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Abstract

This paper builds upon the composite likelihood concept of Lindsay (1988) to de-

velop a framework for parameter identi�cation, estimation, inference, and forecasting

in DSGE models allowing for stochastic singularity. The framework consists of the

following four components. First, it provides a necessary and su¢ cient condition for

parameter identi�cation, where the identifying information is provided by the �rst and

second order properties of nonsingular submodels. Second, it provides an MCMC based

procedure for parameter estimation. Third, it delivers con�dence sets for structural

parameters and impulse responses that allow for model misspeci�cation. Fourth, it gen-

erates forecasts for all the observed endogenous variables, irrespective of the number of

shocks in the model. The framework encompasses the conventional likelihood analysis
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as a special case when the model is nonsingular. It enables the researcher to start

with a basic model and then gradually incorporate more shocks and other features,

meanwhile confronting all the models with the data to assess their implications. The

methodology is illustrated using both small and medium scale DSGE models. These

models have numbers of shocks ranging between one and seven.

Keywords: Business cycle, dynamic stochastic general equilibrium models, identi�-

cation, impulse response, MCMC, stochastic singularity.

JEL Codes: C13, C32, C51, E1.

1 Introduction

Economic theory allows the number of structural shocks in DSGE models to be di¤erent from

the number of observed endogenous variables. When the former is smaller than the latter, the

model becomes stochastically singular. This poses a challenge for estimation, inference and

forecasting. Several approaches have been undertaken to bridge the gap between likelihood

based methods and stochastic singularity. The �rst approach allows for measurement errors,

see Sargent (1989), Altug (1989), McGrattan (1994), Hall (1996), McGrattan, Rogerson and

Wright (1997) and Ireland (2004). Although this approach is widely applicable, the actual

content of these errors can be ambiguous. The second approach adds structural shocks to

the model to make it nonsingular. This alters the economic model, which may or may not

re�ect the intention of the researcher. As theory progresses, DSGE models are expected to

take on the challenge of incorporating additional endogenous variables (e.g., those from the

�nancial or the �scal sector). Therefore, allowing for a �exible link between the number of

structural shocks and endogenous variables can become even more desirable.

The third approach involves treating some of the observables as unobserved when con-

structing the likelihood. Studies have documented that di¤erent choices of observables can

have large impacts on identi�cation, estimation and forecasting, see Fernández-Villaverde

and Rubio-Ramírez (2007), Guerron-Quintana (2010) and Del Negro and Schorfheide (2013).
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Recently, Canova, Ferroni and Matthes (2014) drew further attention to this issue. They

proposed two methods for choosing exactly k observables for a model with k shocks by build-

ing on the convolution idea of Bierens (2007) and the identi�cation condition in Komunjer

and Ng (2011). However, under stochastic singularity, the decision to exclude observables

often is not motivated by economic considerations, but rather because otherwise limited

econometric methods are available. It is desirable to break this rigid link, embracing that

there is often no compelling economic reason for why the number of structural shocks should

determine the number of observables used for estimation.

This paper develops a likelihood based framework for analyzing DSGE models, which

does not require adding measurement errors, introducing new structural shocks, or exclud-

ing observables from the estimation. It builds on the composite likelihood concept of Lindsay

(1988). The composite likelihood is a likelihood based object formed by multiplying com-

ponent likelihoods, each of which corresponds to a marginal or conditional event. It has

found applications in diverse areas, particularly in spatial statistics, where complex depen-

dence between variables makes implementing the full likelihood impractical. Here, the issue

of complex dependence is irrelevant. Rather, the idea of considering component likelihoods

provides a solution for handling singularity. Speci�cally, in a model with n observables and

k (k < n) shocks, the subsets that include no more than k observables are typically non-

singular. For any such subset, one can write down the likelihood in either the time or the

frequency domain. A composite likelihood can then be formed by multiplying some or all of

these components. All the observables can enter the estimation through the component like-

lihoods, irrespective of the number of shocks in the model. The researcher can still �exibly

add structural shocks or measurement errors, but only when doing so is considered desirable.

The framework consists of four components. First, it provides a necessary and su¢ cient

condition for local identi�cation, where the identifying information is provided by the �rst

and second order properties of the nonsingular submodels. This condition extends the results
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in Qu and Tkachenko (2012). Second, it provides an MCMC based procedure for parameter

estimation. The procedure builds on the work of Chernozhukov and Hong (2003) and An

and Schorfheide (2007). Third, it proposes methods for obtaining con�dence sets for the

structural parameters and the impulse responses using the MCMC draws and the properties

of the model. Finally, it suggests a procedure that can generate forecasts for all the observed

endogenous variables, even if the number of structural shocks is as small as one.

In practice, arriving at a satisfactory model can be a gradual process. The composite

likelihood framework enables the researcher to start with a basic model and then gradually

incorporate more shocks and other features, meanwhile confronting all the models with data

to assess their implications. In addition, for any intermediate model, di¤erent composite

likelihoods can be constructed and estimated using di¤erent sets of submodels. This can

potentially reveal shortcomings of the model, therefore being informative about what addi-

tional shocks are desirable for model improvement. These features are illustrated through

both small and medium scale DSGE models.

The models considered are singular versions of two in�uential models in the literature.

The �rst is a prototypical three-equation New Keynesian model, studied in Clarida, Gali

and Gertler (2000) and Lubik and Schorfheide (2004). The second is the model of Smets

and Wouters (2007). The �ndings can be summarized as follows. (1) Among the structural

parameters, the estimates related to the steady state tend to remain stable across speci�-

cations, while those related to the productivity process and frictions can vary substantially.

(2) The estimated e¤ect of a particular shock (e.g., the productivity shock) can crucially

depend on what other shocks are allowed in the model. (3) For the small scale models

considered, whether or not to include the monetary policy shock has little e¤ect on the esti-

mated responses to the productivity shock, while for the medium scale models, whether or

not to include the wage markup and risk premium shocks has little e¤ect on the estimated

responses to the productivity, investment, monetary policy and exogenous spending shocks.
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(4) There can exist di¤erent parameter values that yield similar impulse responses to some

shocks but very di¤erent responses to others. This re�ects an identi�cation issue, suggesting

that relying on matching impulse responses to a particular shock can be insu¢ cient for de-

termining all the parameters. (5) Overall, the composite likelihood framework is informative

not only for detecting the above similarities and di¤erences, but also for pinpointing the

sources, i.e., which parameters and their values, that generate them.

In this paper, for both the theoretical and the empirical analysis, the following perspec-

tive is fundamental. That is, a DSGE model is an approximation to the true data generating

process with stochastic singularity being among the potential misspeci�cations. This per-

spective suggests that, as with other misspeci�cations, one should carefully assess the e¤ect

of the singularity on the model rather than assuming it away (i.e., treating some observables

as unobserved) or ruling out singular models altogether. The composite likelihood framework

provides a platform for analyzing such models with the results explicitly acknowledging mis-

speci�cation. The value of the framework is not in providing a unique estimation criterion

function that achieves the highest e¢ ciency, but rather in allowing researchers to experiment

with di¤erent combinations of component likelihoods and to confront all such choices with

data. In this regard, it is related to the literature that studies dynamic general equilibrium

models while explicitly acknowledging their misspeci�cations. This includes, among oth-

ers, Watson (1993), Hansen and Sargent (1993), Diebold, Ohanian and Berkowitz (1998),

Schorfheide (2000), Bierens (2007) and Del Negro and Schorfheide (2009).

This paper is related to the following contributions that embrace stochastic singular-

ity: the generalized method of moments (Hansen, 1982), the simulated method of moments

(Lee and Ingram, 1991 and Du¢ e and Singleton, 1993), the indirect inference (Smith, 1993,

Gouriéroux, Monfort and Renault, 1993, and Gallant and Tauchen, 1996). Recently, im-

portant progresses have been made in adapting these methods to the current generation of

DSGE models; see Ruge-Murcia (2007) and Andreasen, Fernández-Villaverde and Rubio-
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Ramírez (2013). The above methods are not likelihood based, i.e., they use criteria other

than model implied densities to link the model with the data.

The paper proceeds as follows. Section 2 characterizes stochastic singularity. Section 3

introduces the composite likelihood. Sections 4 to 7 study identi�cation, inference, impulse

responses and forecasting, respectively. Section 8 provides empirical illustrations. Section 9

discusses how to choose between composite likelihoods. The online appendix contains proofs,

notes on implementation, and some additional empirical results.

2 Stochastically singular DSGE models

This paper considers DSGE models that are representable as

Yt = �(�) + C(�)Xt +D(�)vt; (1)

Xt = A(�)Xt�1 +B(�)"t:

The n-by-1 vector Yt includes the measured variables, Xt is a vector that includes the en-

dogenous variables, conditional expectation terms and exogenous shocks processes if they are

serially correlated, "t includes serially uncorrelated structural disturbances and vt contains

measurement errors if there are any. The vector � consists of the structural parameters. The

coe¢ cients matrices �(�); A(�); B(�); C(�), and D(�) are functions of �. Throughout the

paper, � is assumed to take values in a parameter space � that is of dimension q.

The above representation encompasses the current generation of DSGE models, for ex-

ample Smets and Wouters (2007). For simplicity, the measurement errors are assumed to be

serially uncorrelated. Otherwise, as in Ireland (2004), a subset of equations can be appended

to the system to describe the time evolution of vt. The representation also encompasses inde-

terminacy once "t and � are augmented to include the sunspot shocks and the corresponding

parameters. Such an extension follows from Proposition 1 in Lubik and Schorfheide (2004).

The system (1) has a vector moving average representation:

Yt = �(�) +H(L; �)�t; (2)
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where H(L; �) = [C(�)(I�A(�)L)�1B(�), D(�)] and �t = ["0t; v0t]0. This representation is use-

ful for formulating the theoretical results on identi�cation and inference. The spectral density

matrix of Yt at frequency ! 2 [��; �] is f(!; �) = 1
2�
H(exp(�i!); �)�(�)H(exp(�i!); �)�,

where �(�) = Var(�t) and the superscript ���stands for the conjugate transpose. The next

de�nition speci�es the type of stochastic singularity considered in this paper.

De�nition 1 The model (1) is stochastically singular at � = �0 if there exists a partition

of the observables Yt = [Y1;t; Y 0
2;t]

0 with Y1;t 2 R1 such that, for all t, Y1;t =
P1

j=0 gj(�0)Yt�j,

where fgj(�0)g1j=0 are coe¢ cients matrices with the (1,1)-th element of g0(�0) being zero.

The model is stochastically singular when some variable can be perfectly predicted from

its own past values and the current and lagged values of the other variables. Under stochastic

singularity, the covariance matrix Var(Yt) can still be of full rank. For example, consider

Y1;t = �t�1 and Y2;t = �t. Then, Y1;t is known from observing Y2;t�1, although the covariance

matrix of Yt still has full rank. Consequently, the appropriate object to study singularity

in the time domain is the entire correlogram. In the frequency domain, (1) is stochastically

singular if and only if the spectral density matrix of Yt is of reduced rank at all frequencies.

The next lemma relates the above de�nition to the most common cause of stochastic

singularity in DSGE models. Let dim(�) denote the dimension of a vector.

Lemma 1 If dim(vt) + dim("t) < dim(Yt), then (1) is stochastically singular at all � 2 �:

It is well known that the conventional time and frequency domain Gaussian likelihoods

are not well de�ned when the model is stochastically singular. Speci�cally, in the time

domain, the density of Yt given its lagged values is not well de�ned because the conditional

covariance matrix is singular. Algorithmically, when implementing the Kalman �lter, the

prediction step produces a singular covariance matrix, causing the updating step to break

down. In the frequency domain, the spectral density matrix of Yt is singular. Because its

inverse enters the likelihood, the latter also fails to be well de�ned.
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3 The composite likelihood

The composite likelihood was developed by Lindsay (1988). Its precedents are the pseudo-

likelihood of Besag (1974, 1975) and the partial likelihood of Cox (1975). Below, I review it

using Example 3A in Lindsay (1988) to contrast with its application in the current context.

Suppose we observe yi on a lattice of sites indexed by i (i = 1; :::; N). Suppose the distri-

bution of yi conditional on the neighboring observations is given by (yijy[i]) � N(�w0iy; �
2),

where y = (y1; :::; yN)
0 and wi is an N -by-1 vector whose j-th element equals 1 if i and

j are neighbors and 0 otherwise. The Hammersley-Cli¤ord theorem implies that the joint

distribution of y is unique and given by y � N(0; �2 (I � �W )�1), where W = [w1; :::; wN ]

and �2 is a function of � 2 and �. Assume �2 is known and equals 1. Then, the log likelihood

(up to a constant) equals �(�) + �y0Wy=2 with �(�) = (1=2) log det (I � �W ). Maximizing

this likelihood involves computing �(�) and its derivative with respect to �, both of which

can lead to computational di¢ culties because N is typically large. To bypass this di¢ culty,

Besag (1974) suggested to consider the sum of the conditional log likelihoods:

`(�) =
NX
i=1

log f(yijy[i]; �): (3)

Taking the �rst order derivative leads to y0Wy � �y0W 2y = 0, which is straightforward to

evaluate. Hjort and Omre (1994) suggested to consider the pairwise log likelihood:

`(�) =

N�1X
i=1

NX
r=i+1

log f (yi; yrjdir; �) ; (4)

where dir is some measure of the relationship between the two sites. Both (3) and (4) are

members of the composite likelihood family. The general principle was laid out in Lindsay

(1988): one starts with a set of conditional (e.g., (3)) or marginal (e.g., (4)) events for which

one can write the log likelihood; then one constructs the composite log likelihood as the

sum of the component log likelihoods. The composite likelihood has found applications in

diverse areas featuring complex dependencies between variables. This includes spatial data,
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genetics/genomics data, image data and longitudinal data; see the review in Varin, Reid

and Firth (2011). Recently, Engle, Shephard and Sheppard (2007) introduced the method

to estimate the time varying covariances of a portfolio with a vast number of assets. There,

the component likelihoods are as in (4), involving pairs of assets in the portfolio.

I now relate the composite likelihood to singular DSGE models. Let Ys;t be a subvector

of Yt in (1), i.e., Ys;t = PsYt with Ps being a selection matrix. Then, Ys;t satis�es

Ys;t = Ps�(�) + PsC(�)Xt + PsD(�)vt with Xt = A(�)Xt�1 +B(�)"t:

Its vector moving average representation is

Ys;t = Ps�(�) + PsH(L; �)�t: (5)

Its spectral density at ! 2 [��; �] equals

fs(!; �) =
1

2�
PsH(exp(�i!); �)�(�)H(exp(�i!); �)�P �s = Psf(!; �)P

�
s : (6)

The relationship (5) can be called a submodel because it carries all the restrictions of the

full model, but imposes them only on a subset of the observables.

De�nition 2 The submodel (5) is a nonsingular submodel if it is stochastically nonsingular

for all � 2 �. Further, it is a maximal nonsingular submodel if augmenting Ys;t with any

variable from Yt will always make it stochastically singular for some � 2 �:

The likelihood functions for the nonsingular submodels are simple to obtain. In the time

domain, the Gaussian likelihoods can be obtained using the Kalman �lter. In the frequency

domain, the inverses of the spectral densities of the nonsingular submodels can be obtained

directly from (6). The computational details are in the online appendix.

The motivation for applying the composite likelihood concept to DSGE models is dif-

ferent from the geostatistics setting and can be stated as follows. First, the nonsingular

submodels (5) are consistent with the full model, all possessing well de�ned likelihood func-

tions. The Hammersley-Cli¤ord theorem is easily applicable. This special feature provides
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the opportunity for constructing component likelihoods and subsequently the composite like-

lihood. Second, DSGE models are imperfect approximations to the data generating process.

Stochastic singularity is typically a misspeci�cation. It can be desirable to match only the

nonsingular relationships with the data. This makes the composite likelihood not a shortcut

to circumvent singularity, but a desirable method to relate misspeci�ed models to the data.

Let Y1;t; :::; YS;t be some subvectors of Yt that are stochastically nonsingular, each satis-

fying (5) for some Ps with S being some integer. Denote their corresponding log likelihood

functions by `s(�) (s = 1; :::; S). I propose to construct the composite log likelihood as:

`(�) =

SX
s=1

`s(�): (7)

The above construction has two features. First, it allows for an arbitrary relationship between

the number of observables and number of shocks. Second, if the original full model is already

nonsingular, then by choosing S = 1 and YS;t = Yt we obtain the conventional log likelihood.

Therefore, the framework encompasses the conventional likelihood analysis as a special case.

Remark 1 As is clear from Lindsay (1988)�s general principle, the composite likelihood is

not unique. It depends on the submodels that the researcher considers. There are two po-

tential approaches to this issue. The �rst is to treat it as an e¢ ciency issue. That is, we

assume that the model is correctly speci�ed and choose submodels to maximize the asymp-

totic e¢ ciency for estimating �. (Here, high asymptotic e¢ ciency means that the estimator�s

asymptotic distribution has a low dispersion around the (pseudo) true parameter value. A

common measure for it is the asymptotic mean squared error.) However, this can be prob-

lematic here because misspeci�cation is clearly present. Under misspeci�cation, the pseudo

true parameter value can change when a di¤erent set of submodels is considered. Comparing

the dispersions alone no longer has a sound theoretical justi�cation. The second approach

is to treat it as a speci�cation issue. That is, we decide on what the model is intended to

capture and then choose the submodels accordingly. This is the approach that this paper will
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adopt. Consequently, the value of the composite likelihood framework developed here is not in

delivering a unique criterion function that achieves the highest e¢ ciency, but in providing a

platform that allows for �exible choices of criterion functions, and in letting all such choices

speak to the data. In that regard, it can be related to the generalized method of moments.

