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Abstract

This paper considers the estimation of multiple structural changes occurring at unknown

dates in one or multiple conditional quantile functions. The analysis covers time series models

as well as models with repeated cross sections. We estimate the break dates and other para-

meters jointly by minimizing the check function over all permissible break dates. The limiting

distribution of the estimator is derived and the coverage property of the resulting con�dence

interval is assessed via simulations. A procedure to determine the number of breaks is also

discussed. Empirical applications to the quarterly US real GDP growth rate and the under-

age drunk driving data suggest that the method can deliver more informative results than the

analysis of the conditional mean function alone.
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1 Introduction

The issue of structural change has been extensively studied in a variety of applications. Recent

contributions have substantially broadened the scope of the related literature. For example, Bai

and Perron (1998, 2003) provided a uni�ed treatment of estimation, inference and computation

in linear multiple regression with unknown breaks. Bai et al. (1998), Bai (2000) and Qu and

Perron (2007) extended the analysis to a system of equations. Hansen (1992), Bai et al. (1998) and

Kejriwal and Perron (2008) considered regressions with integrated variables. Andrews (1993), Hall

and Sen (1999) and Li and Müller (2009) considered nonlinear models estimated by Generalized

Method of Moments. Kokoszka and Leipus (1999, 2000) and Berkes et al. (2004) studied parameter

change in GARCH processes. One may refer to Csörg½o and Horváth (1998) and Perron (2006) for

a comprehensive review of the literature.

A main focus in the literature has been the conditional mean function, while, under many

circumstances, structural change in the conditional quantile function is of key importance. For

example, when studying income inequality, it is important to examine whether (and how) the wage

di¤erential between di¤erent racial groups, conditional on observable characteristics, has changed

over time. An increase in inequality may increase the conditional dispersion of the di¤erential,

while leaving the mean unchanged. Thus, the conditional mean ceases to be informative and the

conditional quantiles should be considered. As another example, consider a policy reform that aims

at helping students with low test performance. In this case, attention should clearly be focused on

the lower quantiles of the conditional distribution in order to understand the e¤ect of such a policy.

In both examples, it can be desirable to allow the break dates to be unknown and estimate them

from the data. The reason is that in the former case it is often di¢ cult to identify the source of the

change a priori, while in the latter the policy e¤ect may occur with an unknown time lag due to

various reasons. To address such issues, Qu (2008) and Su and Xiao (2008) considered Wald and

subgradient-based tests for structural change in regression quantiles, allowing for unknown break

dates. However, they did not consider the issue of estimation and inference regarding break dates

and other coe¢ cients. This is the subject of the current paper.

Speci�cally, we consider the estimation of multiple structural changes occurring at unknown

dates in conditional quantile functions. The basic framework is that of Koenker and Bassett (1978),

with the conditional quantile function being linear in parameters in each individual regime. The

analysis covers two types of models. The �rst is a time series model (e.g., the quantile autoregressive

(QAR) model of Koenker and Xiao, 2006), which can be useful for studying structural change in
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a macroeconomic variable. The second model considers repeated cross sections, which can be

useful for the analysis of e¤ects of social programs, laws and economic policy. For each model, we

consider both structural change in a single quantile and in multiple quantiles. The joint analysis of

multiple quantiles requires imposing stronger restrictions on the model, but is important, because

it can potentially increase the e¢ ciency of the break estimator and, more importantly, reveal the

heterogeneity in the change, thus delivering a richer set of information.

We �rst assume that the number of breaks is known and construct estimators for unknown

break dates and other coe¢ cients. The resulting estimator is the global minimizer of the check

function over all permissible break dates. When multiple quantiles are considered, the check func-

tion is integrated over a set of quantiles of interest. The underlying assumptions are mild, allowing

for dynamic models. Also, they restrict only a neighborhood surrounding quantiles of interest.

Other quantiles are left unspeci�ed, thus being allowed to change or remain stable. The latter

feature allows us to look at slices of the conditional distribution without relying on global distribu-

tional assumptions. Under these assumptions, we derive asymptotic distributions of the estimator

following the methodology of Picard (1985) and Yao (1987). The distribution of the break date

estimates depend on a two-sided Brownian motion, which is often encountered in the literature and

the analytical properties of which have been studied by Bai (1997). It involves parameters that

can be consistently estimated, thus the con�dence interval can be constructed without relying on

simulation.

We then discuss a testing procedure that allows to determine the number of breaks. It builds

upon the subgradient-based tests proposed in Qu (2008). These tests do not require estimation

of the variance (more precisely, the sparsity) parameter, thus having monotonic power even when

multiple changes are present. This feature makes them suitable for our purposes.

We consider two empirical applications, one for each type of models studied in the paper. The

�rst application is to the quarterly US GDP growth, whose volatility has been documented to

exhibit a substantial decline since the early to mid-1980s (the so-called "Great Moderation"), see

for example McConnell and Perez-Quiros (2000). The paper revisits this issue using a quantile

regression framework. The result suggests that the moderation mainly a¤ected the upper tail of

the conditional distribution, with the conditional median and the lower quantiles remaining stable.

Hence, it suggests that a major change in the GDP growth should be attributed to the fact that the

growth was less rapid during expansions, while the recessions have remained just as severe when

they occurred. The second application considers structural changes in young drivers�blood alcohol

levels using a data set for the state of California over the period 1983-2007. Two structural changes
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are detected, which closely coincide with the National Minimum Drinking Ages Act of 1984 and

a beer tax hike in 1991. Interestingly, the changes are smaller in higher quantiles, suggesting that

the policies are more e¤ective for "light drinkers" than for "heavy drinkers" in the population.

The technical development in the paper relies heavily on Bai (1995, 1998). Bai (1995) developed

asymptotic theory for least absolute deviation estimation of a shift in linear regressions, while

Bai (1998) extended the analysis to allow for multiple changes. Recently, Chen (2008) further

extended Bai�s work to study structural changes in a single conditional quantile function. There,

the regressors are assumed to be strictly exogenous. This paper is di¤erent from their studies in

three important aspects. First, the assumptions allow for dynamic models. Therefore, the result has

wider applicability. Secondly, we consider models with repeated cross sections, which is important

for policy related applications. Finally, we consider structural change in multiple quantiles and a

testing procedure for determining the number of breaks. From a methodological perspective, this

paper is related to the literature of functional coe¢ cient quantile regression models, see Cai and

Xu (2008) and Kim (2007). Their model is suitable for modelling smooth changes and ours for

sudden shifts. Finally, the paper is related to robust estimation of a change-point: see Hu�ková

(1997), Fiteni (2002) and the references therein.

The paper is organized as follows. Section 2 discusses the setup and three simple examples to

motivate the study. Section 3 discusses multiple structural changes in a pre-speci�ed quantile in

a time series model, together with the method of estimation and the limiting distributions of the

estimates. Section 4 considers structural change in multiple quantiles. Section 5 considers models

with repeated cross sections. In Sections 2 to 5, the number of breaks is assumed to be known. The

issue of estimating the number of breaks is addressed in Section 6. Section 7 contains simulation

results and Section 8 presents the empirical applications. All proofs are included in the appendix.

The following notation is used. The superscript 0 indicates the true value of a parameter. For

a real valued vector z, kzk denotes its Euclidean norm. [z] is the integer part of z. 1(�) is the
indicator function. D[0;1] stands for the set of functions on [0; 1] that are right continuous and have

left limits, equipped with the Skorohod metric. The symbols �)�, �!p�and �!a:s:�denote weak

convergence under Skorohod topology, convergence in probability and convergence almost surely,

and Op(�) and op(�) is the usual notation for the orders of stochastic convergence.

2 Setup and examples

Let yt be a real-valued random variable, xt a p by 1 random vector, and Qyt(� jxt) the conditional
quantile function of yt given xt, where t corresponds to the time index or an ordering according
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to some other criterion. Note that if t is the index for time, then Qyt(� jxt) is interpreted as the
quantile function of yt conditional on the �-algebra generated by (xt; yt�1; xt�1;yt�2; :::). Let T

denote the sample size.

We assume the conditional quantile function is linear in parameters and is a¤ected by m struc-

tural changes:

Qyt(� jxt) =

8>>>>>><>>>>>>:

x0t�
0
1(�);

x0t�
0
2(�);
...

x0t�
0
m+1(�);

t = 1; :::; T 01 ;

t = T 01 + 1; :::; T
0
2 ;

...

t = T 0m + 1; :::; T;

(1)

where � 2 (0; 1) denotes a quantile of interest, �0j (�) (j = 1; :::;m+1) are the unknown parameters
that are quantile dependent, and T 0j (j = 1; :::;m) are the unknown break dates. A subset of �

0
j (�)

may be restricted to be constant over t to allow for partial structural changes. The regressors xt

can include discrete as well as continuous variables. We now give three examples to illustrate our

framework.

Example 1 Cox et al. (1985) considered the following model for the short-term riskless interest

rate:

drt = (�+ �rt) dt+ �r
1=2
t dWt; (2)

where rt is the riskless rate and Wt is the Wiener process. The process (2) can be approximated by

the following discrete-time model if the sampling intervals are small (see Chan, et.al. 1992, p.1213

and the references therein for discussions on the issue of discretization):

rt+1 � rt = �+ �rt + (�r
1=2
t )ut+1

with ut+1 � i:i:d:N(0; 1); implying that the quantiles of rt+1 given rt are linear in parameters and

satisfy

Qrt+1(� jrt) = �+ (1 + �)rt + (�r
1=2
t )F�1u (�);

where F�1u (�) is the �th quantile of a standard normal random variable. The procedure developed

in this paper can be used to estimate structural changes in some or all of the parameters (�; �

and �). More complicated models than (2) can be analyzed in the same way provided that, upon

discretization, the conditional quantile function can be well approximated by a linear function.

Example 2 Chernozhukov and Umantsev (2001) studied the following model for Value-at-Risk:1

Qyt(� jxt) = x0t�(�); (3)
1See Taylor (1999) and Engle and Manganelli (2004) for related works.
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where yt is return on some asset, xt is a vector of information variables a¤ecting the distribution

of yt: For example, xt may include returns on other securities, lagged values of yt, and proxies to

volatility (such as exponentially weighted squared-returns). They documented that such variables

a¤ect various quantiles of yt in a very di¤erential and nontrivial manner. Here, an interesting open

issue is whether the risk relationship (3) undergoes substantial structural changes. Our method can

be applied to address this issue without having to specify the dates of the changes a priori.

Example 3 Piehl et al. (2003) applied the structural change methodology to evaluate the e¤ect of

the Boston Gun Project on youth homicide incidents. They allowed the break date to be unknown

in order to capture an unknown time lag in policy implementation. Their focus was on structural

change in the conditional mean. However, in many cases, the aim of a policy is to induce a

distribution change rather than a pure location shift. For example, consider a public school reform

aimed at improving the performance of students with low test scores. In this case, the lower quantiles

of the conditional distribution are the targets of the reform. Another example is a public policy to

reduce income inequality. In this case, the target is the dispersion of the distribution. In these

cases, the standard structural change in mean methodology ceases to be relevant, while the methods

developed in this paper can prove useful.

For now, assume that the number of structural changes is known. Later in the paper (Section

6), we will discuss a testing procedure that can be used to estimate the number of breaks. We �rst

consider structural changes in a single conditional quantile function in a time series model.

3 Structural changes in a given quantile � 2 (0; 1)

In the absence of structural change, the model (1) can be estimated by solving

min
b2Rp

TX
t=1

�� (yt � x0tb); (4)

where �� (u) is the check function given by �� (u) = u(� � 1(u < 0)); see Koenker (2005) for a

comprehensive treatment of related issues. Now suppose that the �th quantile is a¤ected by m

structural changes, occurring at unknown dates (T 01 ; :::; T
0
m). Then, de�ne the following function

for a set of candidate break dates T b = (T1; :::; Tm):

ST (� ; �(�); T
b) =

mX
j=0

Tj+1X
t=Tj+1

�� (yt � x0t�j+1(�)); (5)
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where �(�) = (�1(�)
0; :::; �m+1(�)

0)0, T0 = 0 and Tm+1 = T .2 Motivated by Bai (1995, 1998), we

estimate the break dates and coe¢ cients �(�) jointly by solving

(�̂(�); T̂ b) = arg min
�(�);T b2�"

ST (� ; �(�); T
b); (6)

where �̂(�) = (�̂1(�)
0; :::; �̂m+1(�)

0)0 and T̂ b = (T̂1; :::; T̂m). Speci�cally, for a given partition of the

sample, we estimate the coe¢ cients �(�) by minimizing ST (� ; �(�); T b). Then, we search over all

permissible partitions to �nd the break dates that achieve the global minimum. These break dates,

along with the corresponding estimates for �(�); are taken as �nal estimates. Note that in (6), �"

denotes the set of possible partitions. It ensures that each estimated regime is a positive fraction

of the sample. For example, it can be speci�ed as

�" = f(T1; :::; Tm) : Tj � Tj�1 � "T (j = 2; :::;m); T1 � "T; Tm � (1� ")Tg ; (7)

where " is a positive small number. The precise assumptions on �" will be stated later in the paper.

