
This Matlab code replicates the results in all the Tables in Qu and 
Tkachenko (2015): "Global Identification in DSGE Models Allowing for 
Indeterminacy". All folders and subfolders must be added to Matlab 
path for all the scripts to work. They have been tested on Matlab 
version 2015a. 
 
This readme file is structured as follows. 
 
First, we give some general information on how the replication files 
are organized. 
 
Second, the optimization algorithms (the genetic algorithm, the 
particle swarm algorithm and the multistart algorithm) are discussed 
in some detail. There, we highlight what aspects of the 
specifications are important for convergence and computational time. 
 
Third, we use two examples to illustrate how to implement a 
constrained and an unconstrained optimization, respectively. 
 
Finally, we use an example to illustrate how to carry out the same 
analysis but using a different parameterization.  
 
********************** 
***GENERAL INFORMATION 
********************** 
 
Most importantly, the directory "Replication_scripts" contains 
subfolders with the scripts reproducing and displaying table output 
labeled by its number and column, e.g., QT_Tables_4_5_part1.m 
reproduces the first column from the Tables 4 and 5 etc. They can all 
be run independently.  
 
The directory 'General' contains Chris Sims' gensys and csmiwnel 
routines as well as the gensys code modified to allow indeterminacy. 
It also contains the general scripts that perform Genetic algorithm 
and Particle Swarm optimization, as well as additional local 
optimization using MultiStart when minimizing the Kullback-Leibler 
(KL) distance after taking the problem inputs. See GA_optim.m and 
PSO_otpim.m for more details. 
 
The rest of subroutines are organized by model folder (i.e., 
AS_Identification, LS_Identification and SW_Identification). Inside 
each folder, the 'Constraints' folder collects constraint functions 
used in the global identification analysis and the 'Objectives' 
folder contains m-files that evaluate the objective function for 



different cases. For the Lubik and Schorfheide (2004) model, the 
'Local_curve' folder contains files used to obtain the 
nonidentification curve. The .m files under the root directory deal 
with model solution, computing KL and empirical distances. The data 
files contain the benchmark parameter values and the corresponding 
spectral density. 
 
Finally, the folder "Reparameterization" contains files that 
illustrate an example of replicating column 1 in Table 2 with 
standard deviations of shocks re-parameterized as variances. 
 
******************************************************************* 
***GENETIC ALGORITHM: BRIEF DESCRIPTION AND NOTES ON IMPLEMENTATION 
******************************************************************* 
 
The Genetic algorithm belongs to the class of evolutionary 
optimization algorithms. The optimization begins with usually a 
randomly drawn "population" of individuals (candidate solutions). The 
objective function value is evaluated for each individual and a group 
of "parents" is selected based on their fitness. Then, a fraction of 
parents are randomly either combined (crossover operation) or mutated 
via some random perturbation (mutation operation) to produce the next 
generation to be used in the next iteration. A small fraction of 
individuals with high fitness values are carried over unchanged 
(elite children). This process of recombining and mutating the 
population of candidate solutions continues until specified stop 
criteria are met. The algorithm implementation in Matlab is 
parallelized so computation time can be reduced with multiple cores. 
 
The main options for the algorithm in the code are: 
 
- Population size. Larger populations allow GA to better explore the 
parameter space, while increasing computational burden at the same 
time. There are no formal rules derived as to how the population size 
should be set. One popular rule of thumb in the evolutionary 
computation literature is to set the population size roughly to 10 
times the dimension of the problem. Experimenting with our problems, 
we found that population sizes of 100 for small scale models and 300 
for the medium scale model produce a balance between convergence 
robustness and computational cost. 
 
- Maximum number of generations. This is one of the stopping criteria 
and determines the maximum number of times a population is evolved. 
We set this for 1000 for all cases. The rationale is that GA has good 
global exploration ability but low local exploitation ability. We 



found that 1000 generations is typically enough to pinpoint promising 
regions of parameter space where the minimum can be located. While in 
principle GA can be allowed to run until the global minimum is 
reached, at a certain point it becomes inefficient to use GA for what 
effectively becomes a local search. This is especially apparent in 
unconstrained problems such as those considered in Tables 4 and 13 - 
GA can go through several thousand generations making very small 
improvements and the computation time can be substantial. By limiting 
the GA run to 1000 generations and using the MultiStart algorithm on 
points from its final population produces one seems to achieve a good 
balance between GA's global exploration and the efficiency of 
derivative-based local solver in the second stage (note that the KL 
distance is typically infinitely differentiable). 
 
- Elite Count. This is the number of so-called "elite" individuals 
that continue on without crossover or mutation. Setting it to a 
positive number guarantees that the algorithm will improve on the 
next iteration. It is advised to keep this parameter low to prevent a 
few solution points dominating the population and making the search 
less efficient. We find that assigning a small number, such as 3, 
works well in cases of both the small and medium scale models. Note 
that originally the default Matlab option for this parameter was 2, 
and was changed to 5% of the population in more recent releases. We 
find that using fewer elite individuals than 5% of the population in 
our examples improves both the speed and the efficiency of the search. 
 
- Stall Generation Limit. This is another stopping criterion, which 
halts the algorithm if no improvement has been made over a certain 
number of generations. We set this parameter to 50. We also 
experimented with setting it to 100. The results are not sensitive. 
The tradeoff is a standard one: setting it too low may result in the 
algorithm stopping in a locally flat region that is not a global 
optimum, while setting it too high may cause the algorithm to go for 
more generations than necessary which increases computation time. 
 
