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Abstract

This paper proposes a test statistic for the null hypothesis that a given time series is a

stationary long memory process against the alternative hypothesis that it is a¤ected by regime

change or a smoothly varying trend. The proposed test is in the frequency domain and is

based on the derivatives of the pro�led local Whittle likelihood function in a degenerating

neighborhood of the origin. The assumptions used are mild, allowing for non-Gaussianity or

conditional heteroskedasticity. The resulting null limiting distribution is nuisance parameter

free and can be easily simulated. Furthermore, the test is straightforward to implement. In

particular, it does not require one to specify the form of the trend or the number of di¤erent

regimes under the alternative hypothesis. Monte Carlo simulation shows that the test has decent

size and power properties. The paper also considers three empirical applications to illustrate

the usefulness of the test.
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1 Introduction

A scalar process is said to have long memory if its spectral density at frequency � is proportional

to ��2d (d 6= 0) as � approaches zero. Long memory models provide a middle ground between

short memory and unit root speci�cations, hence allowing for more �exibility in modelling the

persistence of a time series. Estimation theory has been worked out. Among others, Fox and Taqqu

(1986) studied parametric long memory models and Geweke and Porter-Hudak (1983) and Robinson

(1995a,b) considered semiparametric models. The latter literature has been very in�uential because

it does not require speci�c parametric assumptions on the process generating the di¤erence of order

d of the series. Applications to macroeconomics and �nance are numerous. For example, Ding et

al. (1993) argued that stock returns volatility is well described by a long memory process. Also see

Andersen et al. (2001), Andersen et al. (2003) and Deo et al. (2006) for other applications.

Two important features of a long memory process are that its spectral density at the origin is

unbounded and that its autocorrelation function decays at a hyperbolic rate at long lags. However,

these features can also be present for a short memory process a¤ected by regime change or a smooth

trend, leading to so-called spurious long memory. This has been widely documented, see Perron

and Qu (2010) and references therein. Whether the observed long memory characteristics are

actually genuine is of substantial empirical importance. For example, Taylor (2000) showed that

the long memory assumption has a signi�cant impact on the term structure of implied volatilities.

Ohanissian et al. (2004) showed that when the true data generating process (DGP) is of spurious

long memory, using either a short memory model or a pure long memory model leads to severe

underpricing of call options. Unfortunately, it is rather di¢ cult to distinguish between these two

types of processes, partly because tests for structural change are often biased toward rejection (of

the null hypothesis of no change) when the process is indeed fractionally integrated.

This paper proposes a test statistic to distinguish between true and spurious long memory. Its

construction is in the frequency domain and it is based on the observation that the aforementioned
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processes exhibit di¤erent properties over di¤erent frequency bands local to zero. The test is of

the Kolmogorov-Smirnov type and is very simple to implement. In particular, it does not require

specifying the form of the trend or the number or locations of the di¤erent regimes that occur

under the alternative hypothesis. We derive its null limiting distribution under two alternative

sets of conditions. The �rst is the same as Robinson (1995b), allowing for non-Gaussianity but

not heteroskedasticity. The second is due to Shao and Wu (2007), which allows for both features

but imposes stronger conditions on the spectral density of the short memory component and the

bandwidth parameter for local Whittle estimation. We prove that the test is consistent against

alternatives of interest. We also provide a simple pre-whitening procedure to control its size when

signi�cant short memory dynamics are present. The test is applied to three time series commonly

studied in the long memory literature and the null hypothesis of stationary long memory is rejected

at a 5% signi�cance level for two of these series. The result, although limited, suggests that the

evidence for stationary long memory may not be as strong as is often perceived.

This paper is closely related to Ohanissian et al. (2008), who explored the idea that temporal

aggregation does not change the order of fractional integration. Their result requires Gaussianity.

Also, the assumption they place on the bandwidth of the GPH estimates is very stringent and

requires a very large sample size for the test to be useful. Another closely related work is Perron

and Qu (2010), who studied spectral domain properties of a short memory process contaminated

by occasional level shifts. Their results inspired the test statistic proposed in this paper. Our work

is also related to Müller and Watson (2008), who discussed a general framework for testing for

low frequency variability. Other related works include Sibbertsen and Venetis (2003), Berkes et al.

(2006) and Giraitis et al. (2006).

