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Abstract

This paper proposes a framework for the modeling, inference and forecasting of volatility in

the presence of level shifts of unknown timing, magnitude and frequency. First, we consider a

stochastic volatility model comprising both a level shift and a short-memory component, with

the former modeled as a compound binomial process and the latter as an AR(1). Next, we adopt

a Bayesian approach for inference and develop algorithms to obtain posterior distributions of

the parameters and the two latent components. Then, we apply the model to daily S&P 500 and

NASDAQ returns over the period 1980.1-2010.12. The results show that although the occurrence

of a level shift is rare, about once every two years, this component clearly contributes most to

the variation in the volatility. The half-life of a typical shock from the AR(1) component is

short, on average between 9 and 15 days. Interestingly, isolating the level shift component

from the overall volatility reveals a stronger relationship between volatility and business cycle

movements. Although the paper focuses on daily index returns, the methods developed can

potentially be used to study the low frequency variation in realized volatility or the volatility of

other �nancial or macroeconomic variables.
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1 Introduction

The literature on modeling and forecasting stock return volatility is voluminous. Two approaches

that have proven useful are the GARCH and the stochastic volatility (SV) models. For extensive

reviews and collected works, see Engle (1995) and Shephard (2005). In their standard forms, the

ensuing volatility processes are stationary and weakly dependent with autocorrelations that decrease

exponentially. This contrasts sharply with the empirical �ndings obtained using various proxies for

volatility (e.g., daily absolute returns), which indicate autocorrelations that decay very slowly at

long lags. In light of this, several long-memory models have been proposed. Baillie, Bollerslev and

Mikkelsen (1996) and Bollerslev and Mikkelsen (1996) considered fractionally integrated GARCH

and EGARCH models. Breidt, Crato and De Lima (1998) and Harvey (1998) proposed long-

memory SV models, in which log-volatility is modeled as a fractionally integrated latent process.

Level shifts has been advanced as a possible explanation to the strong persistence in volatility.

Using daily data on S&P 500 returns, Granger and Hyung (2004) documented that when breaks

(determined via some pre tests) are accounted for, the evidence for long-memory is weaker. St¼aric¼a

and Granger (2005) presented evidence suggesting that this series can be well approximated by

a sequence of identically and independently distributed shocks a¤ected by occasional level shifts

in unconditional variance. Perron and Qu (2010) analyzed the spectral domain properties of a

stationary short-memory process a¤ected by random level shifts. When applied to daily S&P 500

log absolute returns over the period 1928-2002, the level shift model explains the path of the log

periodogram estimates as a function of the number of frequency ordinates used. The only type of

long-memory process able to match such a feature is a perturbed long-memory process with a long-

memory parameter well above 0:5 (e.g., around 0:8). Such in�nite variance processes are unlikely

candidates for a useful model of volatility. It is worthwhile to formally incorporate level shifts into

volatility models and to develop methods for inference and forecasting. This paper addresses these

issues.

We propose a simple stochastic volatility model that allows for level shifts of unknown timing,

magnitude and frequency and confront it with S&P 500 and NASDAQ return volatility. Let xt

denote the mean corrected return process. The proposed model is given by

xt = exp(ht=2 + �t=2)"t; (1)

where "t � i:i:d: N(0; 1). The �rst process ht is a stationary AR(1) component. It is common to
standard SV models and is intended to capture short run dynamics. The second process �t is a

compound binomial process that models random level shifts. More speci�cally, �t+1 = �t+ �t���t,
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where �t � i:i:d: N(0; 1) and �t is a sequence of independent Bernoulli random variables taking

value 1 with unknown probability p. This term is a departure from the standard models and

captures persistent changes in level which, as we shall see, provides an explanation of the long-

memory features present in the data. In the model, shocks to ht die out quickly while shocks to �t

have a long lasting e¤ect, remaining in the system until the next level shift occurs. This feature is

useful for disentangling the e¤ect of rare but in�uential events from that of frequent but transitory

shocks on the dynamics of volatility.

The model (1) is related to three families of models proposed in the literature. The �rst is

the Markov switching ARCH model of Hamilton and Susmel (1994). A key di¤erence is that, in

(1), the number of regimes is not speci�ed a priori, but rather determined endogenously by the

sequence f�t, �tg. The second is the Spline-GARCH model of Engle and Rangel (2008), where the
volatility is also composed of two components but with the low frequency component modeled as an

exponential quadratic spline. In our case, this component follows a stochastic process, opening the

possibility of procedures for �ltering, smoothing and out-of-sample forecasting. The third family

includes models considered in Du¢ e, Pan and Singleton (2000), Eraker, Johannes and Polson (2003)

and Eraker (2004), where jumps are incorporated into the SV model to capture clustered extreme

movements in returns. In their models, the jumps have a short lasting e¤ect and accordingly they

generate a volatility process that is stationary while ours does not. As we shall see, this di¤erence

is crucial to generating features akin to a long-memory process.

We propose methods for inference and forecasting. For inference, we adopt a Bayesian approach

with data augmentation following the work of Jacquier, Polson and Rossi (1994) and Kim, Shep-

hard and Chib (1998). The method addresses two di¢ culties: (1) as common to all SV models,

the processes determining volatility are latent, and (2) �t is a compound binomial process making

both the number and locations of shifts unknown. We provide algorithms to obtain the posterior

distributions of all parameters and estimates of the processes ht and �t. We also present algo-

rithms for �ltering and forecasting. They use the technique of particle �ltering and are relatively

straightforward to implement.

The model is then applied to the volatility of daily S&P 500 and NASDAQ returns over the

period 1980.1-2010.12, which covers two market crashes in 1987 and 2008. The choice of priors

pertaining to the level shift component re�ects the belief that shifts are rare and their magnitudes

are large. The priors pertaining to the stationary component are the same as those of Kim, Shephard

and Chib (1998). For the S&P 500 series, we obtain the following results (they are qualitatively

similar for the NASDAQ series). First, the occurrence of a level shift is rare. Importantly, although
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rare, the level shift component clearly contributes more to total variation in the volatility process

than the AR(1) component. Second, the model explains the path of the log periodogram estimates

as a function of the number of frequency ordinates used, as documented by Perron and Qu (2010).

Third, the level-shift component is closely linked to business cycle �uctuations while the AR(1)

component is not. After isolating the former component from the overall volatility, we observe a

stronger volatility-business cycle relationship.

The paper contributes to the literature on modeling the strong persistence in the volatility of

stock returns and other �nancial/macroeconomic variables. It �lls a gap by providing a uni�ed

framework for modeling, inference and forecasting of volatility in the presence of regime change

of unknown timing, magnitude and frequency. From a methodological perspective, the paper is

related to the growing literature on Bayesian change-point models, including, inter alia, Chib

(1998), McCulloch and Tsay (1993), Pesaran, Pettenuzzo and Timmermann (2006) and Koop and

Potter (2007). Our modeling of the shift process is closest to that of McCulloch and Tsay (1993).

Nevertheless, there exists an important di¤erence. In this paper, level shifts a¤ects the volatility

with the latter itself being a latent stochastic process. This generates technical di¢ culties and our

analysis provides technical solutions to address them.

The paper is organized as follows. Section 2 provides a brief review of issues related to the

long-memory phenomenon in return volatility. Section 3 presents the stochastic volatility model

with random level shifts. Section 4 presents the Bayesian inference procedure. Section 5 discusses

methods for �ltering and forecasting. Section 6 presents the results from empirical applications

related to the volatility of daily S&P 500 and NASDAQ returns. Section 7 o¤ers brief concluding

remarks and some technical derivations are contained in appendices.

2 Preliminaries: long memory features in return volatility

Let zt be a stationary time series with autocorrelation function 
z(�) at delay � . It is said to have

long-memory (Beran, 1994) if 
z(�) = g(�)�2d�1 as � ! 1, where d > 0 and g(�) is a slowly

varying function as � ! 1. For d 2 (0; 1=2), this implies that the 
z(�) decreases to zero at a
hyperbolic rate, in contrast to the fast geometric rate that applies to a short-memory process.

Several papers have reported that transformations of stock returns, say xt, of the form jxtj� for
some � > 0 have time series properties that resemble those of a stationary long-memory process (see

e.g., Ding, Engle and Granger, 1993, Granger and Ding, 1995 and Lobato and Savin, 1998). The

often cited generating mechanisms for long-memory are contemporaneous aggregation (Granger,

1980 and Andersen and Bollerslev, 1997) and shocks of di¤erent durations (Parke, 1999). Level
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shifts can also produce features akin to a long-memory process. In particular, if a stationary short

memory process is contaminated by random level shifts, the estimate of the memory parameter

is biased away from zero and the autocorrelation function exhibits a slow rate of decay, akin to a

long-memory process (Diebold and Inoue, 2001). Mikosch and St¼aric¼a (2004) and Lamoureux and

Lastrapes (1990) provided illustrations of such a feature in the context of volatility persistence.

Smith (2005) derived the bias of the log periodogram estimator of the memory parameter when the

underlying process is white noise with a slowly varying mean.

More closely related to our work is Perron and Qu (2010), who studied the spectral and time

domain features of the following process

zt = c+ ut + vt with ut = ut�1 + �t�t; (2)

where zt can be thought as the logarithm of squared asset returns, c is a constant, u0 = 0, vt

is a stationary short memory process, �t � i:i:d: N(0; �2�) and �t is a Bernoulli random variable

that takes value 1 with probability pn: They used pn = p=n to model rare shifts and obtained

the following results. In the spectral domain, the level shift component a¤ects the periodogram

only up to j = o(n1=2), where j indexes the frequency ordinates. Within this range, the rate of

decrease of the periodogram is on average �2, implying d = 1. This is di¤erent from a stationary

long-memory process in which the e¤ect is up to j = o(n) and the rate of decrease is �2d. This
result implies that if we use a local method to estimate the memory parameter of the level shift

model (2), the estimate will depend on the number of frequencies (say m) used. It will tend to

decrease as the number of frequencies used increases and, in particular, a sharp decrease will occur

when m varies from roughly n1=3 to n1=2. The decrease after m reaches n1=2 will be gradual as

the e¤ect of the short-memory component vt becomes more important. They found this feature is

empirically present when using transformations of S&P 500 daily returns covering the period 1928-

2002. Here, we replicate their �ndings using the sample period 1980.1-2010.12 which is of interest

in this paper. Figures 1 depicts the path of the log periodogram estimates, for the logarithm of

squared S&P 500 and NASDAQ returns, where the three vertical lines correspond tom = T 1=3; T 1=2

and T 2=3, respectively. They suggest that the pattern is consistent with the level shift model (2).

To the best of our knowledge, the only type of long-memory process able to match such features

is a perturbed long-memory process with a long-memory parameter well above 0:5 (e.g., around

0:8), see Perron and Qu (2010). Such in�nite variance processes are unlikely candidates for a useful

model of volatility. Hence, it is worthwhile to formally incorporate level shifts into volatility models

and to develop methods for inference and forecasting.
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3 A stochastic volatility model with random level shifts

Let fxtgnt=1 be a demeaned return process. The standard stochastic volatility (SV) model is

xt = exp(ht=2)"t with ht+1 = �+ �(ht � �) + ���t; (3)

where ht is the log volatility at time t assumed to follow an AR(1) process with j�j < 1 and "t

and �t are independent standard normal random variables with cov("t; �s) = 0 for all t; s. The

stochastic volatility model with level shifts that we propose is given by

xt = exp(ht=2 + �t=2)"t; (4)

ht+1 = �ht + ���t;

�t+1 = �t + �t���t;

with initial conditions

(h0; �0) = 0 and (h1; �1)
0 � N(0; P ); (5)

where �t; �t and "t are independent standard normal random variables and �t is a sequence of

independent Bernoulli random variables taking value 1 with unknown probability p, i.e., �t �
B(1; p). The variables �j ; �h; "k and vl are mutually independent for all 1 � j; h; k; l � n. Note

that the model implies that the log squared returns, log(x2t ), follows the level shift process (2).

