
1 

The Matlab codes perform robustness checks using high precision 
arithmetic (henceforth MP) for the results reported in the Tables of 
Qu and Tkachenko (2015): "Global Identification in DSGE Models 
Allowing for Indeterminacy".  
 
The folders and subfolders must be added to Matlab path for the 
scripts to work. They have been tested on Matlab version 2015a. 
 
You also need to install the multi-precision toolbox by Advanpix 
available at http://www.advanpix.com/.   
 
This readme file is structured as follows. 
 
First, we give some general information on how the code files are 
organized. 
 
Second, we provide some details on the toolbox and the implementation. 
 
Third, we use an example to illustrate the structure of the script 
file that performs a robustness check on a column in one of the 
tables. 
 

 
********************** 
***GENERAL INFORMATION 
********************** 
 
The folder structure is kept similar to that of the replication files 
for the main paper results. Most importantly, the directory 
"Replication_scripts" contains subfolders with the scripts 
reproducing and displaying table output labeled by its number and 
column, e.g., QT_Tables_4_5_part1_mp.m provides a robustness check 
for the first column of the Tables 4 and 5 etc. They can all be run 
independently. 
 
The directory 'General' contains Chris Sims' gensys routine modified 
to allow for indeterminacy and MP computation. It also contains an 
auxiliary routine that performs fast row echelon form computation 
compatible with MP (frref.m). 
 
The rest of subroutines are organized by model folder (i.e., AS_Model 
and SW_Model). Inside each folder, the 'Constraints' folder collects 
constraint functions used in the global identification analysis and 
the 'Objectives' folder contains MP versions of m-files that evaluate 
the objective function for different cases. The .m files under the 
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root directory compute the model solution and KL distance in MP. The 
data files contain the benchmark parameter values, the corresponding 
spectral densities as well as Gaussian quadrature abscissae and 
weights for the numerical integral approximation. 
 

******************************************************************* 
***ADVANPIX MULTIPRECISION COMPUTING TOOLBOX: BRIEF DESCRIPTION AND 
NOTES ON IMPLEMENTATION 
******************************************************************* 
 
This toolbox is a Matlab extension that allows computing with 
arbitrary precision. It has a much wider range of supported 
operations and is more efficient than the Matlab’s built-in Variable 
Precision Arithmetic function. A free 2-week trial of the full 
version can be downloaded from www.advanpix.com . 
 

 
The main reasons for choosing this toolbox for performing the 
robustness check considered here are as follows: 
 

1) It can perform the QZ decomposition and hence allows computing 
the numerical model solution with arbitrary precision.  

2) It has extensive support for numerical integration techniques 
in MP, such as Gaussian quadrature.  

3) Finally, it allows performing optimization using Nelder-Mead 
simplex method (Matlab’s ‘fminsearch’ function) fully in MP. 
   

The toolbox allows setting an arbitrary precision level, with the 
default being 34 digits (quadruple precision). We use this default 
level of precision throughout, unless explicitly stated otherwise. 
Precision level can be changed, e.g., to 40 digits, by executing: 
 
mp.Digits(40) 
 
Increasing the level of precision increases computation time, as more 
processing power and RAM is required. 
 
The structure of the code is mostly unchanged from the original 
replication files, except for changes necessary to ensure all 
computations are performed in MP, and the numerical integral 
computation, where the Riemann sum approximation is replaced by the 
MP Gaussian quadrature. 
 
A scalar or a matrix can be created or declared an MP object via the 
mp() function.  
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Example 1: For an existing scalar equal to pi evaluated in double 
precision: 
 
pi2 = mp(pi); 
 
declares it an MP object, and all further operations supported by the 
toolbox (addition, subtraction, matrix operations etc.) will be 
performed in MP. The caveat is that since pi was initially evaluated 
in double precision, its accuracy will be limited even when it is an 
MP object. 
 
Example 2: We can create a scalar equal to pi evaluated directly at 
the specified precision level, by entering it as a string: 
 
pi4 = mp(‘pi’); 
 
will produce a fully precise (up to number of specified digits) 
result. 
 
We use the method in Example 1 to convert the original minimizer to 
an MP object, and use the method in Example 2 to perform all 
subsequent computations during the optimization robustness check.  
 
Note that once a vector/scalar is detected as an MP object, all the 
Matlab functions supported by the toolbox will recognize that 
automatically and perform the computation in MP, so little if any 
code modification is needed once the proper MP-format inputs are 
established. 
 
Example 3: Computing eigenvalues of a magic square matrix in MP: 
 
A = mp(magic(3)); % a magic square matrix 
EV = eig(A); 
 
Thus,to perform our computation in MP, we declare the model parameter 
vector an MP object, and modify the existing code to ensure all 
numerical scalars and matrices are created as MP objects and all 
intermediate operations are supported by the toolbox.  
 
************************************************************************** 
**REPLACING RIEMANN SUM INTEGRAL APPROXIMATION WITH GAUSSIAN QUADRATURE 
************************************************************************** 
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The computation of the KL distance between two DSGE models requires 
numerical integral approximation. In the original code implementation, 
the Riemann sum approximation is used to evaluate the integral inside 
the objective function. 
 
Here, we replace it by Gaussian Quadrature evaluated with higher 
precision. 
 
The details of implementation are as follows.  
 