There, a wide range of unconditional moment restrictions can arise within a very simple

model. In practice, the choice of which moments to use is usually guided by what the model

intends to capture. It rarely involves only the consideration of estimation e¢ ciency.

Remark 2 In the empirical illustrations, for each singular model I always start the analysis

with the following speci�cation. I choose the �rst subset, Y1;t, to correspond to a maximal

nonsingular submodel. This implies that I subject the model to capturing the joint dynamic

properties of this vector. Then, I set Y2;t; :::; YS;t to be singleton subsets such that their union

includes all the remaining variables in Yt. This implies that I also subject the model to cap-

turing the marginal behaviors of these variables. These two considerations are natural from

a modeling perspective, and are also feasible under singularity. Under this speci�cation, the

composite likelihood function equals one when integrated over the values of the observables.

This makes the interpretation of the prior�s e¤ects across di¤erent models more straightfor-

ward. Starting with this speci�cation, I will also experiment with alternative speci�cations

and examine the di¤erences. Note that the results on identi�cation, inference and forecasting

apply to general speci�cations that include the above ones as special cases.

The composite likelihood framework allows the researcher to introduce weights on each of

the submodels. One can even think about bringing together two di¤erent (singular) models

and estimating them jointly. Such explorations are left for future work.

3.1 Illustrations

Illustrative example 1. This example leads to analytical results. It also shows that

identi�cation failure can occur when excluding variables from the estimation.
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Let xt and ct be a household�s income and consumption. The researcher postulates the

following model:

xt = �xt�1 + et, ct = xt: (8)

Suppose this model is misspeci�ed in the sense that the actual relationship is given by the

�rst equation in the preceding display and ct = xt + vt, where vt is a transitory �uctuation

in consumption. Suppose j�j < 1 and et � i:i:d:N(0; �2). The goal is to estimate �;  and �.

The model-implied covariance matrix of (xt; ct) is singular. A common practice is to use

only one variable for estimation. Dropping the variable ct leaves: xt = �xt�1 + et. This

identi�es (�; �) but not . Dropping the variable xt leaves: ct = �ct�1 + et. This identi�es

(�; �) but does not separately identify  and �.

The model has two nonsingular submodels that correspond to fxtg and fctg.

For xt : `1(�; ; �) = � T

2
log �2 � 1

2�2

TX
t=1

(xt � �xt�1)2 ;

For ct : `2(�; ; �) = �
T

2
log �2 � T

2
log 2 � 1

22�2

TX
t=1

(ct � �ct�1)2 :

The parameters �; � are identi�ed from `1(�; ; �) while  is further identi�ed from `2(�; ; �).

Therefore, all the parameters are identi�ed from considering the composite likelihood.

The maximizer of the composite likelihood satis�es the following relationship:

�̂ =

 
TX
t=1

x2t�1 +
1

̂2

TX
t=1

c2t�1

!�1 TX
t=1

xtxt�1 +
1

̂2

TX
t=1

ctct�1

!
;

�̂2 =
1

T

TX
t=1

(xt � �̂xt�1)2 ; ̂2 =

PT
t=1 (ct � �̂ct�1)

2PT
t=1 (xt � �̂xt�1)

2
;

where �̂ mirrors an OLS estimator after reweighting the observations from the two equations

by their residual variances. As the speci�cation error becomes smaller (i.e., the variance of

vt approaches 0), ̂
2 approaches its true value  in any sample size, and �̂ and �̂2 approach

the conventional MLE under a known . Therefore, the composite likelihood delivers an

intuitive estimator that coincides with the ideal estimator under correct model speci�cation.
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Illustrative example 2. This example illustrates how to algorithmically compute the

composite likelihood, by considering singular versions of the DSGE model studied in Clarida,

Gali and Gertler (2000) and Lubik and Schorfheide (2004). The original model is

yt = Etyt+1 � �(rt � Et�t+1) + gt; (9)

�t = �Et�t+1 + �(yt � zt);

rt = �rrt�1 + (1� �r) 1�t + (1� �r) 2(yt � zt) + "rt;

gt = �ggt�1 + "gt; zt = �zzt�1 + "zt;

where yt; �t, and rt denote log deviations of output, in�ation and nominal interest rate.

The shocks satisfy "rt �i.i.d.N(0; �2r); "gt �i.i.d.N(0; �2g); "zt �i.i.d.N(0; �2z); "gt and "zt are

correlated with correlation coe¢ cient �gz. The observables are log levels of output, in�ation

and interest rate: Yt = (0; ��; ��+r�)0+(yt; 4�t; 4rt)0, where the output is pre-�ltered and ��

and r� are annualized steady-state in�ation and real interest rates with � = (1+r�=100)�1=4.

Let � = (� ; �;  1;  2; �r; �g; �z; �r; �g; �z; �gz; �
�; r�)0. Henceforth, this model will be referred

to as the three shocks model. Here I consider two singular versions of the three shocks model.

The �rst is a¤ected by "zt only. The second is a¤ected by "gt and "zt.

The solutions to the three models are related in a simple way. Consider �rst the three

shocks model. System (9) can be written as (Sims, 2002): �0(�)Xt = �1(�)Xt�1 +	(�)"t +

�(�)�t, where Xt = (rt; yt; �t; gt; zt; Et(�t+1); Et(yt+1))
0, �t = (�t � Et�1(�t); yt � Et�1(yt))0

and "t = ("rt; "gt; "zt; )
0. The coe¢ cients matrices, �0(�);�1(�);	(�), and �(�), are known

functions of �. Under determinacy, the model�s solution can be represented as

Yt = �(�) + C(�)Xt with Xt = A(�)Xt�1 +B(�)"t; (10)

where A(�) and B(�) are known functions of structural parameters and C(�) is a selection

matrix that selects the �rst three elements of Xt. The solutions to the two singular models

can still be represented as (10) after modifying the shocks accordingly. In the one shock
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model, "t needs to be replaced by (0; 0; "zt)0; in the two shocks model, by (0; "gt; "zt)0. De�ne

M1 =

26664
0 0 0

0 0 0

0 0 1

37775 ;M2 =

26664
0 0 0

0 1 0

0 0 1

37775 ;M3 =

26664
1 0 0

0 1 0

0 0 1

37775 :
Then, the solutions to the three models can be written as Yt = �(�) + C(�)Xt with Xt =

A(�)Xt�1+B(�)Mi"t. The VMA representation is Yt = �(�)+C(�) [I � A(�)L]�1B(�)Mi"t:

Now consider estimation. The component likelihood corresponding to fytg can be ob-

tained by de�ning Ps = [1 0 0] and consider PsYt = Ps�(�) + PsC(�)Xt with Xt =

A(�)Xt�1 + B(�)Mi"t. In the time domain, the likelihood function can be computed us-

ing Kalman �ltering and, in the frequency domain, by computing its spectral density and

periodograms (see the online appendix for details). Other component likelihoods can be

computed in the same way by changing Ps accordingly.

The composite likelihood does not use all the information implied by the model when

estimating the parameters. Therefore, it can be considered as a limited-information method.

It is informative to compare it with minimum distance estimation. The main distinction is

that the former uses component likelihood functions to connect the model with the data,

while the latter uses moments. This leads to three di¤erences in practice. First, the main

estimation steps are di¤erent. For the composite likelihood, the most important step is to

specify the submodels, after which the estimation becomes fairly similar to the conventional

likelihood situation (see Section 5). For minimum distance estimation, the key step is to

select a su¢ cient number of informative moments, and then compute them using both the

data and the model. Simulation is often needed for computing the model implied moments.

Secondly, the handling of the time series information is di¤erent. Because the component

likelihoods are proper likelihood functions, they automatically incorporate the time series

information implied by the submodels. For minimum distance estimation, such information

will need to be handled with suitably chosen moments and a proper weighting matrix. For

medium scale models with more than 30 parameters, choosing such moments and weighting
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matrix can be a challenging or even daunting task. Thirdly, the implications for forecasting

are di¤erent. The composite likelihood can be used to obtain forecasts for all the observables

irrespective the number of shocks (see Section 7). The minimum distance framework does

not encompass forecasting. Meanwhile, the two methods also share some common features.

They both require making some choices in either submodels or moments. The computational

cost of both methods can be substantial. The computation details related to the composite

likelihood will be documented in two ways. First, the Matlab codes are made available on

line. Second, the computational time is summarized in Section 9. A more thorough and

informative discussion of the minimum distance method for DSGE models can be found in

Fernández-Villaverde, Rubio-Ramírez and Schorfheide (2016).

4 Identi�cation

For DSGE models, understanding identi�cation is important for both calibration and formal

statistical analysis. Substantial progress has been made recently. Canova and Sala (2009)

documented the types of identi�cation issues that can arise in these models. Iskrev (2010)

gave su¢ cient conditions for local identi�cation, while Komunjer and Ng (2011) and Qu and

Tkachenko (2012) gave necessary and su¢ cient conditions. Guerron-Quintana, Inoue and

Kilian (2013) are among the �rst to study weak identi�cation in DSGE models. This section

studies the local identi�cation of � based on the information provided by the submodels.

Suppose that Yt is generated by (1) with � = �0. I continue to denote the spectral density

of Ys;t at � by fs(!; �) and its mean by �s(�).

De�nition 3 The parameter � is locally identi�able at �0 from the �rst and second order

properties of Ys;t (s = 1; :::; S) if there exists an open neighborhood of �0 in which �s(�1) =

�s(�0) and fs(!; �1) = fs(!; �0) for all s = 1; :::; S and all ! 2 [��; �] implies �0 = �1.

The above de�nition is formulated in the frequency domain. There is an equivalent for-

mulation in the time domain in terms of autocovariance functions. Suppose Ys;t has autoco-
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variance function �s(j; �) (j = 0;�1; :::) and that fs(!; �) is continuous in !. There is a one-

to-one mapping between �s(j; �) and fs(!; �), given by �s(k; �) =
R �
�� exp(ij!)fs(!; �)d!.

Therefore, �0 is locally identi�able from �s(�) and fs(!; �) (s = 1; :::; S) if and only if it is

locally identi�able from �s(�) and the complete set of autocovariances f�s(j; �)g1j=�1.

Assumption 1. �0 2 � � Rq with �0 being an interior point. Assume � is compact.

Assumption 2. The following conditions hold for all � 2 � and ! 2 [��; �]: (i)
P1

j=0 khj(�)k �

C <1 and k�(�)k � C <1, where hj(�) are de�ned in H(L; �) =
P1

j=0 hj(�)L
j; (ii) The

elements of f(!; �) belong to Lip(�) of � > 1
2
with respect to !; (ii) The elements of f(!; �)

are continuously di¤erentiable in � with k@ vec f(!; �)=@�0k � C <1.

Theorem 1 Let Assumptions 1-2 hold. De�ne

GS(�) =
SX
s=1

�Z �

��

�
@ vec fs(!; �)

@�0

���
@ vec fs(!; �)

@�0

�
d! +

@�s(�)
0

@�

@�s(�)

@�0

�
(11)

Assume GS(�) has a constant rank in an open neighborhood of �0. Then, � is locally identi-

�able at �0 if and only if GS(�0) is nonsingular.

Theorem 1 follows from Theorem 2 in Qu and Tkachenko (2012). The main di¤erence is

that here the identifying information comes from the nonsingular submodels.

The dimension of GS(�) always equals q. The s-th component in the summation, i.e.,Z �

��

�
@ vec fs(!; �)

@�0

���
@ vec fs(!; �)

@�0

�
d! +

@�s(�)
0

@�

@�s(�)

@�0
(12)

measures the contribution from the s-th submodel to identi�cation. It is positive semide�nite

by construction. In practice, it is instructive to compare the rank of (12) for s = 1; :::; S, as

this can be informative about the source of identi�cation.

I now discuss three extensions. First, to check local identi�cation based on the second

order properties only, we only need to delete the term in (11) containing @�s(�)
0=@�. Second,

to consider identi�cation based on a subset of frequencies, we replace GS(�) by
SX
s=1

�Z �

��
W (!)

�
@ vec fs(!; �)

@�0

���
@ vec fs(!; �)

@�0

�
d! +W (0)

@�s(�)
0

@�

@�s(�)

@�0

�
;
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where W (!) is an indicator function that is symmetric around zero. Third, to check the

local identi�cation of a subset of parameters, say �(1), while �xing the rest at �0, we only

need to replace @�0 by @�(1)0. Theorem 1 continues to hold with these changes.

5 Estimation and inference

The estimation can proceed as if `(�) was the conventional log likelihood. Let �(�) be a prior

density. Then, as in Chernozhukov and Hong (2003), a quasi-posterior density is given by:

p(�) =
�(�) exp (`(�))R

�
�(�) exp (`(�)) d�

: (13)

The estimator for �0 can be taken to be the quasi-posterior mean: �̂ =
R
�
�p(�)d�. Com-

putationally, �̂ can be obtained using Markov Chain Monte Carlo (MCMC) methods, such

as the Metropolis�Hastings algorithm, by drawing a sequence of values (�(1); �(2); :::; �(B))

corresponding to the density kernel �(�) exp (`(�)) and computing �̂ = B�1PB
j=1 �

(j). A

useful reference is An and Schorfheide (2007). I refer to the intervals obtained by sorting

the MCMC draws as �MCMC Intervals�.

The density p(�) corresponds to a quasi-posterior because `(�) is not a log likelihood

function. The MCMC Intervals are in general not valid credible sets. They can also di¤er

from frequentist con�dence intervals asymptotically. The intuition is as follows. In a regular

problem with a large sample size, the length of an MCMC interval is determined by the

curvature of the criterion function. For a conventional likelihood, this curvature measures

information in the data because of the information matrix identity. For a general criterion

function, this curvature no longer represents information except under special circumstances

(c.f. discussion on p.223-224 of Lindsay, 1988). Therefore, the MCMC interval alone may not

correctly represent uncertainty. Chernozhukov and Hong (2003) have clearly documented this

feature in a general context. They also provided intervals with desired frequentist properties.

Misspeci�cation is another complication. When misspeci�cation is present and unac-

counted for, standard Bayesian credible sets can di¤er substantially from valid frequentist
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intervals even asymptotically. Müller (2013) studied the risk of Bayesian inference under

misspeci�ed models. His results imply that standard credible sets can have higher asymp-

totic frequentist risk than achievable. To relate such general results to the current study, the

online appendix gives two simple examples. There, overcon�dence can arise if one applies

Bayesian credible sets mechanically without thinking about misspeci�cation. All existing

DSGE models exhibit some misspeci�cations. Therefore accounting for misspeci�cation is of

general importance. This issue does not vanish when a DSGE model is analyzed using the

composite likelihood instead of the conventional likelihood.

Motivated by the above considerations, below I address the inference issue in two steps.

First, I construct con�dence intervals with the following two features. (1) They acknowledge

model misspeci�cation. (2) They have correct frequentist coverage rates for the pseudo

true value asymptotically when the parameters are well identi�ed. I refer to the resulting

intervals as �Asymptotic Intervals�. Then, I further compare the Asymptotic and the

MCMC intervals. This will lead to a suggestion for practice.

Assumption MI. The data fYtgTt=1 are generated by a covariance stationary vector process:

Yt = �0 +
P1

j=0 h0j�t�j, where f�tg are mean zero and serially uncorrelated with �nite

variance �0 and zero 3rd and 4th order cumulants. Assume Yt has spectral density f0(!),

satisfying Assumption 2 with f(!; �); hj(�) and �t replaced by f0(!); h0j and �t; respectively.

Assumption 2 is about the model while Assumption MI is about the data. The data

can be stochastically nonsingular. The requirements on the 3rd and 4th order cumulants

can be relaxed. Doing so will not a¤ect the consistency result (i.e., Lemma 2) but will

alter the asymptotic distribution. The procedure for constructing the Asymptotic Intervals

(Procedure A) is valid without these cumulant requirements.

Let �s;0 and fs;0(!) contain the elements of �0 and f0(!) that correspond to the s-th

nonsingular submodel. De�ne `1(�) =
PS

s=1 `s;1(�), where `s;1(�) equals

� 1
4�

�Z �

��

�
log det(fs(!; �)) + tr(f

�1
s (!; �)fs;0(!))

�
d! +

�
�s;0 � �s(�)

�0
f�1s (0; �)

�
�s;0 � �s(�)

��
:
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The one-sided Hausdor¤distance from a setA toB is given by h(A;B) = supx2A infy2B kx� yk.

Lemma 2 Let Assumptions 1,2 and MI hold. Then:

1. T�1`(�) converges uniformly almost surely to `1(�) over � 2 �.

2. Let �C denote the set of maximizers of `(�) and C0 the set of maximizers of `1(�), then

with probability one: lim supT!1 �C � C0, i.e., h( �C;C0)! 0.

3. Further, if `1(�) has a unique maximum at �0, then �� !a:s �0:

The proof of the lemma follows Hansen and Sargent (1993, p.49-53). The �rst two results

do not assume that the parameters are identi�ed, while all the results hold irrespective of

whether the data have Gaussian distributions. The interpretation of C0 depends on model

speci�cation. If the model is correctly speci�ed, then C0 consists of all the parameter values

satisfying fs(�; �) = fs;0(�) and �s;0 = �s(�) for s = 1,:::,S. If it is misspeci�ed, then such

values do not exist, and C0 should be interpreted as containing pseudo true values. Finally,

the feature that di¤erent component likelihoods can be associated with di¤erent pseudo true

parameter values may in itself serve as the basis for a test for misspeci�cation.