The presence of �t brings substantial �exibility. If the standard model (3) is adequate, the

posterior distribution of p will have large mass around zero and the model (4) essentially reduces

to (3). Otherwise, the posterior distribution of p is informative regarding the frequency of level

shifts. Such information, along with the posterior distribution of ��; can be used to assess the

relative contributions of the level shift and stationary components to overall volatility. The e¤ects

of innovations via ht quickly die out while those occurring via �t remain in e¤ect until the next

shift. This is di¤erent from short or long-memory SV models where all shocks a¤ect the future

path of the process in the same manner.

The model can be viewed as a member of the class of time varying parameter models. Early

contributions include, among others, Rosenberg (1973), Cooley and Prescott (1976) and Tjøstheim

(1986). However, being di¤erent from the majority of models in the literature, here �t changes

only infrequently. This is essential for modelling regimes changes, although it also generates some

technical di¢ culty that will be addressed in the next Section.
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4 The Bayesian inference procedure

The model (4) can be represented as

log x2t = ht + �t + log "
2
t ; (6)

ht+1 = �ht + ���t;

�t+1 = �t + �t���t:

The key ingredients for inference are the Gibbs sampler and data augmentation.

Under the assumption that "t is i:i:d: N(0; 1), (6) is a partial non-Gaussian state space model

as analyzed by Shephard (1994), for which the optimal �ltering is a nonlinear problem. To address

this issue, we follow Shephard (1994), Carter and Kohn (1994) and Kim, Shephard and Chib (1998)

and approximate the distribution of log "2t by a mixture of normals. Then, conditional on a given

realization of the mixture, the errors are normally distributed and the non-linearity due to log "2t

is no longer present. More speci�cally, de�ne a new error process "�t as

"�t = log "
2
t � E(log "2t )

and approximate its distribution using

KX
i=1

qiN(mi; �
2
i ): (7)

Choices of K; qi;mi, �2i follow Kim, Shephard and Chib (1998) and are described in Appendix 1.

We write

!t = j

if "�t is a realization from the jth component of the mixture (7).

The main challenge for inference is that both the number and locations of the level shifts are

unknown. We address this issue using the technique of data augmentation and by appropriate

conditioning. More speci�cally, the data is augmented by the locations of the shifts �t. Conditional

on �t, the transition equation is generated by a linear recursion with normal errors. Meanwhile, as

discussed above, conditional on the mixture, the measurement equation is also linear and Gaussian.

Hence, the standard tools for Gaussian state space models can be applied.

Because of the logarithmic transformation, values of stock returns that are close to zero may have

an undesirable e¤ect on the inference procedure. To avoid this, we de�ne yt = log(x2t+c)�E(log "2t ),
where c is an �o¤set�. That is, a small number is introduced to bound the term inside the logarithm
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away from zero, a technique introduced to the stochastic volatility literature by Fuller (1996). We

use c = 0:001, though it can be chosen based on the data. Then, model (6) can be expressed as

yt = ht + �t + "
�
t ; (8)

ht+1 = �ht + ���t;

�t+1 = �t + ���t�t

with initial conditions (h0; �0) = 0 and (h1; �1)
0 � N(0; P ). We now present the Bayesian procedure

for inference. We start in Section 4.1 with the sampling algorithm to construct the posterior

distributions. In Section 4.2, we discuss the priors to be used.

4.1 The sampling procedures for the posterior distributions

We �rst express relevant quantities in vector notations. Let �1 = (h1; �1)
0, R = f(�1; �1)0; :::; (�n; �n)0g,

� = (�1; :::; �n), ! = (!1; :::; !n), � = (�; ��; ��; p) and y = (y1; :::; yn). Note that � delivers the

locations of shifts and �; �1 and R jointly deliver the two components in the volatility process.

The goal is to sample from the following joint posterior distribution f(�; �1; R; �; !jy). We use a
Gibbs sampler that draws from the following four blocks: (1) f(�(�p); �1; Rjp; �; !; y), where �(�p)
denotes � with p excluded; (2) f(�j�; �1; R; !; y); (3) f(pj�(�p); �1; R; �; !; y); (4) f(!j�; �1; R; �; y).
We discuss the details of each step below.

Step 1 (Sampling �(�p) and the volatility process): Write

f(�(�p); R; �1jp; �; !; y) = f(�1; Rj�; �; !; y)f(�(�p)jp; �; !; y):

This suggests sampling R and �1 from f(R;�1j�; �; !; y) and �(�p) from f(�(�p)jp; �; !; y). Because
f(R;�1j�; �; !; y) is a multivariate conditional Gaussian density, it can be sampled using a relatively
straightforward extension of the simulation smoother developed by De Jong and Shephard (1995).

The details are given in Appendix 3.

The density f(�(�p)jp; �; !; y) is sampled using the Gibbs sampler, i.e., by drawing iteratively
from f(�j�(��); �; !; y), f(��j�(���); �; !; y) and f(��j�(���); �; !; y). The procedure to sample from
each of these objects is similar and we provide details only for the �rst. Using Bayes�Theorem,

f(�j�(��); �; !; y) / f(yj�; �; !)�(�) (9)

where �(�) is the prior density and the likelihood f(yj�; �; !) can be computed using the Kalman
�lter. The details for computing f(yj�; �; !) are given in Appendix 2. Implementing (9) requires
choosing a proposal density. In the empirical applications, we use the adaptive rejection Metropolis
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sampler of Gilks, Best and Tan (1995). The basic idea is to construct an envelope function of

the log of the target density without requiring the speci�cation of the normalizing constant. This

envelope function approaches the true density as sampling progresses, hence providing an e¤ective

sampling algorithm. Note that because this is a Metropolis type procedure, iterations are needed

for the chain to converge to the target distribution.

In the above, �1 and R are integrated out when drawing �(�p). Instead, we could sample

from f(�(�p)jp; �1; R; �; !; y). The resulting algorithm is less e¢ cient because there is strong de-

pendence between �(�p) and (�1; R). In other words, the computational cost induced by the

strong dependence between �(�p) and R outweighs the gain from being able to sample from

f(�(�p)j�1; R; p; �; !; y) analytically. Such a feature was also observed by Kim, Shephard and Chib
(1998), who also recommended integrating out the volatility process when sampling the parameters.

Step 2 (Sampling the process of shifts �): We draw iteratively from f(�tj�; �(�t); �1; R; !; y)
(for t = n; n�1; :::; 1), where �(�t) denotes the vector of � with the tth element excluded. Speci�cally,
de�ne Yt = (y1; :::; yt) and Y +t = (yt+1; :::; yn). For each t, we have

f(�t = 1j�; �(�t); �1; R; !; y)

=
f(Y +t j�; �1; R; �t = 1; �(�t); !; Yt)f(�t = 1j�; �1; R; �(�t); !; Yt)P1
i=0 f(Y

+
t j�; �1; R; �t = i; �(�t); !; Yt)f(�t = ij�; �1; R; �(�t); !; Yt)

:

Because f(�t = 1j�; �1; R; �(�t); !; Yt) = f(�t = 1jp) = p, the preceding display can be rewritten as

f(�t=1j�; �1; R; �(�t); !; y) (10)

=

p
nQ

j=t+1
f(yj j�; �1; R; �t = 1; �(�t); !; Yj�1)(

p
nQ

j=t+1
f(yj j�; �1; R; �t = 1; �(�t); !; Yj�1)+

(1� p)
nQ

j=t+1
f(yj j�; �1; R; �t = 0; �(�t); !; Yj�1)

)
.

Computationally, it is more convenient to look at the posterior odds ratio instead of (10):

f(�t=1j�; �1; R; �(�t); !; y)
f(�t=0j�; �1; R; �(�t); !; y)

=

p
nQ

j=t+1
f(yj j�; �1; R; �t = 1; �(�t); !; Yj�1)

(1� p)
nQ

j=t+1
f(yj j�; �1; R; �t = 0; �(�t); !; Yj�1)

; (11)

whose logarithm can be used to avoid numerical problems because the ratio occasionally takes on

extremal values. In practice, a large number of draws may be necessary to ensure convergence

because this is a one-step sampler, especially with a large sample size.
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As pointed out by a referee, instead of sampling from f(�j�; �1; R; !; y), one could integrate �1
and R out and sample from f(�j�; !; y). The would require computing, instead of (11),

f(�t = 1j�; �(�t); !; y)
f(�t = 0j�; �(�t); !; y)

=
pf(yj�; �t = 1; �(�t); !)

(1� p)f(yj�; �t = 0; �(�t); !)
;

where f(yj�; �; !) can be computed using the Kalman �lter as described in Appendix 2. The

resulting algorithm is valid without modifying the other steps. We implemented both procedures

in the empirical section. The results suggest that the latter algorithm requires less iterations for

the chain to converge to the target distribution because it avoids the dependence between (�1; R)

and �. However, the computational cost for obtaining a single draw of � is also substantially higher

because it requires repeating Kalman �ltering T = 7823 times. For the two empirical applications

considered, the latter e¤ect outweighs the former. Meanwhile, our applications also con�rm that

they lead to the same results regarding the posterior distributions of the parameters and the

volatility process.

Step 3 (Sampling the probability of shifts p): The sampling is straightforward because

f(pj�(�p); �1; R; �; !; y) = f(pj�). Using Bayes�Theorem, f(pj�) / f(�jp)f(p). If the prior on
p has a beta distribution, i.e., p � beta(
1;
2), the conditional posterior distribution is given by

f(pj�) � beta(
1 + k; 
2 + n � 1 � k), where k is the number of shifts and n � 1 is the e¤ective
sample size, see DeGroot (1970, p.160).

Step 4 (Sampling the mixture !): The posterior probability of "�t being from the j
th component

of the mixture (7) is given by

f(!t = jj�; �1; R; �; y) = f(!t = jj"�t ) / f("�t j!t = j)f(!t = j):

To obtain a draw, we �rst compute "�t = yt� ht� �t with ht and �t obtained from �1 and R using

(8). Next, we compute f("�t j!t = j), for j = 1; :::;K, using "�t j(!t = j) � N(mj ; �
2
j ). Then, we

simply draw from the resulting multinomial distribution.

The approximation error induced by the o¤set mixture approximation can be corrected using a

reweighting step as in Kim, Shephard and Chib (1998), or a Metropolis-Hastings step as described

below. The basic idea is to treat the approximating model as one that generates a proposal

distribution. Given any (�; �1; R; �), the likelihood functions for the approximating and the true

models are

k(yj�; �1; R; �) =
Qn
t=1

PK
i=1 qifN

�
ytjmi + ht + �t; �

2
i

�
;

g(yj�; �1; R; �) =
Qn
t=1 fN (xtj0; exp (ht + �t)) ;
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where fN (ytja; b) stands for the Normal density with mean a and variance b; (qi;mi, v2i ) and K

follow from the mixture, ht+�t can be computed from �1 and R and xt is the return at time t. To

implement the Metropolis-Hastings algorithm, we start with some initial values, say (�(0); �(0)1 ; R
(0),

�(0)), take a random draw from those given by Steps 1-4 say (��; ��1; R
�, ��), and accept it with

probability

r = min

 
g(yj��; ��1; R�; ��)=k(yj��; ��1; R�; ��)

g(yj�(0); �(0)1 ; R(0); �(0))=k(yj�(0); �
(0)
1 ; R

(0); �(0))
; 1

!
:

This is then continued to deliver the desired number of draws. We implemented both procedures

(i.e., with and without reweighting) in the empirical applications and obtained very similar posterior

distributions.