- Initial population. We let the initial population be randomly 
initialized via uniform draws within parameter bounds. This way all 
regions of the parameter space are treated equally. If the researcher 
possesses knowledge about possible regions where the global optimum 
is expected, particular points from those regions can be added to 
potentially increase the speed of the search. However, this may bias 
the search in a particular direction and miss the global optimum. 
 
- Objective function tolerance level. We set it to 1E-10 throughout. 
We also experimented with setting it to 1E-12. Setting it to a low 



value may increase the computational time, but is often worthwhile to 
avoid premature termination of the code.  
 
- Constraint handling method. From version 2014b onwards, Matlab 
provides two options for handling inequality constraints: "auglag" 
and "penalty". The "penalty" method is preferred as it is often 
faster and also allows us to easily control the number of generations. 
The "auglag" option uses the Augmented Lagrangian algorithm that 
creates a sequence of subproblems using the inequality constraints. 
After a subproblem is minimized to desired accuracy, the outer 
problem result is updated. Thus, the effective number of generations 
(i.e., iterations of the outer problem) is not easily predictable. 
 
There are other tuning parameters of the algorithm, such as mutation 
and crossover fractions. We experimented with changing their values 
and did not find consistent improvement over the Matlab default 
values. Therefore, we do not provide options for changing them within 
the code. For more details, one can consult Matlab documentation for 
the Global Optimization Toolbox. 
 
 
********************************************************************* 
**PARTICLE SWARM ALGORITHM: BRIEF DESCRIPTION AND NOTES ON IMPLEMENTATION 
********************************************************************* 
 
Particle Swarm algorithm is similar to GA in that it is an iterative 
stochastic search procedure that involves a population (in PSO 
language - swarm) of candidate solutions (particles). The key 
difference of PSO from GA is that the particles have memory and can 
communicate with each other and thus can change the direction of the 
search. There are many variations of the PSO algorithm in the 
literature. The one implemented by Matlab is as follows. Similarly to 
GA, the algorithm initializes the swarm of a specified size randomly 
via uniform draws from within the parameter bounds. However, the 
updating scheme is different. Particles move through the parameter 
space according to the following equations: 
 
v_j(t + 1) = w*v_j(t) + c1*R1(pbest_j - theta_j(t)) + c2*R2(nbest_j - theta_j(t)), 
theta_j(t + 1) = theta_j(t) + v_j(t + 1), 

 
where theta_j(t) stand for particle j at iteration t, v_j(t) is 
particle's velocity at iteration t, pbest_j  is the parameter vector 
that achieved the best function value so far for particle j, nbest_j 
is the best parameter so far in the current neighborhood of particle 
j. The parameter w is called the inertia weight, c1 and c2 are called 



cognitive and social weights respectively, and R1 and R2 are randomly 
drawn vectors, each element being a draw from a uniform [0,1] 
distribution. It can be seen that the updating of candidate solution 
consists of three components: 1) inertia (maintaining the same step 
size in updating); 2) cognitive attraction (moving towards personal 
best achieved so far); 3) social attraction (moving towards the best 
solution obtained over all particles in the neighborhood). The 
parameters w, c1 and c2 control the relative importance of the three 
components. Matlab default values for c1 and c2 are set the same at 
1.49.The inertia parameter w is allowed to vary with iterations in 
MATLAB. The literature in the field suggests that starting out with 
higher inertia and progressively lowering it leads to better 
performance. Namely, starting out with a value in the range [0.9,1.2] 
and going down progressively to something like 0.1 gives good results. 
The intuition is that the high inertia weight initially throws the 
particles around a lot creating an explosive growth in swarm 
diversity and hence good exploration of the parameter space. Then, as 
promising parts of the parameter space are found, lowering the 
inertia weight allows the particles to concentrate on a more local 
search instead of "flying over" the minimum if the inertia weight 
were still high. MATLAB has an adaptive way to change the inertia 
weight: it blows up the weight if there are fewer than two stall 
iterations to promote further exploration, and cuts down the weight 
when the algorithm is stalling in order to conduct a more local 
search. The inertia weight is kept within the bounds specified by the 
user (option InertiaRange). The default is [0.1,1.1]. At the start, 
MATLAB initializes the inertia weight to the upper bound of the 
specified range in order to have maximum exploration ability. The 
neighborhood of a particle is determined randomly and its size, 
specified as a fraction of the total swarm size, is adaptive: it 
shrinks when a better point is found, otherwise grows all the way up 
to the whole swarm. Using neighborhood's best rather than the swarm's 
best for the social aspect of updating solutions proved to provide 
better performance and prevent premature convergence. Intuitively, by 
slowing down the exchange of information between the particles via 
neighborhood, they do not rush toward the swarm's best, but rather 
have a chance to explore other promising areas of the parameter space. 
The algorithm stops when some specified stopping criterion is reached. 
The algorithm implementation in Matlab is parallelized so computation 
time can be reduced with multiple cores. 
 
 
The main options for the algorithm in the code are: 
 



- Swarm size. Similarly to GA, larger swarm size allows the algorithm 
to better explore the parameter space, while increasing computational 
burden at the same time. There do not seem to be extensive guidelines 
to setting swarm size in the relevant literature, rather, it is 
usually problem specific. Balancing the performance/computation time 
tradeoff, we set the swarm size of 300 for all applications of small 
scale models, 600 for unconstrained optimization in the medium scale 
model, and 1000 for constrained cases of the medium scale model.  
 