Theorem 2 Suppose �0 is the unique maximizer of `1(�). Let �̂ denote the mean or mode

computed from (13). Then, under Assumptions 1,2 and MI,
p
T (�̂��0)!d N(0;M�1VM�1),

where M = 1
4�

PS
s=1 (M1;s +M2;s) and V = 1

4�

PS
s=1

PS
h=1 (V1;s;h + V2;s;h) with

M1;s =

Z �

��

@2

@�@�0
log det(fs(!; �0)) +

@2

@�@�0
tr
�
f�1s (!; �0)fs;0(!)

	
d!;

M2;s = 2
@�s(�0)

0

@�
f�1s (0; �0)

@�s(�0)

@�0
;

V1;s;h =

Z �

��

�
@ vec fs(!; �0)

@�0

�� �
f�1s (!; �0)
 f�1s (!; �0)

��
fs;h;0(!)
 fs;h;0(!)

�
�
f�1h (!; �0)
 f�1h (!; �0)

��@ vec fh(!; �0)
@�0

�
d! ;

V2;s;h = 2
@�s(�0)

0

@�
f�1s (0; �0)fs;h;0(!)f

�1
h (0; �0)

@�h(�0)

@�0
:
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In the above, f�1s (!; �0) is the conjugate of f
�1
s (!; �0) and fs;h;0(!) is the cross spectrum of

the data vectors Ys;t and Yh;t at the frequency !.

As shown in the online appendix, the result applies to both the time and frequency

domain composite likelihoods. Because M�1VM�1 is in general di¤erent from M�1, the

MCMC draws will need to be adjusted in order for their quantiles to provide asymptotically

valid con�dence intervals. Such an adjustment is given in the following procedure.

Procedure A (for computing Asymptotic Intervals): First, compute
p
T (�(j)��̂) with

�̂ being the quasi posterior mean or mode of (13). Use their sample covariance as an estimator

for M�1 and denote it by M̂�1. Next, compute
PS

s=1 @`s;t(�̂)=@� (t = 1; :::; T ). Use their

(long-run) sample covariance as an estimator for V and denote it by V̂ . Then, obtain M̂1=2

and V̂ 1=2 using the singular value decomposition and compute e�(j) = �̂+M̂�1V̂ 1=2M̂1=2(�(j)�

�̂). Finally, use the quantiles of e�(j) to form con�dence intervals.

Some misspeci�cation can cause
PS

s=1 @`s;t(�0)=@� to be serially correlated. This is

why a long run covariance estimator may be needed for V . It is informative to regressPS
s=1 @`s;t(�̂)=@� on the lagged values to examine whether such dependence is present. The

standard sample covariance matrix can be used if the dependence is considered small.

This concludes the �rst step. Now I compare the Asymptotic and MCMC Intervals. The

Asymptotic Interval is interpretable under misspeci�cation, but requires the parameters to

be well identi�ed. The MCMC interval in general does not have a sharp interpretation.

But because it does not rely on any asymptotic approximation, it can be more indicative

of weak identi�cation than the Asymptotic Interval. I recommend to report both intervals

in practice. This recommendation can be related to that in Moon and Schorfheide (2012).

Their paper analyzed models with partially identi�ed parameters. They suggested to report

the estimates of the identi�ed set and the conditional prior along with the Bayesian credible

sets. In both cases, the motivation for the recommendation can be stated as providing a full

disclosure of the results when di¤erent methods can lead to di¤erent conclusions.
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6 Impulse response functions

I discuss how to compute impulse responses and to measure the associated uncertainty.

Suppose there are no measurement errors. Then, Yt = �(�)+C(�)(I �A(�)L)�1B(�)"t. Let

ej be the j-th column of an identity matrix. Then, the impulse response of the j-th variable

to the l-th orthogonal shock equals e0jIR (k; �) el, where IR (k; �) = C(�)A(�)kB(�)�1=2 (�) :

The inference can be carried out in three steps using the MCMC draws �(i): Step 1.

Compute e0jIR(k; �̂)el, where �̂ denotes the mean (or the median) of �
(i). Step 2. Compute

e0jIR(k; �
(i))el. Step 3. Sort the resulting values. Use their relevant percentiles to form

an interval. This procedure leads to pointwise MCMC Intervals for the impulse responses.

Asymptotic Intervals can be constructed simply by replacing �(i) with e�(i) in Steps 2 and 3.
7 Forecasting

For nonsingular models, one- and multi-step ahead forecasts can be obtained through

p(YT+1jY1:T ) =
Z
p(YT+1jY1:T ; �)p(�jY1:T )d�; (14)

where Y1:T denotes the observed sample, p(�jY1:T ) denotes the posterior distribution of �

given Y1:T , and p(�jY1:T ; �) is the conditional density of YT+1 given Y1:T and � which can be

evaluated using the Kalman �lter. The left hand side distribution can be generated by �rst

sampling from the posterior distribution of � and then drawing from the multivariate normal

distribution implied by p(YT+1jY1:T ; �). However, this algorithm is no longer applicable under

singularity. In practice, the forecasting often proceeds by introducing measurement errors

or by treating some observables as unobserved. The latter approach ignores the information

from some observed time series and only yields forecasts for a subset of the observables.

The composite likelihood framework o¤ers an opportunity for obtaining forecasts for all

the observed endogenous variables. Speci�cally, let

pS(YT+1jY1:T ) =
Z
pS(YT+1jY1:T ; �)pS(�jY1:T )d�; (15)
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where pS(�jY1:T ) equals p(�) in (13) and

pS(YT+1jY1:T ; �) _
SQ
s=1

ps(Ys;T+1jYs;1:T ; �): (16)

Note that ps(�jYs;1:T ; �) is the conditional density of Ys;T+1 implied by the s-th submodel,

which can be evaluated using the Kalman �lter. Using (15) in place of (14) leads to the

following forecasting procedure (let �(i) denote the MCMC draws from (13)):

Step 1. Sample from pS(�jY1:T ; �(i)) in (16) for i = 1; :::; B. Denote the values by Y (i)
T+1.

Step 2. Compute ŶT+1 = B�1PB
i=1 Y

(i)
T+1 and use ŶT+1 as the point forecast for YT+1:

Step 3. To produce multi-step forecasts, let Y1:(T+1) = [Y 0
T ; Ŷ

0
T+1]

0 and repeat Steps 1 and 2

with T replaced by T + 1. Continue this step until the desired horizon is reached.

I now apply the above procedure to the �rst example in Subsection 3.1. In (16), S = 2,

Y1;t = xt and Y2;t = ct. Conditional on �, the joint forecast for YT+1 is a bivariate normal

distribution with mean (�x
T
; �c

T
) and a diagonal covariance matrix. Two features emerge.

First, the forecast for Y1;T+1 conditional on Y2;T+1 is the same as the unconditional forecast.

Therefore, by construction, the information contained in Y2;T+1 cannot be used to improve

the forecast for Y1;T+1. This holds in general situations, as long as the variables are allocated

to disjoint submodels. Secondly, the two point forecasts, �x
T
and �c

T
, can be correlated

because corr(�x
T
; �c

T
) = corr(xt; ct). They are perfectly correlated if and only if xt and ct

are perfectly correlated in the data. This suggests that the point forecasts can re�ect the

cross dependence present in the data, even when the variables are in disjoint submodels.

These two features are important for interpreting the forecasts under (20).

8 Empirical illustrations

I apply the composite likelihood framework to analyze both small and medium scale DSGE

models. I take the perspective of a modeler who starts with few shocks and then gradually

incorporates more shocks to enrich the model. For each singular model, I �rst study the

parameter estimates and then the impulse responses. The results for the medium scale models
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(i.e., singular versions of the Smets and Wouters 2007 model) are reported below, while those

for the small scale models are in Section S.5 of the online appendix.

In Smets and Wouters (2007) (henceforth SW), the model consists of seven observables:

output (yt), consumption (ct), investment (it), wage (wt), hours (lt), in�ation (�t) and in-

terest rate (rt). It has seven shocks: productivity (�at ), exogenous spending (�
g
t ), monetary

policy (�rt ), investment speci�c technology (�
i
t), price markup (�

p
t ), wage markup (�

w
t ) and

risk premium (�bt). For reference, I include the equations of the model in Section S.2 and an

annotated list of the parameters and their estimates in Table S1 in the online appendix.

Three singular models are considered. The �rst model has four shocks: �at ; �
g
t ; �

r
t and �

i
t.

The second model includes �pt as an additional shock. The third model includes also �
w
t . The

same prior distributions and parameter bounds as in SW are used. The only exception is for

�p, whose lower bound is reduced from 0.5 to 0.1, so that it is not binding when computing

the posterior modes. The sample period is 1965:I to 2004:IV.

8.1 The four shocks model

I use fyt; �t; rt; itg ; fctg ; fwtg and fltg to form the composite likelihood. This is based on

the following considerations. First, capturing the joint behavior of yt, �t and rt is a key

requirement for even small scale models. The medium scale model considered here has a

more �exible structure, therefore, is naturally positioned for such a task when endowed with

�at , �
g
t and �

r
t . Second, the incorporation of �

i
t into the model permits including it in the

leading subset. Third, the three subsets, fctg ; fwtg and fltg, ensure that the parameter

estimates will also be disciplined by the marginal behaviors of these three processes.

Parameter estimates. The results are reported in Table 1. Out of the 28 parameters,

21 of them have their con�dence intervals (i.e., the unions of the MCMC Interval and the

Asymptotic Interval) overlapping with those in SW (reported in Table S1 in the online

appendix). Among the remaining 7 parameters (�p; �a; �; �; r�; �r; �g), (�p; �a; �) take on
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quite di¤erent values from those in SW. Below I discuss the �ndings in more detail. All the

values are the posterior means unless stated otherwise.

The model�s steady state values are similar to those in SW. This re�ects a bene�t of

keeping all the variables in the estimation: if some observables (such as lt) are not used in

the analysis, some steady state parameters (such as �l) can become unidenti�ed.

Among the shock processes, as in SW, the productivity and exogenous spending processes

are found to be persistent while the investment and the monetary policy shock processes

are not. The productivity process has an AR(1) coe¢ cient (�a) of 0:99 and a standard

deviation parameter (�a) of 0:55, higher than the original estimates of 0.95 and 0.45. Under

�a = 0:99, the half life of a shock equals 68 quarters, much higher than 14 quarters implied

by �a = 0:95. The exogenous spending process has an AR(1) coe¢ cient (�g) of 0.90 and

a standard deviation (�g) of 0.54, compared with 0.97 and 0.53 in SW. Finally, the AR(1)

coe¢ cients for the investment and monetary policy shock processes (�i and �r) are very close

to those in SW, while the standard deviation estimates (�i and �r) are both mildly higher.

In summary, the most pronounced di¤erence here pertains to the productivity process.

Now consider the behavioral parameters. The habit parameter (�) equals 0.37, substan-

tially smaller than 0.71 in SW. The price indexation and rigidity parameters (�p and �p)

both take on small values. The new �p implies an average price contract of 1.3 quarters,

compared with 2.9 quarters in SW. The wage indexation and rigidity parameters (�w and �w)

are both high. The new �w implies an average wage contract of 6.3 quarters, compared with

3.3 quarters in SW. The remaining parameter values (�;  ; '; �c; �p; �l) are broadly similar

to those in SW. In summary, among the behavioral parameters, those governing habits and

price and wage frictions are consistently di¤erent from those in the nonsingular model. As

shown below, this translates into markedly di¤erent responses to productivity shocks.

Next, consider the monetary policy parameters. The in�ation weight parameter (r�)

equals 1.41, lower than 2.04 in SW. The output gap weight parameter (ry) equals 0.17, higher
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than 0.08 in SW. The other parameters are broadly similar: the policy reacts fairly strongly

to changes in output gap while there is a considerable degree of interest rate smoothing.

In summary, the estimated four shocks model features a highly persistent productivity

shock process, low price rigidity, high wage rigidity and indexation, and low habit persistence.

Impulse responses. The responses to a productivity shock are reported in Figures 1-

7. The remaining cases are in the appendix (Figures S1 to S21). Each �gure consists of 4

sub�gures: the �rst three are for models with 4 to 6 shocks, while the fourth is for the original

SW model. The solid line is computed using the posterior mean. The two dashed lines and

the shaded area correspond to the 90% Asymptotic and MCMC Intervals respectively.

Figures 1-7 con�rm that the productivity shock is prominent in driving business cycle

�uctuations. Under a positive shock, the in�ation falls sharply (due to the small price

inertia), causing real wage to rise sharply (due to the high wage indexation) and real interest

to fall (due to the monetary policy reaction). On the real side, the labor supply increases

strongly as a result of the higher wage. This leads to a sharp rise in output, accompanied

by a strong increase in consumption (due to the low habit persistence and lower real interest

rate). Because the productivity shock process is very persistent, its e¤ects on these variables

are long lasting. The above responses are substantially more pronounced than in SW.

The responses to the monetary policy shock are close to those in SW (Figures S1-S7).

Speci�cally, the response of in�ation is only slightly stronger than in SW. The responses of

interest rate and investment are almost identical to those in SW. There is a slight increase

in the real wage initially, as opposed to the small decrease seen in SW. This is due to the

drop in the price level and the high wage indexation. The initial responses of the output,

hours worked and consumption are slightly stronger than in SW. Then, they revert to levels

similar to the latter. The initial di¤erences are due to the low habit persistence.

Consider the investment shock (Figures S8-S14). The in�ation and interest rate responses

are mildly stronger than in SW due to the low price rigidity. The response in real wage shows
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an initial slight dip before reverting to levels comparable to SW. This dip follows from the

decrease in in�ation and the strong wage indexation. The responses in output, investment,

hours and consumption are all comparable to those in SW, except that the last two are

mildly stronger due to the stronger response in interest rate and the low habit persistence.

Finally, consider the exogenous spending shock (Figures S15-S21). The responses of

in�ation and interest rate are mildly stronger due to the low price rigidity. Real wage shows

a slight decline at short horizons, due to the strong wage indexation. The responses of output,

investment, hours worked and consumption are close to SW, except that they exhibit a faster

decay to zero due to the smaller AR(1) coe¢ cient of this shock process.

Therefore, while the responses to the monetary shock are similar to those in SW, the

responses to the productivity shock are substantially di¤erent. The price rigidity parameter

is estimated to be small in order to account for the highly volatile in�ation seen in the data.

This results in unusually strong responses of in�ation to productivity shocks, which further

lead to very strong responses of labor hours and consequently the output.

8.2 The �ve shocks model

I incorporate �pt into the model. This shock breaks the rigid link between in�ation and

price rigidity, permitting large and frequent changes in the former to be compatible with a

high level of the latter. As a result, the model is more �exible in modeling the responses of

in�ation, and consequently hours worked and output, to productivity shocks. The following

subsets are used to form the composite likelihood: fyt; �t; rt; it; ltg ; fctg and fwtg. The

incorporation of lt into the nonsingular subset exploits the above increased �exibility.

Parameter estimates. The results are reported in Table 1 (Columns 6 to 9). First, the

price rigidity parameter (�p) is now higher than in the four shocks model and closer to that

in SW. Second, the persistence of the productivity shock process is lower and closer to that

in SW, with the half life of a shock reduced to 34 quarters. Third, the in�ation and output

26



weight parameters (r� and ry) are both close to that in SW. In fact, out of the 31 parameters,

all except � and � now have con�dence intervals overlapping with those in SW. These two

parameter values are little changed relative to the four shocks model.

Impulse responses. See plot (b) of Figures 1-7 and S1-S21. Under a positive productivity

shock, the decrease in in�ation is much smaller than the four shocks model. The magnitude

is close to SW. The increase in real wage is also smaller than the four shocks model. It is still

mildly stronger than SW because the productivity process remains more persistent. Since

the in�ation response is much reduced, the high wage indexation is no longer quantitatively

important for determining real wage. Consequently, the response in hours worked is much

less pronounced than in the four shocks model.

Responses to the other three shocks are in line with SW. The in�ation response is almost

identical to SW due to the increased price rigidity. The initial small increase in the real wage

seen in the four shocks model is no longer present. The responses of hours worked, output

and consumption are slightly stronger than those in SW due to the low habit persistence.

In summary, incorporating the price markup shock leads to a signi�cant increase in the

price rigidity and decrease in the persistence of the productivity process. These two changes

both lead to milder responses to productivity shocks. Overall, the responses to the �ve

shocks are no longer substantially di¤erent from those in SW.

8.3 The six shocks model

I incorporate the wage markup shock (�wt ) into the model. The following subsets are used

to form the composite likelihood: fyt; �t; rt; it; lt; wtg and fctg.

Parameter estimates. The estimation results are reported in the last four columns of Ta-

ble 1. Out of the 34 parameters, all except 2 (� and �) have con�dence intervals overlapping

with those in SW; the value of �w is now close to that in SW.
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Impulse responses. The responses are overall similar to the �ve shocks model. They are

also close to those in SW, except that the initial responses in hours worked, output and

consumption are slightly di¤erent due to the low habit persistence.

This section has considered models with the number of shocks ranging between 1 and 7.

A summary of the main �ndings can be found in the introduction section of this paper.