Although the current paper focuses on daily returns, the sampling procedure proposed above

can also be used to analyze realized volatility allowing for level shifts. In that case, the left hand

side variable in Equation (6) becomes the logarithm of realized volatility, the processes for ht and

�t remain the same, while "
�
t can for example be modeled as i:i:d:N(0; �

2
"). The parameter �

2
" can

be treated as part of �. Then, Steps 1 to 3 can be applied to deliver the posterior distributions.

Note that the o¤set mixture approximation and Step 4 are no longer relevant.

4.2 The speci�cations of the priors

We use independent priors. Those for � and �� follow Kim, Shephard and Chib (1998). For �;

�(�) /
�
1 + �

2

��(1)�1�1� �
2

��(2)�1
; with �(1); �(2) >

1

2
:

This distribution has support on (�1; 1) with a mean of 2�(1)=(�(1) + �(2)) � 1. In the empirical
applications, we set �(1) = 20 and �(2) = 1:5, implying a prior mean of 0.86. For ��, we use

�2� � IG(�r=2; S�=2), i.e., the inverse gamma distribution with shape parameter �r=2 and scale
parameter S�=2. We set �r = 5 and S� = 0:01� �r:

The prior distributions for p and �� are chosen to re�ect the belief that the level shifts are

infrequent and that their magnitude is large. For p, we specify p � beta(
1; 
2) with 
1 = 1 and

2 = 40. This implies a prior mean of 1=41 so that a shift occurs on average every 41 days. For

��, we specify �2� � IG(��r=2; S��=2) with ��r = 20 and S�� = 60: This implies an approximate prior
mean of 3:33 and variance of 1:39. Finally, we use the following prior distribution for the initial

states: (h1; �1) � N(0; P ) with P = Diag(1� 106; 1� 106):
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5 Filtering and forecasting

We discuss �ltering and forecasting conditional on estimated parameters. We use � to denote the

parameter estimates, which can be the posterior means or medians. Let Xt = (x1; :::; xt)
0 denote

the vector of returns up to time t and de�ne �t = (ht; �t). Since we work with the formulation (6)

instead of (8), the mixture approximation is no longer needed.

5.1 Filtering

The objective is to recursively obtain a sample of draws from (�tjXt; �) for t = 1; :::; n. The �ltered
signal E(exp(ht+�t)jXt; �) can then be computed by taking an average over those draws. Formally,
the link between the distributions of (�t+1jXt+1; �) and (�tjXt; �) is given by, using Bayes�Theorem,

f(�t+1jXt+1; �) =
f(xt+1j�t+1; Xt; �)
f(xt+1jXt; �)

Z
f(�t+1j�t; Xt; �)dP (�tjXt; �): (12)

This is not directly useful because it involves an integral which cannot be evaluated analytically.

A solution to this problem is to use the particle �lter as in Gordon, Salmond and Smith (1993)

and Kim, Shephard and Chib (1998). More speci�cally, for a given sample of M draws �(j)t
(j = 1; :::;M) from the distribution of (�tjXt; �), a sample from f(�t+1jXt+1; �) can be obtained by
drawing from f(�t+1j�(j)t ; Xt; �) and reweighting them using f(xt+1j�(j)t+1; Xt; �). The distribution
f(�t+1j�(j)t ; Xt; �)=f(xt+1jXt; �) depends on whether a shift occurs at time t and is given by

�t+1j(�(j)t ; Xt; �) � �tW
(j)
1t + (1� �t)W

(j)
2t (13)

with

W
(j)
1t � N

0@24 � 0

0 1

35�(j)t ;
24 �2� 0

0 �2�

351A and W (j)
2t � N

0@24 � 0

0 1

35�(j)t ;
24 �2� 0

0 0

351A :
The associated weights are given by w(j)t+1 = f(xt+1j�(j)t+1; Xt; �)=

PM
j=1 f(xt+1j�

(j)
t+1; Xt; �), where

f(xt+1j�(j)t+1; Xt; �) � N(0; exp(h
(j)
t+1 + �

(j)
t+1)):

5.2 Forecasting

The subsequent analysis is conditional on a given � (say the posterior mean or mode), the same

objects can be obtained by averaging over the posterior distribution of the parameters.

The predictive density f(�t+pjXt; �) can be obtained by the same method as in Jacquier,
Polson and Rossi (1994). Let �f = (�t+1; :::; �t+p)

0 denote a vector of future states and let

Xf = (xt+1; :::; xt+p) denote a vector of future returns. The key insight is that if Xf were known,

11



it would be possible to draw from f(�f jXf ; Xt; �). This suggests augmenting the data by Xf ,
which leads to the following procedure: (1) Draw from f(Xf jXt; �f ; �), which is straightforward
since Xf j(Xt; �f ; �) � N(0; Diag(exp(�f ))); (2) Draw from f(�f jXf ; Xt; �) using the algorithm in

Section 4.1 (Steps 1, 2 and 4); (3) Repeat to generate a random sample. Let (�(1)f ; :::; �
(M)
f ) denote

the resulting vector of M draws. The predictive density can then be estimated using a kernel

smoothing method.

Using these draws, the minimum mean squared error (MSE) estimate of the of the p-step ahead

forecast of volatility can be approximated by E(exp(ht+p + �t+p)jXt; �) � (1=M)
PM
j=1 exp(h

(j)
t+p +

�
(j)
t+p) and the estimate of average volatility over the one to p-step ahead forecasts is

��2t;p �
pX
i=1

E(exp(h
(j)
t+i + �

(j)
t+i)jXt; �) �

1

M

pX
i=1

MX
j=1

exp(h
(j)
t+i + �

(j)
t+i):

These approximations can be made precise by choosing M large enough.

The preceding algorithm allows for out-of-sample level shifts. If level shifts are expected to

be rare and the forecasting horizon is relatively short, as will be the case in our applications, it is

sensible to assume that they do not occur out-of-sample, especially since their timing and magnitude

exhibit considerable uncertainty. The algorithm then substantially simpli�es and simulations for

the predictive density are not needed for the volatility forecasts. This is so because ignoring shifts

�t+p = �t and ht+p = �
pht +

Pp
i=1 �

i�1���t+p�i. The predicted p-step ahead volatility is then

E(exp(ht+p + �t+p)jXt) = E(exp(�pht + �t)jXt)
p�1Y
i=0

exp(
�2i�2�
2

); (14)

where the last equality follows by normality of �t. The term E(exp(�pht+�t)jXt) can be evaluated
using particle �ltering, as discussed in Section 5.1. Note that the quantities appearing in the

forecast, �; ��; ht and �t, are estimated using all observations up to time t, not merely observations

from the most recent regime. Therefore, in-sample shifts continue to a¤ect the forecast.

6 Applications to S&P 500 and NASDAQ returns

We apply the model to the volatility of the S&P 500 and NASDAQ daily returns over the period

1980.1-2005.12. We consider: a) the posterior distributions of the parameters using the full sample;

b) whether the model evaluated at the posterior means can replicate keys features of the data; c)

the comovement between the estimated volatility components and some indicators of the business

cycle; and d) the forecasting performance of the model relative to other popular forecasting models.

All the reported results are without the reweighting step described in Section 4.1.
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6.1 The posterior distributions based on the full sample

We used the priors discussed in Section 4 and generated the posterior distributions based on 10,000

draws, discarding the �rst 5,000. The initial parameter values used to start the sampling chains

were � = 0:98; �2� = 0:01; �
2
� = 5; p = 0:005; !t = 4:94 (t = 1; :::; n) and �t = 1 if t is a multiple of

50 and �t = 0 otherwise. We tried di¤erent initial values and the results did not change.

Consider �rst the results for the S&P 500 daily returns. Figure 2 presents the posterior means

of the level shift component and the log volatility process. Figure 3 summarizes the distributions of

the parameters and the correlograms for the draws. Several interesting features emerge. First, the

shifts are rare. The posterior distribution of p has a mean of 0.00218 with a 95% con�dence interval

of (0.00107 0.00365). In terms of duration, this implies that on average, a shift occurs every 459

days (with a 95% con�dence interval of (274, 938) days). The results are substantially di¤erent from

the prior which implies an average of one shift per 41 days. Second, although rare, the level shift

component is quantitatively the most important. To see this, consider the following decomposition

with st = �t + ht and with �s, �u and �h denoting the sample means of the corresponding processes,

st = �s+ (�t � ��) + (ht � �h). ThenPn
i=1(�t � ��)2Pn

i=1 s
2
t

and

Pn
i=1(ht � �h)2Pn

i=1 s
2
t

(15)

measure the relative contributions of �t and ht to the overall variation in volatility. Their values

are 0:59 and 0:20, respectively. This result indicates that the dominant contribution of the time-

variation in volatility consists of movements with a horizon of more than one year. In light of this, a

standard SV model can only capture a narrow piece of the picture. Finally, the posterior distribution

of the AR(1) coe¢ cient has a mean of 0.956 with a 95% con�dence interval of (0.934,0.974). This

implies that the short-memory component is indeed much less persistent when level shifts are

accounted for, as typical estimates of � using standard SV models are very close to 1. Indeed, in

our model the half life of a typical shock is only about 15 days with a 95% con�dence interval of

(10, 26) days. This contrasts with the estimate obtained using a standard SV model for which the

posterior mean of � implies a half life of 58 days with a 95% con�dence interval of (51, 90) days.

Figure 2 suggests that the shifts often coincide with important events. The �rst major shift

occurred on 10/12/1987 (Monday), leading to the �Black Monday�on 10/19/1987. The posterior

mean �t around �Black Monday�are:

Date 10/9 10/12-10/14 10/15-10/23 10/26-01/11/88 01/12-01/15 01/18

�t -0.31 0.69 2.26 1.58 0.88 -0.06
:
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The results are quite informative. First, the market was already showing unusually high volatility

one week before the crash occurred. Second, the high volatility surrounding the �Black Monday�

lasted about a week, until October 23, 1987 (Friday). The volatility then dropped suddenly on

October 26, 1987 (Monday). The new regime lasted until January 11, 1988 (Monday), when the

market returned to a volatility level comparable to that prior to the crash on January 18, 1988

(Monday). The market then entered a long period of low volatility starting in April, 1992. Volatility

started to increase again in June, 1996, predating the Asian �nancial crisis. This transition was

more gradual and increases in volatility continued until August, 1998. Then, a substantial decrease

occurred between June and October, 2003, with this new regime persisting to February, 2007.

The volatility started to pick up again in early 2007, which continued till the market crash in

2008. The posterior mean of �t around �Black Monday�, September 15, 2008 are:

Date 09/05 09/08-09/11 09/12-11/13 11/14-06/02/09 06/03-07/15 07/16

�t 0.67 1.91 2.16 2.15 to 1.38 0.39 0.21
:

The results are again informative. First, the market was showing unusually high volatility before

the crash occurred. Second, the high volatility surrounding the �Black Monday� lasted about

two months until November 13, 2008 (Thursday). Then, it started to decrease gradually over an

approximate six-month period to a level of 1.38. Afterwords, the volatility dropped suddenly on

June 3, 2009 (Wednesday) and remained at relatively mild levels throughout 2010.