- Maximum number of iterations. This is one of the stopping criteria 
and determines the maximum number of times a swarm is updated. We 
found that 1000 generations is typically enough to pinpoint promising 
regions of parameter space where the minimum can be located. In 
principle, the number of iterations can be increased to let the 
algorithm search for a global minimum by itself, however, in some 
especially unconstrained problems such as those considered in Tables 
4 and 13 it can go through as many as 5000 iterations making very 
small improvements thus making computation time several times longer 
than the PSO + Multistart procedure implemented in the code. By 
limiting the PSO run to 1000 iterations and using the MultiStart 
algorithm on points from its final swarm seems to achieve a good 
balance between PSO global exploration and the efficiency of 
derivative-based local solver in the second stage (note that the KL 
distance is typically infinitely differentiable). 
 
- Stall iteration limit. This is another stopping criterion, which 
halts the algorithm if no improvement has been made over a certain 
number of iterations. We set this parameter to 100. This setting is 
higher than an analogous one for GA since we find that PSO can more 
effectively escape a flat region even after many stall iterations due 
to the adaptive nature of updating candidate solutions. 
 
 - Initial swarm. We let the initial swarm be randomly initialized 
via uniform draws within parameter bounds. This way all regions of 
the parameter space are treated equally. If the researcher possesses 
knowledge about possible regions where the global optimum is expected, 
particular points from those regions can be added to potentially 
increase the speed of the search. However, this may bias the search 
in a particular direction and miss the global optimum. 
 
 
- Objective function tolerance level. We set the tolerance level at 
1E-6 throughout for small scale models and 1e-10 for the medium scale 
model. 
 



- Constraint handling method. Matlab implementation of PSO only 
provides boundary constraint handling. Since we have additional 
inequality constraints in some cases, we modify the objective 
function to apply a flat penalty in case a candidate solution point 
violates the constraints. We found this method works as well or 
better than setting penalty level proportional to violations of 
feasibility. 
 
- Minimum Neighborhood Fraction. This is the parameter that 
determines the minimum neighborhood size that a particle communicates 
with as a fraction of the total swarm. We found this to be a very 
important tuning parameter. Setting it to extreme value of 1 (i.e., 
each particle immediately learns swarm's best solution) seems to 
produce premature convergence even when swarm size is relatively 
large. We found that lowering this parameter to 0.1 produces good 
results, as, intuitively, restricting communications between 
particles prolongs exploration of the parameter space. Recall that 
this parameter only controls the lower bound of the neighborhood size. 
Matlab adaptively enlarges or shrinks the neighborhood depending on 
the search progress. 
 
- Retrieving the swarm. Unlike GA, Matlab does not automatically 
report the final swarm of particles. In order to retrieve it, we 
utilize the output function psout.m located in the General folder. It 
saves the swarms after each 200 iterations. Although not necessary 
here (we use the final swarm only), this can be helpful in cases 
where the final swarm could be very homogeneous, so that starting the 
local optimizer from points in an earlier swarm could produce better 
results.     
 
As is evident from the brief description above, there are other 
potential tuning parameters, such as inertia weight range and 
coefficients on social and cognitive attraction parts. We found that 
results are not as sensitive to modifying these as they are to 
changing swarm or minimum neighborhood size, and that Matlab defaults 
perform well and seem to correspond to best practice in the relevant 
literature. Therefore, these parameters are left at default values.  
 
For more details, consult Matlab documentation for the Global 
Optimization Toolbox. For an overview and the recent standard 
practice of PSO optimization, see Clerc (2012): "Standard Particle 
Swarm Optimization" 
(http://clerc.maurice.free.fr/pso/SPSO_descriptions.pdf).  
 
 



************************************************************************** 
***MULTISTART ALGORITHM: BRIEF DESCRIPTION AND NOTES ON IMPLEMENTATION 
************************************************************************** 
 
Multistart is not a separate algorithm, but rather a conveniently 
packaged suite of local optimization routines that allows us to 
conduct local searches using a fairly large number of initial values. 
We choose the Active-Set local search algorithm to use with 
Multistart based on performance. 
 
Multistart is invoked at a second stage of optimization, after GA or 
PSO population or swarm complete 1000 iterations or another stopping 
criterion is triggered. We then select the first 50 points from the 
respective final population/swarm, and additionally 10 equally spaced 
points from the rest of the population/swarm. For added robustness we 
generate 50 random starting points within parameter bounds and run 
the local search from the 110 specified points. Due to parallel 
evaluation of multiple local solvers, such a procedure is 
computationally feasible and takes a few minutes for small scale 
models and a few hours for a medium scale model on a modern desktop 
computer with 8 cores.   
 
The options here are standard options for the Active-Set local 
optimization algorithm: 
 
- Maximum number of iterations. This option is set to 1000 in the 
code. 
 
- Maximum number of function evaluations. This is set to 10000 in the 
code. For more challenging problems, i.e., constrained minimization 
of KL distance between medium scale models, we set this value to 
20000. 
 
- Tolerance level. This is set 1E-10. 
 
 
 
 
 
 
 
 
 
 
 



************************************************************************** 
***REPLICATION FILE STRUCTURE: THE CONSTRAINED PROBLEM 
************************************************************************** 
 
Here an example of replicating column 1 in Table 2 is provided to 
demonstrate the structure of replication scripts found in the 
directory "Replication_scripts". This is a constrained KL 
minimization problem. All files replicating results for these types 
of problems have the same structure. 
 