9 Experimenting with alternative speci�cations

This section illustrates how one may decide on which composite likelihood to use. The

main idea is to consider a range of alternative speci�cations, examine their implications in

terms of parameter estimates, cross covariances, identi�cation properties, and forecasting

performance, and then make the choice by aggregating the results. The discussions use

singular versions of SW as illustrating examples. For each of them, three composite likelihood

speci�cations are considered. The �rst is the speci�cation that leads to Tables 1 and S1

(call it the default speci�cation from now on). The other two are as follows. In the �rst

alternative speci�cation, the variables excluded from the maximal nonsingular submodel

under the default speci�cation are used to form the second submodel. The two submodels

are then used to form the composite likelihood. In the second alternative speci�cation, the

composite likelihood is formed by taking the marginal likelihoods of the seven variables, one

at a time. In terms of accounting for dependencies in the data, the default speci�cation

can be viewed as an intermediate case and the two alternative speci�cations as two polar

cases. Other speci�cations in between can also be considered without further conceptual

di¢ culties. For the current application, comparing these three speci�cations is su¢ ciently

informative. The analysis below examines the four implications outlined above sequentially

and also makes an attempt to develop a statistical criterion for selection. The goal of the

analysis is not to dictate a particular choice, but to inform how a choice can be made.

Therefore, in the end of this section, the results are also summarized to provide a practical

procedure for choosing a composite likelihood speci�cation.
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9.1 Parameter estimates and cross covariances

This subsection considers models with four, �ve and six shocks sequentially. For each model,

it �rst studies parameter estimates and then cross covariances. The cross covariances are

computed using the full (singular) model. They are used to identify the dimensions along

which the �t to the data di¤ers, and also to measure the extent of the di¤erences. If a

composite likelihood speci�cation produces a �t that is substantially inferior to the default

speci�cation, then this speci�cation will be considered undesirable.

The four shocks model. The estimation results under the �rst alternative speci�cation

are reported in Panel (a) in Table S2. The main �ndings are as follows. Out of the 28

cases, 25 con�dence intervals overlap with those under the default speci�cation. The three

exceptions are �g; �ga and �w. In addition, the value of ry is smaller, although the con�dence

intervals still overlap. Overall, the parameter estimates under these two speci�cations are

broadly similar. This suggests that the resulting �t to the data may also be similar.

To study this further, I compare three sets of cross covariances with each other. The �rst

two are model-implied covariances at the posterior means. The third is the sample cross

covariance computed directly from the data. The 28 pairs of variables are organized into

three �gures as follows. They are reported in the online appendix. Figure S22 displays the

pairs involving �yt. These cases are arguably of leading importance. Figure S23 displays

results among �ct;�wt and �lt. Because these three variables are treated di¤erently under

the two speci�cations, separating them out can help reveal patterns in the results. The

remaining pairs are included in Figure S24. The maximum lead and lag orders are set to

8 throughout. The 90% con�dence intervals derived from sample cross covariances are also

included to gauge the uncertainty.

The �gures show the following. First, the two model-implied covariances are close to each

other in the majority of the cases. Secondly, there is a trade-o¤. Moving from the default to

the �rst alternative speci�cation improves the �t along some dimensions, but worsens it along
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some others. (See (e)-(f) in Figure S23 and (m)-(o) in Figure S24 for the �rst situation. These

pairs all involve �ct. See (e)-(g) in Figure S22 for the second situation. They all belong

to the maximal nonsingular submodel.) The di¤erences, however, tend to be fairly mild.

Thirdly, the model-implied covariances often fall within the con�dence intervals. Therefore,

with only four shocks, the model can already �t the data along multiple dimensions. Finally,

when substantial deviations from the intervals occur, they typically involve variables across

submodels; see (d) in Figure S22, (e) in Figure S23, and (i), (m), (n), (o) in Figure S24.

The parameter estimates under the second alternative speci�cation are reported in (a) of

Table S3. The cross covariances are shown in Figures S22-S24. First, the parameter values

and cross covariances both exhibit greater di¤erences from the default speci�cation than the

above. Second, the �t is disappointing. This shows clearly that important information in

the data is missed when applying this speci�cation.

Therefore, while the �rst two speci�cations can both be viable candidates for analyzing

the four shocks model, the third is undesirable.

As a note on inference, suppose a researcher wants to report a 100(1 � �)% con�dence

interval for a parameter. Here, three composite likelihood speci�cations are considered,

which deliver three candidate intervals. If the researcher obtains the three intervals at the

level 100(1��=3)%, then, irrespective of which interval he/she chooses to report, it will cover

the pseudo true value at the level of 100(1� �)% or higher. This procedure is conservative.

The �ve shocks model. The results for the �rst alternative speci�cation are reported

in Table S2 and Figures S25-S27. The posterior means are close to those under the default

speci�cation. The con�dence intervals all overlap. The two model-implied cross covariances

are always in agreement with each other. Substantial deviations from the con�dence intervals

are limited to variables across submodels, except (b) and (e) in Figure S26. Both cases involve

�wt. The results for the second alternative speci�cation are in Table S3 and Figures S25-S27.

They show the same two patterns as under the four shocks model. Therefore, the conclusion
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on the three composite likelihood speci�cations is the same as in the four shocks case.

The six shocks model. The default and the �rst alternative speci�cations coincide. The

cross covariances are either inside the intervals, or only show mild deviations from them.

Noticeable deviations are again limited to variables across submodels, except (d) in S28 and

S30. Both pairs involve�wt. The results for the second alternative speci�cation are reported

in Panel (c) of Table S3 and Figures S28-S30. The �t continues to be poor.

In summary, for the models considered, the results consistently show that the default

and �rst alternative speci�cations are similar and that the second alternative speci�cation is

undesirable. This �nding is not surprising. What is important is the analysis that leads to

it. The same analysis can be applied to other models and composite likelihood speci�cations.

9.2 Identi�cation

Canova, Ferroni and Matthes (2014) suggested that identi�cation should be an important

consideration when choosing variables to estimate singular DSGE models. This subsection

applies Theorem 1 to compare the identifying power of the three composite likelihood speci-

�cations. The matrix GS(�) is computed as follows unless stated otherwise. The derivatives

are computed using the symmetric di¤erence quotient with the step size set to 1E-7. The

integral is approximated using the Gauss-Legendre quadrature with 1000 evaluation points.

The values of � are set to the posterior means. Because ; r; � and l are identi�able from the

means of �yt; rt; �t and lt, it is su¢ cient to compute only the �rst term in (11).

For the four shocks model under the default speci�cation, the smallest eigenvalue equals

7.52E-4, above the Matlab default tolerance level of 3.49E-10. This suggests that � is locally

identi�ed at this value. The eigenvalue remains at 7.52E-4 when each of the following changes

is made: (1) the �ve-point method is used to compute the derivative, (2) the step size is set

to 1E-6 or 1E-8, or (3) the Gaussian quadrature is replaced by the Riemann sum. Finally,

when the number of evaluation points is increased substantially to 10000, the eigenvalue
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changes only lightly to 7.53E-4. Therefore, the result is robust to the above changes.

Next, for the four shocks model under the two alternative speci�cations, the smallest

eigenvalues equal 8.73E-4 and 3.87E-6 respectively. The tolerance levels are 3.49E-10 and

8.73E-11. The robustness checks support that � is locally identi�ed in the two cases. Finally,

for the models with �ve to seven shocks, the results also show that � is locally identi�ed under

the three composite likelihood speci�cations. The details are omitted.

In summary, the identi�cation analysis alone has not led to information that can distin-

guish between the three composite likelihood speci�cations.

9.3 Forecasting

This subsection compares the forecasting performance of the three composite likelihood

speci�cations. The ones with high MSFEs are considered as undesirable. The analysis

can be related to Guerron-Quintana (2010). When considering singular models augmented

with measurement errors, the paper suggests that forecasting accuracy can be an appealing

criterion for making choices between the observables.

I consider the same sample periods as in SW, i.e., 1966:I to 1989:IV for initial estimation

and 1990:I to 2004:IV for forecast evaluation. The parameters are reestimated every quarter.

The MSFEs for horizons of k=1; 4; 8 quarters ahead are reported in Table 2. A relative

measure is also reported in parentheses. It is computed as 100 times the di¤erence in the

MSFEs between the current and the default speci�cation, divided by
p
k times the sample

standard deviation of the �rst di¤erenced series. The values exceeding 20% are highlighted

in bold. The bold values are all positive, implying that the corresponding MSFEs are all

higher than those under the default speci�cation. When cross dependencies are misspeci�ed,

imposing them can increase the MSFE. This is important for interpreting the results.

When there are four shocks (see the rows (4,0), (4,1) and (4,2) in Table 2), the default

speci�cation performs better than the �rst alternative speci�cation, particularly at k = 8,

where the relative measure exceeds 20% for 4 out of the 7 series. The default and the second
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alternative speci�cation perform similarly; the relative measure is always below 20%.

When there are �ve shocks, the results show a di¤erent pattern. The default and the

�rst alternative speci�cation are now similar. Meanwhile, the second alternative speci�cation

performs substantially worse when forecasting consumption, with the relative measure equal

to 7:25%, 31:88% and 59:95% at the three horizons. This follows because the MSFEs under

the default and the �rst alternative speci�cations have both decreased noticeably, particularly

at k = 8, while those under the second alternative speci�cation have changed little.

This tendency continues when another shock is added. The default speci�cation now

performs notably better than the second alternative speci�cation at k = 8. Finally, in

the seven shocks model, the forecast for consumption further improves under the default

speci�cation. The second alternative speci�cation again shows no improvement.

The comparison shows that the default speci�cation performs the best overall. Combin-

ing these results with those in Sections 9.1 and 9.2, the default speci�cation emerges as a

preferred choice for analyzing all the models.

9.4 Marginal composite likelihood

The current problem has two special features. First, the submodels considered in Section

9 are non-overlapping. As a result, the composite likelihoods all lead to proper densities.

Second, the models are fully parametric and the priors are proper. As a result, the mar-

ginal composite likelihoods (henceforth MCL) can be readily computed. These two features

suggest that the MCL can be a sensible and feasible criterion for comparing models and

composite likelihood speci�cations.

Let Y = (Y 0
1 ; :::; Y

0
T )
0. Let p(Y j�;Mj;Sk) be the composite likelihood under the speci�-

cation Sk (k = 1; :::; K) for the singular modelMj (j = 1; :::; J). Integrating over the prior

distribution �(�), the MCL is given by

p(Y jMj;Sk) =
Z
p(Y j�;Mj;Sk)�(�)d�: (17)
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Let p(�jM0) be the true density of Y , whereM0 stands for the unknown true model. Let

�0 be the pseudo true value under Mj and Sk given in Lemma 2 of the paper. Then, the

Kullback-Leibler (KL) divergence from the density p(�j�0;Mj;Sk) to p(�jM0) is given by

dKL ((Mj;Sk);M0) =

Z
p(Y jM0) log

p(Y jM0)

p(Y j�0;Mj;Sk)
dY , (18)

which equals zero if and only if p(�j�0;Mj;Sk) coincides with p(�jM0). As T !1:

T�1 log p(Y jMj;Sk)� T�1 log p(Y jM0)!p �dKL ((Mj;Sk);M0) : (19)

The result (19) shows that the ranking according to the MCL is consistent with the KL

divergence ordering asymptotically. I compute (17) for the composite likelihood speci�cations

considered in Sections 8 and 9. The results are reported in Table 3. First, for the four shocks

model, the second alternative speci�cation is ranked the highest, followed by the default and

then the �rst alternative speci�cation. This shows that the four shocks model has substantial

di¢ culty in capturing the dependence between the series. Second, for the �ve shocks model,

the default speci�cation has the highest value, followed by the �rst and then the second

alternative speci�cation. This suggests that model�s ability in capturing cross dependence

has improved, although it still has di¢ culty with the dependence between consumption and

wage growth. Third, for models with six and seven shocks, the default speci�cation and the

�rst alternative speci�cation coincide. They have higher values than the second alternative

speci�cation in both cases. This again shows that the models succeed in capturing some joint

dynamics in the data. These �ndings are in line with those reported in Subsections 9.1 to 9.3

in terms of what the models capture. For example, in the four shock model, because cross

dependence is poorly captured, the second speci�cation is favored by the MCL criterion.

9.5 Suggestion for practice

The materials in Sections 8 and 9 can be summarized into the following procedure for choos-

ing a suitable composite likelihood speci�cation:
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Step 1. Begin the analysis with a default speci�cation by taking a maximal nonsingular

submodel and then the remaining variables one at a time. The leading submodel should be

chosen based on what the model is designed to capture.

Step 2. Consider a range of alternative speci�cations. Although Section 9 has focused

on two polar cases, other speci�cations that maintain the same leading submodel can also

be considered. The speci�cations can be compared with the default speci�cation as in

Subsections 9.1 to 9.3. The outcomes can be evaluated as follows: (1) If a speci�cation

delivers a substantially inferior �t than the default speci�cation, then this speci�cation can

be considered as undesirable. If the �t is in the form of a trade-o¤, then the choice should

be based on what the model is intended to capture. (2) Identi�cation failure should be

viewed as a red �ag. If it is about some important aspects of the model, then the associated

speci�cation can be considered as undesirable. If it is about some relatively minor aspects,

then at a minimum, this should be taken into account when interpreting the estimation

results. (3) The forecast comparison can help in two ways. First, if a speci�cation leads to a

substantially less accurate forecast than the default speci�cation, then the speci�cation can

be considered undesirable. Secondly, by observing how the forecast performance changes as

more dependencies are imposed, one may learn about whether such dependencies are modeled

poorly or adequately. The composite likelihood can then be adjusted to de-emphasize the

poorly speci�ed aspects. Depending on the purpose of the DSGE model, the above three

criteria can receive di¤erent weights when aggregating the results.

Step 3. One may be interested in considering a di¤erent leading submodel. If so, then Steps

1 and 2 can be repeated and the outcomes evaluated in the same way as in Step 2.

The computational cost in Steps 1 to 3 is substantial but manageable. The associated

computational time is as follows (on a desktop with an 8-core Intel 2.4Ghz processor). It takes

5-7 hours to estimate a model using a given composite likelihood speci�cation (i.e., to obtain

a panel of Tables 1 or S2-S4). The computation of cross covariances is immediate. For the
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identi�cation analysis, it takes less than 1 hour to compute theGS(�)matrix. The forecasting

exercise is more time consuming. It takes 1-2 days to produce the MSFEs in a row of Table

2. However, because di¤erent subsamples can be handled independently, the computation

time can be substantially reduced if more computer cores are available. Experimentations

suggest that the computation time declines almost linearly with the number of cores used.

Finally, the suggested model selection criterion can complement but not substitute for

the analysis in Subsections 9.1 to 9.3. If we take a model builder�s perspective, then for an

intermediate model, we want to learn about its merits and shortcomings in order to improve

it. Statistical model selection, such as the one described in Subsection 9.4, o¤ers a ranking

of models but does not provide answers to many detailed questions.

10 Conclusion

This paper has developed a uni�ed econometric framework for analyzing both singular and

nonsingular DSGE models. The value of this framework is not in providing a unique criterion

function that achieves the highest e¢ ciency, but in providing a platform that allows for

�exible choices of criterion functions, and in letting all such choices speak to the data.

The framework allows for analyses related to parameter identi�cation, estimation, inference

and forecasting. Applications to both small and medium scale models show that it can

be informative about the similarities and di¤erences between alternative models and also

about the sources that generate them. The framework can be further developed. First,

extensions to nonlinear models can be possible. Second, multiple singular models can be

jointly estimated. Finally, the issue of forecasting with singular models merits further study.