Let ft(�), Ft(�) and F�1t (�) denote the conditional density, conditional distribution and condi-
tional quantile function of yt given xt. Let Ft�1 be the �-algebra generated by (xt; yt�1; xt�1;yt�2; :::)
and u0t (�) be the di¤erence between yt and its �th conditional quantile, i.e.,

u0t (�) = yt � x0t�0j (�) for T 0j�1 + 1 � t � T 0j (j = 1; :::;m+ 1):

We now state the assumptions needed for the derivation of asymptotic properties of the estimates.

Assumption 1. f1(u0t (�) < 0)� �g is a martingale di¤erence sequence with respect to Ft�1.

Assumption 2. The distribution functions fFt(�)g are absolutely continuous, with continuous
densities fft(�)g satisfying 0 < Lf � ft(F

�1
t (�)) � Uf <1 for all t.

Assumption 3. For any � > 0 there exists a �(�) > 0 such that jft(F�1t (�) + s)� ft(F�1t (�))j < �

for all jsj < �(�) and all 1 � t � T .

Assumptions 1 and 2 are familiar in the quantile regression literature; heteroskedasticity is

allowed. Assumption 2 requires the densities to be uniformly bounded away from 0 and 1 at the

quantile of interest. This assumption is local and therefore does not require the full density function

to be bounded. Assumption 3 implies that the conditional densities are uniformly continuous in

some neighborhood of the �th quantile. This Assumption, along with Assumption 2, implies that

2A more complete notation for � (�) should be �
�
� ; T b

�
: We have omitted T b in order not to overburden the

notation.
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ft(u) is uniformly bounded away from 0 and 1 for all t and all u in some open neighborhood of

F�1t (�). Note that these two Assumptions entail stronger restrictions in dynamic models than in

ordinary regression applications since the support of the explanatory variables is determined within

the model. However, they are often not di¢ cult to verify given a particular speci�cation.

To illustrate these three assumptions, we can consider the following location-scale model (with

no structural change):

yt = z0t� + (w
0
t�)ut; (8)

where futg is a sequence of i.i.d. errors independent of zt and wt (ut can be correlated with zt+k
and wt+k for k > 0, thus allowing for dynamic models). Then, Assumption 1 is satis�ed due to the

independence. Let fu(�) and F�1u (�) denote the density and the �th quantile of the errors ut. Then,

ft(F
�1
t (�)) = fu(F

�1
u (�))=(w0t�). Thus, Assumption 2 is satis�ed if Fu(�) is absolutely continuous

with continuous density fu(�) satisfying �u < fu(F
�1
u (�)) <1 and �w < w0t� <1 for all t for some

arbitrary strictly positive constants �u and �w. Note that fu(F�1u (�)) can be unbounded at quantile
di¤erent from � . Assumption 3 is satis�ed if, in addition, the density fu(�) is continuous over an
open interval containing the �th quantile.

Assumption 4. T 0j = [�
0
jT ] (j = 1; :::;m) with 0 < �01 < ::: < �0m < 1.

Assumption 5. (a) an intercept is included in xt; (b) for each j = 1; :::;m+ 1;

1

T

T 0j�1+[sT ]X
t=T 0j�1+1

ft(F
�1
t (�))xtx

0
t !p sH0

j (�) and
1

T

T 0j�1+[sT ]X
t=T 0j�1+1

xtx
0
t !p sJ0j (9)

hold uniformly in 0 � s � �0j � �0j�1 as T ! 1, where J0j and H0
j (�) are non-random positive

de�nite matrices; (c) Ejjxtjj4+' < L holds with some ' > 0 and L <1 for all t = 1; :::; T ; (d) there

exist M < 1 and 
 > 2 such that T�1
PT
t=1Ejjxtjj2
+1 < M and E(T�1

PT
t=1 kxtk

3)
 < M hold

when T is large; (e) there exists j0 > 0; such that the eigenvalues of j�1
Pl+j
t=l xtx

0
t are bounded

from above and below by �max and �min for all j � j0 and 1 � l � T�j with 0 < �min � �max <1:

Assumption 4 states that each regime occupies a non-vanishing proportion of the sample. As-

sumption 5 imposes some structure on the regressors xt. The �rst part in (9) imposes some re-

striction on possible heteroskedasticity. Assumption 5(c) ensures weak convergence of the process

T�1=2
P[sT ]
t=1 xt(1 (Ft(yt) � �) � �). Assumption 5(d) is needed for stochastic equicontinuity of se-

quential empirical processes based on the estimated quantile regression residuals. It also implies

max1�t�T kxtk = op(T
1=2), which is familiar in the literature on M-estimators. Assumption 5 rules

7



out trending regressors under which the rates of convergence can be veri�ed, although the limiting

distribution of the break estimates will be di¤erent. This situation requires a separate treatment.

Assumption 6. Let �T;j(�) = �0j+1(�) � �0j (�) (j = 1; :::;m). Assume �T;j(�) = vT�j(�) for

some k�j(�)k > 0; where �j(�) is a vector independent of T , vT > 0 is a scalar satisfying vT ! 0

and T (1=2)�#vT !1 for some # 2 (0; 1=2):

Assumption 6 follows Picard (1985) and Yao (1987). The magnitudes of the shifts converge to

zero as the sample size increases. Consequently, the breaks will be estimated at a slower convergence

rate than under "�xed-break" asymptotics. A functional central limit theorem then applies, which

permits us to obtain a limiting distribution invariant to the exact distribution of xt and yt. The

setup is well suited to provide an adequate approximation to the exact distribution when the

change is moderate but the resulting con�dence interval can be liberal when the change is small.

The quality of the resulting approximation will be subsequently evaluated using simulations.

To summarize, the assumptions have two important features. First, they allow for dynamic

models, for example, the quantile autoregression (QAR) model of Koenker and Xiao (2006): yt =

�0(Ut) + �1(Ut)yt�1 + :::+ �q(Ut)yt�q, where fUtg is a sequence of i.i.d. standard uniform random

variables. Second, the assumptions are local, in the sense that they impose restrictions only on

the �th quantile and a small neighborhood surrounding it. This allows us to look at slices of the

distribution without making global distributional assumptions.

The following result establishes the convergence rates of the parameter estimates.

Lemma 1 Under Assumptions 1-6, we have v2T (T̂j �T 0j ) = Op(1) for j = 1; :::;m and
p
T (�̂j(�)�

�0j (�)) = Op(1) for j = 1; :::;m+ 1:

The next result presents the limiting distributions of the estimates.

Theorem 1 Let Assumptions 1-6 hold. Then, for j = 1; :::;m,�
�j
�j

�2
v2T (T̂j � T 0j )!d argmax

s

8<: W (s)� jsj=2 s � 0

(�j+1=�j)W (s)� (�j+1=�j)jsj=2 s > 0
;

where �j = �j(�)0H0
j (�)�j(�); �j+1 = �j(�)

0H0
j+1(�)�j(�); �

2
j = � (1� �)�j(�)0J0j�j(�); �2j+1 =

� (1� �)�j(�)0J0j+1�j(�) and W (s) is the standard two-sided Brownian motion. Also,
p
T (�̂j(�)� �0j (�))!d N (0; Vj)

with Vj = �(1� �)
0j (�)=(�0j � �0j�1)2 and 
0j (�) = (H0
j (�))

�1J0j (H
0
j (�))

�1 for j = 1; :::;m+ 1.
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The limiting distribution has the same structure as that of Bai (1995). An analytical expression

for its cumulative distribution function is provided in Bai (1997). To construct con�dence intervals,

we need to replace H0
j (�) and J

0
j by consistent estimates. These can be obtained by conditioning

on the estimated break date T̂j . For example,

Ĥ1(�) = T̂�11

T̂1X
t=1

f̂t(F
�1
t (�))xtx

0
t; Ĵ1 = T̂�11

T̂1X
t=1

xtx
0
t:

The estimates for the densities, f̂t(F�1t (�)); can be obtained using the di¤erence quotient, as con-

sidered by Siddiqui (1960) and Hendricks and Koenker (1992). A detailed discussion can be found

in Qu (2008, pp. 176-177).

4 Structural changes in multiple quantiles

Structural change can be heterogeneous in the sense that di¤erent quantiles can change by di¤erent

magnitudes. In such a context, it can be more informative to consider a range of quantiles as

opposed to a single one.

Suppose that quantiles in the interval T! = [!1; !2] with 0 < !1 < !2 < 1 are a¤ected

by structural change. Then, a natural approach is to consider a partition of this interval and

examine a set of quantiles denoted by �h; h = 1; :::; q. After such a set of quantiles is speci�ed,

the estimation can be carried out in a similar way as in Section 3. Speci�cally, we de�ne the

following objective function for a set of candidate break dates T b = (T1; :::; Tm) and parameter

values �(T!) = (�(�1)0; :::; �(� q)0)0 :

ST (T!; �(T!); T b) =
qX
h=1

mX
j=0

Tj+1X
t=Tj+1

��h(yt � x
0
t�j+1(�h));

and solve

(�̂(T!); T̂ b) = arg min
�(T!);T b2�"

ST (T!; �(T!); T b); (10)

where �" has the same de�nition as in (7). The minimization problem (10) consists of three

steps. First, we minimize ST (�h; �(�h); T b) for a given partition of the sample and a given quantile

�h. Then, still conditioning on the same partition, we repeat the minimization for all quantiles

f�h : h = 1; :::; qg to obtain ST (T!; �̂(T!); T b). Finally, we search over all possible partitions T b 2 �"
to �nd the break dates that achieve the global minimum of ST (T!; �(T!); T b).

In practice, we need to choose T! and �h (h = 1; :::; q). We view this as an empirical issue. The
interval T! is often easy to determine given the question of interest. The choice of �h is more delicate
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and will require some judgement. Evidence from the empirical literature suggests that considering

a coarse grid of quantiles often su¢ ces to deliver desired information. The spacing can be between

5% and 15% depending on the question of interest. For example, Chamberlain (1994) studied a

variety of issues including the changes in returns to education from 1979 to 1987. He considered

quantile regression models of log weekly earnings for �ve quantiles � = 0:10; 0:25; 0:50; 0:75 and 0:90.

There, the quantiles 0:10 and 0:90 were used to examine the tails of the distribution, the quantile

0:50 was used to measure the central tendency while 0:25 and 0:75 captured the intermediate

cases. He showed that the returns to education are di¤erent across quantiles. They also appear

to be di¤erent for 1979 and 1987. This choice of quantiles has now become a useful rule of thumb

in the empirical labor literature. For example, Angrist, Chernozhukov and Fernández-Val (2006)

considered the same quantiles when analyzing change in US wage inequality; see also Buchinsky

(1994). Similar choices are also often made in other applied micro areas. For example, Eide and

Showalter (1998) and Levin (2001) considered the e¤ect of school quality and class size on student

performance and Poterba and Rueben (1995) considered public-private wage di¤erentials in the

United States. Intuitively, a coarse grid often su¢ ces because adjacent quantiles typically exhibit

similar properties. Therefore, the incremental information gained from considering a �ner grid is

typically small. Once the grid is chosen, we suggest carrying out estimation using both multiple

quantiles and individual quantiles and providing a full disclosure of the results.

In practice, there will be some arbitrariness associated with a particular grid choice. Therefore

it is useful to experiment with di¤erent grids to examine result sensitivity. For each grid choice,

the proposed method can be used to obtain point estimates and con�dence intervals, which can

then be compared to examine result sensitivity. This point will be illustrated using two empirical

applications in Section 8.

We impose the following assumption on the q quantiles entering the estimation.

Assumption 7. The conditional quantile functions at �h (h = 1; :::; q) satisfy Assumptions 1-5.

There exists at least one quantile � j (1 � j � q) satisfying Assumption 6 (other quantiles can

remain stable or satisfy Assumption 6). Also, q is �xed as T !1.

The next Corollary gives the limiting distribution of estimated break dates. The distributions

for �̂(�h) (h = 1; :::; q) are the same as in Theorem 1, and thus are not repeated here.

10



Corollary 1 Under Assumption 7, for j = 1; :::;m, 
��j
��j

!2
v2T (T̂j � T 0j )!d argmax

s

8<: W (s)� jsj=2 s � 0

(��j+1=�
�
j )W (s)� (��j+1=��j )jsj=2 s > 0

;

where W (s) is the standard two-sided Brownian motion, ��j = (1=q)
Pq
h=1�j(�h)

0H0
j (�h)�j(�h),

��j+1 = (1=q)
Pq
h=1�j(�h)

0H0
j+1(�h)�j(�h), �

�2
j = (1=q2)

Pq
h=1

Pq
g=1(�h^� g��h� g)�j(�h)0J0j�j(� g)

and ��2j+1 = (1=q
2)
Pq
h=1

Pq
g=1(�h ^ � g � �h� g)�j(�h)0J0j+1�j(� g):

5 Models with repeated cross sections

Suppose the data set contains observations (x0it; yit); where i is the index for individual and t for

time. Assume i = 1; :::; N and t = 1; :::; T .