The code is broken up into sections for convenience of modification 
(lines/sections not preceded by '%' can be copypasted and run 
directly in Matlab): 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Algorithm selection and Matlab versions 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Here the user has an option of selecting the optimization algorithm: 
%GA, PSO or running both in sequence: 
runga=0; %1 if using Genetic algorithm + Multistart combination, 0 otherwise 
runpso=1; %1 if using Particle Swarm + Multistart combination, 0 otherwise 
 
% Note that PSO is available only in version R2014b and later. 
  
%Specify the constraint handling for the Genetic algorithm. 
NonlinCon='penalty';  
%this is the preferred option as explained above, available in the 
matlab version 2014b and later; for earlier versions, set to 'auglag'. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Set up parallel computation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Here the user specifies the amount of cores to be used in parallel 
computation. It is recommended that at least 4 cores be used for 
small scale models and at least 8 cores used for the medium scale 
model to keep computation time reasonable. This part can be commented 
out if the parallel pool is already enabled or is enabled by an 
outside script, e.g., when running on the cluster. 
 
numcore=8;  
%specify the number of cores according to available/desired capacity 
%  
%for versions before R2014a, use the following syntax: 



%matlabpool open local numcore 
%  
%for versions R2014a and above, use this syntax to create the 
parallel pool object: 
 
ppool=parpool('local',numcore); %create parallel pool object 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Load parameter values and bounds 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Here the theta0 parameter value is loaded from a file it is stored 
in the AS_Identification directory and upper and lower bounds on 
parameters are specified.  
 
load theta0asi %load default parameter vector (theta0) 
 
% Set lower and upper bounds 
%Parameter order:  
%[tau beta kappa psi1 psi2 rhoR rhog rhoz sigR sigg sigz, m_eta_r, 
%m_eta_g, m_eta_z, sig_eta] 
 
lb=[0.01 0.9 0.01 0.01 0.01 0.1 0.1 0.1  0.01  0.01 0.01 -3 -3 -3  0.001]; 
 
ub=[10   0.999   5  0.9 5 0.99 0.99 0.99   3   3    3      3   3  3 3]; 
 
 
%%%%%%%%%%%%%%%%%%%%% 
%% Select frequencies 
%%%%%%%%%%%%%%%%%%%%% 
 
%Here the user select whether to minimize KL distance over the full 
spectrum or over the business cycle frequencies only.  
bc=0; %0 for full spectrum; 1 for business cycle frequencies only 
 
%%%%%%%%%%%%%%%%%%%%%% 
%% Specify constraints 
%%%%%%%%%%%%%%%%%%%%%% 
 
%This section specifies how constraints are imposed: size of the 
neighborhood, the associated norm, weighting of the constraints for 
individual parameters, and the subset of parameters on which the 
constrained is imposed:  
 
ns=0.1; %size of excluded neighborhood. 



 
nrm=Inf; %set the norm for the constraint function (1,2, or Inf) 
 
numpar=length(lb); %number of parameters in the objective function 
 
wgt=ones(1,numpar);  
%vector of weights for the constraint function. Other examples of 
weighting could include (ui-li), where ui and li are upper and lower 
bounds of 90% posterior intervals; theta' for using maximum 
percentage differences etc. 
 
indp=[1:numpar];  
%vector of parameter indices to be constrained. E.g.,if indp=[1:3], 
the constraint will be imposed only on the first three parameters.  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Detailed specifications; you should not have to modify them 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Create the vector of frequencies to approximate KL over: 
 
if bc==0 
    n=100; %number of points to evaluate the integral 
    w=2*pi*(-(n/2-1):1:n/2)'/n; %form vector of Fourier frequencies 
    resfilename=['tables_23_p1']; 
elseif bc==1 
    n=500;  
%number of points to evaluate the integral (here the number of BC 
frequencies will be a bit over 100 - close to the full spectrum case) 
 
    w=2*pi*(-(n/2-1):1:n/2)'/n; %form vector of Fourier frequencies 
    resfilename=['tables_23_p1_bc']; %filename for saving of results 
end 
 
con1=[0,ns];  
%constraint handling: con(1)=0 if algorithm handles constraint, 
con(1)=1 if penalty to be added to the objective function for 
infeasible pioints. con(2) passes the excluded neighborhood size to 
the constraint function. 
 
con2=[1,ns]; %set constraint handling for Particle Swarm optimization.  
 
 
%Specify objective function and constraint handles: 
 



ObjectiveFunction = @(theta0)kloptas(theta0,con1,w,wgt,nrm,indp,bc); 
%set objective function for GA/multistart. It is located in 
AS_Identification\Objectives 
 
ObjectiveFunctionP = @(theta0)kloptas(theta0,con2,w,wgt,nrm,indp,bc); 
%set penalized objective function for PSO.  
 
ConstraintFunction=@(xest)constraintas(xest,ns,wgt,nrm,indp); %set 
%constraint for the problem. It is located in 
AS_Identification\Constraints 
 
%Technical details: set algorithms to show iterations to see progress. 
Set dispalg to 'off' to display no output, or to 'final' to display 
only the final result. 
 
dispalg='iter'; %set whether algorithm iterations are displayed. 
 
dispint=20; %interval between displayed iterations (for PSO only). 
 