The results can shed more light on the usefulness of singular models.
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Table 1: Estimation results for medium scale models

(a) The four shocks model (b) The �ve shocks model (c) The six shocks model

Mode Mean MCMC Asymptotic Mode Mean MCMC Asymptotic Mode Mean MCMC Asymptotic

� 0.25 0.25 [0.21,0.29] [0.21,0.29] 0.28 0.28 [0.25,0.32] [0.25,0.32] 0.28 0.28 [0.25,0.31] [0.24,0.32]

 0.41 0.45 [0.24,0.67] [0.30,0.59] 0.43 0.48 [0.31,0.64] [0.28,0.65] 0.43 0.44 [0.29,0.61] [0.28,0.62]

' 5.65 5.74 [3.96,7.70] [4.91,6.55] 5.10 5.29 [3.60,7.18] [4.03,6.55] 5.04 5.20 [3.54,7.02] [3.94,6.57]

�c 1.62 1.60 [1.31,1.91] [1.32,1.91] 1.73 1.70 [1.35,2.11] [1.27,2.12] 1.79 1.74 [1.42,2.11] [1.45,2.04]

� 0.34 0.37 [0.29,0.45] [0.25,0.49] 0.29 0.31 [0.24,0.39] [0.24,0.38] 0.32 0.34 [0.26,0.40] [0.27,0.40]

�p 1.32 1.34 [1.20,1.49] [1.21,1.48] 1.47 1.49 [1.36,1.63] [1.40,1.59] 1.58 1.59 [1.47,1.72] [1.50,1.69]

�w 0.87 0.85 [0.74,0.94] [0.77,0.92] 0.86 0.83 [0.71,0.93] [0.76,0.90] 0.58 0.56 [0.35,0.76] [0.42,0.71]

�w 0.86 0.84 [0.76,0.89] [0.72,0.95] 0.60 0.60 [0.44,0.73] [0.38,0.79] 0.78 0.76 [0.67,0.84] [0.62,0.87]

�p 0.12 0.13 [0.05,0.23] [0.06,0.22] 0.21 0.22 [0.10,0.37] [0.14,0.31] 0.24 0.27 [0.13,0.43] [0.13,0.42]

�p 0.23 0.22 [0.14,0.31] [0.15,0.28] 0.71 0.70 [0.61,0.80] [0.61,0.80] 0.66 0.65 [0.57,0.73] [0.55,0.74]

�l 2.66 2.38 [1.27,3.49] [1.03,3.57] 2.15 2.11 [1.27,3.06] [1.24,3.00] 2.71 2.68 [1.78,3.64] [2.11,3.27]

r� 1.39 1.41 [1.20,1.64] [1.15,1.69] 2.08 2.07 [1.79,2.35] [1.88,2.26] 2.00 2.00 [1.73,2.28] [1.83,2.16]

r�y 0.23 0.23 [0.16,0.29] [0.16,0.30] 0.24 0.25 [0.20,0.30] [0.20,0.30] 0.26 0.26 [0.21,0.31] [0.21,0.31]

ry 0.18 0.17 [0.09,0.24] [0.07,0.26] 0.11 0.12 [0.08,0.17] [0.06,0.19] 0.12 0.12 [0.07,0.18] [0.04,0.21]

� 0.75 0.73 [0.67,0.79] [0.66,0.80] 0.77 0.77 [0.71,0.81] [0.70,0.82] 0.79 0.79 [0.74,0.83] [0.74,0.83]

�a 0.99 0.99 [0.98,0.99] [0.98,0.99] 0.98 0.98 [0.96,0.99] [0.95,0.99] 0.98 0.98 [0.96,0.99] [0.94,0.99]

�b � � � � � � � � � � � �

�g 0.90 0.90 [0.86,0.94] [0.86,0.94] 0.92 0.92 [0.87,0.95] [0.86,0.97] 0.91 0.91 [0.86,0.95] [0.83,0.99]

�i 0.74 0.75 [0.67,0.82] [0.66,0.84] 0.64 0.65 [0.55,0.74] [0.54,0.75] 0.64 0.64 [0.55,0.73] [0.55,0.73]

�r 0.13 0.15 [0.05,0.27] [0.03,0.29] 0.09 0.12 [0.04,0.22] [0.04,0.21] 0.08 0.10 [0.03,0.18] [0.04,0.17]

�p � � � � 0.97 0.97 [0.94,0.99] [0.93,0.99] 0.86 0.85 [0.75,0.93] [0.75,0.93]

�p � � � � 0.81 0.78 [0.63,0.89] [0.62,0.91] 0.70 0.66 [0.45,0.82] [0.44,0.82]

�w � � � � � � � � 0.98 0.96 [0.91,0.99] [0.82,0.99]

�w � � � � � � � � 0.92 0.87 [0.77,0.94] [0.64,0.99]

�ga 0.48 0.46 [0.30,0.63] [0.30,0.63] 0.40 0.42 [0.24,0.59] [0.24,0.60] 0.41 0.44 [0.25,0.63] [0.24,0.67]

�a 0.53 0.55 [0.47,0.64] [0.45,0.65] 0.50 0.50 [0.45,0.56] [0.44,0.56] 0.47 0.47 [0.42,0.53] [0.41,0.55]

�b � � � � � � � � � � � �

�g 0.53 0.54 [0.48,0.62] [0.48,0.61] 0.57 0.59 [0.51,0.70] [0.50,0.70] 0.56 0.59 [0.51,0.67] [0.51,0.67]

�i 0.49 0.50 [0.42,0.57] [0.39,0.61] 0.56 0.57 [0.49,0.67] [0.43,0.73] 0.57 0.58 [0.49,0.67] [0.44,0.73]

�r 0.31 0.32 [0.28,0.36] [0.27,0.37] 0.29 0.30 [0.27,0.34] [0.25,0.36] 0.29 0.30 [0.27,0.33] [0.24,0.36]

�p � � � � 0.15 0.15 [0.12,0.18] [0.11,0.19] 0.14 0.14 [0.11,0.17] [0.11,0.17]

�w � � � � � � � � 0.25 0.25 [0.21,0.28] [0.18,0.30]

 0.37 0.38 [0.33,0.42] [0.33,0.42] 0.40 0.40 [0.36,0.44] [0.34,0.46] 0.35 0.36 [0.32,0.39] [0.31,0.40]

r 0.10 0.12 [0.06,0.20] [0.09,0.16] 0.11 0.14 [0.07,0.22] [0.11,0.16] 0.12 0.14 [0.07,0.24] [0.11,0.18]

� 0.70 0.72 [0.55,0.90] [0.64,0.81] 0.65 0.67 [0.51,0.84] [0.63,0.71] 0.66 0.69 [0.52,0.86] [0.60,0.80]

l -0.66 -0.65 [-1.8,0.46] [-1.9,0.57] 0.52 0.38 [0.85,1.77] [-0.83,1.57] 0.69 0.42 [-0.97,1.91] [-0.93,1.67]

Note. The prior distributions are the same as in Smets and Wouters�(2007) dynare code. MCMC: 90% intervals obtained using the quantiles

of the MCMC draws. Asymptotic: 90% intervals obtained using Procedure A. The estimates are based on 200,000 draws.



Table 2. Mean squared forecast errors (MSFEs)

Cases Output In�ation Interest Hours Wage Consumption Investment

(a) 1 quarter ahead

(4,0) 0.53 0.24 0.13 0.48 0.62 0.57 1.45

(4,1) 0.51 (-2.33) 0.23 (-3.23) 0.16 (11.54) 0.54 (9.23) 0.60 (-3.57) 0.64 (10.14) 1.39 (-2.67)

(4,2) 0.55 (2.33) 0.21 (-9.68) 0.10 (-11.54) 0.44 (-6.15) 0.61 (-1.79) 0.55 (-2.90) 1.44 (-0.44)

(5,0) 0.53 0.21 0.13 0.48 0.63 0.51 1.43

(5,1) 0.54 (1.16) 0.20 (-3.23) 0.13 (0.00) 0.49 (1.54) 0.63 (0.00) 0.54 (4.35) 1.41 (-0.89)

(5,2) 0.56 (3.49) 0.20 (-3.23) 0.10 (-11.54) 0.44 (-6.15) 0.63 (0.00) 0.56 (7.25) 1.45 (0.89)

(6,0) 0.55 0.26 0.14 0.46 0.59 0.54 1.45

(6,1) � � � � � � �

(6,2) 0.56 (1.16) 0.20 (-19.35) 0.11 (-11.54) 0.45 (-1.54) 0.62 (5.36) 0.57 (4.35) 1.45 (0.00)

(7,0) 0.57 0.25 0.11 0.46 0.61 0.47 1.46

(7,1) � � � � � � �

(7,2) 0.56 (-1.16) 0.20 (-16.13) 0.09 (-7.69) 0.44 (-3.08) 0.61 (0.00) 0.53 (8.70) 1.42 (-1.78)

(b) 4 quarters ahead

(4,0) 1.18 0.32 0.35 1.46 1.58 1.84 4.38

(4,1) 1.38 (11.63) 0.29 (-4.84) 0.47 (23.08) 1.84 (29.23) 1.54 (-3.57) 2.35 (36.96) 4.42 (0.89)

(4,2) 1.39 (12.21) 0.20 (-19.35) 0.35 (0.00) 1.33 (-10.00) 1.57 (-0.89) 1.81 (-2.17) 4.51 (2.89)

(5,0) 1.20 0.19 0.41 1.30 1.62 1.43 4.59

(5,1) 1.23 (1.74) 0.19 (0.00) 0.38 (-5.77) 1.30 (0.00) 1.67 (4.46) 1.64 (15.22) 4.38 (-4.67)

(5,2) 1.44 (13.95) 0.18 (-1.61) 0.35 (-11.54) 1.31 (0.77) 1.63 (0.89) 1.87 (31.88) 4.54 (-1.11)

(6,0) 1.16 0.26 0.44 1.24 1.50 1.67 4.69

(6,1) � � � � � � �

(6,2) 1.41 (14.53) 0.20 (-9.68) 0.37 (-13.46) 1.41 (13.08) 1.57 (6.25) 1.91 (17.39) 4.59 (-2.22)

(7,0) 1.43 0.19 0.37 1.28 1.60 1.17 4.56

(7,1) � � � � � � �

(7,2) 1.42 (-0.58) 0.18 (-1.61) 0.33 (-7.69) 1.33 (3.85) 1.56 (-3.57) 1.69 (37.68) 4.50 (-1.33)

(c) 8 quarters ahead

(4,0) 1.90 0.33 0.45 2.39 2.64 3.60 7.72

(4,1) 2.48 (23.84) 0.31 (-2.28) 0.66 (28.56) 3.14 (40.79) 2.55 (-5.68) 4.38 (39.97) 7.72 (0.00)

(4,2) 2.14 (9.87) 0.24 (-10.26) 0.54 (12.24) 2.27 (-6.53) 2.61 (-1.89) 3.64 (2.05) 7.98 (4.09)

(5,0) 1.90 0.23 0.59 2.00 2.53 2.50 7.23

(5,1) 1.88 (-0.82) 0.24 (1.14) 0.55 (-5.44) 1.96 (2.18) 2.57 (2.53) 2.86 (18.45) 6.96 (-4.24)

(5,2) 2.35 (18.50) 0.21 (-2.28) 0.55 (-5.44) 2.19 (10.33) 2.63 (6.31) 3.67 (59.95) 7.85 (9.74)

(6,0) 1.78 0.24 0.61 1.82 2.33 3.22 6.85

(6,1) � � � � � � �

(6,2) 2.29 (20.97) 0.24 (0.00) 0.57 (-5.44) 2.43 (33.18) 2.52 (12.00) 3.69 (24.08) 8.19 (21.06)
(7,0) 2.15 0.20 0.52 1.96 2.71 1.90 7.23

(7,1) � � � � � � �

(7,2) 2.26 (4.52) 0.20 (0.00) 0.51 (-1.36) 2.20 (13.05) 2.53 (-11.36) 3.32 (72.76) 8.15 (14.46)
Note. The table reports the mean squared forecast errors over the period 1990:1 to 2004:4. In (i; j), i denotes the number

of shocks, while j = 0; 1 and 2 corresponds to the default, �rst and second alternative speci�cation, respectively. The

initial estimation period is 1966:1�1989:4. The parameters are reestimated every quarter. The value in parentheses is

computed as the di¤erence in the MSFEs between the current and the default speci�cation, divided by
p
k times the

sample standard deviation of the �rst di¤erenced series. The values exceeding 20% are highlighted in bold. The sample

standard deviations for the seven series are: 0.86, 0.31, 0.26, 0.65, 0.56, 0.69, 2.25.



Table 3. Log marginal composite likelihood

Four shocks model Five shocks model Six shocks model Seven shocks model

Case value Case value Case value Case value

(4,0) -1099.9 (5,0) -1019.9 (6,0) -999.7 (7,0) -940.4

(4,1) -1115.2 (5,1) -1026.0 (6,1) � (7,1) �

(4,2) -1075.4 (5,2) -1055.2 (6,2) -1052.6 (7,2) -1036.9

Note. The sample period is the same as in Table 1. No training sample is used. In (i; j),

i denotes the number of shocks, while j = 0, 1 and 2 corresponds to the default, the �rst

and the second alternative speci�cation. (6,1) and (7,1) are the same as (6,0) and (7,0),

therefore not repeated.



Figure 1. Response of output to a productivity shock
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Figure 2. Response of inflation to a productivity shock
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Figure 3. Response of interest to a productivity shock
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Figure 4. Response of investment to a productivity shock
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Figure 5. Response of hours worked to a productivity shock
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Figure 6. Response of wage to a productivity shock
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Figure 7. Response of consumption to a productivity shock
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Online Appendix

This appendix is structured as follows. Section S.1 contains the proofs. Section S.2

includes the original Smets and Wouters (2007) model. Section S.3 shows how to compute

the Gaussian likelihood for a nonsingular submodel in both the time and the frequency

domain. Section S.4 gives two examples to illustrate the MCMC and Asymptotic Intervals

under misspeci�cation. Section S.5 applies the composite likelihood framework to analyze

small scale singular models. Some tables and �gures appear at the very end.
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S.1 Proofs for the results in the paper

Proof of Lemma 1. Consider the matrix polynomial H(z; �) and treat it as a function of a

scalar z with jzj > 1. Because its row dimension exceeds the column dimension, there exists a

sequence of elementary row operations (i.e., left multiplying H(z; �) by elementary matrices

that depend on nonnegative powers of z) to reduce its last row to zeros. Call the last row

of the product of these elementary matrices T (z; �). Then: T (z; �)Yt = T (z; �)H(z; �)�t = 0

for all t. This in term implies T (L; �)Yt = 0. The result follows because T (L; �) depends

only on nonnegative powers of L.

Proof of Theorem 1. The result follows from Theorems 1 and 2 in Qu and Tkachenko

(2012). Here I still include the details for the matter of completeness.

De�ne the following correspondence:

fs(!; �) ! fs(!; �)
R with fs(!; �)

R =

24 Re(fs(!; �)) Im(fs(!; �))

� Im(fs(!; �)) Re(fs(!; �))

35 ; (S.1)

where Re(�) and Im(�) denote the real and the imaginary part of a complex matrix, i.e., if

C = A+Bi, then Re(C) = A and Im(C) = B. Let Rs(!; �) = vec(fs(!; �)R), then�
@ vec fs(!; �)

@�0

���
@ vec fs(!; �)

@�0

�
=
1

2

�
@Rs(!; �)

@�0

�0�
@Rs(!; �)

@�0

�
:

In addition, let

�Rs(!; �) =

24 Rs(!; �)

1p
�
�s(�)

35 :
Then, GS(�) can be equivalently represented as

GS(�) =
1

2

SX
s=1

(Z �

��

�
@ �Rs(!; �0)

@�0

�0�
@ �Rs(!; �0)

@�0

�
d!

)
:

This representation is useful because the elements of the function �Rs(!; �) are all real valued.

This allows adopting the arguments in Theorem 1 in Rothenberg (1971) to prove the result.

Suppose �0 is not locally identi�ed. Then, there exists a sequence of vectors f�kg1k=1
approaching �0 such that for every k:

�Rs(!; �0) = �Rs(!; �k) for all ! 2 [��; �] and all s = 1; :::; S:
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For some arbitrary ! 2 [��; �], s 2 f1; :::Sg and j 2 f1; :::; dim(�)g, by the mean value

theorem and the di¤erentiability of fs(!; �) and �s(�) in �:

0 = �Rs;j(!; �k)� �Rs;j(!; �0) =
@ �Rs;j(!;e�(s; j; !))

@�0
(�k � �0);

where the subscript j denotes the j-th element of the vector and e�(s; j; !) lies between �k
and �0 and in general depends on all the three arguments. Let dk = (�k � �0)= k�k � �0k,

then
@ �Rs;j(!;e�(s; j; !))

@�0
dk = 0 for every k.

The sequence fdkg is an in�nite sequence on the unit sphere. Therefore, it has a convergent

subsequence with a limit d (note that d does not depend on s, j or !). Without loss of

generality, assume fdkg itself is the convergent subsequence. Then, as �k ! �0, dk approaches

d and

lim
k!1

@ �Rs;j(!;e�(s; j; !))
@�0

dk =
@ �Rs;j(!; �0)

@�0
d = 0;

where the convergence holds because f(!; �) is continuously di¤erentiable in �. Because this

holds for an arbitrary j, it holds for the full vector �Rs(!; �0), which implies [@ �Rs(!; �0)=@�
0]d =

0, further implying d0[@ �Rs(!; �0)=@�
0]0[@ �Rs(!; �0)=@�

0]d = 0. Because the above result holds

for arbitrary ! and s, it also holds when integrating over ! 2 [��; �] and summing over

s 2 f1; :::Sg:

d0
SX
s=1

(Z �

��

�
@ �Rs(!; �0)

@�0

�0�
@ �Rs(!; �0)

@�0

�
d!

)
d = 0:

Because d 6= 0, GS(�0) is singular.

To show the converse, suppose that GS(�) has constant rank � < q in a neighborhood

of �0 denoted by �(�0). Then, consider the characteristic vector c(�) associated with one of

the zero roots of GS(�). Because
SX
s=1

(Z �

��

�
@ �Rs(!; �)

@�0

�0�
@ �Rs(!; �)

@�0

�
d!

)
� c(�) = 0;

it follows that
SX
s=1

Z �

��

�
@ �Rs(!; �)

@�0
c(�)

�0�
@ �Rs(!; �)

@�0
c(�)

�
d! = 0:
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Since the integrand is continuous in ! and always non-negative, we must have�
@ �Rs(!; �)

@�0
c(�)

�0�
@ �Rs(!; �)

@�0
c(�)

�
= 0

for all ! 2 [��; �], all � 2 �(�0) and all s 2 f1; :::Sg. Consequently,

@ �Rs(!; �)

@�0
c(�) = 0 (S.2)

for all ! 2 [��; �], all � 2 �(�0) and all s 2 f1; :::Sg. Because GS(�) is continuous and has

constant rank in �(�0), the vector c(�) is continuous in �(�0). Consider the curve � de�ned

by the function �(v) which solves for 0� v � �v the di¤erential equation: @�(v)=@v = c(�)

with �(0) = �0. Then,

@ �Rs(!; �(v))

@v
=
@ �Rs(!; �(v))

@�(v)0
@�(v)

@v
=
@ �Rs(!; �(v))

@�(v)0
c(�) = 0 (S.3)

for all ! 2 [��; �], 0 � v � �v and all s 2 f1; :::Sg, where the last equality uses (S.2). Thus,
�Rs(!; �) is constant on the curve � for all s 2 f1; :::Sg. This implies that along the curve

there is observational equivalence. This completes the proof.

