zt [0.01, 2.00] [0.01, 0.67]
σ8

z Std. dev. of 8-period anticipated shock in zt [0.01, 2.00] [0.01, 0.69]
σ0

µ Std. dev. of unanticipated shock in µt [0.01, 10.00] [0.01, 6.75]
σ4

µ Std. dev. of 4-period anticipated shock in µt [0.01, 10.00] [0.04, 9.24]
σ8

µ Std. dev. of 8-period anticipated shock in µt [0.01, 10.00] [0.01, 6.07]
σ0

g Std. dev. of unanticipated shock in gt [0.01, 2.00] [0.01, 1.28]
σ4

g Std. dev. of 4-period anticipated shock in gt [0.01, 2.00] [0.01, 1.34]
σ8

g Std. dev. of 8-period anticipated shock in gt [0.01, 2.00] [0.01, 1.28]
σ0

ζ Std. dev. of unanticipated shock in ζt [0.01, 10.00] [0.01, 7.63]
σ4

ζ Std. dev. of 4-period anticipated shock in ζt [0.01, 10.00] [0.01, 9.01]
σ8

ζ Std. dev. of 8-period anticipated shock in ζt [0.01, 10.00] [0.01, 10.00]
σme

gy Std. dev. of measurement error in output growth [0.01, 1.00] [0.51, 0.73]

Note. Values are based on the mean and full spectrum. Column 2: parameter inter-
pretation. Column 3: bounds for permissible parameter values. Column 4: confidence
intervals, obtained by sampling the score test and applying projections.
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Figure A1: Log spectra of the LS model under indeterminacy, 1960-2007.

A-19



Figure A2: Cross-spectra (real part) under indeterminacy, 1960-2007.
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Figure A3: Cross-spectra (imaginary part) under indeterminacy, 1960-2007.
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Figure A4: Log spectra using the posterior distribution under determinacy, 1960-2007.
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Figure A5: Cross-spectra (real part) using the posterior under determinacy, 1960-2007.
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Figure A6: Cross-spectra (imaginary part) using the posterior under determinacy, 1960-2007.
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Figure A7: Log spectra using the posterior distribution under indeterminacy, 1960-2007.
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Figure A8: Cross-spectra (real part) using the posterior under indeterminacy, 1960-2007.
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Figure A9: Cross-spectra (imaginary part) using the posterior under indeterminacy, 1960-2007.
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Figure A10: Log spectra using the posterior under determinacy, 1979-2007.
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Figure A11: Cross-spectra (real part) using the posterior under determinacy, 1979-2007.
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Figure A12: Cross-spectra (imaginary part) using the posterior under determinacy, 1979-2007.

A-30



Figure A13: Log spectra under indeterminacy, 1960-1979.
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Figure A14: Cross-spectra (real part) under indeterminacy, 1960-1979.
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Figure A15: Cross-spectra (imaginary part) under indeterminacy, 1960-1979.
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Figure A16: Log spectra using the posterior under indeterminacy, 1960-1979.
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Figure A17: Cross-spectra (real part) using the posterior under indeterminacy, 1960-1979.

A-35



Figure A18: Cross-spectra (imaginary part) using the posterior under indeterminacy, 1960-1979.
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Figure A19: Log spectra of variables for the SW model: the extended sample.
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Figure A20: Log spectra of variables for the SW model: the original sample.
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Figure A21: Impulse responses of output to seven shocks: the extended sample.
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