From a methodological perspective, the idea of using integrated periodograms as the basis for

speci�cation testing can be traced back to Grenander and Rosenblatt (1953, 1957) and Bartlett

(1955). The literature concerning long memory processes is relatively sparse with Ibragimov (1963)

being a seminal contribution. Recently, Kokoszka and Mikosch (1997) derived a functional cen-
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tral limit theorem for the integrated periodogram of a long memory process with �nite or in�-

nite variance. They only considered parametric models and the parameters were assumed to be

known. Nielsen (2004) considered semiparametric models for multivariate long memory processes

and proved the weak convergence of the integrated periodogram. His results greatly facilitate our

subsequent analysis. However, he also assumed the memory parameter is known and his result only

applies to d 2 (0; 1=4). This paper obtains a weak convergence result for weighted periodograms

that involve estimated parameters in a semiparametric setting. This result is of independent interest

and can be used to construct other speci�cation tests for semiparametric long memory models.

The remainder of this paper is organized as follows. Section 2 discusses the hypotheses of

interest. Section 3 introduces the test statistic. Section 4 discusses the assumptions, null limiting

distribution and consistency of the test. Section 5 introduces a simple procedure to control the

size. Section 6 includes simulation results to assess �nite sample properties. Section 7 considers

three empirical applications and Section 8 concludes. The proofs are contained in two appendices,

main and supplementary, with the main appendix containing proofs of the main results. The

supplementary appendix is available from the author�s web page.

The following notation is used. The subscript 0 indicates the true value of a parameter. jzj

denotes the modulus of z; the imaginary unit is denoted by i. [x] denotes the integer part of a

real number x. For a real-valued random variable �, write � 2 Lp if k�kp=(E j�j
p)1=p < 1 and

k�k=k�k2 : �)�and �!p�signify weak convergence under the Skorohod topology and convergence

in probability. And Op(�) and op(�) are the usual symbols for stochastic orders of magnitude.

2 The hypotheses of interest

Let xt (t = 1; 2; :::; n) be a scalar process with n the sample size. Let f(�) denote its spectral

density at frequency �. Then the null hypothesis is:

� H0 : xt is stationary with

f(�) ' G��2d as �! 0 + with d 2 (�1=2; 1=2) and G 2 (0;1); (1)
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where �'�means that the ratio of expressions on the left and right sides tends to unity.

A special case of a process satisfying (1) is the ARFIMA(p; d; q) process, introduced by Granger

and Joyeux (1980) and Hosking (1981):

A(L) (1� L)d xt = B(L)"t; (2)

where A(L) = 1� a1L� :::� apLp, B(L) = 1+ b1L+ :::+ bqLq and "t is a white noise process with

E("2t ) = �2". The spectral density of (2) satis�es

f(�) ' �2"
2�

jB(1)j2

jA(1)j2
��2d

as �! 0 + :

Remark 1 Under the null hypothesis, the behavior of the spectral density is speci�ed only in a

neighborhood of the zero frequency. This allows one to minimize possible complications arising

from misspecifying the higher frequency dynamics.

The periodogram of xt evaluated at frequency �j = 2�j=n (j = 1; 2; :::; [n=2]) is given by

Ix(�j) = (2�n)
�1 j
Pn
t=1 xt exp(i�jt)j

2. Its statistical properties have been extensively studied, see

Robinson (1995a, b). Theorem 2 in Robinson (1995a) is central to our analysis. It states that when

xt satis�es (1), then under fairly mild conditions,

E (Ix(�j)=f(�j))! 1 for all j such that j !1 as n!1 but j=n! 0.

This uniform behavior of Ix(�j) is the very property that allows us to detect spurious long memory.

Under the alternative hypothesis, the process xt has short memory but is contaminated by level

shifts or a smooth trend. This is often referred to as spurious long memory because the estimate

of d is biased away from zero and the autocovariance function exhibits a slow rate of decay, akin to

a long memory process. In the following, we will compare spectral domain properties of processes

with true and spurious long memory to motivate the construction of the test statistic.
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First, consider short memory processes contaminated by level shifts. Perron and Qu (2010)

considered the following model involving random level shifts for some series xt:

xt = zt + �t with �t = �t�1 + �t�t; (3)

where zt is a stationary short memory process (e.g., an ARMA process), �t � i:i:d: (0; �2�) and �t is

a Bernoulli random variable that takes value 1 with probability pn and 0 otherwise, i.e., �t � i:i:d:

B(1; pn). They used pn = p=n with 0 < p < 1 to model rare shifts so that as n increases, the

expected number of shifts remains bounded. �t; �t and zt are assumed to be mutually independent.