Proof of Lemma 2. First, consider the frequency domain formulation as in (S.15). The

arguments in Lemma 1 in Hannan (1973) implies:

T�1
T�1X
j=1

tr
�
f�1s (!j; �)Is;T (!j)

	 a:s! 1

2�

Z �

��
tr
�
f�1s (!; �)fs;0(!)

	
d!;

T�1tr
�
f�1s (0; �)Is;T (0; �)

	 a:s! 1

2�

�
�s;0 � �s(�)

�0
f�1s (0; �)

�
�s;0 � �s(�)

�
:

Note that the key step in Hannan�s proof is the uniform approximation of f�1s (!; �) by

a Cesaro sum of its Fourier series, which also holds for multivariate series provided that

the smallest eigenvalues of f�1s (!; �) are strictly bounded away from 0 for all ! 2 [��; �].

Using these two results, Lemma 2.1 then follows because T�1
PT�1

j=1 log det(fs(!j; �)) !
1
2�

R �
�� log det(fs(!; �))d!. For the time domain likelihood, Lemma 2.1 follows from Hansen

and Sargent (1993, p.49-52).
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Consider the second result of the Lemma. Theorem 7.3.3 in Rockafellar and Wets (2009)

and Lemma 2.1 imply that, with probability 1:

lim sup
T!1

�
argmin

�2�
�T�1`(�)

�
� argmin

�2�
�`1(�);

i.e.,

lim sup
T!1

�C � C0: (S.4)

Applying Theorem 4.10(b) and Example 4.13 in Rockafellar and Wets (2009), (S.4) is equiv-

alent to

inf
�
� � 0j �C � C0 + �B

	
! 0; (S.5)

where C0 + �B consists of all the points that lie in a closed ball of radius � around some

point of C0. For any two compact sets A and B, inf f� � 0jA � B + �Bg < " if and only if

h(A;B) < ". As a result, (S.5) holds if and only if

h( �C;C0)! 0:

This proves the second result of the Lemma.

The third result follows immediately. This completes the proof.

Proof of Theorem 2. I �rst analyze the frequency domain likelihood and then verify that

the time domain estimation yields the same asymptotic distribution. As the e¤ect of the

prior vanishes asymptotically, it can be omitted from the derivations. Let �̂T denote the

mode, then

T�1=2
@`(�̂T )

@�
= 0; (S.6)

while the pseudo-true value �0 satis�es

T 1=2
@`1 (�0)

@�
= 0: (S.7)

Consider a Taylor expansion of (S.6) around �0 :

@` (�0)

@�
+
@2`(��)

@�@�0
(�̂T � �0) = 0;
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where �� lies between �̂T and �0. Rearrange terms and apply (S.7):

T 1=2(�̂T � �0) =
�
� 1
T

@2`(��)

@�@�0

��1�
T�1=2

@` (�0)

@�
� T 1=2@`1 (�0)

@�

�
:

On the right hand side, the term inside the brackets converges to M de�ned in the theorem,

while the term in the parentheses equals

1

2T 1=2

SX
s=1

(
T�1X
j=0

�
@vecfs(!j; �0)

@�0

�� �
f�1s (!j; �0)

0 
 f�1s (!j; �0)
�
vec (Is;T (!j)� fs;0(!j)) (I)

+
1

�

TX
t=1

@�s(�0)
0

@�
f�1s (0; �0)

�
Ys;t��s;0

�)
+ op (1) : (II)

Term (I) satis�es a CLTwith limT!1 E (vec fIs;T (!j)� fs;0(!j)g vec fIh;T (!j)� fh;0(!j)g�) =

fs;h;0(!j)
0 
 fs;h;0(!j). This leads to V1;s;h de�ned in the theorem. Term (II) also satis�es a

CLT with limT!1 E(Ys;t��s;0)(Yh;t��s;0)0 = 2�fs;h;0(0). This leads to V2;s;h de�ned in the

theorem. The covariance of Terms (I) and (II) is zero because of Assumption MI.

Next, I consider the time domain formulation. Because T 1=2(�̂T � �0) = Op(1), we can

restrict our analysis to the following compact set
�
� : T 1=2 k� � �0k �M

	
, where for any

� > 0, M can be chosen such that �̂T falls into the set with probability at least 1� � in large

samples.

Up to some constant addition, the time domain Gaussian log likelihood that corresponds

to the submodel s can also be represented as (see Hannan, 1973 and Hansen and Sargent,

1993)

`s(�) = �
1

2
log detG�1s (�)� 1

2
[Ys � �s(�)]

0G�1s (�) [Ys � �s(�)] ;

where Ys is a matrix whose t-th row is given by Y 0
s;t and �s(�) and Gs (�) correspond to the

mean and covariance matrix of Ys implied by the model. This representation di¤ers from

(S.14) in the handling of the initial condition, whose e¤ects vanish asymptotically.

Below, I show that the �rst order condition in the time domain is asymptotically equiva-

lent to that in the frequency domain. The derivative of `s(�) with respect to the k-th element
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of � multiplied by T�1=2 equals

1

2T 1=2
@ log detG�1s (�)

@�k
� 1

2T 1=2
[Ys � �s(�)]

0 @G
�1
s (�)

@�k
[Ys � �s(�)]

+T�1=2
@�s(�)

0

@�k
G�1s (�) [Ys � �s(�)]

= (A) + (B) + (C):

I now analyze (A), (B) and (C) separately.

The analysis of Term (B) uses the results in Brockwell and Davis (1991, p.392-393)

but applied to multivariate processes. First, de�ne qs;m(!; �) to be the m-th order Fourier

series approximation to f�1s (!; �). With m = O(T 1=5), the approximation error satis�es

kqs;m(!; �)� f�1s (!; �)k+ k@qs;m(!; �)=@�k � @f�1s (!; �)=@�kk = O(T�3=5) uniformly over !

and �. This implies

T�1=2
T�1X
j=0

Is;T (!j)

�
@f�1s (!; �)

@�k
� @qs;m(!; �)

@�k

�
= op (1) :

Next, view (4�2)�1qs;m(!; �) as a spectral density and let eH�1
s (�) be the covariance matrix

of the resulting VMA(m) process. Similar to Displays (10.8.17) and (10.8.45) in Brockwell

and Davis (1991, p.392-393):

T�1=2 [Ys � �s(�)]
0

 
@G�1s (�)

@�k
� @ eH�1

s (�)

@�k

!
[Ys � �s(�)] = op (1) :

Then, applying the relationship between qs;m(!; �) and eH�1
s (�), it follows that

T�1=2 [Ys � �s(�)]
0 @ eH�1

s (�)

@�k
[Ys � �s(�)]� T�1=2

T�1X
j=0

Is;T (!j)
@qs;m(!; �)

@�k
= op (1) :

The results in the above three displays hold uniformly over the compact set de�ned above.

They jointly imply

(B) = � 1

2T 1=2

T�1X
j=0

Is;T (!j)
@f�1s (!; �)

@�k
+ op (1) : (S.8)
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For Term (A), note that

(A) =
1

2T 1=2
tr

�
Gs (�)

@G�1s (�)

@�k

�
=

1

2T 1=2
trE

�
[Ys(�)� �s(�)] [Ys(�)� �s(�)]

0 @G
�1
s (�)

@�k

�
=

1

2T 1=2
trE

�
[Ys(�)� �s(�)]

0 @G
�1
s (�)

@�k
[Ys(�)� �s(�)]

�
;

where Ys(�) denote a random vector with mean �s(�) and covariance Gs (�). Applying the

argument for proving (B) and then take the expectation:

(A) =
1

2T 1=2

T�1X
j=0

E tr
�
Is;T (!j)

@f�1s (!j; �)

@�k

�
+o (1) =

1

2T 1=2

T�1X
j=0

tr

�
fs(!j; �)

@f�1s (!j; �)

@�k

�
+o (1) :

(S.9)

Finally, applying the same argument used for (B) to (C):

(C) =
1

�T 1=2
@�s(�)

0

@�k
f�1s (0; �) (Ys � �s(�)) + o (1) : (S.10)

The sum of the leading terms of (S.9), (S.8) and (S.10) equal the �rst order derivative of the

frequency domain likelihood (S.15) with respect to �k. This completes the proof.

S.2 Smets and Wouters (2007)

The model has seven observable endogenous variables and seven shocks. Below is an outline

of the log linearized system. Its singular versions, as explained in the main text, are obtained

by removing a subset or all of the following three shocks: the risk premium shock, the price

market shock and the wage mark up shock.

The aggregate resource constraint: It satis�es

yt = cyct + iyit + zyzt + "gt :

Output (yt) is composed of consumption (ct), investment (it), capital utilization costs as a

function of the capital utilization rate (zt), and exogenous spending ("
g
t ). The latter follows

an AR(1) model with an i.i.d. Normal error term (�gt ); and is also a¤ected by the productivity

shock (�at ) as follows:

"gt = �g"
g
t�1 + �ga�

a
t + �gt :
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The coe¢ cients cy; iy and zy are functions of the steady state spending-output ratio (gy),

steady state output growth ( = 1 + �=100), capital depreciation (�), household discount

factor (�); intertemporal elasticity of substitution (�c), �xed costs in production (�p), and

share of capital in production (�): iy = (�1+�)ky; cy = 1�gy�iy; and zy = Rk�ky. Here, ky

is the steady state capital-output ratio, and Rk� is the steady state rental rate of capital: ky =

�p (L�=k�)
��1 = �p

�
((1� �)=�)

�
Rk�=w�

����1
with w� =

�
��(1� �)(1��)=[�p

�
Rk�
��
]
�1=(1��)

,

and Rk� = ��1�c � (1� �):

Households: The consumption Euler equation is

ct = c1ct�1 + (1� c1)Etct+1 + c2(lt � Etlt+1)� c3(rt � Et�t+1)� "bt : (S.11)

where lt is hours worked, rt is the nominal interest rate, and �t is in�ation. The disturbance

"bt follows

"bt = �b"
b
t�1 + �bt :

The relationship of the coe¢ cients in (S.11) to the habit persistence (�), steady state labor

market mark-up (�w), and other structural parameters highlighted above is:

c1 =
�=

1 + �=
; c2 =

(�c � 1)
�
wh�L�=c�

�
�c (1 + �=)

; c3 =
1� �=

(1 + �=)�c
; where wh�L�=c� =

1

�w

1� �
�

Rk�ky
1

cy

with Rk� and ky de�ned as above and cy = 1� gy � ( � 1 + �)ky:

The dynamics of households�investment are given by

it = i1it�1 + (1� i1)Eti+1 + i2qt + "it;

where "it is a disturbance to the investment speci�c technology process, given by

"it = �i"
i
t�1 + �it:

The coe¢ cients satisfy i1 = 1=(1 + �(1��c)) and i2 = 1=[
�
1 + �(1��c)

�
2'], where ' is the

steady state elasticity of the capital adjustment cost function. The corresponding arbitrage

equation for the value of capital is given by

qt = q1Etqt+1 + (1� q1)Etrkt+1 � (rt � Et�t+1)�
1

c3
"bt , (S.12)
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with q1 = ���c (1� �) = (1� �)=(Rk� + 1� �):

Final and intermediate goods market: The aggregate production function is

yt = �p (�k
s
t + (1� �) lt + "at ) ;

where � captures the share of capital in production, and the parameter �p is one plus the

�xed costs in production. Total factor productivity follows the AR(1) process

"at = �a"
a
t�1 + �at :

The current capital service usage (kst ) is a function of capital installed in the previous period

(kt�1) and the degree of capital utilization (zt): kst = kt�1 + zt: Furthermore, the capital

utilization is a positive fraction of the rental rate of capital (rkt ): zt = z1r
k
t ; where z1 =

(1�  )= ;and  is a positive function of the elasticity of the capital utilization adjustment

cost function and normalized to be between zero and one. The accumulation of installed

capital (kt) satis�es

kt = k1kt�1 + (1� k1) it + k2"
i
t;

where "it is the investment speci�c technology process as de�ned before, and k1 and k2 satisfy

k1 = (1� �)= and k2 = (1� k1)
�
1 + �(1��c)

�
2':

The price mark-up satis�es �pt = � (kst � lt) + "at � wt, where wt is the real wage. The

New Keynesian Phillips curve is

�t = �1�t�1 + �2Et�t+1 � �3�pt + "pt ; (S.13)

where "pt is a disturbance to the price mark-up, following the ARMA(1,1) process given by

"pt = �p"
p
t�1 + �pt � �p�

p
t�1:

The MA(1) term is intended to pick up some of the high frequency �uctuations in prices. The

Phillips curve coe¢ cients depend on price indexation (�p) and stickiness (�p), the curvature

of the goods market Kimball aggregator (�p), and other structural parameters:

�1 =
�p

1 + �(1��c)�p
; �2 =

�(1��c)

1 + �(1��c)�p
; �3 =

1

1 + �(1��c)�p

�
1� �(1��c)�p

� �
1� �p

�
�p
��
�p � 1

�
�p + 1

� :
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Cost minimization by �rms implies that the rental rate of capital satis�es rkt = � (kst � lt)+

wt:

Labor market: The wage mark-up is

�wt = wt �
�
�llt +

1=

1� �= (ct � (�=)ct�1)
�
;

where �l is the elasticity of labor supply. Real wage wt adjusts slowly according to

wt = w1wt�1 + (1� w1) (Etwt+1 + Et�t+1)� w2�t + w3�t�1 � w4�wt + "wt ;

where the coe¢ cients are functions of wage indexation (�w) and stickiness (�w) parameters,

and the curvature of the labor market Kimball aggregator (�w):

w1 =
1

1 + �(1��c)
; w2 =

1 + �(1��c)�w
1 + �(1��c)

; w3 =
�w

1 + �(1��c)
;

w4 =
1

1 + �(1��c)

�
1� �(1��c)�w

�
(1� �w)

�w ((�w � 1) �w + 1)
:

The wage mark-up disturbance follows an ARMA(1,1) process:

"wt = �w"
w
t�1 + �wt � �w�wt�1:

Monetary policy: The empirical monetary policy reaction function is

rt = �rt�1 + (1� �) (r��t + ry (yt � y�t )) + r�y((yt � y�t )�
�
yt�1 � y�t�1

�
) + "rt :

The monetary shock "rt follows an AR(1) process:

"rt = �r"
r
t�1 + �rt :

The variable y�t stands for the time-varying optimal output level that is the result of a �exible

price-wage economy. Since the equations for the �exible price-wage economy are essentially

the same as above, but with the variables �pt and �
w
t set to zero, we omit the details.

S-11



S.3 Likelihood for a nonsingular submodel

This appendix shows how to compute the Gaussian likelihood for a nonsingular submodel in

both the time and the frequency domain. The material is not new; it is included to facilitate

the methods�implementation in practice.

The time domain Gaussian likelihood for a nonsingular submodel. The model is

Ys;t = Ps�(�) + PsC(�)Xt + PsD(�)vt; Xt = A(�)Xt�1 +B(�)"t;

where "t � i:i:d:N(0; Q); vt � i:i:d:N(0; H) and E ("tv0t) = V:

Initialization. Suppose the initial condition satis�es X0j0 � N(0; P0j0), where P0j0 is a sym-

metric positive de�nite matrix.

Prediction. Obtain the optimal forecast of Xt and its mean squared forecast error (MSE)

using the information available at t� 1:

Xtjt�1 = A(�)Xt�1jt�1

Ptjt�1 = A(�)Pt�1jt�1A(�)
0 +B(�)QB(�)0;

The corresponding prediction error for Ys;t and its MSE then equal

�t = Ys;t � Ps�(�)� PsC(�)Xtjt�1;

Ft = Ps
�
C(�)Ptjt�1C(�)

0 +D(�)HD(�)0 + C(�)B(�)V D(�)0 +D(�)V 0B(�)0C(�)0
�
P 0s:

Updating. Upon observing Yt, compute the optimal estimator for the state and its MSE as

Xtjt = Xtjt�1 +
�
Ptjt�1C(�)

0 +B(�)V D(�)0
�
P 0sF

�1
t �t

Ptjt = Ptjt�1 �
�
Ptjt�1C(�)

0 +B(�)V D(�)0
�
P 0sF

�1
t Ps

�
C(�)Ptjt�1 +D(�)V 0B(�)0

�
:

After implementing the predication and updating steps sequentially for t = 1; 2; :::; T; we

obtain the log likelihood:

ls (�) = �
nT

2
ln (2�)� 1

2

TX
t=1

log det(Ft)�
1

2

TX
t=1

�0tF
�1
t �t: (S.14)
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The frequency domain Gaussian likelihood for a nonsingular submodel. Let !j

denote the Fourier frequencies, i.e., !j = 2�j=T (j = 1; 2; :::; T � 1). The discrete Fourier

transforms and periodograms of Ys;t are: ws;T (!j) = (2�T )�1=2
PT

t=1 Ys;t exp (�i!jt) and

Is;T (!j) = ws;T (!j)ws;T (!j)
�. At the zero frequency, let

ws;T (0; �) = (2�T )
�1=2

TX
t=1

(Ys;t � Ps�(�))

and Is;T (0; �) = ws;T (0; �)ws;T (0; �)
�. The spectral density matrix satis�es

fs(!; �) = (2�)
�1PsH(exp(�i!); �)�(�)H(exp(�i!); �)�P �s :

An approximate log-likelihood for � up a constant is then given by (see Hansen and Sargent,

1993)

�1
2

T�1X
j=1

�
log det (fs(!j; �)) + tr

�
f�1s (!j; �)Is;T (!j)

	�
(S.15)

�1
2

�
log det (fs(0; �)) + tr

�
f�1s (0; �)Is;T (0; �)

	�
:

S.4 Examples related to misspeci�cation and inference

This appendix uses two examples to illustrate the MCMC and Asymptotic Intervals under

misspeci�cation. The examples are kept simple to deliver analytical results. In each example,

I obtain the MCMC interval, examine its frequentist coverage, and then repeat the same

analysis for the Asymptotic Interval. It will emerge that ignoring misspeci�cation may lead

to con�dence unwarranted by the data.

