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Abstract

This paper presents estimation methods and asymptotic theory for the analysis of a non-

parametrically speci�ed conditional quantile process. Two estimators based on local linear

regressions are proposed. The �rst estimator applies simple inequality constraints while the

second uses rearrangement to maintain quantile monotonicity. The bandwidth parameter is al-

lowed to vary across quantiles to adapt to data sparsity. For inference, the paper �rst establishes

a uniform Bahadur representation and then shows that the two estimators converge weakly to

the same limiting Gaussian process. As an empirical illustration, the paper considers a dataset

from Project STAR and delivers two new �ndings.
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1 Introduction

Models for conditional quantiles play an important role in econometrics and statistics. In practice,

it is often desirable to consider simultaneously multiple quantiles to obtain a complete analysis

of the stochastic relationships between variables. This underlies the consideration of the condi-

tional quantile process. A seminal contribution to this analysis is Koenker and Portnoy (1987),

which established a uniform Bahadur representation and serves as the foundation for further de-

velopments in this area. More recently, Koenker and Xiao (2002) considered the issue of testing

composite hypotheses about quantile regression processes using Khmaladzation (Khmaladze, 1981).

Chernozhukov and Fernández-Val (2005) considered the same issue and suggested resampling as

an alternative approach. Angrist, Chernozhukov and Fernández-Val (2006) established inferential

theory in misspeci�ed models. Their results can be used to study a wide range of issues, including

but not restricted to (i) testing alternative model speci�cations, (ii) testing stochastic dominance,

and (iii) detecting treatment e¤ect signi�cance and heterogeneity.

The main focus of the above literature has been on parametric quantile models. However, there

are frequent occasions where parametric speci�cations fail, making more �exible nonparametric

methods desirable. This paper aims to achieve two goals. The �rst is to propose two simple

nonparametric estimators for the conditional quantile process. The second is to derive an inferential

theory that can be used for constructing uniform con�dence bands and testing various hypotheses

concerning conditional quantile processes.

The two proposed estimators are both based on local linear regressions (Fan, Hu and Truong,

1994 and Yu and Jones, 1998), but di¤ering in how they ensure the quantile monotonicity. Speci�-

cally, the �rst estimator applies local linear regressions to a grid of quantiles while imposing a set of

linear inequality constraints, and then linearly interpolates between adjacent quantiles to obtain an

estimate for the quantile process. The second estimator �rst applies local linear regressions to a grid

of quantiles without any constraints and then applies rearrangement (Chernozhukov, Fernández-Val

and Galichon, 2010) if quantile crossing occurs. They share the following two features. First, the

bandwidth parameter is allowed to vary across quantiles to adapt to data sparsity. This is impor-

tant because data are typically more sparse near the tails of the conditional distribution. Second,

the computation is feasible even for large sample sizes. More detailed comparisons between the two

estimators are provided in Section 3 of the paper.

For inference, three sets of results are established. (1) We derive a uniform Bahadur representa-

tion for the unconstrained estimator (i.e., obtained without imposing the monotonicity constraint).

1



This generalizes Theorem 2.1 in Koenker and Portnoy (1987) to the local linear regression setting.

While being of independent interest, this representation forms a key step in proving the subsequent

results. (2) We show that the �rst proposed estimator has the same �rst-order asymptotic distri-

bution as the unconstrained estimator if a certain rate condition on the quantile grid is satis�ed.

Further, its asymptotic distribution is a continuous Gaussian process, whose critical values can be

estimated via simulations by exploiting the fact that it is conditionally pivotal, drawing on the

insights of Parzen, Wei and Ying (1994) and Chernozhukov, Hansen and Jansson (2009). (3) We

show that the second proposed estimator follows the same asymptotic distribution as the �rst. This

result broadens the application of rearrangement to the local linear regression context.

The inferential theory and methods can be used to analyze a wide range of issues. They include:

(1) constructing a uniform con�dence band for the conditional quantile process, (2) constructing

a uniform con�dence band for the di¤erence or other linear functions of multiple such processes,

and (3) testing distributional hypotheses such as the homogeneity or equality of quantile treatment

e¤ects, as well as �rst-order and second-order conditional stochastic dominance. They can also be

potentially useful for constructing speci�cation tests of parametrically speci�ed conditional quantile

processes. Studies considering the latter issue include Escanciano and Velasco (2010) and Mammen,

Van Keilegom and Yu (2013).

We evaluate the proposed methods using simulations and brie�y summarize the results below.

First, the two proposed estimators and the conventional quantile-by-quantile local linear estimator

all perform similarly in terms of the integrated mean squared error criterion. This result con�rms

the �nding that they all share the same limiting distribution. Second, the con�dence band can

have undercoverage because the bias term in the estimator can be di¢ cult to estimate. This is

not particular to our problem, but rather is a well known fact in the nonparametric literature. To

address this issue, we suggest a simple modi�cation that allows for a more �exible bias correction.

The resulting con�dence band is asymptotically conservative. Simulation evidence suggests that

it has adequate coverage, even with small sample sizes, and that it is only mildly wider than the

con�dence band that uses the conventional bias correction.

As an empirical illustration, the paper considers a dataset from an experiment known as Project

STAR (Student-Teacher Achievement Ratio). Two results emerge. First, the students in the upper

quantiles of the test score distribution bene�t more from the class size reduction. Second, the e¤ect

of the class size reduction is strongest for the classes taught by moderately experienced teachers (i.e.,

6-8 years of experience). We also conduct hypotheses tests for treatment signi�cance, homogeneity,

equality as well as �rst order stochastic dominance. The results recon�rm the above two �ndings.
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There are two key di¤erences between this paper and Belloni, Chernozhukov and Fernández-Val

(2011). The �rst di¤erence is in the estimation framework. Belloni, Chernozhukov and Fernández-

Val (2011) consider a series-based framework, where the conditional quantile function is modeled

globally with a large number of parameters. The current paper is based on local linear regressions,

where the quantile function is modeled locally by a few parameters and the modeling complexity

is governed by the bandwidth. Consequently, di¤erent techniques are applied to establish the

asymptotic properties of the estimators. The second di¤erence is how the quantile monotonicity

is achieved. Belloni, Chernozhukov and Fernández-Val (2011) apply monotonization procedures to

a preliminary series-based estimator, while in our �rst estimator the monotonicity enters directly

into the estimation through inequality constraints.

When viewed from a methodological perspective, the current paper is related to the following

two strands of literature. First, the �rst estimator is related to the studies on estimating non-

parametric regression relationships subject to monotonicity constraints, where the main focus has

been the monotonicity with respect to the covariate. For example, Mammen (1991) considered an

estimator consisting of a kernel smoothing step and an isotonisation step. Delecroix, Simioni and

Thomas-Agnan (1996) studied a procedure that involves unconstrained smoothing followed by a

constrained projection. He and Shi (1998) and Koenker and Ng (2005) considered smoothing splines

subject to linear inequality constraints. In the current paper, the monotonicity constraint is with

regards to the quantiles, giving rise to a di¤erent type of estimator than those discussed above, and

requiring di¤erent techniques for studying its statistical properties. Note that He (1997), Dette and

Volgushev (2008), Bondell, Reich and Wang (2010) and Chernozhukov, Fernández-Val and Galichon

(2010) considered monotonicity with respect to the quantiles. The connection with their works is

discussed later in the paper. Second, there is an active literature that studies uniform con�dence

bands for nonparametric conditional quantile functions; see Härdle and Song (2010) and Koenker

(2010). The former paper considered kernel-based estimators and obtained con�dence bands using

strong approximations. The latter considered additive quantile models analyzed with total-variation

penalties and obtained con�dence bands using Hotelling�s tube formula. Their results are uniform

in covariates but pointwise in quantiles. Therefore, their results and ours complement each other

and, when jointly applied, allow one to probe a broad spectrum of topics.

The paper is organized as follows. Section 2 introduces the issue of interest. Section 3 presents

the estimators while Section 4 establishes their asymptotic properties. Section 5 discusses the

bandwidth selection. Section 6 shows how to construct uniform con�dence bands and conduct

hypothesis tests on the conditional quantile process. Section 7 reports simulation results. Section
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8 contains an empirical application and Section 9 concludes. All proofs are in the two appendices,

with Appendix A containing the proofs of the main results and Appendix B some auxiliary lemmas.

The following notation is used. The superscript 0 indicates the true value. kzk is the Euclidean
norm of a vector z. 1(�) is the indicator function. supp(f) stands for the support of f . The
symbols �)�and �!p�denote weak convergence under the Skorohod topology and convergence

in probability, and Op(�) and op(�) is the usual notation for the orders of stochastic magnitude.

2 The issues of interest

Let (X;Y ) be an Rd+1-valued random vector, where Y is a scalar response variable and X is

an Rd-valued explanatory variable (X does not include a constant). Let fY jX(�) and fX(�) be
the conditional density of Y and the marginal density of X. Denote the conditional cumulative

distribution of Y given X=x by FY jX(�jx) and its conditional quantile at � 2 (0; 1) by Q(� jx), i.e.,

Q(� jx) = F�1Y jX(� jx) = inf
�
s : FY jX(sjx) � �

	
:

In this paper, Q(� jx) is modeled as a general nonlinear function of x and � . We �x x and treat
Q(� jx) as a process in � , where � 2 T = [�1; �2] with 0 < �1 � �2 < 1. Here, T falls strictly within
the unit interval in order to allow the conditional distribution to have an unbounded support.

This paper has two goals. The �rst is to develop nonparametric estimators for the conditional

quantile process. The second is to provide some asymptotic results that can be used for constructing

uniform con�dence bands and testing various hypotheses concerningQ(� jx). Throughout the paper,
we assume f(xi; yi)gni=1 is a sample of n observations that are i:i:d: as (X;Y ). The following

examples illustrate the above issues of interest. More discussions will follow in Section 6.

Example 1 (Quantile treatment e¤ect, QTE). QTE measures the e¤ect of a treatment on

the distribution of the potential outcomes. Speci�cally, let X = (D;Z), where D is a binary policy

variable and Z includes the covariates. Let Q(� jd; z) denote the � -th conditional quantile of the
potential outcome given D = d and Z = z. Then, the QTE is de�ned as1

Q(� j1; z)�Q(� j0; z):

One may be interested in examining: (i) whether the treatment has a signi�cant e¤ect at some

quantile, i.e., testing H0: Q(� j1; z) = Q(� j0; z) for all � 2 T against H1: Q(� j1; z) 6= Q(� j0; z) for
1This concept traces back to Lehmann (1975) and Doksum (1974); recent works include Heckman, Smith and

Clements (1997), Abadie, Angrist and Imbens (2002), Chernozhukov and Hansen (2005) and Firpo (2007).
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some � 2 T ; (ii) whether the e¤ects are homogeneous, i.e., testing H0: Q(� j1; z)�Q(� j0; z) = �(z)

for some �(z) and for all � 2 T against the hypothesis that the preceding di¤erence is quantile

dependent; (iii) whether the e¤ects are equal at two di¤erent covariate values, i.e., for given z1 and

z2, testing H0: Q(� j1; z1)�Q(� j0; z1) = Q(� j1; z2)�Q(� j0; z2) against H1: Q(� j1; z1)�Q(� j0; z1) 6=
Q(� j1; z2)�Q(� j0; z2) for some � 2 T . Koenker and Xiao (2002) and Chernozhukov and Fernández-
Val (2005) developed inferential procedures for the �rst two hypotheses using parametric conditional

quantile models. The results obtained here will allow us to analyze these issues under a nonpara-

metric setting. In practice, T can be �exibly chosen. For example, if the policy target is the lower
part of the distribution, then we can choose T = ["; 0:5] with " being a small positive number.

Example 2 (Conditional stochastic dominance). Stochastic dominance is an important con-

cept for the study of poverty and income inequality. Although a large part of the literature has

focused on unconditional dominance, conditional dominance has also received interest recently, see

Koenker and Xiao (2002), Chernozhukov and Fernández-Val (2005) and Linton, Maasoumi and

Whang (2005). Speci�cally, let Q1(� jx) and Q2(� jx) denote conditional quantile functions associ-
ated with two conditional distributions. Then, Distribution One (weakly) �rst-order stochastically

dominates Distribution Two at x if and only if

Q1(� jx) � Q2(� jx) for all � 2 (0; 1): (1)

Distribution One (weakly) second-order stochastically dominates Two at x if and only ifZ �

0
Q1(sjx)ds �

Z �

0
Q2(sjx)ds for all � 2 (0; 1): (2)

The null hypotheses (1) and (2) can be tested using one sided Kolmogorov-Smirnov tests based on

Q1(� jx)�Q2(� jx) and its integral. Note that the above three papers assumed parametric models
for the conditional mean or quantiles functions, while the results obtained in this paper will allow

us to test these hypotheses under a nonparametric setting.

Example 3 (Sharp regression discontinuity design, SRD). The regression discontinuity de-

sign provides an alternative framework to randomized experiments for evaluating social programs

and policy interventions. Under SRD, the treatment status of an individual, say Di, is a deter-

ministic function of some scalar variable Xi, i.e., Di = 1 fXi � cg, where c is some known cut-o¤.
The average e¤ect of the treatment at Xi = c is given by (see Imbens and Lemieux, 2008, for a

more comprehensive discussion) limx#cE[Yijx]�limx"cE[Yijx]. Analogously, the quantile treatment
e¤ect can be de�ned as �(� jc) = limx#cQ(� jx)� limx"cQ(� jx). One may be interested in examining
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(i) whether the treatment has a signi�cant e¤ect at some quantile, i.e., testing H0: �(� jc) = 0 for
all � 2 T against H1: �(� jc) 6= 0 for some � 2 T , (ii) whether the e¤ect is homogeneous, i.e., testing
H0: �(� jc) is constant in � 2 T against the hypothesis that �(� jc) is quantile dependent, and (iii)
whether the e¤ect is uniformly nonnegative, i.e., testing H0: �(� jc) � 0 for all � 2 T against H1:

�(� jc) < 0 for some � 2 T .