Then, the periodogram of xt can be decomposed into the following three components:

Ix(�j) =
1

2�n

�����
nX
t=1

zt exp(i�jt)

�����
2

+
1

2�n

�����
nX
t=1

�t exp(i�jt)

�����
2

+
2

2�n

nX
t=1

nX
s=1

zt�t cos(�j(t� s))

= (I)+ (II)+ (III).

They showed that for �j = o(1); the orders of the three terms satisfy

(I) = Op(1); (II) = Op(n
�1��2j ) and (III) = Op(n

�1=2��1j ): (4)

The orders are exact, see Proposition 3 in Perron and Qu (2010). Term (II) dominates (I) and

(III) if j = o(n1=2) and term (I) dominates (II) and (III) if jn�1=2 ! 1. Hence, the level shift

component a¤ects the periodogram only up to j = O(n1=2). Within this narrow range, for a �xed

sample the slope of the log-periodogram is on average �2, implying d = 1. This is di¤erent from

a long memory process de�ned generally by (1), or particularly by (2), where the slope of the

log-periodogram is �2d > �1 for j = o(n). Thus, if we use a local method to estimate the memory

parameter of the level shift model (3), then the estimate will crucially depend on the number

of frequencies used. It will tend to decrease as the number of frequencies used increases. More

importantly, this non-uniform behavior in the neighborhood of j = n1=2 suggests the possibility of

distinguishing between the two processes from the spectral domain.

Now, consider a short memory process containing a smoothly varying trend:

xt = h(t=n) + zt; (5)
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where h(s) is a Lipschitz continuous function on [0; 1] (i.e., there exists a K < 1 such that

jh(s)� h(�)j � Kjs� � j for all s; � 2 [0; 1]); h(s) 6= h(�) for some s 6= � ; and zt is de�ned as in (3).

Lemma 1 If xt is generated by (5), then Ix(�j) = Op(n
�1��2j ) for j = O(n1=2) and Ix(�j) = Op(1)

for j satisfying jn�1=2 !1:

The Lemma extends Lemma 2 of Künsch (1986), who obtained the same result assuming h(t=n)

is monotonic but not necessarily smooth. Thus, as in the level shift model, the e¤ect of the

trend is visible only within a narrow range of frequencies and the threshold j = O(n1=2) is of

crucial importance. This result is weaker than the case with level shifts because the orders are not

necessarily exact. However, it is su¢ cient to motivate the test statistic because, for the test to

have power, what matters is not the order of Ix(�j) per se, but the nonuniformity of its slope in a

neighborhood of the zero frequency.

We now illustrate the asymptotic results using simulations. The sample size is n = 1000 and

the results reported are empirical means based on 5000 replications. First, consider the level

shift process (3), with zt; �t � i:i:d:N(0; 1) and �t � i:i:d:B(1; 5=n). Figure 1(a) depicts the log

periodograms as a function of the frequency index. An extra line, log(0:0015��2j ), is superimposed

to highlight the slope of the periodogram when j = o(n1=2). The �gure is very informative: for

very low frequencies, the slope of the log periodogram is approximately �2; implying d = 1; for

j > n1=2, the slope is basically zero. Thus, nonuniformity is clearly present. We now impose the

false restriction that the series are of true long memory and estimate f(�) using the local Whittle

likelihood with bandwidth m = n0:7. The �tted log spectral densities are plotted in Figure 1(a).

The result is again quite informative, showing that for very low frequencies, f̂(�) underestimates

the slope of the log-periodogram and that for relatively higher frequencies, it does the opposite.

The di¤erence between f̂(�) and Ix(�) provides an opportunity for testing the null hypothesis.

Figure 1(b) reports the local Whittle estimates using di¤erent bandwidths m ranging between n1=3

and n0:8. As predicted by the theory, the estimates are greater than 0:5 when m is small and they
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decrease substantially when m is increased. Next, consider processes with smoothly varying trends

of the form of (5). The series are generated using a simple polynomial trend function h(x) = 2x�4x2

with the errors zt being i:i:d:N(0; 1). The analogous results are reported in Figures 2(a) and 2(b).

The �nding here is similar and again con�rms the asymptotic analysis. We also experimented with

other low order polynomial trend functions and the results are qualitatively similar.