Our model ascribes the very large variances in October 1987 and September 2008 as brief

changes in volatility level instead of extreme draws from the underlying distribution of returns. We

do not view this as a defect of our procedure. On the contrary, events like the crashes of 1987 and

2008 are highly unlikely to be draws from the stationary short-memory stochastic component of

volatility. Our method therefore has the advantage of purging the volatility process from both low

frequency shifts and rare highly in�uential events. This allows the short-memory component to

be more representative of the stochastic process underlying regular �uctuations in volatility. Also,

this feature does not imply a misspeci�cation of our model.

For the NASDAQ returns, the results are summarized in Figures 4 and 5. The implications

are broadly similar to those for the S&P 500 returns. The ratios de�ned in (15) are 0.80 and 0.12,

respectively, again indicating that the level shift component accounts for most of the variability in

volatility. The ratios indicate that this feature is even more pronounced for NASDAQ volatility.

The posterior distribution of the probability of shifts has a mean of 0.00301 with a 95% con�dence

interval of (0.00160, 0.00481). In terms of regime duration, this implies, on average, one shift

every 332 days (with a 95% con�dence interval of (208, 624) days). The estimates of the level shift
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component are similar to those for the S&P 500 index. This suggests that common underlying causes

a¤ect the volatility of the two markets. With respect to the AR(1) coe¢ cient of the short-memory

component, the posterior distribution has a mean of 0.925 with a 95% interval of (0.899, 0.948).

This estimate again implies much less persistence than that typically reported using standard SV

or other models. The half life of a typical shock is only about 9 days with a tight 95% con�dence

interval of (6.5, 13.0) days. This again contrasts sharply with standard SV model for which the

posterior mean implies a half life of 46 days with a 95% con�dence interval of (65, 97) days.

Figures 2 and 4 show that the durations of regimes exhibit bimodality. Very high volatility

regimes tend to be shorter lived relative to lower volatility regimes. Our model delivers this result

without requiring a mixture prior. This can be viewed as further evidence supporting the simple

level shift model. Meanwhile, there are two possible ways to explicitly allow for bimodality. First,

a more �exible (may be a mixture) prior for p can be used. Second, p can be modeled as a function

of �t, thus the probability of entering a new regime can be higher when the current volatility level

is high. The latter generalization can be particularly interesting. It is relatively straightforward to

allow for the two generalizations in the sampling procedure.

We carried out some experimentations to examine the sensitivity of the posterior distributions

to the priors about p and �2�. Speci�cally, the parameters 
1; 
2; �
�
r and S

�
� are changed one at

a time while keeping the others �xed at their original values. The results for S&P 500 (posterior

means and 95% con�dence sets) are summarized in Table 1. Findings for NASDAQ are similar

and thus omitted. The changes in the priors have little e¤ect on � and ��, while at the same time

they a¤ect the posteriors of p and ��. When using priors favoring smaller (i.e., larger ��r or smaller

S��) or more frequent (i.e., larger 
1 or smaller 
2) shifts, the posterior distributions of p and ��

also move in the same direction. The most substantial e¤ect is that of ��r and S
�
� on ��. This is

unsurprising because the shifts are rare and �� gets updated only when a shift occurs. Therefore,

the strong e¤ect of the prior is not particular to the current model, but rather re�ecting a common

feature of all models with rare shifts. In spite of the di¤erences in parameter estimates, upon

plotting the estimated level shift components in the eight cases, we �nd that they are very similar

to the one reported in Figure 2. (The details are omitted to save space.) Thus the key �ndings

reported above stay qualitatively the same under the eight priors considered here.

6.2 Does the model explain key features of the data?

We consider three issues. First, we assess the �t of our model using some standard diagnostic

statistics. Second, we estimate standard SV models using the subsamples identi�ed by our model
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to assess the time variations in � and � (c.f. (3)). This allows us to look into two issues: (1)

whether assuming a constant � is consistent with the data and (2) whether the changes in �

are statistically signi�cant. Third, and more importantly, we analyze simulated arti�cial samples

using the estimated parameter values (the posterior means). These allow us to examine whether

our model explains the key feature of the data shown in Figures 1, the path the log-periodogram

estimates of the long-memory parameter take as a function of the number of frequency ordinates

used.

Figure 6 presents a normal QQ plot of the estimated residuals for the model �tted to the

S&P 500 return series and the autocorrelations for various transforms of these residuals. The QQ

plot shows that the residuals are slightly skewed to the left but otherwise closely follow a standard

normal distribution. We experimented with di¤erent subsamples and the results were identical. The

autocorrelations suggest that no signi�cant correlation remains in the log and power transforms of

the standardized returns (xt=�t).

Table 2 reports the posterior means and 95% credible sets of � and � estimated using subsamples.

The periods corresponding to the two market crashes are excluded because they have too few

observations. The same priors as in the full sample case are used throughout. For S&P 500 returns,

the estimates of � are between 0.866 and 0.979. For NASDAQ returns, they are between 0.804 and

0.965. The 95% credible sets overlap in both cases. They also overlap with the 95% credible sets

obtained using the full sample, in which case they are (0.934,0.974) and (0.899, 0.948) respectively.

Therefore, the results support the modeling assumption that � remains constant throughout the

sample. In contrast, the credible sets for � vary signi�cantly over time. There is no single value of

� that is contained in all the credible sets. This is true for both S&P 500 and NASDAQ returns.

To further understand the implications of our model and better assess its di¤erences with others,

we examined the time and spectral properties of the simulated samples. To this end, we generated

500 samples of size n = 7823, using � = 0:956; �� = 0:152; �� = 1:623; �t � B(1; 0:00218) and

(h1; �1) = (0:539;�0:232): For each simulated sample, we computed the log-periodogram estimates
of the long-memory parameter using a wide range for the number of frequency ordinates. The

averages over the 500 samples are reported in Figure 7. They generate patterns closely resembling

those of the actual data depicted in Figure 1. We believe this clearly indicates the relevance of our

model for describing the volatility of the return series analyzed. Similar results were obtained for

the NASDAQ series, the details of which are omitted.
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6.3 Comovement with business cycle indicators

It has long been of interest to study the connection between stock market volatility and business

cycle conditions (Schwert, 1989). Here, we examine comovements between the estimated volatility

components and nine indicator variables for the U.S. economy. The �rst eight indicators are business

cycle leading indicators, including interest rate spread, consumer sentiment, money supply growth,

vendor performance, new orders for capital goods, average weekly work hours, new building permits

and initial claims for unemployment insurance. The ninth variable is the Coincident Index for the

US economy. Detailed de�nitions and the data source are in Appendix 4. We report results

from bivariate linear regressions of the indicator variables on the estimated volatility components.

Special attention is paid to how the R2 and statistical signi�cance change when di¤erent volatility

components are included. Note that when considering the Coincident Index, the regressor is lagged

by two quarters relative to the dependent variable because volatility is expected to lead the business

cycle; the other regressions are run contemporaneously. All regressions use monthly observations

starting at 1992:2 rather than 1980:1 constrained by the availability of observations on the new

orders series. We consider two sample periods: 1992:2-2005:12 and 1992:2-2010:12. Their di¤erence

is informative about the recent �nancial crisis on the comovements between variables.

The �rst Panel in Table 3 reports results for the S&P 500 series for the period 1992:2-2005:12.

When the indicator variable is regressed on the level shift component (�t), the estimated slope

coe¢ cient is statistically signi�cant (at 10% or higher level) in six among the nine regressions. The

R2 for the six regressions are between 6% and 31%. When the indicator is regressed on ht, only one

regression produces a statistically signi�cant coe¢ cient. This pattern is further strengthened by

regressing the indicator on �t+ht. The resulting R
2 generally decreases relative to the regression on

�t (except for the money supply and work hour series, whose R
2 increase by 0.01) and the coe¢ cient

tends to become less signi�cant. We also considered reversed regressions by regressing �t and ht

on the eight leading indicators in the table. The adjusted R2 equals 64% for �t and 9% for ht. The

�ndings for the NASDAQ volatility series are qualitatively similar. Clearly, these results do not

have any causal interpretation. However, they do strongly suggest that the level-shift component

is closely linked to business cycle �uctuations while ht is not. Consequently, after isolating the

level shift component from the overall volatility, we observe a stronger volatility-business cycle

relationship.

Table 4 presents the results for the sample period that includes the recent �nancial crisis

(1992:2-2010:12). There, the comovements between the volatility and macroeconomic indicators

are weakened. The R2 generally decreases. Three regression that include interest spread, consumer
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sentiment and new orders no longer show statistical signi�cance. Nevertheless, the overall pattern

remains the same, i.e., the relationship with �t continue to be stronger than with �t + ht.

6.4 Forecasting volatility for S&P 500 and NASDAQ daily returns

We consider one and multi-step ahead forecasts for volatility using a setup similar to that of St¼aric¼a

and Granger (2005). We used the �rst 2000 observations for initial estimation and re-estimated the

model with the addition of 20 observations. In each step, the same priors as discussed in Section

4.2 were used. We then made forecasts for horizons up to 20 days ahead. Filtered states are used

to ensure that only in-sample information is applied when forecasting is conducted. This forecast

speci�cation is labeled recursive. For the standard SV model, we examined two speci�cations: a)

rolling window forecasts with the window size �xed at 2000 and b) recursive forecasts as described

above. We consider rolling window forecasts for the standard SV model to allow it to accommodate

nonstationarity to some extent. This is irrelevant for our level shift model since the issue of

nonstationarity is automatically taken into account via the level shift process.

Our metric for comparison follows Andersen, Bollerslev, Diebold and Labys (2003) and is in

the tradition of Mincer and Zarnowitz (1969). We evaluate the relative forecasting accuracy by

considering regressions of the form

x2t;p = b0 + b1�̂
2
t;p + b2�̂

2
t;p;i + ut; (16)

where x2t;p is an unbiased estimate for the volatility at horizon p. Here we use cumulative squared

demeaned returns, i.e., x2t;p =
Pp
j=1 x

2
t+j , although it can be more desirable to use returns at a

higher frequency. Note that the series x2t;p contains large outliers which may have an overwhelming

e¤ect on the measure: To avoid this problem, we discarded observations whose absolute values were

above 6%. None were discarded from the NASDAQ series since, in this case, the results did not

change. After discarding, we were left with 7803 observations for the S&P 500 series and 7823

for the NASDAQ series. In the above, �̂2t;p denotes the p-step ahead forecast from the level shift

model (label LS) and �̂2t;p;i denotes the forecast from one of the following four models: a) SV

without level shifts in which forecasts are obtained using a recursive method (labeled SV-Rec), b)

SV without level shifts in which forecasts are obtained using a rolling window (labeled SV-Rol), c)

FIGARCH with forecasts obtained using a recursive method (labeled FIG-Rec) and d) FIGARCH

with forecasts obtained using a rolling window (labeled FIG-Rol). The level shift model can be

said to generate better (or no worse) forecasts than a competitor if the values (0; 1; 0) are in the

con�dence intervals for (b0; b1; b2), respectively. We estimate regression (16) for forecast horizons

between 1 and 5 days. Table 5 presents the parameter estimates, their 95% con�dence intervals
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and the adjusted R2 from the corresponding regression. Out of the 40 regressions, there are 37

regressions with (0; 1; 0) lying inside the con�dence intervals for (b0; b1; b2). In the S&P 500 case,

the intervals for b1 is in general quite wide and in many case the intervals for b2 also include 1.