Remark 1 Although one can get glimpses into the hypotheses in the above three examples by con-

sidering a few pre-speci�ed quantiles, to address them thoroughly it is necessary to study the entire

conditional quantile process. For example, to test whether the treatment e¤ect is always non-negative

or whether it is constant across quantiles, we need to examine the entire range of quantiles, rather

than merely a few points in the conditional distribution. Concerning stochastic dominance, Abadie

(2002) showed that if the outcome distribution of the treatment group �rst order stochastically dom-

inates that of the control group, then the outcome is socially preferable under any widely acceptable

utility function. Thus, the entire distribution, not only a few pre-speci�ed quantiles, matters when

designing socially preferable policies. The testing procedures and con�dence bands proposed in this

paper can provide informative results for such purposes.

3 The estimators

We start by brie�y reviewing the idea underlying the local linear regression; more details can be

found in Chaudhuri (1991), Fan, Hu and Truong (1994) and Yu and Jones (1998). For a given

� 2 (0; 1), the method assumes that Q(� jx) is a smooth function of x and exploits the following
�rst-order Taylor approximation:

Q(� jxi) � Q(� jx) + (xi � x)0
@Q(� jx)
@x

: (3)

The local linear estimator of Q(� jx), denoted by �̂(�), is determined via

(�̂(�); �̂(�)) = arg min
�(�);�(�)

nX
i=1

��
�
yi � �(�)� (xi � x)0�(�)

�
K

�
xi � x
hn;�

�
; (4)

where �� (u) = u (� � I(u < 0)) is the check function, K is a kernel function and hn;� is a bandwidth

parameter that depends on � . As demonstrated in Fan, Hu and Truong (1994), the local linear

regression has several advantages over the local constant �t. In particular, (i) the bias of �̂(�)

is not a¤ected by the value of f 0X(x) and @Q(� jx)=@x; (ii) it is of the same order irrespective of
whether x is a boundary point, and (iii) plug-in data-driven bandwidth selection does not require

estimating the derivatives of the marginal density, therefore is relatively simple to implement. As
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will be seen later, these three features continue to hold for our estimators. Note that the results in

Fan, Hu and Truong (1994) and Yu and Jones (1998) are pointwise in � .

3.1 The �rst estimator

We propose the following two-step procedure to estimate the process Q(� jx); � 2 T .
STEP 1. Partition T into a grid of equally spaced quantiles f�1; :::; �mg. Consider the following
constrained optimization problem

min
f�(�j);�(�j)gmj=1

mX
j=1

nX
i=1

��
�
yi � �(� j)� (xi � x)0�(� j)

�
K

�
xi � x
hn;�j

�
(5)

subject to

�(� j) � �(� j+1) for all j = 1; :::;m� 1: (6)

Denote the estimates by e�(�1); :::; e�(�m).
STEP 2. Linearly interpolate between e�(�1); :::; e�(�m) to obtain an estimate for the quantile
process, i.e., for any � 2 T , compute

e��(�) =  (�) e�(� j) + (1�  (�)) e�(� j+1) if � 2 [� j ; � j+1]; (7)

where  (�) = (� j+1 � �)=(� j+1 � � j):

Remark 2 The constraints �(� j) � �(� j+1) (j = 1; :::;m � 1) are necessary and su¢ cient for
ensuring quantile monotonicity. They depend neither on the data (such as their support) nor on

the model (such as the number of covariates), but only on the number of quantiles entering the

estimation. Consequently, the above procedure can be applied to di¤erent models and covariate

values without any modi�cation.

Remark 3 The constrained optimization (5) is essentially a special case of Koenker and Ng (2005),

who provided algorithms for computing quantile regression estimates under general linear inequality

constraints. An e¢ cient implementation can be constructed with little cost.

Remark 4 The linear interpolation step is motivated by Neocleous and Portnoy (2008). It permits

obtaining a tractable inferential theory as presented later.

Remark 5 There exist other methods for ensuring quantile monotonicity. He (1997) exploited the

structure of a location-scale model. Bondell, Reich and Wang (2010) considered quantile smoothing

splines and showed that non-crossing can be imposed via inequality constraints on the knots. Dette
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and Volgushev (2008) �rst estimated the conditional distribution function and then inverted it to

obtain the quantiles. However, their results are pointwise in quantiles. It remains an open question

whether they can lead to tractable inferential theory for the quantile process.

3.2 The second estimator

Chernozhukov, Fernández-Val and Galichon (2010) proposed a generic framework for estimating

monotone probability and quantile curves. Their method uses a preliminary estimator that is not

necessarily monotonic and applies rearrangement to ensure monotonicity. Adapting their method

to the current nonparametric setting leads to the following procedure.

STEP 1. Partition T into a grid of equally spaced quantiles f�1; :::; �mg. Solve the following
unconstrained optimization problem

min
�(�j);�(�j)

nX
i=1

��
�
yi � �(� j)� (xi � x)0�(� j)

�
K

�
xi � x
hn;�j

�
for all j = 1; :::;m. Denote the estimates by �̂(�1); :::; �̂(�m).

STEP 2. Linearly interpolate between the estimates:

�̂�(�) =  (�) �̂(� j) + (1�  (�)) �̂(� j+1) if � 2 [� j ; � j+1]; (8)

where  (�) = (� j+1 � �)=(� j+1 � � j). Apply rearrangement to �̂�(�) (see Displays (2.1) and (2.2)
in Chernozhukov, Fernández-Val and Galichon, 2010) to obtain

e��(�) = inf �y 2 R : Z
T
1 (�̂�(u) � y) du � � � �1

�
, (9)

where �1 is the lower limit of T :
In the second step, the rearrangement is applied after the linear interpolation in order to be

consistent with the theoretical analysis in Chernozhukov, Fernández-Val and Galichon (2010). As

the paper suggests, to facilitate the implementation, it can also be applied directly to �̂(� j) (j =

1; :::;m) provided that m is su¢ ciently large. The linear interpolation can then be applied to the

monotonized estimate to obtain the �nal estimate.

Although this paper focuses on the nonparametric setting, the above two procedures can also

be extended to analyze semiparametric models. Below we provide two illustrations. The discussion

focuses on the implementation aspect while the asymptotic analysis is beyond the scope of the

current paper. First, consider a partially linear conditional quantile model given by

Q (� jxi; zi) = q (xi; �) + z
0
i� (�) ;
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where xi and zi are two sets of covariates (excluding a constant), q (xi; �) is a nonlinear function

of both arguments and � (�) a vector of coe¢ cients. Similar models are considered in He and Shi

(1996), Chen and Khan (2001), Lee (2003) and Song, Ritov and Härdle (2012). Analogously to (3)

and (4), a local linear approximation to the � -th conditional quantile at a particular x is given by

Q (� jx; zi) � � (�) + (xi � x)0 � (�) + z0i� (�)

and the parameter estimates can be obtained using (see Chen and Khan, 2001)

(�̂(�); �̂(�); �̂ (�)) = argmin
�(�);�(�);�(�)

nX
i=1

��
�
yi � �(�)� (xi � x)0�(�)� z0i� (�)

�
K

�
xi � x
hn;�

�
:

Here, the quantile monotonicity at a particular x and over the support of zi can be enforced

by imposing constraints on �(�) and � (�). This will automatically guarantee the linearity with

respect to zi. Alternatively, we can solve the above unconstrained estimation problem and then

apply rearrangement at x and the values of zi that are of interest. This may not preserve the

linearity with respect to zi when quantile crossing occurs.

Next, consider a varying coe¢ cients quantile model given by (see Honda, 2004, Kim, 2007 and

Cai and Xiao, 2012)

Q (� jxi) = x0i� (� ; ui) ;

where ui is a scalar random variable and � (� ; ui) is a smooth function of ui. A local linear

approximation to the � -th conditional quantile at a particular u is given by Q (� ju; xi) � x0i� (�) +

(ui � u)x0i� (�) and the parameter estimates can be obtained using

(�̂(�); �̂ (�)) = argmin
�(�);�(�)

nX
i=1

��
�
yi � x0i�(�)� (ui � u)x0i� (�)

�
K

�
ui � u
hn;�

�
:

Similarly to the partially linear model, the quantile monotonicity at a particular u and over the

support of xi can be enforced either by imposing constraints on �(�), or by repeating the rearrange-

ment operation for this u and all xi of interest. The comment regarding the linearity with respect

to xi also applies here.

We conclude this section by comparing the two estimators taking into consideration of their

further developments. The second estimator is computationally more straightforward if the main

goal is to study the conditional quantile process nonparametrically for a �xed x. The �rst estimator

is more �exible if one wishes to impose additional restrictions, say restricting some elements of �(�)

to be non-negative (see the Engel curve example considered in Koenker and Ng, 2005). It can also

be attractive when dealing with certain semiparametric models as discussed above. Although the
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theory in the next section does not consider the estimation of the derivatives and semiparametric

models, we conjecture that the techniques developed there can be useful for such further analysis.

4 Asymptotic properties

Let �(x) denote some small open neighborhood surrounding x. We make the following assumptions.

Assumption 1 (i) X is an Rd-valued explanatory variable excluding a constant. (ii) The evalua-

tion point x belongs to the support of X whose density fX is continuously di¤erentiable at x with

0 < fX(x) <1. (iii) f(xi; yi)gni=1 is a sample of n observations that are i:i:d: as (X;Y ).

Assumption 2 (i) fY jX(Q(� jx)jx) is Lipschitz continuous over T . (ii) There exist �nite positive
constants fL; fU and � such that fL � fY jX(Q(� js)+ �js) � fU for all j�j � �, s 2 �(x)\ supp (fX)
and � 2 T :

Assumption 3 (i) Q(� jx) and @Q(� jx)=@� are �nite and continuous in � 2 T . (ii) The elements
of @2Q(� js)=@s@s0 are �nite and Lipschitz continuous over f(s; �): s 2 �(x)\supp (fX) and � 2 T g.

Assumption 4 The kernel K is compactly supported, bounded, having �nite �rst-order derivatives

and satisfying K(�) � 0;
R
K(u)du = 1;

R
uK(u)du = 0;

R
uu0K(u)du = �2(K) with �2(K) being

positive de�nite.

Assumption 5 The bandwidth hn;� satis�es hn;� = c(�)hn, where hn = O(n�1=(4+d)) and nhdn !
1 and c(�) is Lipschitz continuous satisfying 0 < c � c(�) � �c <1 for all � 2 T .

Assumption 1 is fairly standard. In practice, d is typically a small number. Although the

i:i:d: assumption is maintained throughout the paper, the asymptotic results derived in Section 4

continue to hold in a Markov time series setting, that is, when Y = Yt, X = Xt�1 and Yt depends

on the past only through Xt�1. Assumption 2 imposes restrictions on the conditional density. Part

(i) requires it to have �nite �rst-order derivatives with respect to � over T . It is used to show
that the optimal bandwidth in Display (16) is Lipschitz continuous with respect to � . This further

ensures that allowing the bandwidth parameter to vary across quantiles does not interfere with the

stochastic equicontinuity. Part (ii) implies that it is positive and �nite in a neighborhood of x and

T . This is needed to ensure that the estimator will have the usual rate of convergence. Assumption
3 imposes restrictions on the conditional quantile process. Part (i) requires this process and its

derivative in � to vary smoothly with respect to � . Part (ii) implies that the error in the Taylor
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expansion (3) is uniformly small. A common theme of Assumptions 2 and 3 is that they are local.

That is, they impose restrictions only on neighborhoods surrounding x and T . For example, if
T = [0:5; 0:8], then the lower part of the conditional distribution and the extreme quantiles are left
unrestricted. There, the conditional densities can be non-smooth or zero.

Assumption 4 permits univariate as well as multivariate kernels, although it rules out those

with unbounded support (e.g., the Gaussian kernel) and those with unbounded derivatives. The

matrix �2(K) will be diagonal if a product kernel is used. Assumption 5 imposes restrictions on

the bandwidth parameter, in particular requiring it to be a smooth function of � . This is needed to

ensure stochastic equicontinuity. It is not restrictive, and is satis�ed by the optimal bandwidth that

minimizes the asymptotic MSE; see Section 5. Note that for a given � , we use the same bandwidth

for every coordinate of x. This simpli�es the expressions for the bias and variance, especially when

x is a boundary point. More general formulas allowing for di¤erent bandwidths at di¤erent x can

be obtained by applying similar arguments as those in Section 5.

The asymptotic properties of the estimator depend on whether x is close to the boundary of

the support. As in Ruppert and Wand (1994), de�ne Ex;� = fv 2 Rd : h�1n;� (x � v) 2 supp(K)g.
Call x an interior point if Ex;� � supp(fX) for all � 2 T and otherwise call it a boundary point. If

x is a �xed point in the interior of supp(fX), then x is an interior point for all large n. Therefore,

to model the boundary point, we consider a sequence of points x = xn converging to x@ on the

boundary of supp(fX) so that x is a boundary point for all n. Formally, a boundary point x satis�es

x = x@ + hn;�c for some � 2 T and some �xed c 2 supp (K): (10)

We also de�ne the following set which serves as the domain for integration:

Dx;� = fv 2 Rd : (x+ hn;�v) 2 supp (fX)g \ supp (K) :

Note that if x is an interior point, then Dx;� = supp (K). To illustrate the boundary point case,

suppose supp (K) = [�1; 1]; supp (fX) = [0; 1] and x = chn;� with c > 0, then Dx;� = [�c; 1]. The
next assumption rules out degeneracies and is the same as in Ruppert and Wand (1994).