Example S1. (Misspeci�cation: omission) Suppose a researcher is interested in learn-

ing about the mean of GDP growth series yt. Suppose the true data generating process is:

yt = �+ ut with ut = �ut + et, where j�j < 1 and et � i:i:d:N(0; 1). However, the researcher

wasn�t aware that serial correlation could be present and speci�ed ut as i:i:d:N(0; �2).
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Let � = 1=�2 and use the conventional prior �(�; �) / 1=� for �1 < � < 1 and

0 < � <1. Then, the posterior is

p(�; � jy) / �T=2�1 exp

�
�T�
2
(�� �̂)2

�
exp

 
��
2

TX
t=1

(yt � �̂)2
!
;

where �̂ denotes the sample average. The marginal posterior for � satis�es:

T 1=2(�� �̂)
s

� tT�1; (S.16)

where s2 = (T � 1)�1
PT

t=1 (yt � �̂)
2 and tT�1 denotes the standard t density with T �

1 degrees of freedom. A level (1 � �) credible set for � using (S.16) and ignoring the

misspeci�cation is given by �
�̂� sp

T
qT�1;�; �̂+

sp
T
qT�1;�

�
;

where qT�1;� is (1� �
2
)-th percentile of a t distribution with T�1 degrees of freedom. Because

the t distribution approaches the normal distribution as the degrees of freedom increases, in

large samples the above interval can be well approximated by�
�̂� sp

T
z�; �̂+

sp
T
z�

�
;

or, further by "
�̂� 1p

T (1� �2)
z�; �̂+

1p
T (1� �2)

z�

#
(S.17)

because s2 !p 1=(1� �2).

The frequentist coverage of (S.17) is sensitive to �. The coverage equals (1 � �) only

when � = 0. In particular, if � is set to 0:1, then the asymptotic frequentist coverage will

be 77% and 66% when � = 0:3 and 0:5. Therefore, using this interval without thinking

about misspeci�cation can lead to overly optimistic inference, at least from a frequentist

perspective. This does not improve when the sample size is increased.

The Asymptotic Interval for � involves computing M�1VM�1. Because M is diagonal,

it su¢ ces to compute the entries in M and V corresponding to � only. They equal � and
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� 2=(1� �)2 respectively. Therefore, replacing (1� �2) in (S.17) by M�1VM�1, we obtain"
�̂� 1p

T (1� �)2
z�; �̂+

1p
T (1� �)2

z�

#
:

This interval is wider than (S.17) if � > 0 and coincides with it only if � = 0. Because the

central limit theorem implies

p
T (�̂� �)!d N(0; 1=(1� �)2);

this interval has correct asymptotic coverage.

This example re�ects the reality that it is often hard to be fully aware in advance which

features should be put into a DSGE model. Computing the Asymptotic Interval can help

avoid overly optimistic inference under such a reality.

Example S2. (Misspeci�cation: wrong structure) Suppose the researcher misspeci-

�es an MA(1) as an AR(1) process. That is, the actual data are generated by

yt = et + �et�1 with et � i:i:d:N(0; 1);

while the researcher estimates the following model

yt = �yt�1 + vt

with vt � i:i:d:N(0; 1=�) and y0 = 0.

Under the prior �(�; �) / 1=� for �1 < � <1 and 0 < � <1, the posterior density is

given by

p(�; � jy) / �T=2�1 exp

 
�(�=2)(�� �̂)2

TX
t=1

y2t�1

!
exp

 
�(�=2)

TX
t=1

(yt � �̂yt�1)2
!
;

where

�̂ =

 
TX
t=1

y2t�1

!�1 TX
t=1

yt�1yt:

The marginal posterior for � satis�es,

T 1=2(�� �̂)
s

� tT�1; (S.18)
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where s2 = (T � 1)�1
PT

t=1 (yt � �̂yt�1)
2 and tT�1 denotes the standard t density with T �

1 degrees of freedom. A level (1 � �) credible set for � using (S.18) and ignoring the

misspeci�cation is given by24�̂� sqPT
t=1 y

2
t�1

qT�1;�; �̂+
sqPT
t=1 y

2
t�1

qT�1;�

35 :
Because the t distribution approaches the normal distribution as T increases, in large samples

the above interval can be approximated by24�̂� sqPT
t=1 y

2
t�1

z�; �̂+
sqPT
t=1 y

2
t�1

z�

35 .
Because

s2

T�1
PT

t=1 y
2
t�1
!p 1�

�
�

1 + �2

�2
=
1 + �4 � �2�
1 + �2

�2 ;
the interval can be further approximated by24�̂� z� 1

1 + �2

s
1 + �4 � �2

T
; �̂+ z�

1

1 + �2

s
1 + �4 � �2

T

35 : (S.19)

Note that this interval is centered at �̂. As the sample size increases,

�̂!p �

1 + �2
:

This limiting value corresponds to the best AR(1) approximation to the MA(1) process in

the sense of minimizing the Kullback Leibler divergence. The resulting AR(1) has the same

�rst order autocorrelation as the MA(1) process.

The Asymptotic Interval is also centered at �̂. Its length is determined by M�1VM�1.

BecauseM is diagonal, it su¢ ces to compute the entries inM and V corresponding to � only.

They are given by � plimT!1 T
�1PT

t=1 y
2
t�1 and limT!1Var

�
�T�1=2(�̂� �)

PT
t=1 y

2
t�1

�
. The

corresponding element of M�1VM�1 is therefore

lim
T!1

Var
�
T 1=2(�̂� �)

�
=
�8 + �6 + 4�4 + �2 + 1�

1 + �2
�4 :
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The resulting Asymptotic Interval is24�̂� z� 1�
1 + �2

�2
s
�8 + �6 + 4�4 + �2 + 1

T
; �̂+ z�

1�
1 + �2

�2
s
�8 + �6 + 4�4 + �2 + 1

T

35 :
The length is wider than (S.19) whenever � 6= 0. This interval has correct asymptotic

coverage because, by the CLT,

T 1=2
�
�̂� �

1 + �2

�
!d N

 
0;
�8 + �6 + 4�4 + �2 + 1�

1 + �2
�4

!
:

This example re�ects the reality that it is often hard to know in advance what data

generating structure should be used as part of a bigger model. Computing the Asymptotic

Interval can again help avoid overly optimistic inference under such a reality.

S.5 Application to small scale singular models

The original model is (9). The �rst singular model is only a¤ected by "zt. The second

is also a¤ected by "gt. The sample period is 1982:IV-1997:IV. The same priors are used

throughout. They are reported in the �rst four columns of Table S4. The estimation results

for the original three shocks model are also included. This provides a useful point of reference

when interpreting the results.

S.5.1 The one shock model

The following subsets are used to form the composite likelihood: fytg ; f�tg, and frtg.

Parameter estimates. See Panel (a) in Table S4. There are two notable di¤erences

relative to the nonsingular model: the in�ation weight parameter ( 1) is smaller, while the

standard deviation of the productivity shock (�z) is higher. The remaining parameters are

similar.

The parameters  1 and �z are important for the economy�s responses to a one standard

deviation shock in productivity. A lower  1 alone implies a deeper decline in the aggregate

price level, which can potentially dampen the increase in the output. A higher �z implies
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more pronounced responses in all three variables. I now use impulse response functions to

further quantify their e¤ects.

Impulse responses. Panel (A) in Figure S31 displays the responses to a one standard

deviation shock in productivity. The solid line is computed using the posterior mean. The

two dashed lines and the shaded area correspond to 90% Asymptotic and MCMC Intervals

respectively. The responses in the nonsingular model are included in Panel (C) for compar-

ison. The three responses are all stronger than in the nonsingular model. Therefore, the

e¤ect of a higher �z dominates that of a lower  1. The Asymptotic Intervals are consistently

wider than the MCMC Intervals due to more frequent occurrence of a low  1 with high �

and �z.

Therefore, leaving out the exogenous spending and monetary policy shocks has signi�-

cantly a¤ected the assessment of the e¤ect of the productivity shock on the three variables.

S.5.2 The two shocks model

The following subsets are used to form the composite likelihood: fyt; rtg and f�tg.

Parameter estimates. See Panel (b) in Table S4. The value of �z and the associated

intervals are now very close to those in the nonsingular model. The value of  1 is also closer

to the latter. The point estimate for �gz is noticeably lower. However, this di¤erence can

be interpreted as moderate because of the high uncertainty associated with this parameter.

The remaining parameter values are similar to those in the nonsingular model.

Impulse responses. The results are reported in Panel (B) in Figure S31. The point

estimates and the associated intervals are similar to the nonsingular model.

In summary, I �nd from the two small scale singular models that the parameter esti-

mates and impulse responses to the productivity shock can be either similar or substantially

di¤erent, depending on what other shocks are in the model.
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Table S1: Parameters of the original Smets and Wouters (2007) model
Parameter interpretation Prior Posterior

Distribution Mean SD Mode Mean MCMC
� Share of capital in production Normal 0.30 0.05 0.19 0.19 [0.16,0.21]

 Elasticity of capital utilization adjustment cost Beta 0.50 0.15 0.54 0.54 [0.36,0.72]

' Investment adjustment cost Normal 4.00 1.50 5.48 5.74 [3.97,7.42]

�c Elasticity of inertemporal substitution Normal 1.50 0.38 1.39 1.38 [1.16,1.59]

� Habit persistence Beta 0.70 0.10 0.71 0.71 [0.64,0.78]

�p Fixed costs in production Normal 1.25 0.13 1.61 1.60 [1.48,1.73]

�w Wage indexation Beta 0.50 0.15 0.59 0.58 [0.38,0.78]

�w Wage stickiness Beta 0.50 0.10 0.73 0.70 [0.60,0.81]

�p Price indexation Beta 0.50 0.15 0.22 0.24 [0.10,0.38]

�p Price stickiness Beta 0.50 0.10 0.65 0.66 [0.56,0.74]

�l Labor supply elasticity Normal 2.00 0.75 1.92 1.83 [0.91,2.78]

r� Taylor rule: in�ation weight Normal 1.50 0.25 2.03 2.04 [1.74,2.33]

r�y Taylor rule: output gap change weight Normal 0.13 0.05 0.22 0.22 [0.18,0.27]

ry Taylor rule: output gap weight Normal 0.13 0.05 0.08 0.08 [0.05,0.12]

� Taylor rule: interest rate smoothing Beta 0.75 0.10 0.81 0.81 [0.77,0.85]

�a Productivity shock AR Beta 0.50 0.20 0.95 0.95 [0.94,0.97]

�b Risk premium shock AR Beta 0.50 0.20 0.18 0.22 [0.07,0.36]

�g Exogenous spending shock AR Beta 0.50 0.20 0.97 0.97 [0.96,0.99]

�i Investment shock AR Beta 0.50 0.20 0.71 0.71 [0.61,0.80]

�r Monetary policy shock AR Beta 0.50 0.20 0.12 0.15 [0.04,0.24]

�p Price mark-up shock AR Beta 0.50 0.20 0.90 0.89 [0.80,0.96]

�p Price mark-up shock MA Beta 0.50 0.20 0.74 0.69 [0.54,0.85]

�w Wage mark-up shock AR Beta 0.50 0.20 0.97 0.96 [0.94,0.99]

�w Wage mark-up shock MA Beta 0.50 0.20 0.88 0.84 [0.75,0.93]

�ga Cross-corr.: tech. and exog. spending shocks Normal 0.50 0.25 0.52 0.52 [0.37,0.66]

�a Productivity shock std. dev. IGamma 0.10 2.00 0.45 0.45 [0.41,0.50]

�b Risk premium shock std. dev. IGamma 0.10 2.00 0.24 0.23 [0.19,0.27]

�g Exogenous spending shock std. dev. IGamma 0.10 2.00 0.52 0.53 [0.48,0.58]

�i Investment shock std. dev. IGamma 0.10 2.00 0.45 0.45 [0.37,0.53]

�r Monetary policy shock std. dev. IGamma 0.10 2.00 0.24 0.24 [0.22,0.27]

�p Price mark-up shock std. dev. IGamma 0.10 2.00 0.14 0.14 [0.11,0.16]

�w Wage mark-up shock std. dev. IGamma 0.10 2.00 0.24 0.24 [0.20,0.28]

 Trend growth: real GDP, In�., Wages Normal 0.40 0.10 0.43 0.43 [0.40,0.45]

r Discount rate Gamma 0.25 0.10 0.16 0.16 [0.07,0.26]

� Steady state in�ation rate Gamma 0.62 0.10 0.81 0.78 [0.61,0.96]

l Steady state hours worked Normal 0.00 2.00 -0.1 0.53 [-1.3,2.32]

Note. The prior distributions are taken from Smets and Wouters�(2007) Dynare code. MCMC stands for 90% intervals obtained

using the quantiles of the MCMC draws. The discount rate r = 100(��1 � 1). The following �ve parameters are kept �xed:
capital depreciation rate (� = 0:025); steady state labor market mark-up (�w = 1:50); steady state exogenous spending-output

ratio (gy = 0:18), curvatures of Kimball goods and labor market aggregators (�p = �w = 10).



Table S2: Estimation results under the �rst alternative speci�cation

(a) The four shocks model (b) The �ve shocks model
Mode Mean MCMC Asymptotic Mode Mean MCMC Asymptotic

� 0.20 0.20 [0.17,0.24] [0.16,0.24] 0.29 0.29 [0.26,0.32] [0.25,0.32]

 0.24 0.29 [0.14,0.50] [0.13,0.50] 0.44 0.50 [0.34,0.67] [0.33,0.67]

' 5.66 5.98 [4.27,7.87] [4.89,7.87] 5.00 5.13 [3.48,6.94] [4.03,6.94]

�c 1.80 1.86 [1.53,2.23] [1.49,2.23] 1.61 1.61 [1.30,1.97] [1.31,1.97]

� 0.40 0.40 [0.33,0.47] [0.33,0.47] 0.35 0.36 [0.29,0.43] [0.29,0.43]

�p 1.35 1.33 [1.22,1.45] [1.24,1.45] 1.45 1.48 [1.35,1.63] [1.38,1.63]

�w 0.56 0.57 [0.43,0.68] [0.41,0.68] 0.85 0.83 [0.70,0.93] [0.75,0.93]

�w 0.91 0.91 [0.89,0.93] [0.90,0.93] 0.63 0.63 [0.52,0.73] [0.48,0.73]

�p 0.11 0.13 [0.05,0.23] [0.08,0.23] 0.20 0.21 [0.09,0.35] [0.13,0.35]

�p 0.13 0.15 [0.11,0.21] [0.12,0.21] 0.75 0.74 [0.66,0.81] [0.68,0.81]

�l 3.77 3.81 [2.92,4.74] [3.37,4.74] 3.12 2.13 [2.49,3.85] [2.80,3.85]

r� 1.13 1.22 [1.04,1.47] [1.00,1.47] 2.09 2.08 [1.80,2.36] [1.90,2.36]

r�y 0.30 0.31 [0.25,0.37] [0.26,0.37] 0.24 0.24 [0.20,0.29] [0.19,0.29]

ry 0.04 0.05 [0.01,0.10] [0.00,0.10] 0.12 0.13 [0.09,0.18] [0.08,0.18]

� 0.75 0.76 [0.69,0.83] [0.63,0.83] 0.79 0.79 [0.74,0.83] [0.73,0.83]

�a 0.98 0.97 [0.96,0.99] [0.96,0.99] 0.99 0.99 [0.98,0.99] [0.97,0.99]

�b � � � � � � � �

�g 0.98 0.98 [0.98,0.99] [0.98,0.99] 0.94 0.94 [0.91,0.97] [0.91,0.97]

�i 0.64 0.64 [0.54,0.73] [0.54,0.73] 0.65 0.64 [0.54,0.72] [0.54,0.72]

�r 0.22 0.23 [0.13,0.34] [0.14,0.34] 0.08 0.11 [0.04,0.19] [0.04,0.19]

�p � � � � 0.98 0.97 [0.95,0.99] [0.95,0.99]

�p � � � � 0.84 0.81 [0.68,0.90] [0.64,0.90]

�w � � � � � � � �

�w � � � � � � � �

�ga 0.85 0.84 [0.71,0.98] [0.71,0.98] 0.32 0.33 [0.15,0.52] [0.14,0.52]

�a 0.51 0.54 [0.47,0.61] [0.45,0.61] 0.51 0.51 [0.45,0.57] [0.44,0.57]

�b � � � � � � � �

�g 0.62 0.63 [0.58,0.69] [0.57,0.69] 0.60 0.66 [0.55,0.81] [0.48,0.81]

�i 0.49 0.51 [0.43,0.60] [0.42,0.60] 0.57 0.58 [0.50,0.68] [0.44,0.68]

�r 0.37 0.38 [0.34,0.43] [0.33,0.43] 0.28 0.29 [0.26,0.32] [0.24,0.32]

�p � � � � 0.15 0.15 [0.12,0.18] [0.11,0.18]

�w � � � � � � � �

 0.40 0.39 [0.36,0.43] [0.34,0.43] 0.40 0.39 [0.32,0.45] [0.33,0.45]

r 0.11 0.13 [0.06,0.23] [0.10,0.23] 0.12 0.14 [0.07,0.24] [0.11,0.24]

� 0.65 0.67 [0.51,0.85] [0.62,0.85] 0.63 0.66 [0.50,0.83] [0.62,0.83]

l -0.84 -0.94 [-2.65,0.85] [-2.35,0.85] 0.41 0.37 [-0.99,1.80] [-0.73,1.80]

Note. See Table S1.