This suggests the level shift model performs similarly to the other models, but do not dominate

them. In the NASDAQ case, the evidence clearly favors the level shift model.

In summary, the forecasting performance of the proposed model is at least comparable and can

be better than the standard SV and FIGARCH models. This shows that the level shift component

is not a modeling convenience allowing for a better in-sample �t. The result also contrasts with

the common perception that structural change models are not useful for forecasting. Pesaran,

Pettenuzzo and Timmermann (2006) provided another interesting example in which they considered

forecasting U.S. Treasury bill rates. They found that accounting for structural changes leads to

better out-of-sample forecasts compared to a variety of alternative methods.

7 Conclusion

This paper has provided a framework for modeling, inference and forecasting of volatility in the

presence of level shifts of random timing, magnitude and frequency. We showed that a very simple

stochastic volatility model incorporating both a random level shift and a short-memory component

provides a good in-sample �t of the data and produces forecasts that are no worse, and sometimes

better, than standard stationary short or long-memory models. These results are encouraging

because the model can be extended in several directions to provide a deeper understanding of the

structure of volatility and improve forecasting performance. This could be done by incorporating

covariates into the model. Such extensions are not trivial, though we feel that our results point to

the need for work along these lines.
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Appendix 1: The mixture of Kim, Shephard and Chib (1998)

As stated in Section 4, "�t is approximated by a mixture of normals: "
�
t
d�
PK
i=1 qiN(mi; �

2
i ).

We set K = 7 and qi, mi and �2i are the same as in Kim, Shephard and Chib (1998):

i 1 2 3 4 5 6 7

qi 0.00730 0.10556 0.00002 0.04395 0.34001 0.24566 0.25750

mi -10.1299 -3.97281 -8.56686 2.77786 0.61942 1.79518 -1.08819

�2i 5.79596 2.61369 5.17950 0.16735 0.64009 0.34023 1.26261

:

Appendix 2: SV model in state space form and the Kalman �lter

To relate the model to the state space modeling literature, we write it as follows:

yt = Z�t +Gtut; (A.1)

�t+1 = T�t +Htut;

where yt = log(x2t + c)� E(log "2t ), �t = (ht; �t)0, ut � i:i:d: N(0; I3), Z = (1; 1), Gt = (�(!t); 0; 0)
with !t = j denoting the jth component in the mixture,

T =

0@ � 0

0 1

1A and Ht =

0@ 0 �� 0

0 0 ���t

1A .
The initial state is �0 = 0 and �1 � N(0; P ), where P = 1� 106; indicating a di¤use prior.

Given the locations of shifts � and the realization of the mixture !, (A.1) reduces to a standard
linear Gaussian state space model, consequently the standard Kalman �ltering algorithm to con-
struct the likelihood function can be applied without modi�cation. The steps involved are as follows.
Let at = E(�tjy1; :::; yt�1) and Pt = E(at��t)(at��t). Then for t = 1; :::; n; the Kalman �lter uses
the following recursions (see De Jong, 1991 and De Jong and Shephard, 1995): et = yt�Zat; Dt =
ZPtZ

0 +GtG0t;Kt = (TPtZ
0)D�1t ; at+1 = Tat +Ktet and Pt+1 = TPt(T �KtZ)0 +HtH 0

t, with the
initialization a1 = 0 and P1 = P . Also,

Ht =

0@ 0 �� 0

0 0 0

1A if �t = 0 and Ht =

0@ 0 �� 0

0 0 ��

1A if �t = 1.

Appendix 3: The simulation smoother

We adapt the simulation smoother of De Jong and Shephard (1995) to sample from

f(R;�1j�; ��; ��; �; !; y) = f(Rj�; ��; ��; �; !; y)f(�1j�; ��; ��; �; !; y;R): (A.2)
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Let et; Dt and Kt be the output obtained from applying the Kalman �lter discussed in Appendix
2 and de�ne Ft (t = 1; :::; n) as

Ft =
�
0 1 0

�
if �t = 0 and Ft =

0@ 0 1 0

0 0 1

1A if �t = 1: (A.3)

Starting from rn = 0 and Un = 0, apply the following backward recursion for t = n; n � 1; :::; 1:
Ct = Ft(I �H 0

tUtHt)F
0
t ; zt � i:i:d: N(0; Ct), Vt = FtH 0

tUtLt, rt�1 = Z
0D�1t et +L

0
trt � V 0tC�1t zt and

Ut�1 = Z 0D
�1
t Z+L

0
tUtLt+V

0
tC

�1
t Vt, where Lt = T �KtZ. We also draw z�t � N(0; 1) independent

of zt if �t = 0, and computeeRt = (FtH 0
trt + zt; z

�
t )
0 if �t = 0 and eRt = FtH 0

trt + zt if �t = 1:

Save Rt = Diag(��; ��) eRt. Finally, set �1 = Pr0. Then, the values of R = (R1; :::; Rn) and �1
yield draws from (A.2). The validity of this algorithm can be veri�ed along the lines of De Jong
and Shephard (1995, p. 348-349). We omit the details.

Appendix 4: Data used in the empirical application

The datasets were retrieved from the web page of the Federal Reserve Bank of St. Louis. They
contain monthly observations from 1992-02 to 2010-12.

1. Interest Rate Spread: 10-Year Treasury Bond minus Federal Funds Rate. Series ID: GS10 and FED-
FUNDS. Source: Board of Governors of the Federal Reserve System. Not Seasonally Adjusted.

2. University of Michigan: Consumer Sentiment Index. Series ID: UMCSENT. Source: Survey Research
Center: University of Michigan. Not Seasonally Adjusted.

3. Money Supply Growth (M2). Series ID: M2SL. Source: Board of Governors of the Federal Reserve
System. Compounded Annual Rate of Change. Seasonally Adjusted.

4. Supplier Deliveries Index: Manufacturing. Series ID: NAPMSDI. Source: Institute for Supply Man-
agement. Seasonally Adjusted. Natural logarithm used in the regression.

5. Manufacturers�New Orders: Nondefense Capital Goods Excluding Aircraft. Series ID: NEWORDER.
Source: Department of Commerce: Census Bureau. Seasonally Adjusted. Natural logarithm used.

6. Average Weekly Hours of Production and Nonsupervisory Employees: Manufacturing. Series ID:

AWHMAN. Source: U.S. Department of Labor: Bureau of Labor Statistics. Seasonally Adjusted.

7. New Private Housing Units Authorized by Building Permits. Series ID: PERMIT. Source: Department
of Commerce: Census Bureau. Seasonally Adjusted. Natural logarithm used.

8. Four-Week Moving Average of Initial Claims for Unemployment Insurance. Series ID: IC4WSA.

Source: U.S. Department of Labor: Employment and Training Administration. Seasonally Adjusted.

Natural logarithm used in the regression.

9. Coincident Economic Activity Index for the United States. Series ID: USPHCI. Source: Federal

Reserve Bank of Philadelphia. Percent Change. Seasonally adjusted.
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Table 2. Results from estimating SV models using subsamples
S&P 500 returns

Sample period #Obs � �

Posterior mean 95% credible set Posterior mean 95% credible set
1/2/80�10/9/87 1966 0.979 [0.961,0.991] -0.267 [-0.499,-0.008]
Crash period � � � � �
1/18/88-2/4/92 1025 0.866 [0.622,0.964] -0.335 [-0.503,-0.154]
2/5/92-6/21/96 1108 0.912 [0.760,0.976] -1.181 [-1.370,-0.992]
6/24/96-8/28/98 552 0.950 [0.885,0.987] -0.176 [-0.601,0.292]
8/31/98-4/24/03 1168 0.965 [0.934,0.987] 0.574 [0.280,0.883]
4/25/03-2/26/07 966 0.977 [0.950,0.993] -0.802 [-1.184,-0.434]
2/27/07-9/3/08 384 0.966 [0.917,0.992] 0.220 [-0.379,0.876]
Crash period � � � � �
6/3/09-12/2/10 381 0.954 [0.896,0.989] 0.076 [-0.458,0.685]

NASDAQ returns
Sample period #Obs � �

Posterior mean 95% credible set Posterior mean 95% credible set
1/2/80-8/3/84 1162 0.926 [0.869,0.967] -0.620 [-0.833, -0.395]
8/6/84-10/8/87 803 0.854 [0.737,0.938] -1.313 [-1.532,-1.109]
Crash period � � � � �
2/4/88-7/16/90 618 0.913 [0.820,0.972] -1.309 [-1.576,-1.025]
7/17/90-6/19/95 1246 0.928 [0.859,0.972] -0.540 [-0.753,-0.330]
6/20/95-8/20/98 801 0.917 [0.847,0.964] -0.011 [-0.245,0.217]
8/21/98-12/31/99 344 0.944 [0.850,0.991] 1.176 [0.695,1.688]
1/3/00-4/20/01 328 0.965 [0.917,0.992] 2.242 [1.595,2.944]
4/23/01-4/22/03 499 0.931 [0.796,0.986] 1.430 [1.163,1.646]
4/23/03-7/28/04 319 0.804 [0.524,0.959] 0.385 [0.247,0.522]
7/29/04-7/18/07 747 0.943 [0.870,0.984] -0.352 [-0.552,-0.145]
7/19/07-9/12/08 292 0.839 [0.586,0.970] 0.709 [0.535,0.870]
Crash period � � � � �
6/2/09-12/2/10 381 0.950 [0.882,0.988] 0.240 [-0.253,0.761]



Table 3. Comovement between volatility components and business cycle indicators
(Sample period: 1992.2-2005.12)

Panel (a). S&P 500
�t ht �t + ht

coe¢ cient
(t-stat)

R2 coe¢ cient
(t-stat)

R2 coe¢ cient
(t-stat)

R2

Interest spread �0:81
(�3:29)

�� 0.16 �0:02
(�0:06)

0.00 �0:57
(�1:46)

0.12

Consumer sentiment 6:71
(1:83)

� 0.23 �2:56
(�0:89)

0.00 4:20
(�1:54)

0.12

Money supply 3:37
(6:22)

�� 0.27 2:68
(2:15)

�� 0.05 2:83
(6:37)

�� 0.28

Vendor performance �0:03
(�1:85)

� 0.06 0:01
(0:35)

0.00 �0:02
(�1:83)

� 0.04

New orders 0:12
(1:81)

� 0.31 0:03
(0:79)

0.00 0:09
(1:84)

� 0.24

Work hours �0:00
(�0:72)

0.03 �0:00
(�1:33)

0.02 �0:00
(�0:91)

0.04

Building permits 0:11
(1:53)

0.15 0:04
(0:88)

0.00 0:08
(1:38)

0.12

UI claims �0:01
(�0:25)

0.00 0:04
(1:10)

0.01 �0:00
(�0:09)

0.00

Coincident Index �0:14
(�4:26)

�� 0.23 �0:08
(�1:19)

0.02 �0:11
(�3:87)

�� 0.21

Panel (b). NASDAQ
�t ht �t + ht

coe¢ cient
(t-stat)

R2 coe¢ cient
(t-stat)

R2 coe¢ cient
(t-stat)

R2

Interest spread �0:56
(�2:80)

�� 0.15 �0:45
(�0:97)

0.01 �0:49
(�1:86)

� 0.14

Consumer sentiment 3:94
(1:68)

� 0.15 1:01
(0:35)

0.00 3:33
(1:59)

0.13

Money supply 2:38
(6:50)

�� 0.26 2:27
(1:70)

� 0.06 2:15
(6:10)

�� 0.25

Vendor performance �0:22
(�1:88)

� 0.06 �0:01
(�0:41)

0.00 �0:02
(�1:46)

0.06

New orders 0:09
(2:38)

�� 0.30 0:01
(0:21)

0.00 0:07
(2:49)

�� 0.25

Work hours �0:00
(�1:36)

0.10 0:00
(0:11)

0.00 �0:00
(�1:22)

0.08

Building permits 0:08
(1:53)

0.16 �0:00
(�0:06)

0.00 0:07
(1:70)

� 0.13

UI claims �0:00
(�0:12)

0.00 0:00
(0:00)

0.00 �0:00
(�0:08)

0.00

Coincident Index �0:13
(�4:21)

�� 0.39 �0:04
(�0:51)

0.00 �0:12
(�3:87)

�� 0.34

Note. The t-stat is computed with HAC standard errors. The bandwidth is determined using Andrews�
(1991) method with the quadratic spectral kernel. * and ** denote signi�cance at 10 and 5 percent level,
respectively.