Assumption 6 There is a convex set C with nonnull interior such that x@ 2 C and infx2C fX(x)>0.

11



Below, we establish the asymptotic properties of (7) and (9) in three steps by sequentially

analyzing the following three quantities:

�̂(�) : the solution of (4) at a given � 2 T ;

�̂�(�) : obtained from the linear interpolation without imposing the constraints, see (8),

e��(�) : the �nal estimator de�ned in (7) or (9).

The �rst step provides a uniform Bahadur representation for �̂(�). The second step quanti�es the

e¤ect of the linear interpolation. The third step analyzes the e¤ect of the inequality constraints or

the rearrangement and delivers the limiting distributions of the proposed estimators.

Theorem 1 (Uniform Bahadur representation) Let Assumptions 1-5 hold. Then the following

results hold uniformly in � 2 T .

1. If x is an interior point, then

q
nhdn;�

�
�̂(�)�Q(� jx)� d�h2n;�

�
=

�
nhdn;�

��1=2Pn
i=1

�
� � 1(u0i (�) � 0

�
)Ki;�

fX (x) fY jX (Q(� jx)jx)
+ op (1) ;

where d� = 1
2 tr

�
@2Q(� jx)
@x@x0 �2(K)

�
;Ki;� = K

�
xi�x
hn;�

�
; u0i (�) = yi �Q(� jxi):

2. If x is a boundary point as de�ned by (10) and Assumption 6 holds, thenq
nhdn;�

�
�̂(�)�Q(� jx)� db;�h2n;�

�
=

�01Nx (�)
�1 �nhdn;���1=2Pn

i=1

�
� � 1(u0i (�) � 0

�
)zi;�Ki;�

fX (x) fY jX (Q(� jx))
+ op (1) ;

where �1 = (1; 0d)
0, u 2 Rd, �u = (1; u0)0, db;� = 1

2 �
0
1Nx (�)

�1 R
Dx;� u

0 @2Q(� jx)
@x@x0 u�uK (u) du,

Nx (�) =
R
Dx;� �u�u

0K (u) du, z0i;� = (1; (xi � x)0=hn;� ) :

Note that the bias terms will be zero if Q(� jx) is linear in x. Theorem 1 generalizes Theorem 2.1
in Koenker and Portnoy (1987) to the nonparametric setting. The proof faces two challenges that

do not arise in the parametric situation. First, the conditional quantile function is approximated

using a �rst-order Taylor expansion. Second, the bandwidth can vary across quantiles. They both

lead to di¢ culties when establishing the stochastic equicontinuity. Since the strategy of the proof

can be of interest, we provide an outline below.
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We �rst introduce some notations that will also be used in the two appendices. De�ne ui(�) =

yi��(�)� (xi�x)0�(�), where �(�) 2 R and �(�) 2 Rd are some candidate parameter values. Let

ei (�) =

�
Q(� jx) + (xi � x)0

@Q(� jx)
@x

�
�Q(� jxi) and �(�) =

q
nhdn;�

0@ �(�)�Q(� jx)

hn;� (�(�)� @Q(� jx)
@x )

1A :

Then, ui(�) can be decomposed as ui(�) = u0i (�) � ei (�) � (nhdn;� )�1=2z0i;�� (�), where z0i;� =
(1; (xi � x)0=hn;� ). This decomposition is useful because it breaks ui(�) into three components:
the true residual, the error due to the Taylor approximation and the error caused by replacing the

unknown parameter values in the approximation with some estimates. De�ne

Vn;� (�(�)) =
nX
i=1

��

�
u0i (�)� ei (�)� (nhdn;� )�1=2z0i;�� (�)

�
Ki;� �

nX
i=1

��
�
u0i (�)� ei(�)

�
Ki;� ; (11)

where the �rst summation is the same as in the objective function in (4) and the second is introduced

for recentering the �rst and has no e¤ects on the estimation. Finally, let

Sn (� ; �(�); ei (�)) = (nhdn)
�1=2

nX
i=1

n
P
�
1(u0i (�) � (nhdn;� )�1=2z0i;��(�) + ei(�))

���xi�
� 1

�
u0i (�) � (nhdn;� )�1=2z0i;��(�) + ei(�)

�o
zi;�Ki;� :

The proof proceeds in three steps. It is structured similarly to that of Theorem 2.1 in Koenker

and Portnoy (1987). The �rst step establishes uniform rates of convergence for �̂(�) and �̂(�),

i.e., sup�2T jj�̂(�)jj � log1=2(nhdn) with probability tending to 1. Speci�cally, it uses the convexity
of Vn;� (�(�)) and Knight�s (1998) identity to show that, if the preceding inequality is violated,

Vn;� (�(�)) will be strictly positive with probability tending to 1 for some � 2 T . This contradicts
with �̂(�) being the minimizer of Vn;� (�(�)). The second step studies the subgradient over the set

� = f(� ; �(�)) : � 2 T ; k�(�)k � log1=2(nhdn)g: (12)

Speci�cally, the subgradient multiplied by (nhdn)
�1=2 equals (nhdn)

�1=2Pn
i=1f� � 1(u0i (�) � ei (�)+

(nhn;� )
�1=2z0i;� �̂ (�))gzi;�Ki;� , which, by Theorem 2.1 in Koenker (2005), is of orderOp((nhdn)

�1=2) =

op(1) uniformly in � . Adding and subtracting terms, it can be rewritten as

fSn(� ; �̂(�); ei (�))� Sn (� ; 0; ei (�))g+ fSn (� ; 0; ei (�))� Sn (� ; 0; 0)g+ Sn (� ; 0; 0) (13)

+(nhdn)
�1=2

nX
i=1

n
� � P (u0i (�) � ei (�) + (nh

d
n;� )

�1=2z0i;� �̂ (�)
���xi)o zi;�Ki;�

The �rst term measures the e¤ect from estimating the parameters, the second term is due to the

remainder term in the Taylor expansion, the third term depends only on the true data generating
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process, while the fourth term involves only smooth functions. To further analyze the �rst term,

the set � is partitioned into C(nhdn)
1=2+�(log1=2(nhdn)=�)

(d+1) cells with C, � and � being some

constants such that, within each cell, the di¤erences in � and �(�) are at most (nhdn)
�1=2�� and

� respectively. Then, using a chaining argument dating back to Bickel (1975), it is shown that

this term can be bounded using the values of Sn (� ; �(�); ei (�)) evaluated at certain vertices of the

cells. The latter involves only a countable number of points and can be further analyzed using the

maximal inequalities developed in Bai (1996) and Oka and Qu (2011). It then follows that the �rst

term is op (1) uniformly over the set �. The second term is analyzed in a similar way. The third

term is Op (1) and appears in Theorem 1 and the fourth term is analyzed using a �rst order Taylor

expansion. Finally, the third step derives the formulae for d� and db;� and veri�es the Bahadur

representation.

Theorem 1 is uniform in � but pointwise in x. Establishing uniformity in both dimensions

(i.e., showing that remainder term in Theorem 1 is op (1) with respect to both � and x while

maintaining Assumptions 1-6) will be a challenging task. We conjecture the techniques developed

in the following papers can be useful for such an analysis. Masry (1996, Theorem 6) showed that

the local polynomial estimator of the conditional mean function converges uniformly and almost

surely at the rate (log n=(nhdn))
1=2. Kong, Linton and Xia (2010) considered a general class of

M-regression functions. They established a uniform Bahadur representation with an remainder

term of order (log n=(nhdn))
3=4. In both papers, an important step is to partition the support of the

covariates into small cells whose size depends on the bandwidth and the sample size. Subsequently,

it is shown that the di¤erences in the relevant quantities are small both within and across the cells;

see the proofs of Theorem 2 in Masry (1996) and Lemma 1 in Kong, Linton and Xia (2010). Guerre

and Sabbah (2012) studied uniformity with respect to both � and x. Combining the techniques

in the above papers with the chaining arguments used here can be a potential way to establish

the uniformity in both x and � under the current setting, although substantial work is needed.

Assuming such a representation is obtainable, then the techniques developed in Lee, Linton, and

Whang (2009), which handle Gaussian processes indexed by multidimensional parameters over an

increasing set, can be useful for deriving relevant distributional properties.

Theorem 1 implies that the limit of �̂(�) is driven by the leading term in the Bahadur repre-

sentation. This paves the way for establishing the weak convergence of �̂�(�), stated below.

Theorem 2 (Weak convergence under linear interpolation) Let Assumptions 1-5 hold. Sup-

pose m=(nhdn)
1=4 !1 as n!1. Then:
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1. If x is an interior point, thenq
nhdn;�fX (x)fY jX (Q(� jx)jx)

�
�̂�(�)�Q(� jx)� d�h2n;�

�
) G (�) ;

where G (�) is a zero mean continuous Gaussian process de�ned over T with covariance

E(G (r)G (s)) = (� (r)� (s))�d=2 (r ^ s� rs)
Z
K

�
u

� (r)

�
K

�
u

� (s)

�
du; (14)

where � (�) = hn;�=hn;1=2 = c(�)=c(1=2).

2. If x is a boundary point as de�ned by (10) and Assumption 6 holds, thenq
nhdn;�fX (x)fY jX (Q(� jx)jx)

�
�̂�(�)�Q(� jx)� db;�h2n;�

�
) Gb (�) ;

where Gb (�) is a zero mean continuous Gaussian process de�ned over T with covariance

E(Gb (r)Gb (s)) = (� (r)� (s))
�d=2 (r ^ s� rs) �01Nx (r)

�1 Tx(r; s)Nx (s)
�1 �1; (15)

where

Tx(r; s) =

Z
Dx;h1=2

24 1

u
�(r)

35K � u

� (r)

�h
1 u0

�(r)

i
K

�
u

� (s)

�
du

and � (r) and Nx (r) have the same de�nitions as before.

The Gaussian process G (�) depends only on the kernel and the bandwidth. In the extreme

case where the bandwidths are equal across quantiles, it is simply the Brownian bridge (truncated

to the interval T ) multiplied by
R
K2 (u) du. In the boundary case, the structure of the process is

similar, except now it also depends on the location of x relative to the boundary of the support.

The rate condition m=(nhdn)
1=4 ! 1 ensures that the linear interpolation induces no loss of

e¢ ciency asymptotically, i.e., the limiting process is the same as if all quantiles were being estimated

directly. When formulating the result, we have related the bandwidths at � to the median. This

facilitates the computation of the bandwidth selection rule in the next section. The next result

presents the asymptotic distributions of the two estimators. They are both denoted by e��(�).
Theorem 3 (Weak convergence of the two proposed estimators) Let Assumptions 1-5 hold

and assume m=(nhdn)
1=4 !1 as n!1. In addition, assume m=(nhdn)1=2 ! 0 holds for the �rst

estimator and (nh4+dn;� )
1=2 ! h(�) <1 holds for the second estimator. Then, they both satisfyq

nhdn;�fX (x)fY jX (Q(� jx)jx)
�e��(�)�Q(� jx)� d�h2n;��) G (�)
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if x is an interior point, andq
nhdn;�fX (x)fY jX (Q(� jx)jx)

�e��(�)�Q(� jx)� db;�h2n;��) Gb (�)

if x is a boundary point and Assumption 6 holds.

The �rst estimator requires an additional rate condition m=(nhdn)
1=2 ! 0. This ensures that the

constraints (6) act as a �nite sample correction, having no e¤ect on the limiting distribution. We

conjecture this condition may not be necessary, but have not been able to relax it. The adequacy of

the limiting distributions under di¤erent m will be evaluated using simulations. It turns out that

the property of e��(�) is rather insensitive to such choices, as long as m is not too small. Motivated

by this �nding, we suggest the following simple rule m = max(10;
p
nhdn= log(nh

d
n)), where the

�rst argument safeguards against using too few quantiles when the sample size is relatively small

and the second permits choosing a large number if the sample size is large. The second estimator

requires nh4+dn;� to converge. This is to ensure that
q
nhdn;� (e��(�)�Q(� jx)) has a well-de�ned

limiting process. This condition is satis�ed by the bandwidth proposed in the next section.

5 Bandwidth selection

Theorem 3 implies that, for any given � 2 T , e��(�) has the same limiting distribution as the
conventional local linear estimator studied by Fan, Hu and Truong (1994). Therefore, the same

bandwidth selection rule can be applied.

Corollary 1 (Optimal bandwidth for an interior point). Let Assumptions 1-5 and those

stated in Theorem 3 hold. Assume
��tr �@2Q(� jx)=@x@x0��� > 0. Then, the bandwidth that minimizes

the (interior) asymptotic MSE of e��(�) for any � 2 T is given by

h�n;� =

0B@ � (1� �) d
R
K (v)2 dv

fX (x) fY jX (Q(� jx)jx)2
n
tr
�
@2Q(� jx)
@x@x0 �2(K)

�o2
1CA
1=(4+d)

n�1=(4+d): (16)

In Appendix A, we verify that the above bandwidth satis�es Assumption 5. The result implies

that the bandwidth selection rule for estimating the conditional quantile process is conceptually no

more di¢ cult than in the conventional situation. The result also illustrates how the bandwidths

change as � shifts away from the center of the distribution. It typically widens as changes in

fY jX (Q(� jx)jx) often dominate the other terms.
To compute the bandwidth (16), the main challenge is in estimating @2Q(� jx)=@x@x0. Also

this quantity can often be estimated reasonably well for � close to the median, the estimation
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precision can be low when � is close to the tail of the conditional distribution. The latter can a¤ect

negatively the estimation of the conditional quantile process. In simulations and the empirical

application, we have experimented with an approximation due to Yu and Jones (1998), which

treats @2Q(� jx)=@x@x0 as constant across quantiles. Speci�cally, under such an approximation, the
optimal bandwidth at � is related to the median via 

h�n;�
h�n;1=2

!4+d
= 4� (1� �)

 
fY jX

�
Q(12 jx)jx

�
fY jX (Q(� jx)jx)

!2
:

Next, applying a Normal reference method (considering fY jX to be a Gaussian density) as in Yu

and Jones (1998), the above relationship simpli�es to 
h�n;�
h�n;1=2

!4+d
=

2� (1� �)
��(��1(�))2

; (17)

where � and � are the density and the cdf of a standard normal random variable. Finally, the

bandwidth h�n;1=2 can be determined using (16) in the above Corollary. This procedure delivers a

sequence of bandwidths that automatically satis�es Assumption 5.