The integral for the full spectrum case is evaluated between –pi and 
pi. We set the order of quadrature to 400, as we found this is the 
order at which integral value stabilizes and does not change visibly 
when the order is further increased.  
 
The respective abscissae (x) and quadrature weights (wg) are then 
computed via: 
 
[x,wg] = mp.GaussLegendre(400,-pi,pi); 
 
For efficiency of computation, we save x and wg, together with the 
benchmark model spectral density evaluated at frequencies in x in a 
mat-file (e.g., true_spectrum0swdmp.mat for the Smets and Wouters 
model), and load it during the call of the objective function. 
Furthermore, due to the property of the spectral density that: 
 
f(w) = conj(f(-w)) 
 
only the first 200 points are effectively used for computing the 
spectrum of the alternative model, as the abscissae x are symmetric 
about 0.  
 
 
************************************************************************** 
***NELDER-MEAD ALGORITHM: BRIEF DESCRIPTION AND NOTES ON IMPLEMENTATION 
************************************************************************** 
 
The Nelder-Mead simplex search algorithm is the only optimization 
algorithm supported fully by the MP toolbox. It is implemented 
through the Matlab ‘fminsearch’ function. 
 
This algorithm is a direct search method and does not involve 
numerical or analytical gradients. It can handle discontinuities and 
is expected to perform well in the local search. It does not allow 
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for parallel computation, so the computational time, especially for 
the larger Smets and Wouters (2007) model, can be substantial. 
 

The algorithm performs unconstrained optimization. To handle bounds 
on parameters, we transform the parameters to lie in [-Inf, Inf] 
using a method in Lubik in Schorfheide (2004), and convert them back 
after optimization is completed (see transfmpas2.m and transfmpsw.m). 
To handle inequality constraints, we apply a large penalty to the 
objective function if the constraint is violated, in the same way as 
during Particle Swarm minimization in the original code. 
 
The main options for the algorithm are the various stopping 
conditions: maximum number of iterations, objective function 
tolerance level, parameter tolerance level. 
 
We set maximum number of iterations to 20000 for the AS model and 
6000 for the SW model. In our experience with these models, this is 
enough for the algorithm to either converge at the given options, or 
reach a stage where the objective function does not visibly change 
for several thousand iterations. The objective function tolerance 
level is set to 1e-30. This is to allow, in particular, to show that 
using progressively higher precision computation will result in 
progressively lower objective function values in observationally 
equivalent cases (AS model, Tables 4 and 5, columns 1 and 2). The 
parameter tolerance level is set at 1e-12. 
 
 
************************************************************************** 
***EXAMPLE OF CODE REPLICATING A COLUMN IN TABLE 2  
************************************************************************** 
 
This example demonstrates the structure of replication scripts found 
in the directory “Replication_scripts”. This is a constrained KL 
minimization problem, but files for the unconstrained problems have a 
nearly identical structure. 
 
The code is broken into sections for convenience (lines/sections not 
preceded by ‘%’ can be copypasted and run directly in Matlab). 
 
%% Load previous results and set up 
  
load tables_23_p1_min %load results from GA+Multistart optimization 
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%Here the inputs to the objective function are created (wgtmp,conmp) 
or declared (thetaind – the originally obtained minimizer)as MP ob-
jects: 
  
wgtmp=mp(ones(1,numpar)); %set weights as mp object 
  
conmp=mp('[1,0.1]'); %set constraint as mp object 
  
resfilename2=[resfilename,'_mp']; %new result file name 
  
thetamp=mp(thetaind)'; %set starting value to the minimizer computed 
by GA+Multistart 
 
%% Additional local optimization using MP version of fminsearch 
  
%define objective function – modified for MP computation 
ObjFunmp=@(theta0)kloptas_mp(theta0,conmp,wgtmp,nrm,indp,bc); 
  
 
%set fminsearch options as discussed above 
optfms=optimset('fminsearch'); 
optfms=optimset(optfms,'Display','iter','MaxFunEvals',50000,'MaxIter'
,20000,'TolFun',1e-30,'TolX',1e-12); 
  
  
%%perform optimization. Note the input to the objective function is 
transformed into the unconstrained form using the transmpas2.m func-
tion: 
 
timefms=tic; 
[xestmp,fvalmp,eflagmp,outmp] = 
fminsearch(ObjFunmp,transfmpas2(thetamp,1,1,[1:15]),optfms); 
timelfms=toc(timefms); 
 
 
%% Arrange and save results. We transform back the minimizer and save 
the results: 
 
thetaindmp=transfmpas2(xestmp,2,1,[1:15])'; %recover the new minimiz-
er 
 
klmp=fvalmp; %recover the Kl distance 
  
save(resfilename2) %save results into a new file 
  
 
%% Display results 
 
%For comparison, compute the KL value at the original minimizer in MP: 
  
klmp_o=ObjFunmp(transfmpas2(thetamp,1,1,[1:15])); %original KL in mp 
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%Display the original and the new minimizers and respective KL dis-
tances: 
  
disp('-----------------------------------------------') 
  
disp 'Table 2. Parameter values minimizing the KL criterion, AS (2007) 
model' 
disp '                                 (a) All parameters can vary, 
c=0.1' 
disp('                 Original minimizer                              
New minimizer') 
disp([thetamp',thetaindmp]); 
  
display ('                     Original KL                                     
New KL'); 
display ([klmp_o,klmp]); 
 
 
 
 
 
 