Thus, it is possible to distinguish between true and spurious long memory and when doing so,

it is important to consider frequencies both below and above n1=2. We need m=n1=2 !1.

3 The test statistic

We now construct a test statistic for the null hypothesis that xt is a long memory process satisfying

(1). It is based on the local Whittle likelihood function given by (see Künsch, 1987)

Q(G; d) =
1

m

mX
j=1

(
logG��2dj +

Ij

G��2dj

)
; (6)

where Ij = Ix(�j) and m is some integer that is small relative to n. Minimizing Q(G; d) with

respect to G leads to the pro�led likelihood function: R(d) = logG(d)� 2m�1d
Pm
j=1 log �j ; where

G(d) = m�1
mX
j=1

�2dj Ij :

The derivative of R(d) is given by

@R(d)

@d
=

2G0p
mG(d)

8<:m�1=2
mX
j=1

vj

 
Ij

G0�
�2d
j

� 1
!9=; (7)

where

vj = log �j � (1=m)
mX
j=1

log �j

and G0 is the true value of G. The term in the braces in (7) will be the main ingredient of our

test statistic. It is also related to the LM statistic considered in Robinson (1994). Under the

null hypothesis and evaluated at d0, it equals to m�1=2Pm
j=1 vj(Ij�

2d0
j =G0�1), which, as shown by

Robinson (1995b), satis�es a central limit theorem. Building upon his result, we will prove later that
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the quantity m�1=2P[mr]
j=1 vj(Ij�

2d0
j =G0)� 1), when treated as a process in r, satis�es a functional

central limit theorem and hence is uniformly Op(1) under the null hypothesis. Meanwhile, under

the alternative hypothesis, the summands in the preceding display do not have mean zero and the

quantity diverges (c.f. the decomposition of Ix(�j) in the previous section). This motivates the

following test statistic:

W = sup
r2[";1]

0@ mX
j=1

v2j

1A�1=2 ������
[mr]X
j=1

vj

0@ Ij

G(d̂)��2d̂j

� 1

1A������ ; (8)

where d̂ is the local Whittle estimate of d using m frequency components and " is a small trimming

parameter. Note that m�1Pm
j=1 v

2
j ! 1 so that in principle (

Pm
j=1 v

2
j )
�1=2 could be replaced by

m�1=2. However, using the former brings the exact size of the test closer to its nominal level.

Remark 2 The number of frequency ordinates m needs to satisfy m=n1=2 ! 1 to achieve good

power and be less than n4=5 to avoid bias when estimating d. We will use simulations to examine

the sensitivity of the results to such choices. It turns out that m = n0:7 seems to achieve a good

balance between size and power; thus it is suggested in practice.

Remark 3 vj is unbounded for j = o(m). The introduction of trimming permits asymptotic ap-

proximations that are adequate even in small samples. Note that the test statistic value is a de-

creasing function of " (smaller " implies more frequencies included in the statistic, thus a higher

test statistic value). However, the critical value is also a decreasing function of " for the same

reason. Thus, the relative power will depend on which one dominates. In practice, if the sample

size is small, say n < 500, we suggest using " = 0:05: For larger samples, smaller trimmings can be

used. We will use simulations to evaluate the e¤ect of di¤erent trimmings on the size and power

of the test.

The test is a score type test statistic. It does not require specifying the form of the trend or the

number or locations of the di¤erent regimes that occur under the alternative hypothesis. It also
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inherits two desirable properties of the local Whittle estimator, which allows for non-Gaussianity

and is more e¢ cient than the GPH estimator, see Robinson (1995b).

The W test has features that are quite di¤erent from other tests in the literature. Dolado et al.

(2005) proposed a test for the null hypothesis of fractional integration against the alternative hy-

pothesis of short memory with a single structural break in the deterministic component (a constant

or a linear trend). It is based on the t-statistic in an augmented Dickey-Fuller regression. Mayoral

(2010) considered a similar problem and proposed a likelihood ratio-type test statistic. Their tests

allow d > 1=2 and are useful for detecting a single structural change. In contrast, the W test is

designed to detect a more general class of alternatives without requiring speci�cation of the form

of the trend or the number of breaks. Shimotsu (2006) proposed a Wald test that compares local

Whittle estimates obtained from k equally sized subsamples, in line with Lobato and Savin (1998).