6 Uniform con�dence bands and hypothesis tests

We �rst present the uniform band for the conditional quantile process and explain how to estimate

the relevant quantities appearing in its expression. Next, we illustrate how to compute con�dence

band for the di¤erence between two conditional quantile processes. Then, we show how to test a

variety of hypotheses on quantile processes using the three examples discussed in Section 2.

6.1 Uniform con�dence band for the conditional quantile process

Corollary 2 Let Assumptions 1-5 and those stated in Theorem 3 hold, then an asymptotic (1� p)
con�dence band for Q(� jx) is given by:

1. If x is an interior point,

Cp =
��e��(�)� d�h2n;��� �n;� (x)Zp; �e��(�)� d�h2n;��+ �n;�Zp� ; (18)

where �n;� (x) =
�q

nhdn;�fX (x)fY jX (Q(� jx)jx)
��1

and Zp is the (1�p) percentile of sup�2T jG (�)j.

2. If x is a boundary point,

Cp =
��e��(�)� db;�h2n;��� �n;� (x)Zp; �e��(�)� db;�h2n;��+ �n;�Zp� ;

where �n;� (x) is the same as above and Zp is now the (1�p) percentile of sup�2T jGb (�)j :
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The con�dence bands are typically wider near the tails of the conditional distribution, be-

cause the change in fY jX (Q(� jx)jx) often dominates the rest. To compute the bands, the terms
d� and db;� can be estimated using local quadratic or cubic regressions, the conditional density

fY jX (Q(� jx)jx) can be estimated from the conditional quantile process and the critical values of

sup�2T jG (�) =
p
fX (x)j and sup�2T jGb (�) =

p
fX (x)j can be estimated via simulations. We now

examine the latter simulation in detail. Consider the boundary case. From Theorems 1 and 2,

�01Nx (�)
�1 �nhdn;���1=2Pn

i=1

�
� � 1(u0i (�) � 0

�
)zi;�Ki;�

fX (x)
) Gb (�)p

fX (x)
:

The left hand side is conditionally pivotal. Using (nhdn;� )
�1Pn

i=1 zi;�z
0
i;�Ki;� !p fX (x)Nx (�) and

the Skorohod representation, we have

�01

 
(nhdn;� )

�1
nX
i=1

zi;�z
0
i;�Ki;�

!�1
(nhdn;� )

�1=2
nX
i=1

(� � 1(ui � � � 0)) zi;�Ki;� )
Gb (�)p
fX (x)

; (19)

where ui are i:i:d: Uniform(0,1) random variables and independent of fxigni=1. This suggests

the following simple procedure: (i) Simulate the left hand side of (19) by drawing i.i.d. Uni-

form(0,1) random variables and keeping Ki;� and zi;� �xed; (ii) Repeat the above step for a

large number of replications; (iii) Compute their absolute values to estimate the distribution of

sup�2T jGb (�) =
p
fX (x)j. The critical values of this distribution can then be combined with esti-

mates of db;� and fY jX (Q(� jx)jx) to form a con�dence band. Because (19) automatically accounts

for the relative location of the evaluation point from the boundary, it allows us to easily handle

situations where the support of fX has a complicated structure. Note that the resulting critical

values are asymptotically valid even if x is an interior point.

Remark 6 The above simulation procedure is inspired by Parzen, Wei and Ying (1994) and Cher-

nozhukov, Hansen and Jansson (2009). The former paper exploited the conditional pivotal property

to obtain a resampling method, while the latter used such a property to obtain �nite sample con-

�dence bands for quantile regression models. The current paper is the �rst that applies such a

property to the local regression setting and, more importantly, to provide valid con�dence bands for

both interior and boundary points.

Now consider estimating the bias. From Theorem 1,

db;� = �01 ffX (x)Nx (�)g
�1

8<:12fX (x)
Z
Dx;�

u0
@2Q(� jx)
@x@x0

u

24 1

u

35K (u) du
9=;
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The term inside the �rst curly bracket can be consistently estimated using (nhdn;� )
�1Pn

i=1 zi;�z
0
i;�Ki;� .

The second curly bracket is the limit of �h�2n;�
�
nhdn;�

��1Pn
i=1 ei (�) zi;�Ki;� , where

ei (�) = �
1

2

�
xi � x
hn;�

�0 @2Q(� jx)
@x@x0

�
xi � x
hn;�

�
h2n;� + o(h

2
n;� ):

Therefore, db;� can be estimated using

�01

 
(nhdn;� )

�1
nX
i=1

zi;�z
0
i;�Ki;�

!�1 
�h�2n;�

�
nhdn;�

��1 nX
i=1

ei (�) zi;�Ki;�

!
: (20)

In (20), the only unknown is @2Q(� jx)=@x@x0. This can be estimated using a global or local

polynomial regression, although caution is needed because the estimate can be imprecise. As before,

(20) automatically accounts for the relative location of the evaluation point from the boundary,

allowing us to easily handle situations where the support of fX has a complicated structure.

Remark 7 We use the formulas (19) and (20) throughout in the simulation study and the empiri-

cal application when constructing the con�dence band. In the simulation section, it will emerge that

treating the estimated bias term as the true value can cause the con�dence band (18) to have sub-

stantial undercoverage (see Panel (b) in Table 2). Some modi�cations that can re�ect the estimation

uncertainty are desirable. This leads to the modi�ed con�dence band considered below.

We suggest the following simple modi�ed con�dence band, where the idea is to allow for, but

do not force, a bias adjustment: (Consider the interior point case; the boundary point case can be

handled in the same way.)

��e��(�)� d+� h2n;��� �n;� (x)Zp; �e��(�)� d�� h2n;��+ �n;�Zp� ; (21)

where d+� = max (d� ; 0) and d�� = min(d� ; 0). This modi�ed band has the same or higher cover-

age relative to not making any bias adjustment (i.e., by setting d� to zero, as often done in the

literature). This is preferable when the bias is small. It also has the same or higher coverage

than the conventional band (18), which is preferable when the bias is large. Here, an important

concern is whether the band will be too wide to be informative. Our simulation evidence in Section

7 suggests otherwise. This is because when the curvature of the conditional function (d� ) is high,

the proposed bandwidth selection rule can deliver a small bandwidth, therefore the value of d�h2n;�

remains modest. Consequently, (21) is typically only mildly wider than (18).
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6.2 Uniform con�dence band for the di¤erence between two quantile processes

Suppose there are two groups (say the treatment and control group) of observations with conditional

quantile processes Q1(� jx) and Q2(� jx). The issue of interest is to obtain a con�dence band for

�(� jx) = Q1(� jx)�Q2(� jx) with � 2 T :

Without loss of generality, suppose x is an interior point for both groups. Then,

Group 1:
q
n1hdn;� ;1fY jX;1 (Q1(� jx)jx)

�e��1(�)�Q1(� jx)� d�;1h2n;� ;1�) G(1) (�)p
fX;1 (x)

; (22)

Group 2:
q
n2hdn;� ;2fY jX;2 (Q2(� jx)jx)

�e��2(�)�Q2(� jx)� d�;2h2n;� ;2�) G(2) (�)p
fX;2 (x)

; (23)

where n1 and n2 are the number of observations for the two groups and G(1) (�) and G(2) (�) are

independent copies of G (�). All the quantities are group dependent as signaled by their sub-indices.

Assume the ratio n1=n2 converges to a positive constant. Then, by (16), there exists some r(�) > 0

such that
q
n1hdn;� ;1=

q
n2hdn;� ;2 ! r(�). Multiplying (23) byq

n1hdn;� ;1fY jX;1 (Q1(� jx)jx)q
n2hdn;� ;2fY jX;2 (Q2(� jx)jx)

(24)

and subtracting it from (22), we obtainq
n1hdn;� ;1fY jX;1 (Q1(� jx)jx)

���e��1(�)� d�;1h2n;� ;1 � e��2(�) + d�;2h2n;� ;2�� �(� jx)��
)

����� G(1) (�)p
fX;1 (x)

� r(�)
fY jX;1 (Q1(� jx)jx)
fY jX;2 (Q2(� jx)jx)

G(2) (�)p
fX;2 (x)

����� : (25)

Consequently, the following procedure can be used to construct a con�dence band for �(� jx). First,
simulate the supremum of (25) for a large number of replications. Compute the (1� p) percentile

of the resulting distribution. Call it cp(x): Next, compute the con�dence band for �(� jx) as�e��1(�)� d�;1h2n;� ;1 � e��2(�) + d�;2h2n;� ;2�� cp(x)q
n1hdn;� ;1fY jX;1 (Q1(� jx)jx)

: (26)

As in Corollary 2, the above band is typically wider near the tails of the conditional distribution.

This follows from the multiplication of (23) by (24). Without such a multiplication, the bands will

tend to be narrower in the tails because there the bandwidth tends to be greater.

20



6.3 Hypothesis tests

We revisit the three examples in Section 2. Without loss of generality, assume the evaluation points

are interior points except for the third example. To ease the exposition, suppose the bandwidth

hn;� (� 2 T ) is used to estimate all the conditional quantile processes. To be consistent with the
notation used in Section 2, we let Q̂(� jx) denote e��(�) when the evaluation point is x.
Example 1 (QTE, continued). Let Q̂(� j1; z) and Q̂(� j0; z) be the estimates of Q(� j1; z) and
Q(� j0; z) using the treatment and the control group, respectively. Treatment signi�cance can be
tested using a Kolmogorov�Smirnov (KS) type test:

sup
�2T

q
nhdn;�

���Q̂(� j1; z)� Q̂(� j0; z)��� : (27)

Let x1 = (1; z), x2 = (0; z), and de�ne G
(j)
x (�) = G(j) (�) =

�p
fX (x)fY jX (Q(� jx)jx)

�
with G(j) (�)

(j = 1; 2) being independent copies of G (�). Assume Assumptions 1-5 hold at x1 and x2 and

@2Q(� jx1)=@x@x0 = @2Q(� jx2)=@x@x0. Then, the test has the following null limiting distribution
sup�2T

���G(1)x1 (�)�G(2)x2 (�)���, whose critical values can be consistently estimated by simulating in-
dependently its �rst and second component using the algorithm described in Section 6.1. The

treatment homogeneity hypothesis can be tested using

sup
�2T

q
nhdn;�

����Q̂(� j1; z)� Q̂(� j0; z)� Z
T

n
Q̂(� j1; z)� Q̂(� j0; z)

o
d�

���� ; (28)

whose null limiting distribution is given by sup�2T
���G(1)x1 (�)�G(2)x2 (�)� RT nG(1)x1 (�)�G(2)x2 (�)o d� ���,

whose critical values can be obtained in a similar manner. The quantile treatment equality hypoth-

esis between z1 and z2 can be tested using

sup
�2T

q
nhdn;�

���Q̂(� j1; z1)� Q̂(� j0; z1)� nQ̂(� j1; z2)� Q̂(� j0; z2)o��� : (29)

Its null limiting distribution is given by sup�2T
���G(1)x11 (�)�G(2)x21 (�)� nG(1)x12 (�)�G(2)x22 (�)o���, where

x1j = (1; zj) and x2j = (0; zj) for j = 1; 2 and the distributions involved are mutually independent.

Example 2 (Stochastic dominance, continued). Let Q̂1(� jx) and Q̂2(� jx) be the estimates of
Q1(� jx) and Q2(� jx) respectively. The �rst-order conditional stochastic dominance can be tested
against the non-dominance alternative using a signed KS test:

sup
�2T

q
nhdn;�

���1�Q̂1(� jx)� Q̂2(� jx) � 0��Q̂1(� jx)� Q̂2(� jx)���� : (30)
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Assume Assumptions 1-5 hold for both samples and @2Q1(� jx)=@x@x0 = @2Q2(� jx)=@x@x0. Then,
under the least favorable null hypothesis, the test converges to

sup
�2T

���1�G(1)x (�)�G(2)x (�) � 0
��

G(1)x (�)�G(2)x (�)
���� ;

where G(j)x (j = 1; 2) has the same de�nition as in Example 1, but with
p
fX (x)fY jX (Q(� jx)jx)

replaced by
p
fX;j (x)fY jX;j (Qj(� jx)jx) (j = 1; 2) to allow the quantities to be group dependent.

The second-order dominance can be tested using

sup
�2T

q
nhdn;�

����1�Z �

"

�
Q̂1(sjx)d� � Q̂2(sjx)

�
d� � 0

�Z �

"

�
Q̂1(sjx)d� � Q̂2(sjx)

�
d�

���� :
Then, under the least favorable null hypothesis, the test converges to

sup
�2T

����1�Z �

"

�
G(1)x (�)�G(2)x (�)

�
d� � 0

�Z �

"

�
G(1)x (�)�G(2)x (�)

�
d�

���� :
In the above construction, the lower limit of the integral is some positive constant " instead of

zero. This allows the conditional distributions to have unbounded support, at the cost of possibly

sacri�cing some power if the main di¤erences between two distributions lies in the lower tails.