First, consider structural changes in a single conditional quantile function. Suppose the data

generating process is

Qyit(� jxit) = x0it�
0
j (�) for t = T 0j�1 + 1; :::; T

0
j ; (11)

where the break dates T 0j (j = 1; :::;m) are common to all individuals. The estimation procedure

is similar to that in Section 3. Speci�cally, for a set of candidate break dates T b = (T1; :::; Tm),

de�ne the following function

SNT (� ; �(�); T
b) =

mX
j=0

Tj+1X
t=Tj+1

NX
i=1

�� (yit � x0it�j+1(�));

where an additional summation �
PN
i=1�is present to incorporate the cross-sectional observations.

Then, solve the following minimization problem to obtain the estimates:

(�̂(�); T̂ b) = arg min
�(�);T b2�"

SNT (� ; �(�); T
b):

Let Ft�1 denote the �-algebra generated by fxit; yi;t�1; xi;t�1;yi;t�2; :::gNi=1 : Let u0it(�) denote
the di¤erence between yit and its �th conditional quantile, i.e.,

u0it(�) = yit � x0it�0j (�) for T 0j�1 + 1 � t � T 0j (j = 1; :::;m+ 1):

We make the following assumptions, which closely parallel the ones in Section 3.

Assumption B1. For a given i,
�
1(u0it(�) < 0)� �

	
is a martingale di¤erence sequence with

respect to Ft�1. Also, u0it(�) and u0jt(�) are independent conditional on Ft�1 for all i 6= j:

11



Assumption B2. Assumption 2 holds for fFit(�)g and ffit(�)g.

Assumption B3. For any � > 0 there exists a �(�) > 0 such that jfit(F�1it (�)+s)�fit(F
�1
it (�))j < �

for all jsj < �(�) and all 1 � i � N and 1� t � T .

Assumption B4. The break dates are common for all i; T 0j = [�
0
jT ] with 0 < �01 < ::: < �0m < 1:

Assumption B5. (a) an intercept is included in xit; (b) for every j = 1; :::;m+ 1,

1

NT

NX
i=1

T 0j�1+[sT ]X
t=T 0j�1+1

fit(F
�1
it (�))xitx

0
it !p s �H0

j (�) and
1

NT

NX
i=1

T 0j�1+[sT ]X
t=T 0j�1+1

xitx
0
it !p s �J0j

uniformly in N and 0 � s � �0j � �0j�1, where �H0
j (�) and �J0j are non-random positive de�nite

matrices; (c) Ejjxitjj4+' < L with some ' > 0 and L < 1 for all i and t; (d) there exist M < 1
and 
 > 2 such that (NT )�1

PT
t=1

PN
i=1Ejjxitjj2
+1 < M and E((NT )�1

PT
t=1

PN
i=1 kxitk

3)
 <

M hold for all N and su¢ ciently large T ; (e) there exists j0 > 0 such that the eigenvalues of

(jN)�1
Pl+j
t=l

PN
i=1 xitx

0
it are bounded from above and below by �max and �min for all N; all j � j0

and 1 � l � T � j; 0 < �min � �max <1:

Assumption B1 allows for dynamic models but rules out cross-sectional dependence in u0it(�).

B2 and B3 strengthen Assumptions 2 and 3, requiring them to hold for all i and t. B4 assumes that

the individuals are a¤ected by common breaks. B5 is essentially a re-statement of Assumption 5.

Assumption B6. Assume N and T satisfy one of the following two conditions: (1) N is �xed

as T ! 1, or (2) (N;T ) ! 1 but logN=T #=2 ! 0; where # is de�ned in Assumption 6. If

the second condition holds, then assume the process
�
xit(1

�
u0it(�) < 0

�
� �)

	
forms a stationary

ergodic random �eld indexed by i and t.

Assumption B6 encompasses both smallN and largeN asymptotics. The condition logN=T #=2 !
0 allows for both N=T ! 0 and N=T !1. The restriction is therefore quite mild. The second part
of this assumption is used to ensure that the process

�
xit(1

�
u0it(�) < 0

�
� �)

	
satis�es a functional

central limit theorem as (N;T ) ! 1. It can be replaced by other conditions that serve the same
purpose.

Assumption B7. Let �NT;j(�) = �0j+1(�) � �0j (�). Assume �NT;j(�) = N�1=2vT�j(�) for

some k�j(�)k > 0 independent of T and N , where vT > 0 is a scalar satisfying vT ! 0 and

T (1=2)�#vT !1 with # de�ned in Assumption 6:

12



Assumption B7 implies that, with the added cross-sectional dimension, the model can now

handle break sizes that are of order equal to N�1=2vT , which is smaller than in the pure time series

case given by O(vT ). This assumption ensures that the estimated break dates will converge at

the rate v�2T . If the breaks were of higher order than N
�1=2vT , then the estimated breaks would

converge faster than v�2T . In those cases, the con�dence interval reported below will tend to be

conservative. Thus, this assumption, as in the pure time series case, can be viewed as a strategy to

deliver a con�dence interval that has good coverage when the break size is moderate while being

conservative when the break size is large.

The next two results present the rates of convergence and limiting distributions of the estimates.

Lemma 2 Under Assumptions B1-B7, we have v2T (T̂j�T 0j ) = Op(1) for j = 1; :::;m and
p
NT (�̂j(�)�

�0j (�)) = Op(1) for j = 1; :::;m+ 1:

Theorem 2 Let Assumptions B1-B7 hold. Then, for j = 1; :::;m,

�
��j
��j

�2
v2T (T̂j � T 0j )!d argmax

s

8<: W (s)� jsj=2 s � 0

(��j+1=��j)W (s)� (��j+1=��j)jsj=2 s > 0
;

where ��j = �j(�)0 �H0
j (�)�j(�); ��j+1 = �j(�)

0 �H0
j+1(�)�j(�); ��

2
j = � (1� �)�j(�)0 �J0j�j(�); ��2j+1 =

� (1� �)�j(�)0 �J0j+1�j(�) and W (s) is the standard two-sided Brownian motion. Also,

p
NT (�̂j(�)� �0j (�))!d N

�
0; �Vj

�
with �Vj = �(1� �)�
0j (�)=(�0j � �0j�1)2 and �
0j (�) = ( �H0

j (�))
�1 �J0j (

�H0
j (�))

�1 for j = 1; :::;m+ 1.

An equivalent way to express the limiting distribution in Theorem 2 is as follows

N

8><>:
�
�NT;j(�)

0 �H0
j (�)�NT;j(�)

�2
� (1� �)�NT;j(�)0 �J0j�NT;j(�)

9>=>; (T̂j � T 0j )
! d argmax

s

8<: W (s)� jsj=2 s � 0

(��j+1=��j)W (s)� (��j+1=��j)jsj=2 s > 0
;

where �NT;j(�) denotes the magnitude of the jth break for a given �nite sample of size (N;T ).

This representation clearly illustrates the e¤ect of the cross section sample size N on the precision

of the break estimates. Namely, if everything in the parentheses stays the same, increasing N will

proportionally decrease the width of the con�dence interval for break dates. Such a �nding was �rst
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reported by Bai et al. (1998) when considering the estimation of a common break in multivariate

time series regressions.

We now extend the analysis to consider structural breaks in multiple quantiles. De�ne, for a

given T! and T b = (T1; :::; Tm);

SNT (T!; �(T!); T b) =
qX
h=1

mX
j=0

Tj+1X
t=Tj+1

NX
i=1

�(yit � x0it�j+1(�h))

and

(�̂(T!); T̂ b) = arg min
�(T!);T b2�"

SNT (T!; �(T!); T b):

Assumption B8. The conditional quantiles for �h (h = 1; :::; q) satisfy Assumptions B1-B6. There

exists at least one quantile � j (1 � j � q) satisfying Assumption B7. Also, q is �xed as T !1.

Corollary 2 Under Assumption B8, for j = 1; :::;m, 
���j
���j

!2
v2T (T̂j � T 0j )!d argmax

s

8<: W (s)� jsj=2 s � 0

(���j+1=��
�
j )W (s)� (���j+1=���j )jsj=2 s > 0

;

where W (s) is the standard two-sided Brownian motion, ���j = (1=q)
Pq
h=1�j(�h)

0 �H0
j (�h)�j(�h),

���j+1 = (1=q)
Pq
h=1�j(�h)

0 �H0
j+1(�h)�j(�h); ��

�2
j = (1=q2)

Pq
h=1

Pq
g=1(�h^� g��h� g)�j(�h)0 �J0j�j(� g)

and ���2j+1 = (1=q
2)
Pq
h=1

Pq
g=1(�h ^ � g � �h� g)�j(�h)0 �J0j+1�j(� g):

In summary, the method discussed in this section permits us to estimate structural breaks using

individual level data. In this aspect, a closely related paper is Bai (2009), who considers common

breaks in a linear panel data regression. A key di¤erence is that Bai (2009) studies change in the

mean or the variance while here we consider change in the conditional distribution. Hence, the

results complement each other.

6 A procedure to determine the number of breaks

The following procedure is motivated by Bai and Perron (1998). It is built upon two test statistics,

SQ� and DQ, proposed in Qu (2008). We �rst give a brief review of these two tests.

The SQ� test is designed to detect structural change in a given quantile � :

SQ� = sup
�2[0;1]




(�(1� �))�1=2 hH�;T (�̂(�))� �H1;T (�̂(�))i



1
;
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where

H�;T (�̂(�)) =

 
TX
t=1

xtx
0
t

!�1=2 [�T ]X
t=1

xt � (yt � x0t�̂(�)) and

 � (u) = � � 1(u < 0)

if we have a single time series, and

H�;T (�̂(�)) =

 
TX
t=1

NX
i=1

xitx
0
it

!�1=2 [�T ]X
t=1

NX
i=1

xit � (yit � x0it�̂(�))

with repeated cross section, �̂(�) is the estimate using the full sample assuming no structural

change, and k:k1 is the sup norm, i.e. for a generic vector z = (z1; :::; zk); kzk1 = max(z1; :::; zk).

The DQ test is designed to detect structural changes in quantiles in an interval T!:

DQ = sup
�2T!

sup
�2[0;1]




H�;T (�̂(�))� �H1;T (�̂(�))



1
:

These tests are asymptotically nuisance parameter free and tables for critical values are provided in

Qu (2008). They do not require estimating the variance parameter (more speci�cally, the sparsity),

thus having monotonic power even when multiple breaks are present. Qu (2008) provided a simple

simulation study. The results show that these two tests compare favorably with Wald-based tests

(c.f. Figure 1 in Qu, 2008).

We also need the following tests for the purpose of testing l against l + 1 breaks, labelled as

SQ� (l + 1jl) test and DQ(l + 1jl) test. The construction follows Bai and Perron (1998). Suppose
a model with l breaks has been estimated with the estimates denoted by T̂1; :::; T̂l. These values

partition the sample into (l+1) segments, with the jth segment being [T̂j�1 +1; T̂j ]. The strategy

proceeds by testing each of the (l + 1) segments for the presence of an additional break. We let

SQ�;j and DQj denote the SQ� and DQ test applied to the jth segment, i.e.,

SQ�;j = sup
�2[0;1]




(�(1� �))�1=2 hH�;T̂j�1;T̂j (�̂j(�))� �H1;T̂j�1;T̂j (�̂j(�))i


1 ;

DQj = sup
�2T!

sup
�2[0;1]




H�;T̂j�1;T̂j (�̂j(�))� �H1;T̂j�1;T̂j (�̂j(�))


1 ;

where

H�;Tj�1;Tj (�̂j(�)) =

0@ TjX
t=Tj�1+1

xtx
0
t

1A�1=2 [�(Tj�Tj�1)]X
t=Tj�1+1

xt � (yt � x0t�̂j(�))
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if we have a single time series,

H�;Tj�1;Tj (�̂j(�)) =

0@ TjX
t=Tj�1+1

NX
i=1

xitx
0
it

1A�1=2 [�(Tj�Tj�1)]X
t=Tj�1+1

NX
i=1

xit � (yit � x0it�̂j(�))

if we have repeated cross sections, �̂j(�) is the estimate using the jth regime. Then, SQ� (l+1jl) and
DQ(l + 1jl) equals to the maximum of the SQ�;j and DQj over the l + 1 segments, i.e.,

SQ� (l + 1jl) = max
1�j�l+1

SQ�;j ;

DQ(l + 1jl) = max
1�j�l+1

DQj :

We reject in favor of a model with (l + 1) breaks if the resulting value is su¢ ciently large.