 
%%%%%%%%%%%%%%%%%%%%%%%% 
%% GA algorithm settings 
%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Here we check whether the flag to run GA is on, and set the 
algorithm options if so. 
if runga==1 
gen=1000; %max number of generation for GA  
stgenlim=50;  
%max number of stall generations (i.e., over which no improvement 
found) 
 
initpop=[];  
%set initial population (if smaller than popsize, MATLAB will 
randomly draw the rest. If [], the whole population is randomly drawn. 
Can be a row vector of dimension numpar or a matrix. Each row of 
thematrix is then a candidate initial value. 
 
popsize=100; %population size 
 
elcnt=3;  
%elite count - number of elite individuals retained in population 
 
tolfunga=1e-10;  
%tolerance level for improvement in the objective for GA  



 
tolconga=1e-10; %tolerance level for constraint for GA 
 
usepga=['Always'];  
%Set to 'Always' to use parallel computation, otherwise to 'Never' or 
[].In later versions of Matlab, 1 and 0 can also be used respectively.  
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%% 
%% PSO algorithm settings 
%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Here we check whether the flag to run PSO is on, and set the 
algorithm options if so. 
 
if runpso==1 
     
swarmsize=300; %swarm size (similar concept to population size for GA) 
 
maxitpso=1000;  
%maximum number of iterations (similar concept to generations for GA) 
 
stiterlim=100;  
%max number of stall PSO iterations (i.e., over which no improvement 
found) 
 
initswarm=[];  
%set initial population (if smaller than swarmsize, MATLAB will 
randomly draw the rest. If [], the whole population is randomly drawn. 
Can be a row vector of dimension numpar or a matrix. Each row of the 
matrix is then a candidate initial value. 
 
minfn=0.1;  
%smallest fraction of neighbors for PSO (smallest size of the  
adaptive neighborhood) 
 
tolfunpso=1e-06;  
%tolerance level for improvement in the objective for PSO 
 
psoname=['psoas_c',num2str(ns*100)];  
%set name for a temp output file that stores the swarms (problem-
based, the file is automatically deleted after the algorithm finishes 
and its contents are saved in %the main results file) 
 
OutFun=@(optimValues,state)psout(optimValues,state,psoname);  



%output function for extracting swarms from PSO runs for further 
local optimization. Located in the General folder 
 
useppso=['Always'];  
%Set to 'Always' to use parallel computation, otherwise to 'Never' or 
[]. For later matlab versions, 1 and 0 can be used respectively. 
 
 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Multistart algorithm settings 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Here we set the options for Multistart: number of random starting 
point, which solver to use and some options for that solver.  
 
numrpoints=50; %number of random starting points for Multistart 
 
usepms=['Always'];  
%Set to 'Always' to use parallel computation, otherwise to 'Never' or 
[]. For later matlab versions, 1 and 0 can be used respectively. 
 
% settings for fmincon 
maxit=1000; % set max number of iterations 
 
maxfev=10000; % set max number of function evaluations 
 
tolfunfmc=1e-10;  
%tolerance level for improvement in the objective for fmincon 
 
tolconfmc=1e-10; %tolerance level for constraint for fmincon 
 
tolx=1e-10; %tolerance on solution value 
 
localg='active-set';  
%set which local algorithm to be used for Multistart 
 
 
%%%%%%%%%%%%%%%%%%% 
%% Run optimization 
%%%%%%%%%%%%%%%%%%% 
 



%Here both GA and PSO flags are checked and the selected algorithm is 
run via GA_optim.m or PSO_optim.m script respectively (located in the 
General folder) 
 
if runga==1 
    timega=tic; 
    GA_optim %run GA+Multistart 
    timelga=toc(timega); %time taken by GA/Multistart 
    save(resfilename) %save intermediate results 
end 
save(resfilename) 
 
if runpso==1 
    timepso=tic; 
    PSO_optim %run PSO+Multistart 
    timelpso=toc(timepso); %time taken by PSO/Multistart 
    save(resfilename) %save intermediate results 
end 
 
 
%%%%%%%%%%%%%%%%%% 
%% Arrange results 
%%%%%%%%%%%%%%%%%% 
 
%Here results are grouped together from both GA and PSO runs, if 
applicable, and the minimizer and the corresponding KL distance value 
are saved. 
 
 
values=[]; %blank for storing best function values 
solvecs=[]; %blank for storing solution vectors 
 
if runga==1 
    values=[values;fvalga;fvalga2]; 
    solvecs=[solvecs;xestga;xestga2]; 
end 
if runpso==1 
    values=[values;fvalpso;fvalpso2]; 
    solvecs=[solvecs;xestpso;xestpso2]; 
end 
 
err=find(values<0);  
 
values(err)=1e07;  



%penalize negative values that may rarely occur due to algorithm 
error 
 
indm=find(values==min(values)); %minimum value(s) 
 
indm=indm(1);  
%index of the parameter with the lowest objective function value 
 
temp1=['thetaind=solvecs(',num2str(indm),',:)'';'];  
%string to evaluate to define minimum parameter value  
 
temp2=['kl=values(',num2str(indm),')/10000;'];  
%string to evaluate the resulting KL distance 
 
eval(temp1); %save the final parameter result 
 
eval(temp2); %save the minimized KL distance 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Empirical distance computation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%After finding the minimizer, empirical distances between it and 
theta0 for T=80,150,200,1000 are computed at the 5% significance 
level. 
 