Again, the critical values can be consistently estimated via simulations.

Example 3 (SRD, continued). Let Q̂(� jc+) and Q̂(� jc�) be the estimates of limx#cQ(� jx) and
limx"cQ(� jx), respectively. The treatment signi�cance hypothesis can be tested using

sup
�2T

q
nhdn;� jQ̂(� jc+)� Q̂(� jc�)j:

The treatment homogeneity hypothesis can be tested using sup�2T
q
nhdn;� jQ̂(� jc+) � Q̂(� jc�) �R

T fQ̂(� jc+) � Q̂(� jc�)gd� j. The nonnegative treatment e¤ects hypothesis can be tested using

sup�2T

q
nhdn;� j1(Q̂(� jc+) � Q̂(� jc�) � 0)(Q̂(� jc+) � Q̂(� jc�))j. Their limiting distributions are

analogous to those in Examples 1 and 2, hence the detail is omitted.

7 Monte Carlo experiments

We focus on two issues: (i) the performance of the proposed estimators relative to some other

estimators, and (ii) the property of the uniform con�dence band. We consider the following three

models whose conditional quantile functions are

Model 1 : Q(� jx) = x1 � x2 + (0:5x1 + 0:3x2)Qe1(�):

Model 2 : Q(� jx) = (0:5 + 2x1 + sin(2�x1 � 0:5)) + x2Qe1(�):

Model 3 : Q(� jx) = log(x1x2) + 1=(1 + exp (�x1Qe1(�)� x2Qe2(�))) + x2Qe1(�):
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The regressors x1 and x2 are mutually independent and are i.i.d. U(0; 1). The error terms e1 and

e2 are i.i.d. N(0; 1) and U(0; 1) respectively. Model 1 is a linear location-scale model. Model 2 is

a similar model but with nonlinearity in the location. Model 3 is a fairly complicated nonlinear

model. The conditional quantile functions in Models 2 and 3 exhibit signi�cant curvature in x,

which can pose substantial challenges for estimation and inference.

Other aspects of the simulation design are as follows. We consider three evaluation points:

x = (0:5; 0:5), (0:75; 0:75) and (0:9; 0:9). The latter can be viewed as a boundary point, since the

selected bandwidth at this point is typically greater than 0.1. The sample sizes are: n = 250; 500

and 1000. Given that the experiment involves estimating the quantile process nonparametrically

at x = (0:9; 0:9), n = 250 should be viewed as a very small sample size. We set T = [0:2; 0:8] unless
stated otherwise. The number of quantiles (m) equals 10; 20 and 30. The kernel function is the

product of univariate Epanechnikov kernels. All subsequent results are based on 500 replications.

The bandwidths are estimated in three steps.

STEP 1. Obtain a set of pilot bandwidths for calculating the relevant quantities in (16). This

is done by �rst obtaining a bandwidth for the local median regression using leave-one-out cross

validation, and then relating it to the other quantiles using (17) following Yu and Jones (1998).

STEP 2. Estimate tr
�
@2Q(� jx)=@x@x0

�
and fY jX(:jx). For the former, we apply a local cubic

regression with the bandwidth determined via leave-one-out cross validation. For the latter, we use

f̂Y jX(zjx) =
Z

1

hyx
K1

�
z � y
hyx

�
dF̂ (yjx); (31)

where hyx is a bandwidth parameter and K1(�) is a univariate Epanechnikov kernel and F̂ (yjx) =
supf� 2 (0; 1)jQ̂(� jx) � yg with Q̂(� jx) equal to our proposed two-step estimator e��(�) computed
using the bandwidth selected in Step 1. To implement (31), we sample from F̂ (yjx) and apply
kernel smoothing to the resulting draws. The value of hyx is set to 2ĥyx, where ĥyx is determined

by Silverman�s rule-of-thumb method.

STEP 3. Apply the estimates from Step 2 to compute the optimal bandwidth for the median

using (16) and that for the other quantiles using (17).

7.1 The relative performance of di¤erent estimators

We contrast the �nite sample performance of the proposed estimators (Proposed 1 and 2) with

two alternatives. The �rst alternative is the classical estimator in Koenker and Bassett (1978),

labelled as QR. This comparison is used to illustrate the gain or loss from using a nonparametric

speci�cation. The second alternative is the standard quantile-by-quantile local linear estimator
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(labelled Local linear), which is included to illustrate the e¤ect of imposing the monotonicity. The

same bandwidth selection rule is used throughout the comparison.

The criterion is the RMISE criterion with RMISE =
q
m�1Pm

j=1 jQ̂(� j jx)�Q(� j jx)j2,
where m is the number of quantile entering the estimation. Table 1 reports the results for m = 30.

We obtained similar �ndings with m = 10 and 20. They are omitted to save space.

First consider the proposed estimators and QR. When the underlying model is linear (Model 1),

the proposed estimators show a moderately higher RMISE. The e¢ ciency loss is not high because

the bandwidth selection rule delivers wide bandwidths in this case. When nonlinearity (Models 2

and 3) is present, the nonparametric estimators show substantially superior performance overall.

Next consider the proposed estimators and the standard quantile-by-quantile local linear esti-

mator. For the latter, we also report the fraction of the simulation runs in which the estimates

exhibit quantile crossings. The results show that quantile crossings are relatively infrequent at

interior points, however they occur frequently at points close to the boundary. Speci�cally, when

n = 250, the fractions of crossings are between 0 and 0.100 for x=(0.5,0.5), 0.074 and 0.118 for

x=(0.75,0.75), and 0.740 and 0.882 for x=(0.9,0.9). When n = 1000, the values are between 0 and

0.004, 0 and 0.010, and 0.074 and 0.362, respectively. Concerning RMISE, the proposed estimators

typically perform better, but the di¤erence is always small. This is consistent with the result that

these estimators are �rst-order asymptotically equivalent. Therefore, in the current simulations,

the monotonization serves as a way to ensure a coherent estimate, but not a way to substantially

improve the precision in �nite samples.

Now compare the two proposed estimators. They have very similar RMISE, con�rming the

result in Theorem 3 that these two estimators are �rst-order asymptotically equivalent. Interest-

ingly, the RMISE of the rearranged estimator tends to be slightly smaller. However, the di¤erence

is too small to prefer one estimator to another.

7.2 Properties of the uniform con�dence band

We examine the following two issues: whether the modi�ed con�dence band (21) shows a signi�cant

improvement over the conventional one (18), and whether the improvement comes at the cost of a

substantially wider band. The results reported are based on the �rst proposed estimator.

Tables 2 reports the coverage ratios. Panel (a) corresponds to the modi�ed bias adjustment.

For Model 1, the modi�cation delivers adequate coverage for all the cases considered. For Models 2

and 3, undercoverage exists in some cases when n is small. However, the coverage becomes adequate

when n is increased to 1000, except for Model 2 with x = (0:5; 0:5). To examine the reason for the
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undercoverage in the latter case, we sequentially replace the quantities appearing in (21) with their

true values. First, when plugging in the true conditional density, the coverage does not improve.

Second, when plugging in the infeasible optimal bandwidth while keeping the estimated conditional

density, the coverage ratio reaches 0:922 when n = 1000. Finally, we plug in both the infeasible

bandwidth and the true conditional density and obtain 0:938. Therefore, the undercoverage is

due to oversmoothing. Panel (b) in Table 2 reports results under conventional bias adjustment.

For Model 1, the coverage can be quite low even when n = 1000. Because the true bias is zero,

the conventional bias correction can only have detrimental e¤ects on the coverage ratio. Further,

because the selected bandwidths are large, such e¤ects can be severe. For the other two models,

the improvement from using the modi�ed adjustment is more important when the sample size is

small or when the x is close to the boundary of the data support.

The results in Table 2 can be further contrasted with two additional cases: the coverage ratio of

the uniform band without bias adjustment and that of the pointwise con�dence band with modi�ed

bias adjustment. We summarize the results below while omitting the details. Without any bias

adjustment, the coverage ratios for Model 1 are indeed close to the nominal rate. However, for

Model 2, the ratios are quite low. For model 3, the di¤erence is not as drastic as in Model 2, but

the modi�ed bias adjustment still o¤ers improvement. Meanwhile, the pointwise band has severe

undercoverage, con�rming that it should not be used in problems involving quantile processes.

We now examine the relative width of these con�dence bands. Tables 3 summarizes the widths

of the con�dence bands under modi�ed and conventional bias adjustment, measured at two rep-

resentative quantiles � = 0:5 and 0:8. The values are based on n = 500. The uniform bands with

modi�ed bias adjustment are overall only mildly wider. This pattern holds even when the quantile

function has a substantial curvature, say in Model 2 with x = (0:75; 0:75). Intuitively, when the

curvature is large, the selected bandwidth tends to be small, therefore safeguarding the e¤ect of the

bias on the width of the con�dence band. We have also compared the uniform with the pointwise

band under modi�ed bias adjustment. The former are overall mildly wider. The ratios are between

1.25 and 1.35 at � = 0:5 and 1.25 and 1.63 at � = 0:8. This suggests that such bands can deliver

valid inference for the quantile process without losing informativeness about individual quantiles.

8 An illustrative example: e¤ects of class size reduction

We consider a data set from an experiment known as Project STAR (Student-Teacher Achievement

Ratio). In the late 1980s, Tennessee conducted a randomized controlled experiment to measure the

e¤ect of class size reduction on student achievements. Students were randomly assigned to a small
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class with target sizes of 13 to 17, a regular size class of 22 to 25 or a regular size class with a

teaching aide. Teachers within a given school were also randomly assigned to one of the three

types of classes. Over the four-year period from kindergarten to the third grade, more than 11,000

students at 79 schools participated in the program.

We focus on a sample that was previously analyzed many times. It consists of the students who

entered the kindergarten when Project STAR started in the fall of 1985. After excluding students

in regular sized classes with aide, this sample has 1,738 and 2,004 observations in the treatment and

control group, respectively. Focusing on this sample allows us to compare our results to previous

studies, in particular that of Krueger (1999), to show that the new �ndings are due to the new

framework rather than di¤erences in the samples considered.

The existing studies using this dataset mainly considered the average e¤ect. The results broadly

agree that class size is an important determinant of student achievement. Our method provides

further information by studying the distribution e¤ect in a �exible nonparametric setting. First, we

�nd that students in the upper quantiles of the test score distribution bene�t more from the class

size reduction. Second, using teachers�experience as a conditioning variable, we �nd that the e¤ect

of the class size reduction is strongest for the classes taught by moderately experienced teachers (i.e.,

6-8 years of experience). We also conduct hypotheses tests for treatment signi�cance, homogeneity,

equality and �rst order stochastic dominance. The results recon�rm these two �ndings.

8.1 Heterogeneous e¤ects of small class sizes

The detailed model speci�cations are as follows. Student achievement is measured by the sum of

math and reading scores of the Stanford Achievement Test after �nishing the kindergarten. The

total score ranges from 635 to 1253. Because the goal is to estimate distributional e¤ects, we do

not use percentile ranks as in Krueger (1999). The conditioning variable is teachers�experience,

whose 10th to 90th percentiles are: 2; 4; 6; 8; 9; 11; 12; 14; 17. The process of quantile treatment

e¤ects is de�ned as the di¤erence between the two conditional quantile processes (i.e., for small

and regular class sizes) over the range � 2 [0:1; 0:9]. All the results are obtained using the �rst
proposed estimator.

Figure 1 presents the estimates of the quantile treatment e¤ects (the dashed black lines) along

with their 90% uniform con�dence bands (the shaded areas). Two interesting patterns emerge.

First, the e¤ects are heterogeneous, with the students in the upper quantiles bene�ting more than

those in the lower quantiles of the conditional distribution. This pattern is particularly pronounced

when the classes are taught by less experienced teachers (i.e., Figures 1(a)-1(d)). There, the
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di¤erences between the 90th and 10th percentiles are 23.2, 23.5, 14.2 and 7.5 points, respectively.

Second, the e¤ect of class size reduction depends strongly on teachers�experience. Speci�cally, the

e¤ect is large and signi�cant when the classes are taught by teachers with 6-8 years of experience

(i.e., Figure 1 (b)) but small or even insigni�cant for teachers with little or much experience. The

maximum di¤erence across teachers�experience can be as high as 45.1 points when evaluated at

� = 0:5. This is fairly signi�cant from an economic point of view. The above two �ndings suggest

that the proposed method can be valuable in discovering and quantifying the heterogeneity of the

treatment responses in empirically relevant situations.

Note that the second �nding is in sharp contrast with that of Krueger (1999), who docu-

mented that �the STAR data suggest that measured teacher characteristics explain relatively little

of student achievement on tests.� To examine the reason behind the di¤erence, we evaluate the

non-parametrically estimated conditional quantile processes at �ve selected conditional quantiles

f0:1; 0:25; 0:5; 0:75; 0:9g and plot each of them as a function of teachers�experience (Figure 2). The
solid lines correspond to small classes and the dotted lines the regular sized classes. Two patterns

emerge. First, the quantiles of the test scores of small classes are fairly �at in teachers�experience.

There is some gain when teachers�experiences increases to 6 to 8 years, beyond which the curves

are basically �at. Second, the quantiles associated with regular sized classes exhibit an initial small

dip, after which they show clear upward trends as teachers� experience increases. The patterns

suggest that teachers�experience is an important asset for managing regular sized classes but less

important when class sizes are small. Krueger (1999) did not allow the e¤ect of teachers�experience

to be di¤erent across class types, and arrived at a di¤erent conclusion.