Table 4. Comovement between volatility components and business cycle indicators
(Sample period: 1992.2-2010.12)

Panel (a). S&P 500
�t ht �t + ht

coe¢ cient
(t-stat)

R2 coe¢ cient
(t-stat)

R2 coe¢ cient
(t-stat)

R2

Interest spread �0:16
(�0:37)

0.01 0:17
(0:51)

0.00 �0:09
(�0:28)

0.00

Consumer sentiment �2:80
(�0:51)

0.03 �4:04
(�1:25)

0.01 �2:59
(�0:65)

0.03

Money supply 2:72��
(5:30)

0.20 3:05
(2:83)

�� 0.05 2:39
(5:71)

�� 0.21

Vendor performance �0:03��
(�2:64)

0.09 �0:00
(�0:10)

0.00 �0:02
(�2:11)

�� 0.07

New orders 0:07
(0:96)

0.10 0:01
(0:33)

0.00 0:05
(1:04)

0.08

Work hours �0:01
(�1:97)

�� 0.15 �0:00
(�1:27)

0.01 �0:01
(2:11)

�� 0.13

Building permits �0:14
(�0:85)

0.09 �0:02
(�0:21)

0.00 �0:11
(�0:93)

0.07

UI claims 0:08
(1:37)

0.13 0:05
(1:34)

0.01 0:07
(1:58)

0.12

Coincident Index �0:19
(�4:47)

�� 0.28 �0:12
(�1:71)

� 0.02 �0:16
(�4:29)

�� 0.25

Panel (b). NASDAQ
�t ht �t + ht

coe¢ cient
(t-stat)

R2 coe¢ cient
(t-stat)

R2 coe¢ cient
(t-stat)

R2

Interest spread �0:26
(�0:71)

0.03 �0:34
(�0:85)

0.00 �0:24
(�0:75)

0.03

Consumer sentiment 0:68
(0:18)

0.00 �2:12
(�0:66)

0.00 0:36
(0:10)

0.00

Money supply 2:46
(6:00)

�� 0.21 2:80
(2:50)

�� 0.03 2:23
(6:14)

�� 0.22

Vendor performance �0:03
(�2:61)

�� 0.10 �0:01
(�0:59)

0.00 �0:02
(�2:06)

�� 0.09

New orders 0:05
(1:06)

0.08 0:03
(0:65)

0.00 0:05
(1:25)

0.07

Work hours �0:01
(�2:10)

�� 0.16 0:00
(0:21)

0.00 �0:01
(�1:84)

� 0.12

Building permits �0:01
(�0:10)

0.00 �0:04
(�0:43)

0.00 �0:01
(�0:14)

0.00

UI claims 0:04
(0:77)

0.04 0:01
(0:26)

0.00 0:03
(0:78)

0.03

Coincident Index �0:15
(�4:18)

�� 0.24 �0:11
(�1:41)

0.01 �0:13
(�4:16)

�� 0.22

Note. The t-stat is computed with HAC standard errors. The bandwidth is determined using Andrews�
(1991) method with the quadratic spectral kernel. * and ** denote signi�cance at 10 and 5 percent level,
respectively.



Table 5. Estimates from the forecasting regression (16)

S&P 500 NASDAQ
h LS v.s. bo b1 b2 �R2 bo b1 b2 �R2

1 SV-Rec �0:21
(�0:57;0:16)

1:11
(�2:12;4:33)

0:13
(�3:54;3:80)

0.30 0:33
(�0:05;0:70)

1:00
(�0:42;1:58)

�0:33
(�0:94;0:28)

0.25

SV-Rol �0:20
(�0:56;0:17)

1:10
(�2:14;4:35)

0:12
(�3:29;3:52)

0.30 0:32
(�0:09;0:72)

0:74
(�0:28;1:51)

�0:02
(�0:87;0:83)

0.25

FIG-Rec �0:42
(�0:84;0:01)

0:17
(�2:84;3:18)

1:29
(�2:11;4:69)

0.30 0:36
(�0:17;0:75)

1:70
(0:72;2:67)

�1:17
(�2:20;�0:13)

0.27

FIG-Rol �0:51
(�0:88;�0:15)

�1:06
(�4:04;1:92)

2:64
(�0:60;5:88)

0.33 0:32
(�0:09;0:73)

0:67
(�1:01;2:36)

0:06
(�1:79;1:90)

0.25

2 SV-Rec �0:05
(�0:53;0:43)

0:85
(�0:44;2:14)

0:18
(�1:48;1:83)

0.33 �0:35
(�1:22;0:53)

1:13
(0:48;1:77)

�0:22
(�0:94;0:50)

0.44

SV-Rol 0:05
(�0:31;0:40)

1:12
(�0:03;2:28)

�0:15
(�1:46;1:15)

0.33 �0:38
(�1:29;0:52)

0:81
(0:21;1:42)

0:16
(�0:57;0:89)

0.44

FIG-Rec 0:05
(�0:61;0:72)

1:08
(�0:33;2:50)

�0:12
(�1:82;1:59)

0.33 �0:21
(�1:08;0:66)

1:83
(0:90;2:76)

�1:08
(�2:12;�0:04)

0.45

FIG-Rol �0:09
(�0:77;0:59)

0:56
(�1:56;2:68)

0:49
(�1:93;0:33)

0.33 �0:39
(�1:25;0:47)

1:22
(0:15;2:28)

�0:31
(�1:48;0:87)

0.44

3 SV-Rec 0:23
(�0:44;0:90)

0:85
(�0:10;1:80)

0:45
(�1:24;1:33)

0.37 0:01
(�1:07;1:08)

0:94
(0:36;1:51)

�0:13
(�0:86;0:61)

0.51

SV-Rol 0:33
(�0:15;0:82)

1:09
(0:19;2:00)

�0:24
(�1:32;0:83)

0.38 �0:05
(�1:13;1:04)

0:65
(0:13;1:16)

0:22
(�0:46;0:91)

0.51

FIG-Rec 0:38
(�0:46;1:21)

1:08
(0:08;2:07)

�0:24
(�1:51;1:03)

0.38 0:13
(�1:05;1:30)

1:24
(0:41;2:06)

�0:50
(�1:55;0:55)

0.52

FIG-Rol 0:19
(�0:59;0:98)

0:69
(�0:87;2:26)

0:22
(�1:59;2:02)

0.38 �0:03
(�1:04;0:99)

0:96
(0:09;1:83)

�0:15
(�1:14;0:84)

0.51

4 SV-Rec 0:30
(�0:55;1:15)

0:61
(�0:47;1:69)

0:31
(�1:08;1:70)

0.41 �0:60
(�2:79;1:59)

0:77
(0:35;1:20)

0:22
(0:22;0:66)

0.52

SV-Rol 0:51
(�0:06;1:08)

0:83
(�0:15;1:82)

0:02
(�1:10;1:14)

0.41 �0:54
(�2:67;1:59)

0:96
(�0:02;1:95)

�0:03
(�1:05;1:00)

0.52

FIG-Rec 0:60
(�0:26;1:45)

0:95
(�0:15;2:04)

�0:12
(�1:41;1:18)

0.41 �0:61
(�2:84;1:62)

0:82
(0:05;1:59)

0:15
(�0:78;1:07)

0.52

FIG-Rol 0:57
(�0:09;1:24)

0:99
(�0:27;2:24)

�0:15
(�1:50;1:20)

0.41 �0:54
(�2:69;1:61)

0:93
(0:07;1:79)

0:01
(�0:98;1:00)

0.52

5 SV-Rec �0:14
(�0:88;0:59)

0:30
(�0:40;1:01)

0:73
(�0:19;1:65)

0.50 �0:35
(�2:77;2:08)

0:76
(0:39;1:13)

0:18
(�0:25;0:61)

0.58

SV-Rol 0:22
(�0:29;0:73)

0:41
(0:23;1:05)

0:53
(�0:20;1:26)

0.50 �0:27
(�2:61;2:06)

0:91
(0:13;1:69)

�0:01
(�0:83;0:80)

0.57

FIG-Rec 0:09
(�0:65;0:84)

0:45
(�0:24;1:13)

0:51
(�0:30;1:33)

0.50 �0:56
(�2:96;1:85)

0:55
(�0:05;1:15)

0:44
(�0:23;1:12)

0.58

FIG-Rol 0:43
(�0:23;1:09)

0:68
(�0:16;1:52)

0:21
(�0:69;1:10)

0.49 �0:27
(�2:63;2:09)

0:85
(0:03;1:68)

0:05
(�1:00;1:09)

0.57

Note. The con�dence interval is obtained using HAC standard errors.