 
%The empirical distance function take the following inputs: 
i)theta0 (benchmark model); ii) theta (the model we are comparing 
with); iii) benchmark model index (=1 if current inflation + output 
gap rule; =2 if expected inflation + output gap rule; =3 if current 
inflation + output growth rule.); iv) alternate model index (see %iii 
for interpretation); v) significance level (0.05 for 5%, 0.01 %for 1% 
etc.); vi) sample size T at which the distance is evaluated.  
 
if bc==0 
    
ed=[pfhas(theta,thetaind,1,1,0.05,80);pfhas(theta,thetaind,1,1,0.05,1
50);pfhas(theta,thetaind,1,1,0.05,200);pfhas(theta,thetaind,1,1,0.05,
1000)]; 
elseif bc==1 
    
ed=[pfhasbc(theta,thetaind,1,1,0.05,80);pfhasbc(theta,thetaind,1,1,0.



05,150);pfhasbc(theta,thetaind,1,1,0.05,200);pfhasbc(theta,thetaind,1
,1,0.05,1000)]; 
end 
 
%the pfhas.m and pfhasbc.m functions used here are located inside the 
AS_identification folder. 
 
%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Print and save results 
%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%This section of the code prints the first column of Tables 2 and 3 
and saves the results again. 
 
 
%Strings for parameter names and column/row headers: 
 
par=['tau     '; 'beta    '; 'kappa   '; 'psi1    '; 'psi2    '; 
'rhoR    '; 'rhog    '; 'rhoz    '; 'sigR    '; 'sigg    '; 'sigz    
';'m_eta_r '; 'm_eta_g '; 'm_eta_z '; 'sig_eta ']; 
t0=num2str(theta,3); 
ti=num2str(thetaind,3); 
t3=['KL    ';'T=80  ';'T=150 ';'T=200 ';'T=1000']; 
 
for i=1:15 
    sp(i,:)='  '; 
end 
 
%Display the results table: 
 
disp 'Table 2. Parameter values minimizing the KL criterion, AS (2007) 
model' 
disp '        (a) All parameters can vary' 
disp '           theta0     c=0.1' 
disp([par,sp,t0,sp,ti]) 
 
disp 'Table 3. KL and empirical distances between theta_c and theta_0, 
AS (2007) model' 
disp '        (a) All parameters can vary' 
disp '           c=0.1' 
disp([t3,sp(1:5,:),num2str([kl;ed],3)]) 
 
%Save results again: 
save(resfilename) 
 



 
 
%%%%%%%%%%%%%%%%%%%%%% 
%% Close parallel pool 
%%%%%%%%%%%%%%%%%%%%%% 
 
%Here we clean up by closing the parallel pool. This part can be 
commented out if more parallel jobs are run after this file. 
 
% %for versions before R2014a 
% matlabpool close 
 
 
% %for versions R2014a and above 
delete(ppool) %delete the parallel pool object 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



********************************************************************* 
***REPLICATION FILE STRUCTURE: THE UNCONSTRAINED PROBLEM 
********************************************************************* 
 
Here an example of replicating column 1 in Table 4 is provided to 
demonstrate the structure of replication scripts found in the 
directory "Replication_scripts". This is an unconstrained KL 
minimization problem: we search for a model with an expected 
inflation rule that is closest to the model at theta0 with the 
current inflation rule. All files replicating results for these types 
of problems have the same structure. 
 
The code is broken up into sections for convenience of modification 
(lines/sections not preceded by '%' can be copy-pasted and run 
directly in Matlab), and the structure is almost the same as above. 
The main differences are: 
 
1) The "Specify constraints" section is no longer present as there 
are no inequality constraints. Also, constraint handling method for 
GA is no longer necessary to specify in the first section. 
 
2) There is no constraint function, and the objective function takes 
fewer inputs as a result. Also, there is no need to re-specify the 
objective function with a different "con" input for PSO for the above 
reason. As a result, the ConstraintFunction is set to [] (empty), and 
the PSO objective function is exactly the same as that for GA. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Algorithm selection and Matlab versions 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Here the user has an option of selecting the optimization algorithm: 
GA, %PSO or running both in sequence: 
runga=0; %1 if using Genetic algorithm + Multistart combination, 0 otherwise 
runpso=1; %1 if using Particle Swarm + Multistart combination, 0 otherwise 
 
% Note that PSO is available only in version R2014b and later. 
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Set up parallel computation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Here the user specifies the amount of cores to be used in parallel 
computation. It is recommended that at least 4 cores be used for 



small scale models and at least 8 cores used for the medium scale 
model to keep computation time reasonable. This part can be commented 
out if the parallel pool is already enabled or is enabled by an 
outside script, e.g., when running on the cluster. 
 
numcore=8; %specify the number of cores according to desired capacity 
%  
% for versions before R2014a, use the following syntax: 
% matlabpool open local numcore 
%  
% for versions R2014a and above, use this syntax to create the 
parallel pool object: 
 
ppool=parpool('local',numcore); %create parallel pool object 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Load parameter values and bounds 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Same structure as the unconstrained case above 
 
load theta0asi %load default parameter vector (theta0) 
 
% Set lower and upper bounds 
%Parameter order:  
%[tau beta kappa psi1 psi2 rhoR rhog rhoz sigR sigg sigz, m_eta_r, 
%m_eta_g, m_eta_z, sig_eta] 
 
lb=[0.01 0.9 0.01 0.01 0.01 0.1 0.1 0.1  0.01  0.01 0.01 -3 -3  -3  0.001]; 
 
ub=[10   0.999   5  0.9 5 0.99 0.99 0.99   3   3    3      3   3  3 3]; 
 
numpar=length(lb);%number of parameters in the objective function 
 
 
%%%%%%%%%%%%%%%%%%%%% 
%% Select frequencies 
%%%%%%%%%%%%%%%%%%%%% 
 
%Here the user select whether to minimize KL distance over the full 
spectrum or over the business cycle frequencies only.  
bc=0; %0 for full spectrum; 1 for business cycle frequencies only 
 