8.2 Testing hypotheses on class size reduction

We now apply the test statistics discussed in Section 6.3 to examine a range of issues concerning

quantile treatment e¤ects. We set T = [0:1; 0:9]. The value of the covariate is set to its median

(9 years) unless stated otherwise. First, we consider "treatment signi�cance". The test statistic,

given by (27), is 9:80 with the critical values being 4:81 and 5:35 at the 10% and 5% signi�cance

levels. So the treatment is strongly signi�cant. Second, we consider "treatment homogeneity". The

test statistic, given by (28), equals 3:69 with the critical values being 3:24 and 3:54 at the 10%

and 5% levels, respectively. Therefore the evidence points to treatment heterogeneity. Third, we

consider "�rst order dominance". The test statistic, given by (30), equals 0:00 with the critical

values being 4:14 and 4:74 at the 10% and 5% levels. Therefore, we do not reject the hypothesis

that the treatment e¤ects are uniformly positive. Finally, we test "treatment equality". The test
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statistic, given by (29) equals 11:20 when the comparison is between teachers with 9 and 2 (i.e.,

the 10th percentile) years of experience. The critical values at the 10% and 5% levels are 7:29

and 8:27. Thus the evidence supports that at these two experience levels the treatment e¤ects are

signi�cantly di¤erent. Similarly as above, the test statistics can be carried out at other values of

the covariate. We omit such details.

9 Conclusion

We have considered the estimation and inference about a nonparametrically speci�ed conditional

quantile process. The two estimation methods are computationally simple to implement and are

practically feasible even for relatively large data sets. We obtained a uniform Bahadur representa-

tion, a functional central limit theorem and provided practical procedures for constructing uniform

con�dence bands and testing hypothesis about the quantile process. When applied to the STAR

dataset, the methods produced informative results, suggesting that they can be practically useful

for studying distributional e¤ects in a �exible nonparametric setting.
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Appendix A. Proof of Main Results
Proof of Theorem 1. As outlined in the main text, the proof consists of three steps.
Step 1. Let Kn = log1=2(nhdn). Because Vn;� (0) = 0, Vn;� (�̂(�)) � 0 always holds for each �
and every n. To show �̂(�) lies within �, it is su¢ cient to show that for any � > 0, there exist
some �nite constants N0 and � > 0 independent of � , such that if k�(�)k � Kn holds for some
� , then P

�
Vn;� (�(�)) > �K2

n

�
> 1 � � holds for all n � N0. A su¢ cient condition for the above

condition is P
�
infk�k�Kn

inf�2T Vn;� (�) > �K2
n

�
> 1 � � for all n � N0. This formulation is

useful because � is no longer quantile dependent. Because Vn;� (�) is convex in �, we always have
Vn;� (�)�Vn;� (0) �  (Vn;� (�)� Vn;� (0)) for any  � 1. Therefore, a further su¢ cient condition is

P

�
inf

k�k=Kn

inf
�2T

Vn;� (�) > �K2
n

�
> 1� � for all n � N0: (A.1)

We now establish (A.1). Apply Knight�s (1998) decomposition: Vn;� (�) =Wn;� (�)+Zn;� (�), where

Wn;� (�) = �(nhdn;� )�1=2
nX
i=1

Ki;� � (u
0
i (�)� ei(�))z0i;�� with  � (u) = � � 1(u < 0);

Zn;� (�) =

nX
i=1

Ki;�

Z (nhdn;� )
�1=2z0i;��

0

�
1(u0i (�)� ei(�) � s)� 1(u0i (�)� ei(�) � 0)

	
ds:

Applying this decomposition, we have

inf
k�k=Kn

inf
�2T

K�2
n Vn;� (�) � inf

k�k=Kn

inf
�2T

K�2
n Zn;� (�)� sup

k�k=Kn

sup
�2T

��K�2
n Wn;� (�)

�� : (A.2)

We bound the two right hand side terms in (A.2) separately. First consider the second term:

sup
k�k=Kn

sup
�2T

��K�2
n Wn;� (�)

��
� K�1

n sup
�2T

(nhdn;� )�1=2
nX
i=1

�
 � (u

0
i (�)� ei(�))�  � (u0i (�))

	
z0i;�Ki;�

 (L1)

+K�1
n sup

�2T

(nhdn;� )�1=2
nX
i=1

 � (u
0
i (�))z

0
i;�Ki;�

 : (L2)

Applying Lemma B.6, (L1)= Op
�
K�1
n

�
= op (1). For (L2), the quantity inside the norm is Op(1)

for any �xed � 2 T by a central limit theorem and it is stochastic equicontinuous in � by Lemma
B.3. Therefore, (L2)= Op

�
K�1
n

�
= op (1). Thus, supk�k=Kn

sup�2T
��K�2

n Wn;� (�)
�� = op (1). Next,

consider the �rst term in (A.2). We will show that it is strictly positive with probability tending
to 1. To this end, note that the integral appearing in Zn;� (�) is always nonnegative and satis�es
(c.f. Lemma A.1 in Oka and Qu, 2011)Z (nhdn;� )

�1=2z0i;��

0

�
1(u0i (�)� ei(�) � s)� 1(u0i (�)� ei(�) � 0)

	
ds

� (nhdn;� )
�1=2 z

0
i;��

2

�
1

�
u0i (�)� ei(�) � (nhdn;� )�1=2

z0i;��

2

�
� 1(u0i (�)� ei(�) � 0)

�
.
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Applying this inequality to Zn;� (�):

K�2
n Zn;� (�) � K�2

n

�
hdn
hdn;�

�1=2�
�

2

�0
fSn (� ; 0; ei (�))� Sn (� ; �=2; ei (�))g (L3)

+K�2
n (nhdn;� )

�1=2
�
�

2

�0 nX
i=1

�
P

�
u0i (�)� ei(�) � (nhdn;� )�1=2

z0i;��

2

����xi�
� P (u0i (�)� ei(�) � 0

��xi)	 zi;�Ki;� : (L4)

We now analyze the two right hand side terms (L3) and (L4) separately. Because of Lemma (B.5),
k�k = Kn and hdn;�=h

d
n = O(1), (L3)= Op

�
K�1
n

�
= op (1). Applying a mean value theorem,

(L4)= (1=4)K�2
n (nhdn;� )

�1Pn
i=1 fY jX (eyijxi)Ki;��

0zi;�z0i;��, where eyi lies between Q(� jxi) + ei(�)

and Q(� jxi) + ei(�) + (nh
d
n;� )

�1=2z0i;��=2. Because xi is in a vanishing neighborhood of x and eyi
approaches Q(� jxi) as n ! 1, Assumption 2 implies that fY jX (eyijxi) � fL for large n. Con-
sequently, (L4)� (1=4)K�2

n fL�
0((nhdn;� )

�1Pn
i=1Ki;�zi;�z

0
i;� )� uniformly in � for large n. Further,

(nhdn;� )
�1Pn

i=1 zi;�z
0
i;�Ki;� !p fX (x)Nx (�) uniformly in � , where Nx (�) is de�ned in Theorem 1

and is positive de�nite for all � by Assumption 6. Let �min(�) > 0 denote the minimum eigenvalue
of fX (x)Nx (�), then (L4)� 1

8fL�min(�) in probability uniformly in � . Combining the above results
on (L1), (L2), (L3) and (L4), we see that the �rst term in (A.2) is strictly positive and dominates
the second term with probability tending to 1. This proves (A.1). In fact, using the same arguments
as above, we can establish a stronger result: for any � > 0, there exists K0 > 0 and � > 0, such
that if jj�̂(�)jj � K0 holds for some � , then

P (Vn;� (�̂(�)) > �) > 1� � holds for all n � N0: (A.3)

The weaker result su¢ ces for proving Theorem 1 while the stronger one is needed for Theorem 3.
Step 2. We analyze the three terms in (13) separately. Because of Step 1, we can restrict our
attention to the set � de�ned in Display (12). The term in the �rst curly bracket is op (1) uniformly
over this set by Lemma B.5. The term in the second curly bracket is uniformly op (1) implied by the
proof of Lemma B.5. Consider the last term, and apply a �rst-order Taylor expansion. It equals

�(nhdn)�1=2
nX
i=1

fY jX (eyijxi) ei (�) zi;�Ki;��(nhdn)�1=2(nhdn;� )�1=2
 

nX
i=1

fY jX (eyijxi)Ki;�zi;�z
0
i;�

!
�̂ (�) ;

where eyi lies between Q(� jxi) and Q(� jxi)+ei(�)+(nhdn;� )�1=2z0i;� �̂. These results imply �̂ (�) equals�
fY jX (Q(� jx)) fX (x)Nx (�)

��1(�
hdn
hdn;�

�1=2
Sn (� ; 0; 0)� (nhdn;� )�1=2fY jX (Q(� jx))

nX
i=1

ei (�) zi;�Ki;�

)
+ op (1) : (A.4)

Step 3. For any xi satisfying (xi � x)=hn;� 2 supp(K(�)); we have

ei (�) = �
1

2

�
xi � x
hn;�

�0 @2Q(� jx)
@x@x0

�
xi � x
hn;�

�
h2n;� + o

�
h2n;�

�
;
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Below, we consider two cases separately. Case 1: x is a boundary point. Then,

�h�2n;�
�
nhdn;�

��1 nX
i=1

ei (�) zi;�Ki;�
p! 1

2
fX (x)

Z
Dx;�

u0
@2Q(� jx)
@x@x0

u

24 1

u

35K (u) du: (A.5)

Plugging the above expression into (A.4) leads to the second result in Theorem 1. Case 2: x is
an interior point. The above formula simpli�es because Nx (�) is block diagonal with the diagonal

blocks being 1 and �2(K), and h
�2
n;� (nh

d
n;� )

�1�01
Pn
i=1 ei (�) zi;�Ki;� =

1
2 tr
�
@2Q(� jx)
@x@x0 �2(K)

�
+ op (1).

Plugging this expression into (A.4) leads to the �rst result. �
Proof of Theorem 2. The proof consists of two steps. The �rst step shows that �̂(�); obtained
by solving (4) for all � 2 T , converges weakly to the desired limit. The second step shows that
�̂�(�) has the same weak limit as �̂(�) over � 2 T . We focus on the interior point case.
Step 1. It su¢ ces to show that the leading term in the uniform Bahadur representation converges
weakly to the desired limit. Its �nite dimensional convergence is an immediate consequence of
results in Fan, Hu and Truong (1994). The tightness follows because the denominator is �nite and
bounded away from 0 by Assumptions 1 and 2 and that the numerator is tight by Lemma B.3.
Step 2. We use similar arguments as in Neocleous and Portnoy (2008). Write �̂�(�)� �̂(�) as

(�)
�
�̂(� j)�Q(� j jx)� d�jh2n;�j

�
� (�)

�
�̂(�)�Q(� jx)� d�h2n;�

�
(L5)

+(1� (�))
�
�̂(� j+1)�Q(� j+1jx)� d�j+1h2n;�j+1

�
� (1� (�))

�
�̂(�)�Q(� jx)� d�h2n;�

�
(L6)

+(�)
�
Q(� j jx) + d�jh2n;�j

�
+ (1� (�))

�
Q(� j+1jx) + d�j+1h2n;�j+1

�
�
�
Q(� jx) + d�h2n;�

�
: (L7)

For Term (L5), applying Theorem 1 and Assumption 5, we haveq
nhdn;�

�
�̂(� j)�Q(� j jx)� d�jh2n;�j

�
�
q
nhdn;�

�
�̂(�)�Q(� jx)� d�h2n;�

�
=

�
nhdn;�

��1=2 Pn
i=1

�
� j � 1(u0i (� j) � 0)

�
Ki;�j �

Pn
i=1

�
� � 1(u0i (�) � 0)

�
Ki;�

fX (x) fY jX (Q(� j jx)jx)

+
�
nhdn;�

��1=2 Pn
i=1

�
� � 1(u0i (�) � 0)

�
Ki;�

fX (x)

�
1

fY jX (Q(� j jx)jx)
� 1

fY jX (Q(� jx)jx)

�
+ op (1) :

The �rst term on the right hand side is op (1) by the stochastic equicontinuity of the subgradi-
ent process, see Lemma B.3. The second term is also op (1) by the tightness of the subgradient
process and Assumption 2. Term (L6) can be analyzed similarly. For Term (L7), apply a Tay-
lor expansion: Q(� j jx) = Q(� jx) + @Q(� jx)

@� (� j � �) + O((� j+1 � � j)2), where the order of the
remainder term is due to the Lipschitz continuity of @Q(� jx)=@� . This implies (�)Q(� j jx) +
(1� (�))Q(� j+1jx) = Q(� jx) +O((� j+1 � � j)2). Similarly, d�jh2n;�j = d�h

2
n;� +

@d�h2n;�
@� (� j � �) +

O((� j+1 � � j)2), implying (�)d�jh2n;�j+(1� (�)) d�j+1h
2
n;�j+1 = d�h

2
n;�+O((� j+1 � � j)

2). There-

fore, (L7)= O((� j+1 � � j)2). The result then follows because � j+1 � � j = o((nhdn)
�1=4). �

Proof of Theorem 3. We �rst show sup1�j�m
q
nhdn;�j je�(� j)�Q(� j jx)j = Op (1). The proof is

by contradiction. Suppose the stochastic order is violated. Then,
q
nhdn;�j je�(� j)�Q(� j jx)j > K0
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for some � j 2 T and some n � N0 with positive probability. We will argue along such a sequence.
Without loss of generality, assume e�(� j) > Q(� j jx) + (nhdn;�j )

�1=2K0. Then, we consider the
following two possibilities separately: (1) the constraint is not binding at � j (i.e., e�(� j) > e�(� j�1)),
and (2) the constraint is in fact binding (i.e., e�(� j) = e�(� j�1)).