Table S3: Estimation results under the second alternative speci�cation

(a) The four shocks model (b) The �ve shocks model
Mode Mean MCMC Asymptotic Mode Mean MCMC Asymptotic

� 0.31 0.31 [0.27,0.35] [0.26,0.35] 0.33 0.32 [0.28,0.37] [0.24,0.37]

 0.52 0.55 [0.34,0.76] [0.42,0.76] 0.37 0.41 [0.22,0.61] [0.13,0.61]

' 3.70 4.13 [2.33,6.41] [2.00,6.41] 4.59 4.49 [2.43,6.80] [2.00,6.80]

�c 1.22 1.23 [1.02,1.47] [0.92,1.47] 1.13 1.15 [0.77,1.51] [0.25,1.51]

� 0.42 0.43 [0.35,0.51] [0.35,0.51] 0.33 0.34 [0.25,0.44] [0.23,0.44]

�p 1.00 1.05 [1.00,1.17] [1.00,1.17] 1.38 1.38 [1.23,1.53] [1.24,1.53]

�w 0.58 0.62 [0.42,0.80] [0.44,0.80] 0.73 0.72 [0.55,0.87] [0.53,0.87]

�w 0.30 0.33 [0.30,0.39] [0.31,0.39] 0.34 0.39 [0.31,0.52] [0.30,0.52]

�p 0.22 0.21 [0.08,0.40] [0.01,0.40] 0.22 0.22 [0.11,0.36] [0.12,0.36]

�p 0.27 0.27 [0.16,0.39] [0.15,0.39] 0.56 0.55 [0.41,0.68] [0.23,0.68]

�l 0.75 0.82 [0.40,1.32] [0.25,1.32] 1.09 1.20 [0.76,1.68] [0.32,1.68]

r� 1.81 1.86 [1.62,2.14] [1.23,2.14] 1.98 2.05 [1.75,2.34] [1.30,2.34]

r�y 0.11 0.12 [0.04,0.20] [0.09,0.20] 0.07 0.07 [0.01,0.14] [0.03,0.14]

ry 0.12 0.12 [0.05,0.21] [0.09,0.21] 0.11 0.12 [0.06,0.18] [0.05,0.18]

� 0.53 0.55 [0.51,0.62] [0.52,0.62] 0.50 0.55 [0.50,0.61] [0.50,0.61]

�a 0.98 0.98 [0.95,0.99] [0.94,0.99] 0.51 0.53 [0.19,0.84] [0.33,0.84]

�b � � � � � � � �

�g 0.42 0.46 [0.18,0.73] [0.04,0.73] 0.30 0.38 [0.11,0.72] [0.15,0.72]

�i 0.89 0.89 [0.83,0.94] [0.74,0.93] 0.81 0.82 [0.70,0.93] [0.33,0.93]

�r 0.44 0.42 [0.13,0.79] [0.20,0.79] 0.48 0.44 [0.15,0.76] [0.18,0.76]

�p � � � � 0.98 0.98 [0.96,0.99] [0.95,0.99]

�p � � � � 0.76 0.72 [0.55,0.86] [0.54,0.86]

�w � � � � � � � �

�w � � � � � � � �

�ga 0.40 0.40 [0.25,0.61] [0.01,0.61] 0.51 0.56 [0.17,0.96] [0.36,0.96]

�a 0.55 0.58 [0.49,0.70] [0.37,0.70] 0.05 0.09 [0.03,0.23] [0.01,0.23]

�b � � � � � � � �

�g 0.21 0.20 [0.11,0.29] [0.01,0.29] 0.28 0.28 [0.17,0.40] [0.01,0.40]

�i 0.48 0.49 [0.38,0.63] [0.33,0.63] 0.48 0.49 [0.39,0.65] [0.01,0.65]

�r 0.04 0.07 [0.03,0.14] [0.02,0.14] 0.05 0.09 [0.03,0.19] [0.01,0.19]

�p � � � � 0.19 0.20 [0.15,0.25] [0.01,0.25]

�w � � � � � � � �

 0.45 0.44 [0.41,0.48] [0.40,0.48] 0.45 0.45 [0.41,0.49] [0.39,0.49]

r 0.22 0.25 [0.12,0.41] [0.18,0.41] 0.22 0.25 [0.12,0.42] [0.18,0.42]

� 0.77 0.76 [0.62,0.91] [0.66,0.91] 0.64 0.66 [0.51,0.82] [0.58,0.82]

l -0.77 -0.73 [-1.75,0.25] [-2.06,0.25] -0.52 -0.55 [-1.96,0.90] [-1.96,0.90]

Note. See Table S1.



Table S3: Estimation results under the second alternative speci�cation (cont�d)

(c) The six shocks model (d) The seven shocks model
Mode Mean MCMC Asymptotic Mode Mean MCMC Asymptotic

� 0.36 0.35 [0.30,0.40] [0.29,0.40] 0.32 0.32 [0.27,0.36] [0.22,0.36]

 0.44 0.43 [0.24,0.65] [0.27,0.65] 0.45 0.47 [0.31,0.63] [0.33,0.63]

' 3.98 3.77 [2.18,5.91] [2.00,5.91] 4.01 4.08 [2.58,5.96] [2.00,5.96]

�c 1.40 1.46 [1.14,1.84] [0.70,1.84] 1.18 1.30 [1.04,1.66] [0.38,1.66]

� 0.33 0.35 [0.25,0.46] [0.21,0.46] 0.80 0.77 [0.66,0.86] [0.57,0.86]

�p 1.40 1.40 [1.25,1.56] [1.24,1.56] 1.44 1.46 [1.32,1.61] [1.34,1.61]

�w 0.51 0.52 [0.27,0.77] [0.42,0.77] 0.56 0.55 [0.30,0.78] [0.38,0.78]

�w 0.54 0.52 [0.35,0.68] [0.34,0.68] 0.40 0.44 [0.34,0.58] [0.30,0.58]

�p 0.39 0.38 [0.18,0.61] [0.23,0.61] 0.37 0.37 [0.18,0.58] [0.28,0.58]

�p 0.76 0.75 [0.67,0.81] [0.62,0.81] 0.73 0.73 [0.65,0.80] [0.62,0.80]

�l 1.68 1.68 [1.03,2.44] [0.82,2.44] 1.64 1.47 [0.60,2.51] [0.25,2.25]

r� 1.71 1.75 [1.35,2.10] [1.32,2.10] 1.67 1.65 [1.20,2.01] [1.00,2.01]

r�y 0.16 0.17 [0.08,0.25] [0.08,0.25] 0.15 0.17 [0.08,0.25] [0.13,0.25]

ry 0.16 0.16 [0.08,0.24] [0.10,0.24] 0.12 0.13 [0.05,0.21] [0.06,0.21]

� 0.59 0.61 [0.51,0.77] [0.50,0.77] 0.57 0.63 [0.52,0.74] [0.50,0.74]

�a 0.55 0.57 [0.34,0.81] [0.36,0.81] 0.51 0.52 [0.19,0.84] [0.41,0.84]

�b � � � � 0.11 0.15 [0.05,0.26] [0.06,0.26]

�g 0.34 0.36 [0.13,0.65] [0.09,0.65] 0.50 0.50 [0.17,0.82] [0.29,0.82]

�i 0.87 0.90 [0.83,0.95] [0.71,0.95] 0.92 0.93 [0.89,0.96] [0.85,0.96]

�r 0.96 0.90 [0.77,0.97] [0.34,0.97] 0.48 0.46 [0.15,0.78] [0.11,0.78]

�p 0.35 0.36 [0.15,0.60] [0.18,0.60] 0.37 0.36 [0.13,0.65] [0.10,0.65]

�p 0.60 0.59 [0.35,0.78] [0.41,0.78] 0.60 0.59 [0.35,0.79] [0.48,0.79]

�w 0.52 0.50 [0.20,0.80] [0.07,0.80] 0.49 0.48 [0.16,0.83] [0.30,0.83]

�w 0.46 0.53 [0.22,0.85] [0.01,0.85] 0.51 0.52 [0.20,0.84] [0.40,0.84]

�ga 0.72 0.72 [0.51,0.94] [0.38,0.94] 0.51 0.55 [0.16,0.95] [0.40,0.95]

�a 0.65 0.61 [0.40,0.78] [0.09,0.78] 0.05 0.07 [0.03,0.12] [0.06,0.12]

�b � � � � 0.28 0.26 [0.23,0.31] [0.16,0.31]

�g 0.05 0.08 [0.03,0.20] [0.01,0.20] 0.05 0.08 [0.03,0.17] [0.02,0.17]

�i 0.55 0.59 [0.44,0.83] [0.01,0.83] 0.49 0.50 [0.37,0.66] [0.29,0.66]

�r 0.05 0.09 [0.04,0.20] [0.01,0.20] 0.05 0.09 [0.03,0.19] [0.01,0.19]

�p 0.21 0.21 [0.17,0.24] [0.17,0.24] 0.21 0.21 [0.17,0.24] [0.15,0.24]

�w 0.26 0.26 [0.20,0.32] [0.18,0.32] 0.05 0.13 [0.04,0.25] [0.01,0.25]

 0.43 0.43 [0.40,0.47] [0.39,0.47] 0.44 0.44 [0.41,0.47] [0.39,0.47]

r 0.22 0.25 [0.12,0.41] [0.19,0.41] 0.22 0.25 [0.11,0.41] [0.18,0.41]

� 0.69 0.73 [0.57,0.90] [0.57,0.90] 0.78 0.75 [0.59,0.90] [0.59,0.90]

l -0.75 -0.66 [-1.76,0.52] [-1.98,0.52] -0.75 -0.77 [-1.76,0.27] [-2.05,0.27]

Note. See Table S1.



Table S4. Estimation results for small scale models

Prior (a) One shock (b) Two shocks (c) Three shocks

Density Mean SD Mode Mean MCMC Asymptotic Mode Mean MCMC Asymptotic Mode Mean MCMC Asymptotic

ψ1 Gamma 1.10 0.50 1.23 1.36 [1.04,1.85] [1.00,1.89] 1.56 1.64 [1.11,2.34] [1.08,2.25] 2.15 2.20 [1.45,3.07] [1.41,3.05]

ψ2 Gamma 0.25 0.13 0.20 0.24 [0.09,0.46] [0.19,0.30] 0.21 0.27 [0.09,0.52] [0.24,0.30] 0.23 0.29 [0.10,0.57] [0.24,0.34]

ρr Beta 0.50 0.20 0.77 0.78 [0.71,0.84] [0.69,0.86] 0.79 0.79 [0.71,0.86] [0.71,0.85] 0.84 0.84 [0.79,0.89] [0.79,0.89]

π∗ Gamma 4.00 2.00 3.45 3.45 [2.59,4.34] [2.66,4.23] 3.38 3.37 [2.64,4.10] [2.55,4.13] 3.43 3.42 [2.87,3.98] [2.95,3.93]

r∗ Gamma 2.00 1.00 2.82 2.83 [1.48,4.21] [1.67,4.03] 2.85 2.84 [1.63,4.08] [1.91,3.76] 3.04 3.02 [2.24,3.80] [2.18,3.88]

κ Gamma 0.50 0.20 0.36 0.42 [0.20,0.72] [0.13,0.82] 0.38 0.39 [0.21,0.62] [0.17,0.66] 0.55 0.57 [0.30,0.91] [0.24,0.90]

τ−1 Gamma 2.00 0.50 1.72 1.97 [1.38,2.63] [1.75,2,22] 1.72 1.83 [1.17,2.63] [1.50,2.22] 1.79 1.86 [1.14,2.72] [1.36,2.38]

ρg Beta 0.70 0.10 – – – – 0.81 0.81 [0.75,0.87] [0.76,0.85] 0.83 0.83 [0.76,0.89] [0.77,0.88]

ρz Beta 0.70 0.10 0.85 0.86 [0.79,0.91] [0.77,0.94] 0.88 0.87 [0.79,0.93] [0.70,0.99] 0.85 0.84 [0.76,0.92] [0.70,0.98]

ρgz Normal 0.00 0.40 – – – – 0.18 0.17 [-0.17,0.51] [-0.18,0.55] 0.41 0.35 [0.02,0.64] [-0.13,0.81]

σr IGamma 0.31 0.16 – – – – – – – – 0.17 0.18 [0.15,0.22] [0.14,0.22]

σg IGamma 0.38 0.20 – – – – 0.18 0.19 [0.15,0.25] [0.16,0.23] 0.17 0.18 [0.14,0.23] [0.15,0.22]

σz IGamma 1.00 0.52 0.89 0.90 [0.70,1.19] [0.73,1.15] 0.57 0.59 [0.50,0.77] [0.50,0.75] 0.61 0.64 [0.53,0.78] [0.49,0.81]

Note. SD: standard deviation. MCMC: 90% intervals using the quantiles of the MCMC draws. Asymptotic: 90% intervals using Procedure A. The

estimates are based on 200,000 draws.The lower bounds for the parameters are (same order as in the table): {1.0,1E-5,1E-5,1E-5,1E-5,1E-5,1E-
5,1E-5,1E-5,-0.999,1E-5,1E-5,1E-5}. The upper bounds are: {10, 0.999, 0.999,10, 100, 10, 100, 0.999, 0.999, 0.999,10, 10, 10}.



Figure S1. Response of output to a monetary policy shock
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Figure S2. Response of inflation to a monetary policy shock
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Note. See Figure 1. The variables are not annualized.



Figure S3. Response of interest rate to a monetary policy shock
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Figure S4. Response of investment to a monetary policy shock
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Note. See Figure 1. The variables are not annualized.



Figure S5. Response of hours worked to a monetary policy shock
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Figure S6. Response of wage to a monetary policy shock
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Note. See Figure 1. The variables are not annualized.



Figure S7. Response of consumption to a monetary policy shock
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Note. See Figure 1. The variables are not annualized.



Figure S8. Response of output to an investment shock
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Figure S9. Response of inflation to an investment shock
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Note. See Figure 1. The variables are not annualized.



Figure S10. Response of interest rate to an investment shock
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Figure S11. Response of investment to an investment shock
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Note. See Figure 1. The variables are not annualized.



Figure S12. Response of hours worked to an investment shock
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Figure S13. Response of wage to an investment shock

5 10 15 20

0.0
0.2

0.4
0.6

(a) The four shocks model

5 10 15 20

0.0
0.2

0.4
0.6

(b) The five shocks model

5 10 15 20

0.0
0.2

0.4
0.6

(c) The six shocks model

5 10 15 20

0.0
0.2

0.4
0.6

(d) The seven shocks model

Note. See Figure 1. The variables are not annualized.



Figure S14. Response of consumption to an investment shock
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Note. See Figure 1. The variables are not annualized.



Figure S15. Response of output to an exogenous spending shock
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Figure S16. Response of inflation to an exogenous spending shock
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Note. See Figure 1. The variables are not annualized.



Figure S17. Response of interest rate to an exogenous spending shock
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Figure S18. Response of investment to an exogenous spending shock
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Note. See Figure 1. The variables are not annualized.



Figure S19. Response of hours worked to an exogenous spending shock
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Figure S20. Response of wage to an exogenous spending shock
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Note. See Figure 1. The variables are not annualized.



Figure S21. Response of consumption to an exogenous spending shock
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Note. See Figure 1. The variables are not annualized.



Figure S22. Cross covariances involving the output variable (four shocks)
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Note. The solid lines, lines with open circles and plus signs are computed using the posterior means
obtained under the default, first and second alternative specifications, respectively. The dashed line is
the sample cross covariance. The shaded area corresponds to 90% confidence intervals, computed using
the Matlab command hac with a quadratic spectral kernel and AR(1) pre-whitening where the bandwidth
is determined using Andrews’ (1991) method.



Figure S23. Cross covariances among consumption, real wage and hours
worked (four shocks)
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Note. See Figure S22.



Figure S24. Other cross covariances (four shocks)
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Note. See Figure S22.



Figure S24 (cont’d). Other cross covariances (four shocks)
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Note. See Figure S22.



Figure S25. Cross covariances involving the output variable (five shocks)
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Note. See Figure S22.



Figure S26. Cross covariances among consumption, real wage and hours
worked (five shocks)
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Note. See Figure S22.



Figure S27. Other cross covariances (five shocks)
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Figure S27 (cont’d). Other cross covariances (five shocks)
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Figure S28. Cross covariances involving the output variable (six shocks)
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Note. See Figure S22.



Figure S29. Cross covariances among consumption, real wage and hours
worked (six shocks)
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Note. See Figure S22.



Figure S30. Other cross covariances (six shocks)
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Figure S30 (cont’d). Other cross covariances (six shocks)
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Figure S31. Responses to productivity shocks in small scale models

(A) The one shock model

(B) The two shocks model

(C) The three shocks model
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Note. Solid line: impulse response at the posterior mean. Shaded area: intervals formed using the MCMC

draws. Dashed lines: intervals formed using Procedure A. Y-axis: percent. X-axis: horizon. The interest

and inflation rates are annualized.