Some additional notation is needed to present the limiting distributions of the SQ� (l+1jl) and
DQ(l+1jl) tests. Let Bp(s) be a vector of p independent Brownian bridge processes on [0; 1]. Also,
let Bp(u; v) = (B(1)(u; v); :::; B(p)(u; v))0 be a p-vector of independent Gaussian processes with each

component de�ned on [0; 1]2 having zero mean and covariance function

E(B(i)(r; u)B(i)(s; v)) = (r ^ s� rs) (u ^ v � uv) :

The process B(i)(r; u) is often referred to as the Brownian Pillow or tucked Brownian Sheet.

Theorem 3 Suppose m = l and that the model is given by (1) or (11) with Assumptions 1-6 or

B1-B7 satis�ed. Then, P (SQ� (l + 1jl) � x) ! Gp(x)
l+1 with Gp(x) the distribution function of

sups2[0;1] kBp(s)k1. If these assumptions hold uniformly in T!; then P (DQ(l+1jl) � x)! �Gp(x)
l+1

with �Gp(x) the distribution function of sup�2T! sups2[0;1] kBp(�; �)k1.

The above limiting distributions depend on the number of parameters in the model (p), the

number of changes under the alternative hypothesis (l + 1) and the trimming proportion (!) in

the case of the DQ test (note that we assume T! = [!; 1� !]). Instead of reporting critical values

for each case, we conduct extensive simulations and provide relevant information via response

surface regressions. Speci�cally, we �rst simulate critical values for speci�cations with 1 � p � 20;
0 � l � 4 and 0:05 � ! � 0:30; with the increment being 0:01. Then, we estimate a class of

nonlinear regression of the form:

CVi(�) = (z
0
1i�1) exp(z

0
2i�2) + ei;

where CVi is a simulated critical value for a particular speci�cation i, z1i and z02i indicate the

corresponding p; l and !, ei is an error term, and � is the nominal size. Regressors are selected

such that the R2 is not smaller than 0.9999. The selected regressors are
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� SQ� (l + 1jl) test: z1 =
�
1; p; l + 1; 1=p; (l + 1)p;

�
and z2 =

�
1=(l + 1)

�
;

� DQ(l + 1jl) test: z1 =
�
1; p; l + 1; 1=p; (l + 1)p; (l + 1)!

�
and z2 =

�
1=(l + 1); 1=(l + 1)!; !

�
.

The estimated coe¢ cients are reported in Table 1, which can then be used for a quick calculation

of the relevant critical values for a particular application.

We now discuss a procedure that can be used to determine the number of breaks (we consider

the interval T! and focus on the quantiles �1; :::; � q 2 T!).

� Step 1. Apply the DQ test. If the test does not reject, conclude that there is no break and

terminate the procedure. If it rejects, then estimate the model allowing one break. Save the

estimated break date and proceed to Step 2.

� Step 2. Apply the DQ(l + 1jl) tests starting with l = 1. Increase the value of l if the test
rejects the null hypothesis. In each stage, the model is re-estimated and the break dates are

the global minimizers of the objective function allowing l breaks. Continue the process until

the test fails to reject the null.

� Step 3. Let l̂ denote the �rst value for which the test fails to reject. Estimate the model
allowing l̂ breaks. Save the estimated break dates and con�dence intervals.

� Step 4. This step treats the q quantiles separately and can be viewed as a robustness check.
Speci�cally, for every quantile �h (h = 1; :::; q), apply the SQ� and SQ� (l + 1jl) tests. Carry
out the same operations as in Steps 1 to 3. Examine whether the estimated breaks are in

agreement with those from Step 3.

Since this is a sequential procedure, it is important to consider its rejection error. Suppose there

is no break and a 5% signi�cance level is used. Then, there is a 95% chance that the procedure

will be terminated in Step 1, implying the probability of �nding one or more breaks is 5% in large

samples. If there are m breaks with m > 0, then, similarly, the probability of �nding more than

m breaks will be at most 5%. Of course, the probability of �nding less than m breaks in �nite

samples will vary from case to case depending on the magnitude of the breaks.

7 Monte Carlo experiments

We focus on the following location-scale model with a single structural change:

yit = 1 + xit + �Nxit1(t > T=2) + (1 + xit)uit; (12)
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where xit �i.i.d:�2(3)=3, uit � i:i:d:N(0; 1), i = 1; :::; N and t = 1; :::; T . We set T = 100 and

consider N = 1; 50 and 100. �N = 1:0=
p
N; 2:0=

p
N and 3:0=

p
N , where the scaling factor

p
N

makes the break sizes comparable across di¤erent N�s. Note that the powers of the DQ test against

these three alternatives (at 5% nominal level, constructed with T! = [0:2; 0:8]) are about 27%, 83%
and 99% respectively. The powers of the sup-Wald test (Andrews, 1993) are similar. Thus, 1:0=

p
N

can be viewed as a small break and 3:0=
p
N as a large break.

The computational detail is as follows. All parameters are allowed to change when estimating

the model. The break date is searched over [0:15T; 0:85T ]. The Bo�nger bandwidth is used for

obtaining the quantile density function. Finally, all simulation results are based on 2000 replications.

7.1 Coverage rates

We examine the coverage property of the asymptotic con�dence intervals at 95% nominal level.

Seven evenly spaced quantiles (0:2; 0:3; :::; 0:8) are considered in the analysis.

Table 2 presents coverage rates for the break date. The �rst seven columns are based on a single

quantile function. The empirical coverage rates are between 86.6% and 92.0% when �N = 1:0=
p
N ,

between 88.6% and 93.4% when �N = 2:0=
p
N and between 92.6% and 97.0% when �N = 3:0=

p
N .

The values are quite stable across di¤erent N�s, suggesting that the framework developed in Section

5 provides a useful approximation. The last column in the table is based on all seven quantiles.

The result is quite similar to the single quantile case.

Table 3 reports coverage rates for �N . When the break size is small (�N = 1:0=
p
N) and

the break date is estimated using a single quantile function, the con�dence interval shows under-

coverage, particularly for quantiles near the tail of the distribution. In contrast, when the break

date is estimated using the seven quantile functions, the coverage rates are uniformly closer to the

nominal rate, with the improvement being particularly important for more extreme quantiles. This

suggests that even if one is only interested in a single quantile, say the 20th percentile, it may still

be advantageous to borrow information from other quantiles when estimating the break date. Note

that once the break size reaches 2:0=
p
N , the coverage rate is satisfactory, being robust to di¤erent

cross section sample sizes and to whether the break date is estimated based on a single quantile or

multiple quantiles.

The above result suggests that the asymptotic framework delivers a useful approximation. A

shortcoming to the shrinking break framework is that the con�dence intervals are liberal when the

true break is small. This problem can be alleviated to some extent by borrowing information across

quantiles. It should be noted that a few studies have addressed this under-coverage issue in other
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contexts and alternative inferential frameworks have been proposed, see Bai (1995) and Elliott and

Müller (2007, 2010). A method that allows for multiple breaks has yet to be developed.

7.2 Empirical distribution of break date estimates

We compare estimates based on the median regression, the joint analysis of seven quantiles and

the conditional mean regression. In addition to letting uit being N(0; 1), we also consider a t-

distribution with 2.5 degrees of freedom with other speci�cations unchanged.

Table 4 reports the mean absolute deviation (MAD) and the 90% inter-quantile range (IQR90)

of the estimates. The upper panel corresponds to uit being N(0,1). It illustrates that the estimates

based on the median and mean regression have similar properties, while the estimates based on

multiple quantile functions have noticeably higher precision. The lower panel corresponds to uit

being t(2.5). It shows that the estimates based on the median and multiple quantile functions are

similar and are often substantially more precise than the conditional mean regression. Thus, there

can be an important e¢ ciency gain from considering quantile-based procedures in the presence of

fat-tailed error distributions, even if the goal is to detect changes in the central tendency. Even

though this is documented using a very simple model, the result should carry through to more

general settings. Similar �ndings are reported in Bai (1998) in a median regression framework with

i.i.d errors.

8 Empirical Applications

8.1 U.S. real GDP growth

It is widely documented that the volatility of the U.S. real GDP growth has declined substantially

since the early to mid-1980s. For example, McConnell and Perez-Quiros (2000) considered an

AR(1) model for the GDP growth and found a large break in the residual variance occurring in the

�rst quarter of 1984. We revisit this issue using a quantile regression framework. The data set we

use contains quarterly real GDP growth rates for the period 1947:2 to 2009:2. It is obtained from

the web page of the St. Louis Fed (the GDPC96 series) and corresponds to the maximum sample

period available at the time of writing our paper.

We consider the following model for the annualized quarterly growth rate yt:

Qyt(� jyt�1; :::; yt�p) = �j(�) +

pX
i=1

�i;j(�)yt�i (t = T 0j�1 + 1; :::; T
0
j );

where j is the index for the regimes and T 0j corresponds to the last observation from the jth

regime. The break dates and the number of breaks are assumed to be unknown. We consider
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�ve equally spaced quantiles, � = 0:20; 0:35; 0:50; 0:65; 0:80, which are chosen to examine both the

central tendency and the dispersion of the conditional distribution.

The Bayesian Information Criterion is applied to determine the lag order of the quantile au-

toregressions, with the maximum lag order set to int[12(T=100)1=4], where T is the sample size.

The criterion selects 2 lags for the quantile � = 0:20 and one lag for the other quantiles. We take

a conservative approach and set p = 2 for all �ve quantiles under consideration.

First, we study the �ve quantiles jointly. The results are summarized in Panel (a) of Table 5.

The DQ test, applied to the interval [0:2; 0:8], equals 0.994. This exceeds the 5% critical value,

which is 0.906, suggesting at least one break is present. The DQ(2j1) test equals 0.612 and is below
the 10% critical value. Therefore, we conclude that only one break is present. The break date

estimated using all �ve quantiles is 1984:1 with a 95% con�dence interval [77:3, 84:2]. This �nding

is consistent with McConnell and Perez-Quiros (2000).

Next, we analyze the quantiles separately. The results are summarized in Panel (b) of Table 5.

The SQ� test detects structural change only in the upper quantiles (� = 0:65; 0:80), but not the

median and the lower quantiles (� = 0:20; 0:35). For � = 0:65; the estimated break date is 1984:2

and for � = 0:80 the date is 1984:1. This con�rms that the break is common to both quantiles.

Table 6 reports coe¢ cient estimates conditional on the break date 1984:1. For both quantiles

(� = 0:65; 0:80); the structural change is characterized by a large decrease in the intercept and

a small change in the sum of the autoregressive coe¢ cients. Thus, overall the dispersion of the

upper tail has decreased substantially. Overall, the results suggest that a major change in the GDP

growth should be attributed to the fact that the growth was less rapid during expansions, while

the recessions have remained just as severe when they occurred.

We also considered a �ner partition including nine evenly spaced quantiles from 0.20 to 0.80.

The results are reported in Table 5B. The application of the DQ test reports one break, estimated

at 1984:2, with the 95% con�dence interval being [1980:1,1986:4]. The consideration of individual

quantiles shows that only � = 0:65; 0:725 and 0.80 are a¤ected by the break, with the dates being

1984:2, 1984:2 and 1984:1, respectively. Overall, the results are consistent with the �ve-quantile

speci�cation considered earlier.

To further examine the robustness of the result, we repeated the analysis excluding observations

from 2008-2009. The DQ(l + 1jl) test detects one break and the estimated break date is 1984:2,
con�rming our �ndings using the full sample. We also studied the quantiles separately with the

results summarized in Table 7. It shows that the upper quantiles are a¤ected by structural change

while the median and the 35th percentile are stable. The only di¤erence from the full sample case
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is that the 20th percentile also exhibits a break. However, the break date is 1958:1 and there is no

statistically signi�cant break during the 1980s. Thus, the general picture still holds.

8.2 Underage Drunk Driving

Motor vehicle crash is the leading cause of death among youth ages 15-20, a high proportion of

which involves drunk driving. Here we study structural change in the blood alcohol concentration

(BAC) among young drivers involved in tra¢ c accidents. The study is motivated by the fact that

the BAC level is an important measure of alcohol impairment, whose changes deliver important

information on whether and how young driver�s drinking behavior has changed over time.

The data set contains information on young drivers (less than 21-year-old) involved in motor

vehicle accidents for the state of California over the period 1983-2007. It is obtained from National

Highway Tra¢ c Safety Administration (NHTSA), which reports the BAC level of the driver, his/her

age, gender and whether the crash is fatal. For some observations, the BAC levels were not measured

at the accident and their values were reconstructed using multiple imputations. They constitute

about 26% of the sample. In these cases the �rst imputed value is used in our analysis.