In the �rst case, e�(� j) is identical to the unconstrained estimate �̂(� j), therefore Vn;�j (�̂(� j)) =
Vn;�j (

e�(� j)) � 0. However, this contradicts (A.3). Consider the second case. Let � l denote the
lowest quantile in the grid for which e�(� l) = e�(� j). By the monotonicity of the quantile function
and e�(� j) > Q(� j jx)+(nhdn;�j )

�1=2K0, we must have e�(� l) > Q(� ljx)+(nhdn;� l)
�1=2K0. Therefore,

P (Vn;� l(
e�(� l)) > �) > 1 � � holds for all n � N0. Now, consider decreasing the value of e�(� l)

by some small amount. This will decrease the value of the objective function Vn;� l(e�(� l)) due to
its convexity. This action does not violate any constraint because of the de�nition of � l (i.e., it is
the lowest quantile for which e�(� l) = e�(� j)). Therefore, the new value remains admissible and yet
returns a smaller objective function value. It contradicts that e�(� l) is the minimizer.

Given the above result and the given condition onm, the quantiles will not cross with probability
arbitrarily close to 1 in large samples, therefore the large sample distribution is the same as the
unconstrained case. This proves the result for the �rst estimator.

We now verify the conditions in Chernozhukov, Fernández-Val and Galichon (2010, Corollary 3)
are satis�ed for the second proposed estimator. First, our Assumptions 1-3 imply their Assumption
1 with the domain (0,1) replaced by T . They also imply the strict monotonicity ofQ(� jx) in � as well
as its continuous di¤erentiability in both arguments. Their Assumption 2 holds with an =

q
nhdn;�

and �Gx (�) = G(�)=(
p
fX (x)fY jX (Q(� jx)jx))+h(�)d� because of the �rst result in Theorem 2. �

Proof of Corollary 1. The mean squared error (MSE) for an interior point x is

1

4
tr

�
�2(K)

@2Q(� jx)
@x@x0

�2
h4n;� +

� (1� �)
R
K (v)2 dv

nhdn;�fX (x) fY jX (Q(� jx)jx)
2 + op(nh

d
n;� ):

Computing the derivatives of the �rst two terms leads to the desired formula. We now verify that
it satis�es Assumption 5. The factor in front of n�1=(4+d) in the Corollary corresponds to c(�).
It is bounded under Assumptions 1-4. To show that it is Lipschitz continuous, it su¢ ces to ver-
ify fY jX (Q(� jx)jx)�2=(4+d) ; tr

�
�2(K)@

2Q(� jx)=@x@x0
��2=(4+d) and (� (1� �))1=(4+d) have bounded

�rst derivatives. Consider the �rst quantity:
���fY jX (Q(�1jx)jx)� 2

4+d � fY jX (Q(�2jx)jx)�
2

4+d

��� =��� 2
4+df (Q(e� jx)jx)� 6+d

4+d f 0Y jX (Q(e� jx)jx)Q0(e� jx)��� (�2 � �1), where e� 2 T . The terms on the right side
are all bounded by Assumptions 1-3. The remaining two quantities can be analyzed similarly. �
Proof of Corollary 2. We have, for the interior point case,

P (Q(� jx) =2 Cp for some � 2 T ) = P

�
1

�n;� (x)

��Q(� jx)� e��(�) + d�h2n;� �� > Zp for some � 2 T
�

= P

�
sup
�2T

1

�n;� (x)

��Q(� jx)� e��(�) + d�h2n;� �� > Zp

�
The right hand side converges to p by the continuous mapping theorem. The boundary point case
can be proved using the same argument. �
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Appendix B. Auxiliary Lemmas
The next lemma is needed for analyzing the e¤ect of the quantile dependant bandwidth on the

asymptotic properties of the estimators.

Lemma B.1 Let Assumptions 1, 4 and 5 hold. (1) For any  � 1 there exists a B > 0, such
that for any �1; �2 2 T with �1 � �2, we have E kzi;�2Ki;�2 � zi;�1Ki;�1k

2 � Bhdn (�2 � �1)
2.

(2) Let bn = (nhdn)
1=2+� with 0 < � < 1=2 being some arbitrary constant and hn satisfying

hn ! 0 and nhdn ! 1 as n ! 1: Let �n =
�
(�1; �2) : �1 2 T ; �2 2 T ; �1 � �2 � �1 + b

�1
n

	
;

then sup(�1;�2)2�n(nh
d
n)
�1=2Pn

i=1 kzi;�2Ki;�2 � zi;�1Ki;�1k = op (1) :

Proof. Without loss of generality, we can assume that the support of K(:) is contained in D =

[�1; 1]
d. Applying Assumptions 4 and 5, there exists a constant �C independent of � such that

kzi;�2Ki;�2 � zi;�1Ki;�1k � �C � 1 (xi � x 2 �cDhn) (�2 � �1); (B.1)

Consequently, E k(zi;�2Ki;�2 � zi;�1Ki;�1)k
2 � �C2 (�2 � �1)2 P (xi � x 2 �cDhn). Because the

density of xi is bounded by Assumption 1, there exists a constant A independent of � such
that P (xi � x 2 �cDhn) � Ahdn. Letting B = �C2A proves the �rst result. Then, apply (B.1):
(nhdn)

�1=2Pn
i=1 kzi;�2Ki;�2 � zi;�1Ki;�1k � �C(nhdn)

1=2(�2 � �1)f(nhdn)�1
Pn
i=1 1 (xi � x 2 �cDhn)g.

The quantity inside the curly brackets satis�es a weak law of large numbers, therefore is Op (1).
Finally, sup(�1;�2)2�n

�C(nhdn)
1=2(�2 � �1) � �C(nhdn)

�� ! 0 because � > 0 and nhdn !1. �
The next Lemma is needed to establish the stochastic equicontinuity of the process Sn (� ; 0; 0).

Lemma B.2 Let bn = (nhdn)
1=2+� with � 2 (0; 1=2) being some arbitrary constant and hn ! 0 and

nhdn !1 as n!1. Then, there exist  > 1 and �C <1, such that for any �1; �2 2 T satisfying
j�2 � �1j � b�1n ; we have E kSn (�2; 0; 0)� Sn (�1; 0; 0)k2 � �C j�2 � �1j :

Proof. It su¢ ces to show (E kSn (�2; 0; 0)� Sn (�1; 0; 0)k2)1= � �C1=(�2 � �1) for �2 � �1. Let

A1i =
��
�2 � 1(u0i (�2) � 0)

�
�
�
�1 � 1(u0i (�1) � 0)

�	
zi;�2Ki;�2 ;

A2i =
�
�1 � 1(u0i (�1) � 0)

�
(zi;�2Ki;�2 � zi;�1Ki;�1) :

Let A1i;j and A2i;j denote the j-th element of A1i and A2i respectively. By the Minkowski inequality,

(E kSn (�2; 0; 0)� Sn (�1; 0; 0)k2)1= �
d+1X
j=1

f(nhdn)�Ej
nX
i=1

A1i;j +A2i;j j2g1= : (B.2)

Applying the Rosenthal inequality and the Minkowski inequality similarly to Bai (1996, Lemma
A1), the term inside the curly brackets is bounded by

2C(nhdn)
�(

nX
i=1

E kA1ik2 + E kA2ik2) + 2(nhdn)�C
nX
i=1

�
(E kA1ik2)1= + (E kA2ik2)1=

�
:

(B.3)
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We now derive bounds for the summands appearing above.

E kA1ik2 � E
�
E
n�
�2 � 1(u0i (�2) � 0)� �1 + 1(u0i (�1) � 0)

�2���xio kzi;�2Ki;�2k
2
�

� (�2 � �1)E kzi;�2Ki;�2k
2 � Chdn (�2 � �1) :

where the �rst inequality is because
���2 � 1(u0i (�2) � 0)� �1 + 1(u0i (�1) � 0)�� � 1, the second uses

similar arguments as in Lemma B.1 and C is a constant independent of � . Meanwhile, E kA2ik2 �
E k(zi;�2Ki;�2 � zi;�1Ki;�1)k

2 � Bhdn (�2 � �1)
2 , where the last inequality uses the �rst result in

Lemma B.1. Similarly, E kA1ik2 � Chdn (�2 � �1) and E kA2ik
2 � Bhdn (�2 � �1)

2. Applying these
bounds, (B.3) is bounded from above by M (�2 � �1) +M(nhdn (�2 � �1))1� (�2 � �1)

 for some
�niteM . The latter is further bounded by 2M (�2 � �1) using the de�nition of bn and  > 1. Thus,
(B.2) is bounded by (d+ 1) (2M)1= (�2 � �1). Let �C = (d+ 1) (2M)1= , the proof is complete.�

The next lemma establishes the stochastic equicontinuity of the process Sn (� ; 0; 0).

Lemma B.3 For any " > 0 and � > 0; there exists a � > 0; such that for large n,

P ( sup
� 00;� 02T ;j� 00�� 0j��

Sn �� 00; 0; 0�� Sn �� 0; 0; 0� > ") < �:

Proof. Let zi;� ;j denote the j-th component of zi;� (j = 1; :::; d+1). Note that zi;� 0;j � 0 if and only
if zi;� 00;j � 0 for any � 00; � 0 2 T . Without loss of generality, assume that the elements of zi;� ;j are all
nonnegative. Otherwise, we can write zi;� ;j as z+i;� ;j�z

�
i;� ;j � zi;� ;j1(zi;� ;j � 0)�(�zi;� ;j)1(zi;� ;j � 0).

For a given �; T contains at most 1=� intervals of length �. Therefore, it su¢ ces to show that
for any " > 0; � > 0, there exists a � > 0, such that (see Billingsley 1968, p. 58, equation 8.12)

P ( sup
s����+s;�2T

kSn (� ; 0; 0)� Sn (s; 0; 0)k > ") < �� holds for all s 2 T when n is large. (B.4)

We use a chaining argument to show (B.4). Partition [s; � + s] into bn = (nhdn)
1=2+� intervals

of equal sizes with 0 < � < 1=2. Let � j denote the lower limit of the j-th interval; �1 = s. Then,

sup
s����+s

kSn (� ; 0; 0)� Sn (s; 0; 0)k (B.5)

� sup
1�j�bn

sup
�2[�j ;�j+1]

kSn (� ; 0; 0)� Sn (� j ; 0; 0)k+ sup
1�j�bn

kSn (� j ; 0; 0)� Sn (s; 0; 0)k :

Consider the �rst term. For any � 2 [� j ; � j+1], we have

Sn (� ; 0; 0)� Sn (� j ; 0; 0) (B.6)

� Sn (� j+1; 0; 0)� Sn (� j ; 0; 0) + (nhdn)�1=2
nX
i=1

�
� j+1 � 1(u0i (� j+1) < 0)

� �
zi;�Ki;� � zi;�j+1Ki;�j+1

�
�(nhdn)�1=2

nX
i=1

(� j+1 � � j) zi;�Ki;� .

The norm of the �rst summation is bounded by (nhdn)
�1=2Pn

i=1

zi;�Ki;� � zi;�j+1Ki;�j+1

 = op(1)

applying Lemma B.1. The second summation is also op(1) because j� j+1 � � j j � (nhdn)
�1=2��.
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Therefore, Sn (� ; 0; 0) � Sn (� j ; 0; 0) � Sn (� j+1; 0; 0) � Sn (� j ; 0; 0) � "=5 with probability no less
than 1� �� uniformly in T for large n. Meanwhile, there is a reversed inequality for (B.6) given by

Sn (� ; 0; 0)� Sn (� j ; 0; 0)

� (nhdn)
�1=2

nX
i=1

1(u0i (� j) < 0)
�
zi;�jKi;�j � zi;�Ki;�

�
+ (nhdn)

�1=2
nX
i=1

(� j+1 � � j) zi;�Ki;�

�(nhdn)�1=2
nX
i=1

� j
�
zi;�jKi;�j � zi;�Ki;�

�
:

All the three terms on the right hand side are op(1) uniformly in T following similar arguments as
above. Therefore, Sn (� ; 0; 0)�Sn (� j ; 0; 0) � "=5 holds with probability no less than 1��� uniformly
in T for large n. Consequently, sups����+s kSn (� ; 0; 0)� Sn (s; 0; 0)k � sup1�j�bn jjSn (� j+1; 0; 0)�
Sn (� j ; 0; 0) jj+ 2"

5 +sup1�j�bn jjSn (� j ; 0; 0)�Sn (s; 0; 0) jj � sup1�j�bn 3 kSn (� j ; 0; 0)� Sn (s; 0; 0)k+
2"
5 , which holds with probability no less than 1 � �� uniformly in T for large n. This implies, to
establish (B.4) it su¢ ces to show P

�
sup1�j�bn kSn (� j ; 0; 0)� Sn (�1; 0; 0)k >

"
5

�
< �� for large n.

To this end, we follow Bai (1996, p.613) and apply Theorem 12.2 in Billingsley (1968) to bound the
above probability by using the bounds on the moments of Sn (� j+1; 0; 0)� Sn (� j ; 0; 0), established
in the previous lemma. Speci�cally, Billingsley�s result states that if there exists � � 0; � > 1 and
ul � 0 (l = 1; :::; bn) such that E(kSn (� j ; 0; 0)� Sn (� i; 0; 0)k�) � (

P
i<l�j ul)

�; 0 � i � j � bn,
then P

�
sup1�j�bn kSn (� j ; 0; 0)� Sn (�1; 0; 0)k > "

�
� "��C�;� (u1 + :::+ ubn)

�. In our case, set
� = 2 and � = . Lemma B.2 then implies E kSn (� j ; 0; 0)� Sn (� i; 0; 0)k� � �C(� j � � i)

� for
0 � i � j � bn. Therefore, P

�
sup1�j�bn kSn (� j ; 0; 0)� Sn (�1; 0; 0)k >

"
5

�
� �(

�
"
5

���
C�;� �C�

��1).