Figure 2: Results for S&P500 volatility
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Figure 3: Results for S&P500 volatility (cont'd)
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Figure 4: Results for NASDAQ volatility

1980 1985 1990 1995 2000 2005 2010

-1
5

-5
0

5
15

a) the return series

1980 1985 1990 1995 2000 2005 2010

-3
-1

1
3

b) smoothed estimates of the level shift component and the log volatility

level shifts
log volatility

1980 1985 1990 1995 2000 2005 2010

0.
0

0.
4

0.
8

c) smoothed estimates of the probability of level shifts



Figure 5: Results for NASDAQ volatility (cont'd)
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Figure 6: Diagnostic results for S&P500

●

●

●
●

●

●
●

● ●
●

●●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●●

●
●

●
●

●

●

●
●

●
●

●
●

●
●●●

●

●
●●●●●

●
●

●

●

●

●
●

●

●
●

●
●●

● ●

●
●

●●

●

●

●●

●

● ●●
● ●

●
●●

● ●

●

●

●●
●

● ●

●

●●

●
●

●
●

●

●

●

●

●

●

●●
●●●

●

● ●

●
●● ●●

●

●

●
●

●
●

●

●

●

●

●
●

●

● ●
●●

●
●

●

●●
●

●●●
● ●

●
●

●

● ●

●

●

●
●●

●●
● ●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●●

●

● ●
●

●

●●
●

●

●
●●

●

●

●

● ●

●●●

●

●●●

●●

●

●
●

●

●
●

●

●
●

●

●
●●

●

●●●
●

●

●
●

●
●● ●

●●
●

●

●
●

●
●

●

●
●

●

●

●

●
●●

●

●
●●

●

●●

●

●
●

●
● ●●●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●
●

●
● ●

●

●●

●
●

●●

●●

●

●
●

●

●

●

●

●

● ●
●

● ●●●

●
●

●
●

●

●

● ●

●

●●
●

●

● ●

●

●

●

●

●

●

●
●

●
●●

● ●●

●
●

●

● ●●
●● ●

●

●
●

●
●●

●
●

●●

●

●
●

●
●

●
●

●
●

●●●

●●

●

●

●●

●

●

●

●●

●
●

●

●

●●

●●●
●

●

●

●
●

●

●

●

●●
●

●

●
●

●
●

●
●●

●

●

● ●

●

●●
●

●

●
●

●

●
●

●
●

● ●

●

●
●●

●●

●

●

●
●

●

●

●
● ●

●

●

●
●

●
●

●
●

●

●

●
●

●●

●●●
●

●●

●●●

●

●
●

●

●

●

●

●● ●

●
●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●●●●
●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●●
●

●
●

●

●
●

●

● ●●
●●

●

●

●

●●

●

●
●●

● ● ●
●

●●

●

●

●
●

●

● ●●
●

●●
●

●

●●
●

●
●

●

●
●●

●

●

●

●
●●

●
●

●
●

●●

●

●
●●●

● ●
●

●
●

●

●

●
●

●

●
●●

●●●
●

●
●

●

●
●

●
●

● ●●●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

● ●

●

●
●

●

●●●

●
●

●

●

●
●●

●
●

● ●

●

●
●

●
●● ●

●

●

●
●

●

●

●

●●

●

●●

●

●
●●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●●

●

●

●●●

●

●

●
●

●
●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

● ●

●

●
●

●●
●

●

●

●

●

●

●

●

●●
●●

●

●

●
●●

●

●

● ●

●

●

●

●

●●
●

●

●
●

● ●

● ●

●

● ●●
● ●

●

●

●
●

●

●

●

●●

●

●
●●

●

● ●

● ●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●●

●
●

● ●
●

●
●●

●●

●
●

● ●

●
●

● ●
●

●

●

●
●

●

●

●
●

●
●

●

●

●●
●●

●●●

● ●
●

●

●

●

●●

●
●

●

●

●

●

●●

●●
●

●
●●

●

●
●

●

●●●

●
●

●

●

●●●

●

●

● ●

●
●●●

●
●

●
●

●

●

●

●
●● ●

●

●

●

●

● ●

●
●

●

●●

●

●
● ● ●

●

●

●

●

●

●
●

●

●●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●●

●

● ●

●
●

●
●

●

●
●

●
●

●
●●

●
● ●

●●●●

●

●
●

●
●

●
●

●

●●

●

●

●
●

●

●

●●●
●

● ●

●

●

●

●
●●

●●●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●●
●

● ●

●

●● ●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

● ●

● ●

●
●

●
●●●●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

● ●●
●●

●
●●

●

●
●

●

●

●

●

●●●

●● ●●●

●●●

●
●

●● ●

●●
●

●

●●
●●

●
●

●

●

●
●●

●

●

●●
●

●
●

●

●

●●●

●

●
●

● ●

●

●

●
● ●●

●
● ●●

●
●●●

●●
●●

● ●

●

●
● ● ●

●●
●

●

●

●

●
●

●

●
●

●
●

●

●●

●
●

●
●

●

●

●

●●
●

●

●

●

●
●

●●
●●

●●

●

●●●

●

●●
● ●

●
●●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●●
●

●

●●

●
●

●

●

●

●●
●●

● ●
●

●

●
●

●

●

●

●
●

● ●

●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●●●●

●

●
●

●
●

●

●●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●●

●
●● ●

●

●
●

●
●

●

●●
●

●

●

●

●

●
●

●

●
●●

●
●●

●●

●

●●

●
●●

●

●

●

●

●

●
●

●

●●

●

●
● ●

●●

●

●

●

●●●
●●

●

●

●
●

●

●
●

●●
●●●●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●
●●

●
●

●

●

●●
●

●●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●

● ●
●

●

●
●

●
●

●●

●

●
●

●

●

●
●

●
●

●
●

●●
●●

●
●

●
●

●
●

●●

●
● ●

● ●

● ●
●

● ●

●

●●

●●
●

●

●
●●

●
●●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●
●

●

●

●●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●●

●
● ●●●

●

●

●

●
●●

●●

●●●●

●
●

●

●

●

●

●

●
●

●●
● ●●

●
●●

●●●
●

●

● ●

●

●

●● ●

●

●
●

● ●
●●

●

●

●
●● ●●

●
●●

●

●

●

●
●

●●
●

●

●

● ●
●

●

●

●
●

●

● ●

●

●
●●

●
●

●

●
●●

● ● ● ●
●

●

●

●

●

●

●●
●

●●●●

●

●●
●

●
●

●

●
●

●
●

●
●

●

●
●

●●

●
●●

●
●

●
●●●●

●

●●
●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●●
●

●

●

●
●

●●●

●

● ●
●

●
●

●

●

●
●

●

●

●
●

●●

●

●
●

●●
●

●
●

●
●

●●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ● ●
●

●
●

●

●●●●

●●●

●

●

●

●

●●

●

●
●

● ●
●

●

●

●

●

●●
●

●
●●

●
●●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●●

●●

●●●
●

●
●

●●

●
●

●

●●

●

●
● ●

●

●

●

●

●

●

●●●

●

●

●●
●●

●
●

●

●

●
●

●●

●

●

●
●

●
●

●
●

●

●●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●●
●

●●

●

●●

●

●

● ●
●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●
● ●

●

●

●
●●

●

●
●

●

●

●
●

●
●

●●

●
●

●

●
●●

●
●

●
● ●

●●

●●

●●

●

●

●

●
●

●● ●
●

●

●

● ●
●

●●

●
●

●●

● ●

●
●

●

●

●

●

●

●
●

● ●●

●

●●●●
●

●
●●

●
●●

●
●

●
●● ●

●

●

●
●●

●
●

●●

●

●
● ●

●

●

●

●
●●

●

●

●
●●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●●

●

●●

●●

●

●
●

●●
●

●●●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●
●

●

●

●

●●
●

●
●●

●

●

●●●
●●

●

●●

●

●● ●
●

●

●

●
●

●
●

●

●●●●●

●●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●●

●●

●●

●

●

●
●●

●●

●
●

●
●●

●

●
●

●

●
●

●

●●●
●

●●●●
●

●

●●
●

●

●
●●

●
●

●● ●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

● ●

●

●
●

●

●
●●●

●

●
●

●

●

●

●

●●

●●●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●●
●●●

●
●

● ●

●

●

●

●
●

●
●

●

●●

●

●

●●
●

●

● ●

●●●
●

●

●

●●
●●

●

●

●

●

●

●

●

●●●

●
●●●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●●
●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●●
●

●
●

●
●

●
●

●
●

●●
●●●

●

●

●●

●

● ●
●

●
●

●●
●●●

●

●

●
●

●

●
● ●●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

●
● ●

●

●
●●●

●

●

●
●

●

● ●●
●●

●
●

● ●

●

●
●

● ●

●
●● ●

●

●
●●

●

●
●

●

●

●

●

●

●●

●

●●

●

●●
●

●

●
●●

●

●

●
●

●

●●
●

●

●

●
●●

●

●●●
●

●

●

●

●

●

●

●

●●

●
●

●●

●

●
●

●

●
●●●

●

●
●●

●●●

●
●●

●
●●●

●

●●

●

●● ●
●

●●●
● ●

●

●

●● ●●

●

●●
●

●

●

●●
●

●

●●●
●

●
●

●●
●

●

●● ●

●
●

●

●●
●

●●

●

●
●

●

●●
●●

●
●

●

●
●

● ●
●●

●
●●

●
●

●

●
●

●

●

●
●●

●
●

●

● ●

●

●

●

●
●

●

●
● ●

●

●

● ●
●

●
●

●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●●

●●

●

●

●●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●●
●

●

●

●● ●

●●
●

●

●

●
●

●

●

●●
●

●
●

●
●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

● ●●●●

●

● ●●

●

●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
● ●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●
●

● ●
●

●
●

● ●

●

●●
●

●

●
●

●
●

●
● ●

●

●

●
●●

● ●●●
●

●

●

●

●
●

●●

●

●●
● ●

● ●●

●

●
●

●

●

●
●●●

●

●

● ●●

●
●

●

● ●
●

●

●

●

●

●●

●

●
●

●●
●

●
●

●

●●
●●●●

●
●

● ●

●
●●

●

●

●

●
●

●

●

●

●●

●

●●
●

●
● ●●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

● ●
●●

●
●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
● ●

● ● ●

●
●

●

●
●

●

●

●
● ●

●●●
●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●
●

●
●●

●

●

●●● ●
●

●
●

●●

● ●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●
●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●●
●