The numbers of observations in each quarter vary between 108 and 314 with the median being

191. We start by constructing a representative random subsample, containing 108 observations in

each quarter with 10,800 observations in total.3 It should be noted that such a procedure does

not introduce bias into our estimates. However, it does involve some arbitrariness and later in the

paper we will report relevant results using the full sample to address this issue.

We consider the following model

Qyit(� jxit) = �j(�) + x
0
it
j(�) (t = T 0j�1 + 1; :::; T

0
j );

where yit is the BAC level. The BAC levels below the 62th percentile are identically zero. Thus,

we consider only the upper quantiles 0:70; 0:75; 0:80 and 0:85, all of which have a positive BAC in

the aggregate. The consequence of such an action will be examined later in the paper.

A "general to speci�c" approach is adopted to determine which variables to include in the re-

gression. We start with a regression that includes age, gender, and quarterly dummies. The dummy

variable for a fatal crash is not included to avoid possible endogeneity. The model is estimated

assuming there is no structural change, with insigni�cant regressors sequentially eliminated until

the remaining ones are signi�cant at 10% level. This leaves the age, gender and a dummy variable

for the fourth quarter (labelled as the winter dummy) in the regression.
3We used the "surveyselect" procedure (SAS) with "Method" set to srs (simple random sampling without replace-

ment) and "Seed" set to 2009.
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We �rst analyze the four quantiles jointly. The results are summarized in Table 8. The DQ(l +

1jl) test, applied to the interval [0:70; 0:85], reports two breaks. Their dates are 1985:1 and 1992:2
with the 95% con�dence intervals being [84:1, 86:1] and [91:2,92:3]. We then consider the quantiles

separately. The test suggests that the 70th; 75th and 80th percentiles are a¤ected by two breaks,

while the 85th percentile is only a¤ected by the second break. The �rst estimated break is 1985:2

and the second is either 1992:2 or 1993:2. Although there is some local variation, overall these

estimates are consistent with the ones based on multiple quantiles. It is interesting to point out

that the con�dence intervals for these two breaks include two historically important policy changes.

Speci�cally, the National Minimum Drinking Age Act (MDA) was passed on July 17, 1984. The

federal beer tax was doubled in 1991, while the California state beer tax experienced a four-fold

increase in the same year.

To examine the result sensitivity, we consider a �ner partition including seven evenly spaced

quantiles from 0.70 to 0.85. The results are reported in Table 8B. The application of the DQ test

reports two breaks, estimated at the same dates with identical 95% con�dence intervals as the

four-quantile case. The consideration of individual quantiles shows that the quantiles � = 0:70 to

0.80 are a¤ected by two breaks and � = 0:825 and 0.85 are a¤ected by one break. The estimated

break dates and con�dence intervals are consistent with the four-quantile case. Overall, the �ndings

remain qualitatively similar.

Figures 1 and 2 report the changes in the quantile functions for representative values of xit

conditioning on break dates 1985:1 and 1992:2. They cover three age groups: 17, 18 and 19, which

correspond to the 25th; 50th and 75th percentile of the unconditional distribution of xit. Males and

females are reported separately. The winter dummy is set to zero (setting it to one produces similar

results and is omitted to save space). Figure 1 presents results for males. Each panel contains the

changes and their pointwise 95% con�dence intervals. Three interesting patterns emerge. First, the

changes are all negative. They are also economically meaningful because BAC levels as low as 0.02

can a¤ect a person�s driving ability with the probability of a crash increasing signi�cantly after

0.05 according to studies by NHTSA. Secondly, for the �rst break, the change becomes smaller as

age increases while for the second the opposite is true. Finally and most importantly, the change

is smaller for higher quantiles, suggesting that the policies are more e¤ective for "light drinkers"

than for "heavy drinkers" in the sample. This is unfortunate since heavy drinkers are more likely

to cause an accident. Figure 2 presents results for females. The �ndings are qualitatively similar,

except for the second break the change is more homogeneous across quantiles. It should also be

noted that for the �rst break, the con�dence intervals at the 85th percentile typically include zero
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(except for the �rst �gure in 1(a)). This is consistent with the �ndings in Table 8, where for this

quantile only one break is detected.

8.2.1 Further robustness analysis

We focus on the following two issues: 1) the distribution of BAC levels has a mass at zero, and 2)

the analysis has been conducted on a subsample.

To address the �rst issue, we apply the censored quantile regression of Powell (1996) conditioning

on the break dates 1985:1 and 1992:2. The model is estimated using the crq prcedure in quantreg.

The estimated changes are reported in Figure 1 and 2 (the solid line with triangle). The results are

very similar.

To address the second issue, the break dates are re-estimated using the full sample. The

estimates are 1985:2 and 1992:3 using the four quantile functions. Conditioning on the break dates,

the model is re-estimated using both quantile regression and censored quantile regression. The

estimated changes are found to be very similar to the ones reported in Figures 1 and 2. Most

importantly, the three patterns discussed above still hold. The details are not repeated here to save

space.

Thus, the results remain qualitatively the same after accounting for these two issues. In sum-

mary, this empirical application, although quite simple, illustrates that rich information can be

extracted from considering structural change in the conditional quantile function.

9 Conclusions

We have considered the estimation of structural changes in regression quantiles, allowing for both

time series models and repeated cross-sections. The proposed method can be used to determine the

number of breaks, estimate the break locations and other parameters, and obtain corresponding

con�dence intervals. A simple simulation study suggests that the asymptotic theory provides useful

approximation in �nite samples. The two empirical applications, to the "Great Moderation" and

underage drunk driving, suggest that our framework can potentially deliver richer information than

simply considering structural change in the conditional mean function.
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Appendix
We provide detailed proofs for results in Section 5. They imply Lemma 1, Theorem 1 and

Corollary 1 as special cases (N = 1). All limiting results are derived using T ! 1 with N �xed,
or (N;T )!1. For a given � and � 2 Rp, de�ne

q�;it(�) = �� (u
0
it(�)� x0it�)� �� (u0it(�)) and Qk(� ; �) =

kX
t=1

NX
i=1

q�;it(�):

The following decomposition, due to Knight (1998), will be used repeatedly in the analysis:

Qk(� ; �) =Wk(� ; �) + Zk(� ; �); (A.1)

where

Wk(� ; �) = �
kX
t=1

NX
i=1

 � (u
0
it(�))x

0
it� with  � (u) = � � 1(u < 0);

Zk(� ; �) =

kX
t=1

NX
i=1

Z x0it�

0
(1(u0it(�) < s)� 1(u0it(�) < 0))ds: (A.2)

Wk(� ; �) is a zero-mean process for �xed � and �, while Zk(� ; �) is in general not. De�ne

bit(� ; �) = x0it1(u
0
it(�) < x0t�)

�it(� ; �) = fbit(� ; �)� bit(� ; 0)g � Et�1 fbit(� ; �)� b(� ; 0)g ;

where Et�1 is taken with respect to the �-algebra generated by fxit; yi;t�1; xi;t�1;yi;t�2; :::gNi=1. Note
that �it(� ; �) forms an array of martingale di¤erences for given � and �.

The following Lemma provides upper and lower bounds for Zk(� ; �) in terms of bit(� ; �).

Lemma A.1 Suppose there is no structural change. Then, for every k = 1; :::; T ,

0 � (1=2)
kX
t=1

NX
i=1

fbit(� ; �=2)� bit(� ; 0)g� � Zk(� ; �) �
kX
t=1

NX
i=1

fbit(� ; �)� bit(� ; 0)g�:

Proof of Lemma A.1. We consider the (i; t)th term in the summation (A.2). If x0it� � 0, then
it is bounded from below byZ x0it�

x0it�=2
f1(u0it(�) < s)� 1(u0it(�) < 0)gds �

Z x0it�

x0it�=2
f1(u0it(�) < x0it�=2)� 1(u0it(�) < 0)gds

= (1=2)fbit(� ; �=2)� bit(� ; 0)g� � 0:

If x0it� < 0, then this term is equal toZ 0

�jx0it�j
f1(u0it(�) < 0)� 1(u0it(�) < s)gds �

Z �jx0it�j=2

�jx0it�j
f1(u0it(�) < 0)� 1(u0it(�) < �jx0it�j=2)gds

= (1=2)fbit(� ; �=2)� bit(� ; 0)g� � 0:
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Taking the summation yields the lower bound. The upper bound can be proved similarly. �
The next lemma will be used to study the asymptotic properties of the bounds derived in the

previous lemma.

Lemma A.2 Suppose there is no structural change and Assumptions B1-B3 and B5-B6 hold.

1. Let �1 =
�
� 2 Rp : k�k = A(NT )�1=2

	
with A being some arbitrary constant, then

sup
s2[0;1]

sup
�2�1







(NT )�1=2
[Ts]X
t=1

NX
i=1

�it(� ; �)







 = op(1):

2. Let �2 =
�
� 2 Rp : k�k = A(Nk)�1=2(logNT )1=2

	
with A being some arbitrary constant.

Then, for any � > 0 and � > 0, there exists a TL <1, such that for all T � TL;

P

 
sup
1�k�T

sup
�2�2






(Nk)�1=2 (logNT )�1=2
kX
t=1

NX
i=1

�it(� ; �)






 > �

!
< �:

3. Let hT and dT be positive sequences such that as T ! 1, hT is nondecreasing, hT ! 1,
dT ! 1 and (hTd2T )=T ! h with 0 < h < 1. Let �3 =

�
� 2 Rp : k�k = (NT )�1=2dT

	
.

Then, for any � > 0, D > 0 and B > 0, there exists TL <1, such that for all T � TL;

P

 
sup

BhT�k�T
sup
�2�3






k�1N�1=2
kX
t=1

NX
i=1

�it(� ; �)






 > DdT =
p
T

!
< �:

Proof of Lemma A.2. Without loss of generality, we assume that the components of xit are
nonnegative. Otherwise, let xit;j denote the jth component of xit and we can write xit;j = x+it;j �
x�it;j � xit;j1(xit;j � 0) � xit;j1(xit;j < 0): Then, x+it;j and x

�
it;j are nonnegative and satisfy the

Assumptions stated in the paper. We will only prove the result for a �xed �, because the uniformity
over �1;�2 or �3 follows from the compactness of these sets and the monotonicity of bit(� ; �) in
x0it�, which can be veri�ed using the same argument as in Theorem A3(ii) in Bai (1996).

Consider the �rst result. For any � 2 �1, �it(� ; �) satis�es

Et�1 k�it(� ; �)k2 � kxitk2
���Fit(x0it�0(�) + (NT )�1=2A kxitk)� � ��� (A.3)

� (NT )�1=2AUf kxitk3 ;

where Uf is de�ned in Assumption B2. Applying the Doob inequality and the Rosenthal inequality
as in Bai (1996, p.618), we have, for any N and T ,

P

0@ sup
s2[0;1]







(NT )�1=2
[Ts]X
t=1

NX
i=1

�it(� ; �)







 > �

1A
� M1

�2


(
(NT )�
E

 
TX
t=1

NX
i=1

Et�1jj�it(� ; �)jj2
!


+ (NT )�
E

 
TX
t=1

NX
i=1

Et�1jj�it(� ; �)jj2

!)
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where 
 is de�ned in Assumption B5(d) and M1 is some constant that depends only on p and 
.
The �rst term inside of the curly brackets, after applying (A.3), is bounded by

(NT )�
=2E

 
AUf (NT )

�1
TX
t=1

NX
i=1

kxitk3
!


� (NT )�
=2 (AUf )
M ! 0 as T !1 (A.4)

due to Assumption B5(d). The second term can be rewritten as

(NT )�
+1=2E

 
(NT )�1=2

TX
t=1

NX
i=1

Et�1 k�it(� ; �)k2
�2 k�it(� ; �)k2
!
:

Because k�it(� ; �)k � kxitk, the preceding quantity is less than or equal to

(NT )�
+1=2E

 
(NT )�1=2

TX
t=1

NX
i=1

kxitk2
�2Et�1 k�it(� ; �)k2
!

� (NT )�
+1=2E

 
AUf (NT )

�1
TX
t=1

NX
i=1

kxitk2
+1
!

� (NT )�
+1=2AUfM ! 0 as T !1; (A.5)

where the �rst inequality uses (A.3) and the second uses Assumption B5(d). (A.4) and (A.5) imply
that Lemma A.2.1 holds for any given � 2 �1.

Consider the second result. Note that

P

 
sup
1�k�T







Pk
t=1

PN
i=1 �it(� ; �)

(Nk log (NT ))1=2






 > �

!
�

TX
k=1

P

 





Pk
t=1

PN
i=1 �it(� ; �)

(Nk log (NT ))1=2






 > �

!
:

The rest of the proof is similar to the �rst result. Applying the Markov inequality followed by the
Rosenthal inequality, we have, for any � > 0 and some 
 > 2;

TX
k=1

P

 





Pk
t=1

PN
i=1 �it(� ; �)

(Nk log (NT ))1=2






 > �

!