 



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Detailed specifications; you should not have to modify them 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Same structure as unconstrained case, except for difference in 
specifying objective functions and constraints: 
 
if bc==0 
    n=100; %number of points to evaluate the integral 
    w=2*pi*(-(n/2-1):1:n/2)'/n; %form vector of Fourier frequencies 
    resfilename=['table_4_p1']; 
elseif bc==1 
    n=500; %number of points to evaluate the integral 
    w=2*pi*(-(n/2-1):1:n/2)'/n; %form vector of Fourier frequencies 
    resfilename=['table_4_p1_bc']; 
end 
 
ObjectiveFunction = @(theta0)kloptas4(theta0,w,bc);  
%set objective function for GA/multistart 
 
ObjectiveFunctionP = ObjectiveFunction;  
%PSO objective is now the same as that for GA 
 
ConstraintFunction = [];  
%note empty constraint function. We still need to specify it in order 
for the same optimization script to work for both constrained and 
unconstrained cases. 
 
dispalg='iter'; %set whether algorithm iterations are displayed. 
dispint=20; %interval between displayed iterations (for PSO) 
 
 
%%%%%%%%%%%%%%%%%%%%%%%% 
%% GA algorithm settings 
%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Here we check whether the flag to run GA is on, and set the 
%algorithm options if so. 
if runga==1 
gen=1000; %max number of generation for GA  
stgenlim=50;  
%max number of stall generations (i.e., over which no improvement 
found) 
 



initpop=[]; %set initial population (if smaller than popsize, MATLAB 
will randomly draw the rest. If [], the whole population is randomly 
drawn. Can be a row vector of dimension numpar or a matrix. Each row 
of thematrix is then a candidate initial value. 
 
popsize=100; %population size 
 
elcnt=3;  
%elite count - number of elite individuals retained in population 
 
tolfunga=1e-10;  
%tolerance level for improvement in the objective for GA  
tolconga=1e-10; %tolerance level for constraint for GA 
 
usepga=['Always'];  
%Set to 'Always' to use parallel computation, otherwise to 'Never' or 
[] 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%% 
%% PSO algorithm settings 
%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Here we check whether the flag to run PSO is on, and set the 
%algorithm options if so. 
 
if runpso==1 
     
swarmsize=300; %swarm size (similar concept to population size for GA) 
 
maxitpso=1000;  
%maximum number of iterations (similar concept to generations for GA) 
 
stiterlim=100;  
%max number of stall PSO iterations 
 
initswarm=[]; %set initial population (if smaller than swarmsize, 
MATLAB will randomly draw the rest. If [], the whole population is 
randomly drawn. Can be a row vector of dimension numpar or a matrix. 
Each row of the matrix is then a %candidate initial value. 
 
minfn=0.1; %smallest fraction of neighbors for PSO 
 
tolfunpso=1e-06;  
%tolerance level for improvement in the objective for PSO 



 
psoname=['psoas_c',num2str(ns*100)]; %set name for a temp output file 
that stores the swarms (problem-based, the file is automatically 
deleted after the algorithm finishes and its contents are saved in 
the main results file) 
 
OutFun=@(optimValues,state)psout(optimValues,state,psoname); %output 
function for extracting swarms from PSO runs for further local 
optimization. Located in the General folder 
 
useppso=['Always']; %Set to 'Always' to use parallel computation, 
otherwise to 'Never' or []. For later matlab versions, 1 and 0 can be 
used respectively. 
 
 
end 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Multistart algorithm settings 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
 
numrpoints=50; %number of random starting points for Multistart 
 
usepms=['Always']; %Set to 'Always' to use parallel computation, 
otherwise to 'Never' or []. For later matlab versions, 1 and 0 can be 
used respectively. 
 
% settings for fmincon 
maxit=1000; % set max number of iterations 
 
maxfev=10000; % set max number of function evaluations 
 
tolfunfmc=1e-10;  
%tolerance level for improvement in the objective for fmincon 
 
tolconfmc=1e-10; %tolerance level for constraint for fmincon 
 
tolx=1e-10; %tolerance on solution value 
 
localg='active-set';  
%set which local algorithm to be used for Multistart 
 
 



 
%%%%%%%%%%%%%%%%%%% 
%% Run optimization 
%%%%%%%%%%%%%%%%%%% 
 
%Here both GA and PSO flags are checked and the selected algorithm is 
run via GA_optim.m or PSO_optim.m script respectively (located in the 
General folder) 
 
if runga==1 
    timega=tic; 
    GA_optim %run GA+Multistart 
    timelga=toc(timega); %time taken by GA/Multistart 
    save(resfilename) %save intermediate results 
end 
save(resfilename) 
 
if runpso==1 
    timepso=tic; 
    PSO_optim %run PSO+Multistart 
    timelpso=toc(timepso); %time taken by PSO/Multistart 
    save(resfilename) %save intermediate results 
end 
 
 
%%%%%%%%%%%%%%%%%% 
%% Arrange results 
%%%%%%%%%%%%%%%%%% 
 
Here results are grouped together from both GA and PSO runs, if 
applicable, and the minimizer and the corresponding KL distance value 
are saved. 
 