Choosing � such that (
�
"
5

���
C�;� �C�

��1) � � completes the proof. �
The next two lemmas establish some relationship between Sn (� ; �; ei (�)) and Sn (� ; 0; ei (�)).

They are needed to quantify the e¤ect of the parameter estimation.

Lemma B.4 Let bn = (nhdn)
1=2+� and consider a partition of T into bn intervals of equal sizes.

Let � j denote the lower limit of the jth interval. Then, under Assumptions 1-6, we have

sup
1�j�bn

sup
�j�1����j

jj(nhdn)�1=2
nX
i=1

zi;�Ki;�

�
1(u0i (� j) � ei (�))� 1(u0i (� j) � ei (� j))

	
jj = op (1) ;

sup1�j�bn sup�j�1����j supk�k�log1=2(nhdn;� )

(nhdn)�1=2Pn
i=1 zi;�Ki;�

n
1
�
u0i (� j) � ei (�) + (nh

d
n;� )

�1=2z0i;��
�

�(nhdn)�1=2
Pn
i=1 zi;�jKi;�j1

�
u0i (� j) � ei (� j) + (nh

d
n;�j )

�1=2z0i;�j�
�o = op (1) :

Proof. Without loss of generality, assume zi;� is a scalar and nonnegative. Consider the �rst
result. By the second result in Lemma B.1, the term on the left hand side has the same order as

sup
1�j�bn

sup
�j�1����j

jj(nhdn)�1=2
nX
i=1

zi;�jKi;�j

�
1(u0i (� j) � ei (�))� 1(u0i (� j) � ei (� j))

	
jj: (B.7)

Meanwhile, for any � 2 [� j ; � j+1], we have ei(�) � ei(� j) = op
�
(nhdn)

�1=2� � "(nhdn)
�1=2 in prob-

ability uniformly over � 2 T ; where the constant " can be made arbitrarily small. Thus, (B.7) is
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bounded by sup1�j�bn jj(nhdn)�1=2
Pn
i=1 zi;�jKi;�j1

�
ei (� j)� "(nhdn)�1=2 � u0i (� j) � ei (� j) + "(nh

d
n)
�1=2� jj.

Let

�i;�j = 1
�
ei (� j)� "(nhdn)�1=2 � u0i (� j) � ei (� j) + "(nh

d
n)
�1=2

�
�E

n
1
�
ei (� j)� "(nhdn)�1=2 � u0i (� j) � ei (� j) + "(nh

d
n)
�1=2

�
jxi
o
:

Applying the triangle inequality, (B.7) can thus be further bounded by

sup
1�j�bn

(nhdn)
�1=2jj

nX
i=1

zi;�jKi;�j�i;�j jj

+ sup
1�j�bn

(nhdn)
�1=2

nX
i=1

E
n
1
�
ei (� j)� "(nhdn)�1=2 � u0i (� j) � ei (� j) + "(nh

d
n)
�1=2

�
jxi
o
:

The second term is op (1). The �rst term satis�es: P
�
sup1�j�bn(nh

d
n)
�1=2jj

Pn
i=1 zi;�jKi;�j�i;�j jj > �

�
�
Pbn
j=1 P

�
(nhdn)

�1=2jj
Pn
i=1 zi;�jKi;�j�i;�j jj > �

�
. Applying the Rosenthal inequality with  > 1

to the j-th term on the right side, it is bounded by

C��2(nhdn)
�=2

(
E((nhdn)

�1=2
nX
i=1

E
�
jj�i;�j jj

2jxi
�zi;�jKi;�j

2)
+ (nhdn)

�=2
nX
i=1

E(
zi;�jKi;�j

2 E(jj�i;�j jj2jxi))
)
:

The term inside the curly brackets is �nite because E(jj�i;�j jj
2 jxi) � E(jj�i;�j jj

2jxi) � B(nhdn)
�1=2

for some B. Therefore, the preceding display is bounded by CM��2(nhdn)
�=2, whose summation

over
Pbn
j=1 is bounded by CM��2(nhdn)

1=2+��=2, which converges to zero by choosing  > 1+2�.
This proves the �rst result. The second result can be shown using similar arguments because
the di¤erence between (nhdn;� )

�1=2z0i;�� and (nh
d
n;� )

�1=2z0i;�j� is of lower order than (nh
d
n)
�1=2 by

Assumption 5. The uniformity in � can be shown as in the next lemma. The detail is omitted. �

Lemma B.5 Under Assumptions 1-6, let Kn = log
1=2(nhdn); we have

sup
�2T

sup
k�k�Kn

kSn (� ; �; ei (�))� Sn (� ; 0; ei (�))k = op (1) :

Proof. As in Lemma B.3, assume that the elements of zi;� are all nonnegative. Partition T
into bn = (nhdn)

1=2+� intervals and let � j denote the lower limit of the j-th interval. Applying
Lemma B.4 and similar arguments as in (B.6), we have, for any � 2 [� j ; � j+1] and any " > 0,
Sn (� j+1; �; ei (� j+1))�Sn (� j ; 0; ei (� j))+2" � Sn (� ; �; ei (�))�Sn (� ; 0; ei (�)) � Sn (� j ; �; ei (� j))�
Sn (� j+1; 0; ei (� j+1)) + 2" uniformly for large n. Adding and subtracting terms:

sup
�2T

sup
k�k�Kn

kSn (� ; �; ei (�))� Sn (� ; 0; ei (�))k (B.8)

� 2 sup
1�j�bn

kSn (� j+1; 0; 0)� Sn (� j ; 0; 0)k+ 4 sup
1�j�bn+1

kSn (� j ; 0; ei (� j))� Sn (� j ; 0; 0)k

+2 sup
1�j�bn+1

sup
k�k�Kn

kSn (� j ; �; ei (� j))� Sn (� j ; 0; ei (� j))k+ 4":
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Consider the third term on the right hand side. For any � > 0, the set f� : k�k � Kng can be
partitioned into N(�) spheres such that the diameter of each sphere is less than or equal to �. Note
that N(�) = O((Kn=�)

d+1). Denote the spheres by Dh with centers being �h (h 2 f1; 2; :::; N(�)g).
For any � 2 Dh, we have z0i;�j�h �

zi;�j � � z0i;�j� � z0i;�j�h +
zi;�j �. Therefore,

sup
1�j�bn+1

sup
k�k�Kn

kSn (� j ; �; ei (� j))� Sn (� j ; 0; ei (� j))k (B.9)

� sup
1�j�bn+1

sup
1�h�N(�)
k=1;2;�2Dh

(nhdn)�1=2
nX
i=1

zi;�jKi;�jEf1(u0i (� j) � ei (� j)+z0i;�j�h+(�1)
kjjzi;�j jj�)

���xig
� Ef1(u0i (� j) � ei (� j) + (nh

d
n;�j )

�1=2z0i;�j�)
���xig

+ sup
1�j�bn+1

max
1�h�N(�)

max
k=1;2

jj(nhdn)�1=2
nX
i=1

zi;�jKi;�j�i;j;h;kjj,

where

�i;j;h;k = E
n
1
�
u0i (� j) � ei (� j) + (nh

d
n;�j )

�1=2z0i;�j�h + (�1)
k
zi;�j �����xio

�1
�
u0i (� j) � ei (� j) + (nh

d
n;�j )

�1=2z0i;�j�h + (�1)
k
zi;�j ��

�E
�
1
�
u0i (� j) � ei (� j)

���xi�+ 1 �u0(� j) � ei (� j)
�
:

Applying a Taylor expansion, the �rst term on the right hand side of (B.9) is of the same order
as �, which can be made arbitrarily small by choosing, say � = K��

n . To bound the second
norm, it is su¢ cient to show that for any � > 0; 1 � j � bn + 1; 1 � h � N(�) and k 2
f1; 2g, bnN(�)P

�(nhdn)�1=2Pn
i=1 zi;�jKi;�j�i;j;h;k

 > �
�
! 0. Applying the Rosenthal inequality,

the preceding probability is bounded by M"�2bnN(�)(nhdn)
�=2K

n for large n. Now, using the
de�nition of bn; N(�) and Kn and choosing  = 1 + 2�+ c for some c > 0, the preceding quantity
converges to 0 for � = K��

n . Finally, the second term on the right hand side of (B.8) can be
analyzed similarly and is op (1); the �rst term is op (1) because of Lemma B.3. �

Lemma B.6 Under Assumptions 1-6,

sup
�2T

jj(nhdn)�1=2
nX
i=1

�
 � (u

0
i (�)� ei(�))�  � (u0i (�))

	
zi;�Ki;� jj = Op (1) :

Proof. The term inside the norm can be rewritten as

Sn (� ; 0; 0)� Sn (� j ; 0; ei(�))

+(nhdn)
�1=2

nX
i=1

zi;�Ki;�

�
P
�
u0i (�) � 0

�
� E

�
1
�
u0i (�) � ei(�)

���xi�	+ op (1) :
The second to the last line is op (1) as shown in the previous Lemma. The remaining term is Op (1)
upon a Taylor expansion using the fact that ei(�) = O(h2n). �
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Table 3. The Length of the 90% Uniform Confidence Band

Models x m = 10 m = 20 m = 30
τ = 0.5 τ = 0.8 τ = 0.5 τ = 0.8 τ = 0.5 τ = 0.8
(a) Modified Bias Correction

1
(0.50, 0.50) 0.138 0.186 0.141 0.190 0.142 0.192

(0.027) (0.033) (0.027) (0.036) (0.027) (0.033)
(0.75, 0.75) 0.299 0.395 0.309 0.409 0.317 0.420

(0.044) (0.064) (0.045) (0.066) (0.047) (0.071)
(0.90, 0.90) 0.595 0.814 0.625 0.834 0.624 0.853

(0.141) (0.211) (0.132) (0.198) (0.143) (0.200)

2
(0.50, 0.50) 0.372 0.476 0.387 0.503 0.390 0.502

(0.047) (0.088) (0.050) (0.097) (0.051) (0.101)
(0.75, 0.75) 0.668 0.925 0.684 0.953 0.688 0.959

(0.096) (0.222) (0.106) (0.213) (0.107) (0.223)
(0.90, 0.90) 1.070 1.451 1.103 1.504 1.087 1.523

(0.261) (0.482) (0.300) (0.504) (0.263) (0.515)

3
(0.50, 0.50) 0.541 0.688 0.562 0.703 0.563 0.703

(0.071) (0.133) (0.076) (0.128) (0.075) (0.130)
(0.75, 0.75) 0.594 0.725 0.617 0.769 0.615 0.776

(0.113) (0.139) (0.113) (0.176) (0.105) (0.157)
(0.90, 0.90) 1.209 1.513 1.231 1.540 1.259 1.589

(0.306) (0.439) (0.308) (0.498) (0.302) (0.455)
(b) Conventional Bias Correction

1
(0.50, 0.50) 0.121 0.161 0.123 0.167 0.124 0.167

(0.021) (0.030) (0.021) (0.032) (0.020) (0.029)
(0.75, 0.75) 0.266 0.359 0.277 0.372 0.283 0.382

(0.034) (0.054) (0.036) (0.059) (0.037) (0.059)
(0.90, 0.90) 0.504 0.679 0.526 0.693 0.523 0.711

(0.112) (0.168) (0.111) (0.161) (0.117) (0.176)

2
(0.50, 0.50) 0.319 0.421 0.334 0.448 0.337 0.446

(0.043) (0.087) (0.047) (0.098) (0.048) (0.102)
(0.75, 0.75) 0.570 0.824 0.587 0.852 0.593 0.860

(0.086) (0.224) (0.096) (0.215) (0.097) (0.226)
(0.90, 0.90) 0.971 1.357 1.001 1.408 0.986 1.425

(0.255) (0.478) (0.288) (0.502) (0.257) (0.510)

3
(0.50, 0.50) 0.464 0.607 0.485 0.623 0.486 0.625

(0.066) (0.132) (0.069) (0.127) (0.069) (0.127)
(0.75, 0.75) 0.523 0.655 0.544 0.702 0.543 0.707

(0.090) (0.130) (0.094) (0.172) (0.084) (0.150)
(0.90, 0.90) 1.121 1.425 1.143 1.443 1.168 1.500

(0.301) (0.431) (0.302) (0.495) (0.299) (0.456)

The sample size is 500 and results are based on 500 replications. We report the average length of
the uniform confidence bands. The standard deviations are in parenthesis.



Figure 1. Processes of Quantile Treatment Effects
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(a) Effects at the 10th percentile of the experience.
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(b) Effects at the 30th percentile of the experience.
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(c) Effects at the 50th percentile of the experience.
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(d) Effects at the 70th percentile of the experience.

Probability Index

To
ta

l S
co

re

●

●
●

●

●

● ●
●

●

●
●

● ●

●

●

●

●

0.2 0.4 0.6 0.8

−4
0

−2
0

0
20

40
60

(e) Effects at the 90th percentile of the experience.
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Each figure shows quantile dependent treatment effects over the range [0.1,0.9]. For the values of the
covariate (i.e., teacher’s experience) we consider those corresponding to the 10th, 30th, 50th, 70th and
90th of the conditioning distribution, each of which is reported in a separate figure.



Figure 2. Conditional Quantiles of Test Scores as Functions of Teacher’s
Experience
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The solid line corresponds to small classes and the dotted line regular sized classes. We report five
quantiles {0.1, 0.25, 0.5, 0.75, 0.9}.


	Complete_paper.pdf
	main_text_and_appendix.pdf
	tables
	figures

	Pages from main_text_and_appendix