�
TX
k=1

M2

(Nk log(NT ))
=2�2


(
E

 
(Nk)�1

kX
t=1

NX
i=1

kxitk3
!


+

 
(Nk)�1E

kX
t=1

NX
i=1

kxitk2
+1
!)

�
�

2M2M

(N log(NT ))
=2�2


� TX
k=1

k�
=2

where M2 is a constant that only depends on p, Uf , 
 and A, and the second inequality uses
Assumption B5(d). Because 
 > 2; the summation

PT
k=1 k

�
=2 is �nite. The term inside the
parentheses converges to zero. Thus, Lemma A.2.2 holds.

For the third result, applying the same argument as above and using

Et�1 k�it(� ; �)k2 � (NT )�1=2dTUf kxitk3
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for any � 2 �3; we have

P

 
sup

BhT�k�T






k�1N�1=2
kX
t=1

NX
i=1

�it(� ; �)






 > DdT =
p
T

!
(A.6)

� M1

X
k�BhT

( 
T 1=2

kdT

!
 �
Uf

N1=2D2

�

E

 
(Nk)�1

kX
t=1

NX
i=1

kxitk3
!


+

 
T 1=2

kdT

!2
�1�
Uf
D2


�
E

 
(Nk)�1

kX
t=1

kxitk2
+1
!9=;

� M3

X
k�BhT

8<:
 
T 1=2

kdT

!

+

 
T 1=2

kdT

!2
�19=; ;

where M3 =M1M max
n�
Uf=(N

1=2D2)
�

; Uf=D

2

o
. Rewrite the preceding line as

M3

B
�1

�
T

hTd2T

�
�1�d2T
T

� 

2
�1
8<: X
k�BhT

(BhT )

�1

k


9=;
+

M3

B2
�2

�
T

hTd2T

�2
�2�d2T
T

�
� 3
2

8<: X
k�BhT

(BhT )
2
�2

k2
�1

9=; :

For the �rst term,
�
T=(hTd

2
T )
�
�1 ! h1�
 < 1;

�
d2T =T

�
=2�1 ! 0 because 
 > 2; and the
summation inside the curly brackets is �nite by the Euler-Maclaurin formula. Thus, this term
converges to zero. The second term also converges to zero by the same argument. �

The next Lemma provides convergence rates for parameter estimates using subsamples.

Lemma A.3 Suppose that there is no structural change and that Assumptions B1-B3 and B5-
B6 hold. Let �̂k be the quantile regression estimate of �

0(�) using observations t = 1; :::; k, and
�k = �̂k � �0(�). Then:

1. (logNT )�1=2(Nk)1=2jj�kjj = Op (1) uniformly over k 2 [1; T ]:

2. For any 0 < � < 1, (NT )1=2jj�kjj = Op (1) uniformly over k 2 [�T; T ].

Proof of Lemma A.3. We only prove the �rst result; the proof of the second is similar and simpler.
The proof is by contradiction, i.e., showing that otherwise the objective function Qk(� ; �k) will be
strictly positive with probability close to 1, implying that �̂k cannot be its minimizer.

Due to the convexity of Qk(� ; �k),
4 it su¢ ces to consider its property over �k satisfying

(logNT )�1=2(Nk)1=2jj�kjj = B;

4 If g(�) is convex, then for any 
 � 1; g(
�)� g(0) � 
 (g(�)� g(0)) :
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where B is an arbitrary positive constant. Apply the Knight identity (A.1) and study the terms
Zk(� ; �k) and Wk(� ; �k) separately. For Zk(� ; �k), by Lemma A.1,

Zk(� ; �k) � (1=2)
kX
t=1

NX
i=1

fbit(� ; �k=2)� bit(� ; 0)g�k (A.7)

� 1

2

kX
t=1

NX
i=1

Et�1 fbit(� ; �k=2)� bit(� ; 0)g�k �





12

kX
t=1

NX
i=1

�it(� ; �k=2)�k







= (a)� k(b)k :

Term (a) satis�es

(logNT )�1(a) � 1

4
(logNT )�1Lf

kX
t=1

NX
i=1

�0kxitx
0
it�k �

1

4
LfB

2�min;

where �min is the minimum eigenvalue of (Nk)�1
Pk
t=1

PN
i=1 xitx

0
it, the �rst inequality is due to

the mean value theorem, and the second inequality uses (logNT )�1=2(Nk)1=2jj�kjj = B. Term (b),
after dividing by (logNT ); is of order op(B) uniformly in k 2 [1; T ] by Lemma A.2.2. Thus,

(logNT )�1 ((a)� k(b)k) � 1

8
LfB

2�min (A.8)

with probability close to 1 uniformly in k 2 [1; T ] for large T . Now consider Wk(� ; �k).

(logNT )�1 jWk(� ; �k)j � (logNT )�1







kX
t=1

NX
i=1

 � (u
0
it(�))x

0
it






 k�kk (A.9)

= B






(Nk)�1=2(logNT )�1=2
kX
t=1

NX
i=1

 � (u
0
it(�))x

0
it






 :
Applying the Hájek-Rényi inequality for martingales (see, e.g., Chow and Teicher, 2003, p. 255),

P

 
sup
1�k�T






(logNT )�1=2(Nk)�1=2
kX
t=1

NX
i=1

 � (u
0
it(�))x

0
it






 > C

!
� 1

C2

NX
i=1

TX
t=1

E kxitk2

Nt log(NT )
;

where C is an arbitrary constant. Because E kxitk2 <1 and
PT
t=1 t

�1 = (log T ); the left hand side
can be made arbitrarily small by choosing a large C: Therefore, if B is large, the term (A.9) will
be dominated by (A.8) asymptotically, implying Qk(� ; �k) will be strictly positive with probability
close to 1 for large T. This contradicts the fact that �k minimizes Qk(� ; �), thus proving the �rst
result. The second result can be proved along the same lines, by applying Lemma A.2.1 to term
(b) and the Hájek-Rényi inequality Wk(� ; �k). �

The next Lemma shows that the objective function Qk(� ; �) can be bounded in various ways
when the model is estimated using subsamples of various sizes. It is an extension of Lemma A.1 in
Bai (1995) along the two directions, i.e., by allowing for time series dynamics and a cross-sectional
dimension.
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Lemma A.4 Suppose there is no structural change and Assumptions B1-B3 and B5-B6 hold.

1. For any � 2 (0; 1), sup�T�k�T jinf�Qk(� ; �)j = Op(1):

2. sup1�k�T jinf�Qk(� ; �)j = Op(logNT ):

3. For any � 2 (0; 1); � > 0 and D > 0 and T su¢ ciently large

P

�
inf

�T�k�T
inf

k�k�(NT )�1=2 logNT
Qk(� ; �) < D logNT

�
< �:

4. For any � 2 (0; 1); � > 0 and D > 0, there exists A > 0 such that when T is su¢ ciently large

P

�
inf

�T�k�T
inf

k�k�A(NT )�1=2
Qk(� ; �) < D

�
< �:

5. Let hT and dT be positive sequences such that hT is nondecreasing, hT ! 1, dT ! 1 and
(hTd

2
T )=T ! h with 0 < h <1: Then for each � > 0 and D > 0 there exists an A > 0, such

that when T is large enough,

P

�
inf

AhT�k�T
inf

k�k�dT (NT )�1=2
Qk(� ; �) < D

�
< �:

6. Suppose the same conditions as in part (5) hold. Then, for any A > 0,

sup
k�AhT

���� inf
k�k�dT (NT )�1=2

Qk(� ; �)

���� = Op(1):

Proof of A.4.1. By Lemma A.3,
p
NTk�̂k � �0(�)k = Op(1) uniformly over k 2 [�T; T ]. Thus, it

su¢ ces to prove
sup
1�k�T

sup
k�k�A(NT )�1=2

jQk(� ; �)j = Op(1) for any A > 0: (A.10)

Note that the sup is taken over 1 � k � T instead of k 2 [�T; T ]. Due to the convexity of Qk(� ; �);
it then su¢ ces to show

sup
1�k�T

sup
k�k=A(NT )�1=2

jQk(� ; �)j = Op(1) for any A > 0.

Apply the decomposition (A.1). For Wk(� ; �), we have

sup
1�k�T

sup
k�k=A(NT )�1=2

jWk(� ; �)j � sup
1�k�T

A






(NT )�1=2
kX
t=1

NX
i=1

 � (u
0
it(�))x

0
it






 = Op(1);

where the last inequality is due to the functional central limit theorem (or alternatively applying
the Hájek-Rényi inequality). For Zk(� ; �), apply Lemma A.1,

0 � Zk(� ; �) �
�����
kX
t=1

NX
i=1

Et�1fbit(� ; �)� bit(� ; 0)g�
����� (A.11)

+






A(NT )�1=2
kX
t=1

NX
i=1

�it(� ; �)






 :
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The �rst term on the right hand side is bounded from above by Uf
PT
t=1

PN
i=1 �

0xix0i� uniformly
in � because of the mean value theorem, which is further bounded by A2Uf�max because � =
A(NT )�1=2. The second term is op(1) by Lemma A.2.1. Thus, sup1�k�T supk�k=A(NT )�1=2 jZk(� ; �)j =
Op(1).
Proof of A.4.2. Let Dk = B(Nk)�1=2(logNT )1=2 with B an arbitrary constant. Because of the
�rst result of Lemma A.3 and the convexity of Qk(� ; �), it su¢ ces to show

sup
1�k�T

sup
k�k=Dk

���(logNT )�1Qk(� ; �)��� = Op(1) for each B > 0:

Apply the decomposition (A.1). For Wk(� ; �),

(logNT )�1 jWk(� ; �)j

� (logNT )�1







kX
t=1

NX
i=1

 � (u
0
it(�))x

0
it






 k�k
� B






(Nk)�1=2(logNT )�1=2
kX
t=1

NX
i=1

 � (u
0
it(�))x

0
it






 = Op(1):

For Zk(� ; �), applying the same argument as in Lemma A.4.1. (c.f. (A.11)), we can show

(logNT )�1Zk(� ; �) = Op(1):

This completes the proof.
Proof of A.4.3. Due to convexity, it su¢ ces to consider k�k = (NT )�1=2 logNT and show

P

�
inf

�T�k�T
inf

k�k=(NT )�1=2 logNT
Qk(� ; �) < D logNT

�
< �:

We have

inf
�T�k�T

inf
k�k=(NT )�1=2 logNT

Qk(� ; �)

� inf
�T�k�T

inf
k�k=(NT )�1=2 logNT

Zk(� ; �)� sup
�T�k�T

sup
k�k=(NT )�1=2 logNT

jWk(� ; �)j :

Applying similar arguments as in Lemma A.3, we can show

inf
�T�k�T

inf
k�k=(NT )�1=2 logNT

(logNT )�2Zk(� ; �) �
1

8
�Lf�min

in probability for large T , and

sup
�T�k�T

sup
k�k=(NT )�1=2 logNT

(logNT )�2 jWk(� ; �)j

� sup
�T�k�T

(logNT )�1






(NT )�1=2
kX
t=1

NX
i=1

 � (u
0
it(�))x

0
it






 = op(1):
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The result follows by combining the above two results.
Proof of A.4.4. It is similar to A.4.3 and is omitted.
Proof of A.4.5. Due to convexity, it is su¢ cient to show

P

�
inf

AhT�k�T
inf

k�k=dT (NT )�1=2
Qk(� ; �) < D

�
< �:

First consider k�1Wk(� ; �). Let C be an arbitrary constant, we have

P

 
sup

AhT�k�T
sup

k�k=dT (NT )�1=2

��k�1Wk(� ; �)
�� > Cd2T =T

!

� P

 
sup

AhT�k�T






N�1=2k�1
kX
t=1

NX
i=1

 � (u
0
t (�))x

0
it






 > CdT =
p
T

!

� T

C2d2T

0@N�1(AhT )
�2

AhTX
t=1

NX
i=1

E kxitk2 +N�1
TX

t=AhT+1

NX
i=1

t�2E kxitk2
1A

� TK

C2d2T

0@(AhT )�1 + TX
t=AhT+1

t�2

1A � 3K

C2

�
AhTd

2
T

T

��1
where the second inequality is due to the the Hájek-Rényi inequality, the third inequality is because
of E kxitk2 < 1 by Assumption B5(c), and the last inequality is because of

PT
t=AhT+1

t�2 �
2(AhT )

�1 . Because hTd2T =T ! h > 0; the quantity
�
AhTd

2
T =T

��1, and thus the preceding display,
can be made arbitrarily close to zero by choosing a large A.