●

●
● ●

●
●

●
● ●

●
● ●●

●
●

●
●

●
●●

●

●

●
●

●
●

●
●

●

●●
●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●

●

●

●
●●

●
●

●●
●●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●●

●

●

●

●

●●
●●

●●
●

● ●
●

●●●●●
●

●
●

●●●
●

●●
●

●

●●
●

●

●

●
●

●
●

●
●

●●

●
●

●

●
●

●●

●

●

●
●

●●
●

●●

●

●

●●

●●
●

●

●●
●

●

●

● ●

●

●
●

●
●

●
●

●

●

● ● ●●

●

●

●
●

●●

●

●
●

●
●

●

●
●● ●

●● ●

●
●

●

●

● ●●
●●

●
● ●

● ●
●

●

●●●

●

●

●

●●

●

●
●

●

●
●

●●●

●
●

●
●

●
●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●● ●
●

●

●

●

●

●
●

●

●

●
●●

●

● ●
●

● ●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●●

●

●●●
●

●●●●

●

●

●
●

●●
●

●
● ●

●

●
●

●

●●

●
●●

●

●

●

●

●

● ●●

●

●●●

●
●●

● ●●
●●

●
●

●

●
●

●
●

●●

●

●

●

●
●

●●
●

●
●

●

●

●

● ●
●

●

●

●
● ●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●
●

●
●●

●

●

●

●●

●

●
●

●●

●

●

●

●
●

●

●
●

●
●

●●

● ●
●

● ●

●

●

●

●
●

●

●

●●
●●

●

●●

●

●

●

●
●

●●
●

● ●

●
●

●

●

●
●●

●●
●

●●

●●●
●

●
●

●

●

● ●●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

● ●

●
●

●●
●

●●

●

●
●

●●

●
●

●●
●

●

●

●

●

●
●

●
●

●
●

●

●

● ●
●

●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●●

● ●

●

●
●●

●●

●

●
●

●

● ●
●

●

●
●

●

●

●

●
●

●●●

●

●
●

●●●

●

●
●●●

●

●

●

●●
●

●

● ●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●●

●
●●

●
●

●
●

●●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●● ●

●
●

●

●
●●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

● ●
●

●●

●

●
●

●●●

●

●

●●● ●

●

●●

●
● ●

●

●
●

●
●●●

●
●

●

●●

●

● ●●●
●

●
●

●

●

●●

●●

●

●

●

●●

●

●
●

●

●

●
●

●●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●
● ● ● ●●●

●●

●

●

●

●
●

●

●

●

●

●

●

●●● ●

●

●
●

●
● ● ●

●

●●
●

●

●

●
●●●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●●

●

●
●

●

●●

●

●
●●

●

●
●●

●

●

●

●●

●

●

●

●

●
●●

●

● ●
●

●

●
●

●

●

●

●
●●●●

●
●

●

●
●

●

●●

●

●●

●

●

● ●●
●

●

●

●
●

●●
●

●

●●●
●

●

●

●
● ●●

●

●
●

●

●

●●●

●
●●

●
●

●

●

●
●●●

●

●● ●
●

●
●

●
●

●

●

●●●

●

●

●

●

●●
●

●

●●
●●

●

●
●●●●

●

● ●●

●

●

●
●

●

●●

●●

●

●

●

●

●
●

●

● ●

● ●

●

●●●●●
●

●
●

●●

●
●

●
●

●
●

●

● ●

●

●

●●

●

●

●

●

●
●

●●
●

●
●●

●

●●

● ●

●
●●

●●

●

●

●
●

●
●

●●

●

●●

●
●

●
●

●
●

●

● ●

●
● ●

●

●

●●
●

●

●● ●●● ●●
●

●

●

●

●●
●

●
●

●
● ●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●
●

●
●

●

●
●

●

●
●

●●
●

●

●

● ●
●

●

●
●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●●

● ● ●
●

●
●

●● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●●

● ●●
●

●

●
●

●●

●

●

●

●
●●

●
●

●

●
●●

●
●

●

●

●●
●

●

●

●

●

● ●

●

●

●●
●

●
● ●

●

●
●

●●

●

●
●●

●
●●

●

●

●

●● ●

●
●

●●
●

●

●

●

●

● ●

●
●

●
●●

●

●

●

●●●
● ●

●

●

●

●

● ●
●●

●
●

●

●

●●
●

●
●

●

●
●

●

●

●●●

●

●●
●

●

●
●

●

● ●
●

●●

●
●

●

●

●

●
●● ●

●
●●

●●

●

●●● ● ●

●
●●

●●
●

●●

●
●

●

●
●

●

●

●
●

●
●

●●
●

● ●
●

●

●●
●

●

●
●

●

●

●● ●

●

●
●

●

●

●
●●

●

●

●
●

●
●●

●

●
●

●

●●

●
●●

●
●

●

●

●●
●

●

●
●

●● ●
●

●●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●●
●

●
●

●

●

●
●

●●

●

●
●●

●

●

●

● ●
●

●

●●
●

●
●

●
●

●

●
●●

●

●

●● ●

●●

●

●

●
●

●
●

●
●●

●

●

●
●

●
●

●
●

●

●●

●

●
●

●
● ●

●

●
●

●●
●

●

●

●

●
●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●●
●●

●

●

●●

●●

●●●
●●

●

●

●

●

●

●●●

●

●
●

●●
●●

●

●●●

●

●

●●●

●●

●

●
●

●●

●
●

●

●

●

●●●
●●

●
●

●
●

●
●●

●
●

●
●

●
●

● ●

●●
●● ●●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●●

●
●

●
●

●
●

●

●

●

●●

●
●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●● ●

●
●

●
●

●
●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●●

●

●
●

●

● ●●
● ●●

●

●

●

●

●

●

●
●●

●

●
●

●

●●
●●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●
● ●

●
●

●

●

● ●●
●●

●
●

●
●

●●
●

●●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

● ●
●

●
●

●

●

●●
●●

●●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●●
●●●●

●

●●
●

●

●

●

●

●●

●

●
●

●
●

● ●
●

●●
●

●
●

●
●

●
●●

●

●
●

●

●● ●● ●

●

●

●●

●

●

●
●

●●

●
●

●
●

●

●
●●

●

●
●

●
●

●●
●

●

●

●

●
●

●
●

●

● ●
●

●

● ●●
●

●

●
●

●

●

●●
●

●

●

●
●

●

●
●

●●
●

●

●

●●
●●

●●

● ●

● ●

●

●●

●
●

●

●

●
●

●

●

●●

●

●

●●
●

●
●

●
●

● ●
●

●

●

●

●
●

●

●

●●

●●

●

● ●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●
●

●
●

●

●

● ●

●

●●

●

●

●

●

●●
●

●●
●

●

●●

●
●

● ●

●

●

●
●

●
●

●
●

●●

●

●

●●

●

● ●●
●

●
●●

●

● ● ●
●●

●

●

●

●
●

●●

●

●
●●

●

●

●

●
●

●

●
● ●

●

●
● ●

●

●
●

● ●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●●●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●●

●

●●

●

●
●

●

●
● ●

●●

●

●

●

●
●

● ●
●

●

●
●

●

●●●

●●

●

●
●

●
●

● ●●●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●●●
●

●
●●

●

●●

●

●

●

●

● ●
●

●●●
●

●

●

●●
●

●
●

●●
●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●●
●●●

●
●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●
● ●

●

●●●

● ●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

● ●
● ●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●●

●
●●●

●

●●
●

●

● ●

●
●

●

●

●

●
●

●
●

●
●

●

● ●

●

●
●●●

●

●
●

● ●
●

●

● ●●

● ●●
●

● ●

●

●

●

● ●

●
●●●

●

● ●

●

●

●● ●

●●

●

●

●
●

●

●

●

●
●

●●●

●●

●

●

●

●●
●

●
●

●

●
●

●

●
●

●

●●●●
●●

●
●

●
●

●

●

●

●

●

●● ●

●
●●

●

● ●

●●
●

●
●

●

●

●●

● ●

●
●●

●●

● ●

● ●● ●
●

●

●
●

●

● ●

●

●

●
●

●

●

● ●●

●

●
●

●

●

●●

●

●

●
●

●

●
●●

●

●

●
● ● ●

●

●
●

●

● ●

● ●
●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●●

●●

●

●

●

●●●
●

●

●●

●
●

●

●
●●

●●

●
●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●●●

●
●

●

●
●

●

●

●
●

●●

●
●

●

●

●●
●

●
●

●

●

●

●●
●

●

●
●

●

●
●

● ●
●

●●

●

●

●

●
●

●

●●
●

●
●

●●
●

●

●
●

●
●

●

●
●

●
●●●

●

●●
●

●●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

● ●●
●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●●

●●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●●●

●

●

●
●

●
●

●
●

●

● ●●
●●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●●
●

●

●

●●●

●

●

●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

● ●
●

●

● ● ●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●● ●● ●
●

●●

●

●

● ●●

● ●

●●

●

●

●
●

●

●●

●●

●

●

●

●
●

●
●●

●
●

●
●

●

● ●
●

●

●

●

●

●
●

●

●
●●

●
●●

●

●
●

●
●

●●

●

●

●
●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●
●

● ●

●

●
●

●

●

●●●
●●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●
●

●

●●
●

●

●
●

●

● ●

●
●

●●

●●

●

● ●

●

●

●●

●●●●

●
●

●
●●●

●●

●

●

●
●

●

●
●

●
●

●●

●

● ●●

●

●●

●

●
●●

●
●

●

●
●

●
●

●

●●●

●
●

●

●
●

●

●

●

●

●
●

● ●●
●

●●
●

●

●●
●

●

●

● ●

●

●
●

● ●
●

●

●

●

● ● ●

●

●
●●

●

●

●
●

●

●

●

●●

●●
●

●

●●
●

●

●

●
●

● ●●
●

●

●
●

● ●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●●●

●

●

●●● ● ●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●● ●●

●

●●

●

●

●

●
●●

●

●

●

●

●●
●

●

●

●

●

●

●

●● ●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●●

●
●●●●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

● ●
●

●

●

●
●

●

●

●
●●●●●

●

●

●

●

●
●

●

●
●

●●
●●

●●
●

●
● ●

●

●

●
●●

●

●
●

●
●

●
●

●

●
●●

●

●

●●
●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●
●●

●
●

●

●
●●

●

●

●●

●
●●

●

●

●

●

●●
●

●

●●●●
●

●●
●

●

●

●

●

●

●●●

● ●

●
●

●

●

●

●●
●

●
●

●

●
●

●

●

●
●

●
●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●●

●

●

●
●

●

●
●

●
●

●
●●●

●

●
●

●

●

● ●

●
●

●

●
●

●
●●●

●
●

●
●

●
●

●

●

●
●●

●

●

●
●

●●

● ●
●●

●

●

●

●
● ●

●

●

●●

●

●●●

●

●
● ●

●

●●

●

●
●

●

●●

●

● ●
●

●●●●
● ●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●
●

●●

●
●

●
●

●
●

●

●
●

●

●●
●●

●

●

●

●
●

●

●●

● ●●
●

● ● ●
●

●
●

●●

●●
●

●●
● ●

●

●
●

● ●

●

●

●
● ●

●

●●
●

●
●

●

● ●●

●●

●
●

●

●

● ●
● ●

●

●
●

●

●●●

●

● ●

●

●●

●

●
●●

●●
●

●

●

●

●●

●

●

●
●●●

●

●
●

●

●
●●

●●

●

●

●

●

●

● ●

● ●

●

●

●

●●

●

●●

●
●

●
●●

●

●

●

●
● ●●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

● ●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●
●

●

●
●

●
●

●

●

●
●

●

● ●
●●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●

●
●

●

●
●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●

●

●

●

●
●●

●

●

●●
●

●

●
●

●
●

●

●

●●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●● ●

●

●

● ●●●
●●

●

●

●
●

●

●

●

●
●

● ●●
●●●

●

●
●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●●●●

●
●

●

●

●

●●

●

●
●

●
●●

●

●

●●
●

●

● ● ●

●

●
●

●

●

●

●●●

●

●
●●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●●

●
●

●●
●

●

● ●
●

●
● ●

●

●
●

●

● ●
●

●

●

●

●●

●
● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●●

●

●

●●

●

●●
●

●

● ●
●

●●

●●

●
●

●

●

●●

●

●●

●

●

●

●
●

●

●
●

●
● ●

●●
●

●
●

●

●
●

●

●

●●

●

●

● ●

●

●

●
●● ●

●

●
●

●
●

●

●
●

●

●

●●
●

●

●
●●

●

●

●●●
●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●●
●

●

●

●
● ●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●●
●

●
●

●

●
●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●
●

●
●●

●

●●
●●

●

●

●

●
●●

●

●
●

●
●

●

●

●● ●
●

● ●● ●
●

●

●

●

●
●

●● ●

●
●●

●

●
●

●

●

●● ●

●

●●

●

●

●●

●
●●●

●

●

●

●

●

●●

●

●●
●

●

●

●

●●●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

● ●● ●

●
●

●

●
●

●● ●
●● ●

●

●

●● ●●●

●

●
●

●

●

●
●●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●
●

●

●●
●

●

● ●
●●

●●

●●
●

●

● ●

●
● ●

●
●

●

●●
●

●

●
●

●●

●

●

●

● ●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●
●

●

●●●
●

●
●

●

●●

●

●
●●

●

●

●●
●

●

●●

●

●
●

●

●

● ●

●
● ● ●

●

●

●
●●

●

●

●

●● ●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●●●
●

●
●

●●

●

●●
●

●

●

●
●●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●●●●●
●●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
●●

●

● ●

●

●

● ●

●
●

●
●●●

●
●

−4 −2 0 2 4

−
4

−
2

0
2

4

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

a) Normal Q−Q plot

0 100 200 300 400 500

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

b) Autocorrelations: log squared residuals
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b) Autocorrelations: absolute value of residuals
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