 
values=[]; %blank for storing best function values 
solvecs=[]; %blank for storing solution vectors 
 
if runga==1 
    values=[values;fvalga;fvalga2]; 
    solvecs=[solvecs;xestga;xestga2]; 
end 
if runpso==1 
    values=[values;fvalpso;fvalpso2]; 
    solvecs=[solvecs;xestpso;xestpso2]; 
end 



 
err=find(values<0);  
 
values(err)=1e07;  
%penalize negative values that may occur due to algorithm error 
 
indm=find(values==min(values)); %minimum value(s) 
 
indm=indm(1);  
%index of the parameter with the lowest objective function value 
 
temp1=['thetaind=solvecs(',num2str(indm),',:)'';'];  
%string to evaluate to define minimum parameter value  
 
temp2=['kl=values(',num2str(indm),')/10000;'];  
%string to evaluate the resulting KL distance 
 
eval(temp1); %save the final parameter result 
 
eval(temp2); %save the minimized KL distance 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Empirical distance computation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%After finding the minimizer, empirical distances between it and 
theta0 for T=80,150,200,1000 are computed at the 5% significance 
level. 
 
%The empirical distance function take the following inputs: 
 i)theta0 (benchmark model); ii) theta (the model we are comparing 
with); iii) benchmark model index (=1 if current inflation + output 
gap rule; =2 if expected inflation + output gap rule; =3 if current 
inflation + output growth rule.); iv) alternate model index (see iii 
for interpretation); v) significance level (0.05 for 5%, 0.01 for 1% 
etc.); vi) sample size T at which the distance is evaluated.  
 
%Note here the second model has index 2 (expected inflation rule), so 
the 4th input of the empirical distance function reflects that. 
 
if bc==0 
    
ed=[pfhas(theta,thetaind,1,2,0.05,80);pfhas(theta,thetaind,1,2,0.05,1
50);pfhas(theta,thetaind,1,2,0.05,200);pfhas(theta,thetaind,1,2,0.05,
1000)]; 



elseif bc==1 
    
ed=[pfhasbc(theta,thetaind,1,2,0.05,80);pfhasbc(theta,thetaind,1,2,0.
05,150);pfhasbc(theta,thetaind,1,2,0.05,200);pfhasbc(theta,thetaind,1
,2,0.05,1000)]; 
end 
 
%the pfhas.m and pfhasbc.m functions used here are located inside the 
AS_identification folder. 
 
%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Print and save results 
%%%%%%%%%%%%%%%%%%%%%%%%% 
 
t3=['KL    ';'T=80  ';'T=150 ';'T=200 ';'T=1000']; 
 
for i=1:5 
    sp(i,:)='  '; 
end 
disp 'Table 4. KL and empirical distances between monetary policy 
rules, AS (2007) model' 
disp '        (a) Expected inflation rule' 
disp '         Indeterminacy' 
disp([t3,sp,num2str([kl;ed],3)]) 
save(resfilename) 
 
 
%%%%%%%%%%%%%%%%%%%%%% 
%% Close parallel pool 
%%%%%%%%%%%%%%%%%%%%%% 
 
%Here we clean up by closing the parallel pool. This part can be 
commented out if more parallel jobs are run after this file. 
 
% %for versions before R2014a 
% matlabpool close 
 
 
% %for versions R2014a and above 
delete(ppool) %delete the parallel pool object 
 
 
 
 
 



********************************************** 
***EXAMPLE OF HANDLING REPARAMETERIZATIONS 
********************************************** 
 
An example of re-parameterizing standard deviations as variances for 
checking global identification in the AS(2007) model is provided in 
the folder 'Reparameterization'. The folder contains an auxiliary 
file gtheta_as.m that shows an example of writing a script 
transforming parameters (here from standard deviations to variances 
and vice versa) from the original vector theta through some vector 
valued function g(theta) as discussed on p. 18 of the paper. As noted 
in the paper, there is no need to modify the objective or the 
empirical distance functions as the KL and empirical distance are 
invariant to re-parameterizations.  
 
The only modification needed in the constraint function 
(constraintasg.m) is to apply the above transformation to the 
candidate solution and the benchmark model parameters before checking 
the constraint, as follows: 
 
%line 12:  
xest=gtheta_as(xest,1);  
%reparameterize standard deviations as variances 
%line 15:  
theta=gtheta_as(theta,1);  
%reparameterize the benchmark in terms of shock variances 
 
The rest of the function is identical to the original case - see 
constraintas.m 
 
 
Finally, the script Reparameterized_AS_c01_example.m script, which 
has the same structure as the replication file for the constrained 
problem above, showcases the few changes needed to work with the re-
parameterization. Specifically, the only differences (apart from 
renaming result files) from the corresponding script without re-
parameterization (see QT_Tables2_3_part1.m) are: 
 
%line 94: 
ConstraintFunction=@(xest)constraintasg(xest,ns,wgt,nrm,indp);  
%call the above constraint function instead of the one without 
reparameterization 
  
%line 206:  
t0=num2str(gtheta_as(theta,1),3);  



%display the relevant default parameter values as variances 
 
%line 207:  
ti=num2str(gtheta_as(thetaind,1),3);  
%display the relevant resulting minimizer values as variances 
 
In summary, the main work in incorporating re-parameterization is in 
defining the function that performs the parameter transformation and 
adjusting the constraint function accordingly.  