Now, consider k�1Zk(� ; �). Applying the same argument as in the proof of Lemma A.3 (the
discussion between the display (A.7) and (A.8)) but using Lemma A.2.3 instead of Lemma A.2.2,
we have

P

�
inf

AhT�k�T
inf

k�k=dT (NT )�1=2
k�1Zk(� ; �) < 2Cd

2
T =T

�
< �

for su¢ ciently large T and A. Thus,

P

�
inf

AhT�k�T
inf

k�k=dT (NT )�1=2
k�1Qk(� ; �) < Cd2T =T

�
< �

for su¢ ciently large T and A: Because k � AhT ; this implies Qk(� ; �) is greater than AC
�
hTd

2
T =T

�
with probability arbitrarily close to 1 for su¢ ciently large T andA. However, becauseAC

�
hTd

2
T =T

�
!

ACh, the quantity AC
�
hTd

2
T =T

�
can be made greater than D by choosing a large A.

Proof of A.4.6 uses the same argument as Bai (1995, p. 432). The detail is omitted.
The next lemma is similar to Lemma 9 in Bai (2000). It shows that when pooling data from two
regimes, the estimated parameters are close to those of the dominating regime.

Lemma A.5 Consider a sample of size T = k1 + k2 with a structural change occurring at k1:

Qyit(� jxit) =

8<: x0it�
0
1(�);

x0it�
0
2(�);

t = 1; :::; k1;

t = k1 + 1; :::; T:
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Assume k2 �
�
T 1=2v�1T

�
and suppose Assumptions B1-B3 and B5-B7 hold. Let �̂(�) be the quantile

regression estimate using the pooled sample ignoring the break and under the additional restriction
that jj�̂(�)� �01(�)jj � (Nk1)�1=2 log(Nk1). Then,

�̂(�)� �01(�) = Op((NT )
�1=2): (A.12)

Proof of Lemma A.5. The proof is based on analyzing the subgradient normalized by (NT )�1=2 :

(NT )�1=2
k1X
t=1

NX
i=1

fbit(� ; �̂(�)� �01(�))0 � �xitg+ (NT )�1=2
TX

t=k1+1

NX
i=1

fbit(� ; �̂(�)� �02(�))0 � �xitg:

(A.13)
We will proceed by contradiction, showing that the subgradient will be strictly positive with prob-
ability 1 if the condition (A.12) is violated.

Suppose jj�̂(�)��01(�)jj > A(NT )�1=2 and study the two terms separately. Following the same
argument as in Lemma 2 in Qu (2008, p.182), the �rst term in (A.13) can be made arbitrary large
by choosing a large A. For the second term, rewrite it as

(NT )�1=2
TX

t=k1+1

NX
i=1

n
bit(� ; �̂(�)� �02(�))0 � bit(� ; �01(�)� �02(�))0

o
(c)

+(NT )�1=2
TX

t=k1+1

NX
i=1

�it(� ; �
0
1(�)� �02(�))0 (d)

+(NT )�1=2
TX

t=k1+1

NX
i=1

xit
�
Fit
�
x0it�

0
1(�)

�
� �
	

(e)

+(NT )�1=2
TX

t=k1+1

NX
i=1

xit
�
1(u0it(�) � 0)� �

	
(f).

For (c), notice that the restriction jj�̂(�)��01(�)jj � (Nk1)�1=2 log(Nk1) and Assumption B6 imply
�̂(�) � �01(�) = op(N

�1=2vT ). This implies (c) = op(1) using the same argument as in the proof
of Lemma A2. Similarly, term (d) = Op(1). Term (e) = Op(1) after applying the mean value
theorem and the strong law of large numbers. Term (f) = op(1) because of the functional central
limit theorem and k2=T ! 0. The above results all hold uniformly in 0 � k2 � T 1=2v�1T . Thus,
by choosing a large A, the �rst term in (A.13) will dominate the second term. Consequently, the
subgradient will be strictly positive with probability 1. �

Lemma A.6 Suppose there is no structural change. Under Assumptions B1-B3 and B5-B7, for
any A <1; B <1; and � 2 Rp; we have

sup
k�Av�2T

sup
k�k�(NT )�1=2B

���Qk(� ;N�1=2vT�+ �)�Qk(� ;N�1=2vT�)
��� = op(1):
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The proof is similar to that for Lemma A.4.1. and is omitted.
Proof of Lemma 2. For the ease of exposition, assume there are only two breaks, occurring at
T 01 and T

0
2 . Let T̂

b = (T̂1; T̂2) be their estimates, �̂j(�) be the coe¢ cients estimates corresponding
to the jth segment (i.e., [T̂j�1+1; T̂j ]), and �̂(�) = (�̂1(�)

0; �̂2(�)
0; �̂3(�)

0)0. It consists of four steps
that successively tighten the bounds on �̂(�) and T̂ b.

Step 1. (Prove P (jT̂j � T 0j j � T 1=2v�1T ) ! 1 for j = 1; 2 as T ! 1:) The proof is by
contradiction. Suppose the result does not hold and let K = [T 1=2v�1T ]. Then, it su¢ ces to
consider the following three cases:

(1) jT̂2 � T 02 j > K and jT̂1 � T 02 j > K;

(2) jT̂2 � T 02 j > K and jT̂1 � T 02 j � K;

(3) jT̂2 � T 02 j � K and jT̂1 � T 01 j > K:

First consider Case (1). Let T b
�
be the ordered version of {T̂1; T̂2; T 01 ; T

0
2 �K;T 02 +K}. Values

in T b
�
partition the full sample into (at most) six segments, with the lth segment containing the

portion of the sample that falls between the (l � 1)th and lth largest values in T b� . For any such
partition, we always have

fSNT (� ; �̂(�); T̂ b)� SNT (� ; �0(�); T 0)g � inf
��(�)

fSNT (� ; ��(�); T b
�
)� SNT (� ; �0(�); T 0)g: (A.14)

Therefore, to reach a contradiction, it su¢ ces to show that the right hand side is strictly positive.
Suppose the subsample

�
T 02 �K;T 02 +K

�
corresponds to the lth segment in the partition with

coe¢ cient estimates being �̂
�
l (�). It includes observations from both regimes 2 and 3. Note that

max
n
N1=2K1=2




�̂�l (�)� �02(�)


 , N1=2K1=2



�̂�l (�)� �03(�)


o

� N1=2K1=2


�02(�)� �03(�)

 =2 � T v=2 k�2(�)k =4 � log(NK)

for large T , where the second inequality is due to Assumption B7 and K = [T 1=2v�1T ]; and the
last inequality holds because Assumption B6 implies log(NK)=T #=2 ! 0 as T ! 1. Therefore,
without loss of generality, we can assume (NK)1=2jj�̂�l (�)� �02(�)jj � log(NK). By Lemma A.4.3
(applied with T replaced by K); the contribution of the sub-segment

�
T 02 �K;T 02

�
to the right

side of (A.14) is greater than D log(NK) with probability approaching 1. The contribution of the
sub-segment

�
T 02 + 1; T

0
2 +K

�
is either nonnegative, or of order Op(logNK) when it is negative

by Lemma A.4.2. Other segments are of order Op(log(NT )) by Lemma A.4.2. By choosing D
large enough, the term D log(NK) dominates the rest and thus (A.14) is positive with probability
approaching 1 as T !1. Thus, we have reached a contradiction.

Next consider Case (2). By Assumption B7, K=T ! 0 and therefore jT̂1�T 01 j > K for large T.
Let T b

�
be the ordered version of {T 01 �K;T 01 +K;T 02 ; T̂1; T̂2}. Then, [T 01 �K;T 01 +K], which forms

a single segment in the partition, contains observations from both regimes 1 and 2. Repeat the
same argument as in Case 1, starting at (A.14) but with T 02 ; �

0
2(�) and �

0
3(�) replaced by T

0
1 ; �

0
1(�)

and �02(�). We can reach the same contradiction.
The analysis of Case (3) proceeds in the same way as Case (2), by considering the ordered

version of {T̂1; T 01 � K;T 01 + K;T 02 ; T̂2} and noticing that [T
0
1 � K;T 01 + K] again forms a single

segment.
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Step 2. (Prove P
�
jj�̂j(�)� �0j (�)jj � (NT )�1=2 logNT

�
! 1 for j = 1; 2 and 3.) Suppose

�̂2(�) does not satisfy this condition. Then j�̂2(�) � �02(�)j > (NT )�1=2 logNT with positive
probability for any T . Consider a subset of the second segment, with boundary points T̂1;1 =
max(T̂1; T

0
1 ) and T̂1;2 = min(T̂2; T

0
2 ). Consider a new partition of the sample using the ordered

version of {T̂1; T 01 , T̂2; T
0
2 ; T̂1;1,T̂1;2g. Then, Step 1 implies that the segment [T̂1;1, T̂1;2] contains a

positive fraction of the sample. Its contribution to (A.14) is positive and greater than D log(NT )
by Lemma A.4.3. Contributions from other segments are of order Op(log(NT )) by Lemma A.4.2.
Thus, the objective function (A.14) will be positive with probability approaching 1 as T !1, and
this contradicts the fact that �̂(�) is its minimizer.

Step 3. (Prove �̂j(�) � �0j (�) = Op((NT )
�1=2) for j = 1; 2 and 3:) The results from Steps 1

and 2 imply that we can restrict our attention to the following set:

� =
n


�̂j(�)� �0j (�)


 � (NT )�1=2 logNT (j = 1; 2; 3) and jT̂i � T 0i j � T 1=2v�1T (i = 1; 2)

o
:

Consider a partition of the sample using break dates {T̂1, T̂2g. Then, all segments are non-vanishing
fragments of the sample. Consider the �rst segment. Then, it either: 1) only contains observations
from the �rst regime, or 2) contains observations from both regimes but with less than T 1=2v�1T
observations from the second regime. In the �rst case, apply the second result of Lemma A.3, and
for the second case, apply Lemma A.5, leading to �̂1(�)� �01(�) = Op((NT )

�1=2). The parameter
estimates corresponding to other segments can be analyzed similarly.

Step 4. (Prove v2T (T̂j � T 0j ) = Op(1).) From Step 3, it su¢ ces to consider (�(�); T b) 2 �. In
what follows, we shall prove that for any � > 0 and D > 0, there exists an A > 0 such that

P

 
inf

(�(�);T b)2�;jT1�T 01 j>Av�2T
SNT (� ; �(�); T

b)� inf
(�(�);T b)2�;T1=T 01

SNT (� ; �(�); T
b) < D

!
< �

(A.15)
and

P

 
inf

(�(�);T b)2�;jT2�T 02 j>Av�2T
SNT (� ; �(�); T

b)� inf
(�(�);T b)2�;T2=T 02

SNT (� ; �(�); T
b) < D

!
< �

(A.16)
hold for all su¢ ciently large T . Because

inf
(�(�);T b)2�;Tj=T 0j

SNT (� ; �(�); T
b) � inf

(�(�);T b)2�
SNT (� ; �(�); T

b) for j = 1; 2;

(A.15) and (A.16) imply P
�
v2T jT̂j � T 0j j > A

�
< � for j = 1 and 2 with large T .

We only prove (A.16) as the proof for (A.15) is similar. Without loss of generality, assume
T̂2 > T 02 . Let SNT (� ; �̂(�); T̂

b) and SNT (� ; �̂
�
(�); T̂ b

�
) denote the minimized values of the two
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terms inside the parentheses, respectively. Then,

SNT (� ; �̂(�); T̂
b)� SNT (� ; �̂

�
(�); T̂ b

�
)

� SNT (� ; �̂(�); T̂
b)� SNT (� ; �̂(�); T̂ b

�
)

=

T̂2X
t=T 02+1

NX
i=1

q�;it(�̂2(�)� �03(�))�
T̂2X

t=T 02+1

NX
i=1

q�;it(�̂3(�)� �03(�)):

From Step 3, jj�̂j(�)� �0j (�)jj = Op((NT )
�1=2), implying

jj�̂2(�)� �03(�)jj � N�1=2vT k�2(�)k =2:

By Lemma A.4.5 and (A.10), the above di¤erence is greater than D with probability greater than
1�� when A is large. Note that Lemma A.4.5 is applied with hT = v�2T and dT = T 1=2vT . Therefore
(A.16) holds. �
Proof of Theorem 2. By Lemma 2, we can restrict our attention to the set K� �; where

K = fTj : Tj = T 0j + [sv
�2
T ] and jsj � A <1; j = 1; :::;mg;

� = f�j :
p
NTk�j � �0j (�)k �M; j = 1; :::;m+ 1 g:

Adding and subtracting terms,

inf
T b2K

inf
�(�)2�

SNT (� ; �(�); T
b) (A.17)

= inf
T b2K

inf
�(�)2�

n
SNT (� ; �(�); T

0) +
�
SNT (� ; �(�); T

b)� SNT (� ; �(�); T 0)
�o

:

First, assume T̂j < T 0j for all j = 1; :::;m. The second term inside the curly brackets is equal to

mX
j=1

T 0jX
t=T̂j+1

NX
i=1

f�� (yit � x0it�0j+1(�))� �� (yit � x0it�0j (�))g+ op(1)

uniformly in T b 2 K and �(�) 2 � by Lemma A.6. Thus, minimizing (A.17) is asymptotically
equivalent to solving

inf
�(�)2�

fST (� ; �(�); T 0)g+ inf
T b2K

mX
j=1

T 0jX
t=Tj+1

NX
i=1

f�� (yit � x0it�0j+1(�))� �� (yit � x0it�0j (�))g:

The �rst term depends only on �(�) but not on T b, which delivers the asymptotic distribution
of �̂(�) as stated in the theorem. The second term only depends on T b but not on �(�), which
delivers the limiting distribution for the break date estimate. Consider the jth break and rewrite
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the summation involving T̂j as Hj;2(s)�Hj;1(s); where

Hj;1(s) = (�0j+1(�)� �0j (�))0
T 0jX

t=T 0j +[sv
�2
T ]+1

NX
i=1

xit � (u
0
it(�));

Hj;2(s) =

T 0jX
t=T 0j +[sv

�2
T ]+1

NX
i=1

Z x0it(�
0
j+1(�)��0j (�))

0
f1(u0it(�) � u)� 1(u0it(�) � 0)gdu:

First consider Hj;1(s): If N is �xed, then we can apply a FCLT for martingale di¤erences. If (N;T )
!1, we can apply a FCLT for random �elds (e.g., Theorem 3 in Poghosyan and Roelly, 1998). In
both cases, Hj;1(s)) ��jW (s), where �2j = �(1� �)�j(�)0 �J0j�j(�) and W (s) is a two-sided Wiener
process satisfying W (0) = 0. Consider Hj;2(s), its mean, for a given s, is equal to

1

2
�j(�)

0 �H0
j (�)�j(�)jsj+ op(1) =

��j
2
jsj+ op(1);

and the deviation from the mean is uniformly small. Similar arguments can be applied to analyze
the case T̂j > T 0j , leading to

v2T (T̂j � T 0j )) argmax
s

8<: ��jW (s)� ��j jsj=2 s � 0

��j+1W (s)� ��j+1jsj=2 s > 0
;

Then, by a change of variables,

�
��j
��j

�2
v2T (T̂j � T 0j )) argmax

s

8<: W (s)� jsj=2 s � 0

(��j+1=��j)W (s)� (��j+1=��j)jsj=2 0 < s
:

This completes the proof. �
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Table 1. Estimated response surface regression

Test Size Level regressors (x1) Exponentiated regressors (x2)

(%) 1 p l+1 1
p

(l+1)p (l+1)! 1
l+1

1
(l+1)!

!

10 1.5432 0.0265 0.0388 -0.2371 -0.0021 -0.1168

SQ(l+1jl) 5 1.6523 0.0242 0.0369 -0.2226 -0.0019 -0.0999

1 1.8703 0.0215 0.0331 -0.1742 -0.0017 -0.0770

10 0.9481 0.0062 0.0166 -0.1386 -0.0004 0.0018 -0.0801 -0.0004 -0.0254

DQ(l+1jl) 5 0.9944 0.0058 0.0157 -0.1284 -0.0004 0.0017 -0.0716 -0.0005 -0.0203

1 1.0929 0.0050 0.0134 -0.1134 -0.0002 0.0010 -0.0565 0.0000 -0.0062
Note. p denotes the number of parameters allowed to change, l is the number of breaks under the null
hypothesis, and ! is a trimming parameter determining the interval of quantiles being tested: [!, 1-!].

Table 2. Coverage rates for the break date
p
N times Quantile

(N, T) Break Size 0.2 0.3 0.4 0.5 0.6 0.7 0.8 All

(1, 100) 1.0 0.876 0.901 0.917 0.920 0.911 0.902 0.866 0.856

2.0 0.895 0.930 0.933 0.934 0.923 0.916 0.882 0.908

3.0 0.934 0.951 0.964 0.970 0.969 0.959 0.938 0.933

(50, 100) 1.0 0.897 0.904 0.900 0.899 0.901 0.904 0.903 0.869

2.0 0.905 0.902 0.915 0.908 0.908 0.902 0.911 0.912

3.0 0.926 0.944 0.943 0.948 0.940 0.934 0.941 0.953

(100, 100) 1.0 0.892 0.900 0.890 0.890 0.888 0.893 0.889 0.857

2.0 0.892 0.897 0.905 0.900 0.910 0.901 0.892 0.904

3.0 0.929 0.928 0.937 0.949 0.947 0.946 0.932 0.950
Note. The nominal size is 95%. Columns indicated by 0.2-0.8 include results based on a
single quantile function. In the last column, the break date is estimated using all seven
quantiles.



Table 3. Coverage rates for the break size parameter
p
N times Quantile

(N, T) Break Size 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(1, 100) Single 1.0 0.815 0.836 0.862 0.864 0.853 0.848 0.821

Quantile 2.0 0.928 0.943 0.944 0.950 0.937 0.935 0.921

3.0 0.926 0.930 0.933 0.941 0.937 0.939 0.933

Multiple 1.0 0.879 0.879 0.888 0.880 0.884 0.888 0.889

Quantiles 2.0 0.939 0.947 0.946 0.954 0.941 0.936 0.926

3.0 0.936 0.932 0.932 0.942 0.940 0.942 0.942

(50, 100) Single 1.0 0.794 0.829 0.846 0.834 0.842 0.826 0.797

Quantile 2.0 0.948 0.946 0.951 0.952 0.948 0.948 0.935

3.0 0.960 0.957 0.957 0.954 0.950 0.951 0.951

Multiple 1.0 0.902 0.887 0.887 0.884 0.881 0.888 0.902

Quantiles 2.0 0.956 0.952 0.958 0.952 0.949 0.951 0.945

3.0 0.953 0.955 0.955 0.953 0.944 0.949 0.950

(100, 100) Single 1.0 0.799 0.841 0.845 0.848 0.833 0.820 0.805

Quantile 2.0 0.935 0.946 0.942 0.947 0.940 0.949 0.940

3.0 0.950 0.961 0.959 0.956 0.952 0.955 0.960

Multiple 1.0 0.903 0.898 0.887 0.891 0.878 0.887 0.898

Quantiles 2.0 0.939 0.949 0.947 0.947 0.941 0.951 0.953

3.0 0.948 0.954 0.957 0.953 0.951 0.948 0.955
Note. The nominal coverage rate is 95%. "Single quantile": the break date is estimated based on
one quantile function. "Multiple quantiles": the break date is estimated using all seven quantiles.
Conditioning on the estimated break date, no other restrictions are imposed across quantiles.



Table 4. Comparisons of di¤erent break estimatorsp
N times Median Multiple Quantiles Mean

Error (uit) (N, T) Break Size MAD IQR90 MAD IQR90 MAD IQR90

N(0,1) (1, 100) 1.0 13.37 63 12.50 61 13.93 64

2.0 5.55 31 4.93 27 5.69 33

3.0 2.12 10 1.90 10 2.26 13

(50, 100) 1.0 14.29 64 12.53 63 14.31 66

2.0 6.69 39 4.93 27 6.36 36

3.0 2.88 15 2.14 11 2.64 15

(100, 100) 1.0 14.74 66 13.32 64 14.6 65

2.0 6.87 39 5.09 28 6.44 35

3.0 2.85 15 2.00 11 2.85 16

t(2.5) (1, 100) 1.0 14.91 65 14.89 66 17.88 68

2.0 7.43 42 7.43 43 11.48 61

3.0 3.58 20 3.69 19 6.97 43

(50, 100) 1.0 15.37 66 15.02 65 19.03 68

2.0 7.88 46 6.95 39 14.25 65

3.0 3.46 19 3.16 17 9.82 55

(100, 100) 1.0 15.16 65 14.81 65 19.34 68

2.0 7.68 43 7.11 39 13.94 65

3.0 3.68 20 3.22 17 10.06 57
Note. MAD: Mean Absolute Deviation. IQR90: the distance between 90% and 10% quanitles of the
empirical distribution. "Multiple quantiles": the estimation is based jointly on quantiles 0.2, 0.3,..., 0.8.



Table 5. Structural breaks in the U.S. real GDP growth rate

Panel (a). Joint analysis of multiple quantiles

DQ(1j0) 0.994�

DQ(2j1) 0.612

Break Date 84:1

95% C. I. [77:3,84:2]

Panel (b). Separate treatment of individual quantiles

Quantile 0.20 0.35 0.50 0.65 0.80

SQ(1j0) 1.423 1.310 1.019 1.818�� 2.078��

SQ(2j1) - - - 0.964 1.116

Break Date - - - 84:2 84:1

95% C. I. - - - [68:2,87:4] [78:4,90:1]
Note. The sample period is 1947:2 to 2009:2. The model is a quantile
autoregressive model with all parameters allowed to change. C.I. denotes
the 95% con�dence interval. * and ** indicate statistical signi�cance at 5%
and 1% level, respectively.

Table 5B. Structural breaks in the U.S. real GDP growth rate (nine quantiles)

Panel (a). Joint analysis of multiple quantiles

DQ(1j0) 0.994�

DQ(2j1) 0.608

Break Date 84:2

95% C. I. [80:1, 86:4]

Panel (b). Separate treatment of individual quantiles

Quantile 0.20 0.275 0.35 0.425 0.50 0.575 0.65 0.725 0.80

SQ(1j0) 1.423 1.409 1.310 1.006 1.019 1.097 1.818�� 2.110�� 2.078��

SQ(2j1) - - - - - - 0.964 1.165 1.116

Break Date - - - - - - 84:2 84:2 84:1

95% C. I. - - - - - - [68:2,87:4] [77.4,86.4] [78:4,90:1]
Note. See Table 5.



Table 6. Coe¢ cient estimates for the U.S. real GDP growth rate

Quantile 0.20 0.35 0.50 0.65 0.80

Break date NA NA NA 84:1 84:1

�1(� ) -0.928 0.697 1.938�� 4.507�� 6.129��

(0.586) (0.366) (0.334) (0.665) (0.493)

�1;1(� ) 0.288�� 0.282�� 0.335�� 0.411�� 0.374��

(0.075) (0.052) (0.054) (0.105) (0.074)

�2;1(� ) 0.236�� 0.159�� 0.049 -0.105 -0.091

(0.078) (0.023) (0.035) (0.104) (0.073)

�2(�)��1(�) - - - -2.431�� -3.089��

- - - (0.739) (0.772)

�1;2(�)��1;1(�) - - - -0.250 -0.211

- - - (0.148) (0.116)

�2;2(�)��2;1(�) - - - 0.425�� 0.405��

- - - (0.154) (0.142)
Note. The sample period is 1947:2 to 2009:2. The model is

Qyt(� jyt�1; yt�2) =
�
�1(�) + �1;1(�)yt�1 + �2;1(�)yt�2;

�2(�) + �1;2(�)yt�1 + �2;2(�)yt�2;

if t � T1
if t > T1

Standard errors are in parentheses. * and ** denote statistical signi�-
cance at 5% and 1% level, respectively.

Table 7. Results for the U.S. real GDP growth rate based on a subsample

Quantile 0.20 0.35 0.50 0.65 0.80

Number of breaks 1 0 0 1 1

Break date 58:1 NA NA 84:2 84:2

95% C.I. [57:4,61:3] NA NA [72:3,87:2] [83:3,86:1]

�1(� ) -3.616 0.954� 2.213�� 4.517�� 6.129��

(1.928) (0.363) (0.336) (0.665) (0.491)

�1;1(� ) 0.879�� 0.242�� 0.283�� 0.420�� 0.374��

(0.259) (0.042) (0.055) (0.105) (0.074)

�2;1(� ) -0.191 0.153�� 0.033 -0.105 -0.091

(0.274) (0.024) (0.039) (0.104) (0.073)

�2(�)��1(�) 2.927 - - -1.305�� -2.378��

(1.992) - - (0.765) (0.537)

�1;2(�)��1;1(�) -0.606� - - -0.453 -0.441��

(0.271) - - (0.141) (0.130)

�2;2(�)��2;1(�) 0.424 - - 0.287� 0.427��

(0.282) - - (0.141) (0.132)
Note. See Table 6. The sample period is 1947:2 to 2007:4.
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Figure 1. Structural changes in young drivers’ blood alcohol concentration (male)

Note. −◦−: change in Qyit(τ |xit). · · · + · · ·: pointwise 95% confidence interval. − M −:
results from censored quantile regression. To understand the magnitude of the changes, we
note that the relevant unconditional quantiles of yit are 0.13, 0.14, 0.16 and 0.18 for the first
regime (1983.1 to 1985.1), 0.10, 0.12, 0.14 and 0.17 for the second regime (1985.2 to 1992.2),
and 0.04, 0.08, 0.11 and 0.15 for the third regime (1992.3 to 2007.4).



Figure 2. Structural changes in young drivers’ blood alcohol concentration (female)
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