By choosing k greater than 2, the test can handle multiple breaks. He also proposed two tests based

on the dth di¤erenced series. We will compare the W test with Shimotsu�s tests using simulations.

4 The asymptotic properties of the test

The following assumptions are imposed, which are the same as in Robinson (1995b). The derivation

below makes heavy use of his results.

Assumption 1. For some � 2 (0; 2], f(�) = G0�
�2d0(1 + O(��)) as � ! 0+, where G0 2 (0;1)

and d0 2 [�1;�2] with �1=2 < �1 < �2 < 1=2:

Assumption 2. Assume xt�E(x0) =
P1
j=0 �j"t�j with

P1
j=0 �

2
j <1, E("tjFt�1) = 0; E("2t jFt�1) =

1; E("3t jFt�1) = �3 and E("
4
t jFt�1) = �4 a.s. for t = 0;�1; :::, where Ft is the � � field gener-

ated by "s; s � t. Also assume there exists a random variable Z such that E(Z2) < 1 and

P (j"tj > �) � KP (jZj > �) for all � > 0 and some K > 0:

Assumption 3. Let �(�) =
P1
l=0 �l exp(i�l). In a neighborhood (0; �) of the origin, �(�) is

di¤erentiable and d�(�)=d� = O (j�(�)j =�) as �! 0 + :

Assumption 4. As n!1, 1=m+m1+2� (logm)2 =n2� ! 0:
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The assumptions allow for non-Gaussianity but preclude conditional heteroskedasticity. To

allow for both features, we also consider an alternative set of conditions due to Shao and Wu

(2007). Speci�cally, assume xt is generated by

(1� L)d(xt � E(x0)) = �t; t = 0;�1;�2; :::;

where �t = F (:::; e�1; e0; :::; et) with et being i.i.d. random variables and F being a measurable

function such that �t is well de�ned. The next Assumption corresponds to Assumptions 2.3, 2.4

and 2.6 in Shao and Wu (2007).

Assumption H. Assume that Assumption 1 is satis�ed with � � 1 and that the following hold:

(a)
P
k1;k2;k32Z

��cum(�0; �k1 ; �k2 ; �k3)�� < 1; where cum(:) denotes the joint fourth cumulant and

Z the set of integers. (b) Let �0k = F (:::; e�1; e00; :::; ek) with e
0
0 being an independent copy of e0.

Assume �t 2 Lq and
P1
k=1 k



�k � �0k

q < 1 with q > 4: (c) m satis�es (log n)3=m +m3=n2 ! 0

if � > 1, and (log n)3=m+m3(logm)2=n2 ! 0 if � = 1:

The parameter � concerns a particular property of the short memory component �t. Speci�cally,

the condition � � 1 implies that its spectral density is di¤erentiable at the origin. The cumulant

condition in H(a) is widely used in the time series literature. Andrews (1991, Lemma 1) shows that

it is implied by an �-mixing condition when �t 2 Lq with q > 4. H(b) quanti�es the dependence

of �t on e0 by measuring the distance between �t and its coupled version �
0
k and can be veri�ed

for many nonlinear time series models. Shao and Wu (2007) show that Assumptions H(a) and (b)

allow for ARFIMA(p; d; q)-GARCH(r; s) and ARFIMA(p; d; q)-EGARCH(r; s) processes provided

�t 2 Lq with q > 4. These processes have � = 2. Note that H(b) implies the spectral density

of �t is continuously di¤erentiable over [��; �], a property not required in Assumptions 1 to 4.

Also, H(c) imposes stronger conditions on m than Assumption 4. These are the prices we pay for

allowing for conditional heteroskedasticity. Nevertheless, simulation evidence presented in Section 6

indicates that the size of the test is insensitive to the choice of m; even when substantial conditional

heteroskedasticity is present.
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We �rst establish a uniform weak law of large numbers and a functional central limit theorem.

They are needed for proving Theorem 1 and are also of independent interest.

Lemma 2 Let Qm(r) = m�1P[mr]
j=1 (Ij=(G0�

�2d0
j )). Under Assumptions 1-4 or H, Qm(r) !p r

uniformly on [0; 1] and m1=2(Qm(r)� r))W (r) with W (r) being the Wiener process on [0; 1].

Theorem 1 Under Assumptions 1-4 or Assumption H, as n!1;

W ) sup
r2[";1]

����Z r

0
(1 + log s)dW (s)�W (1)

Z r

0
(1 + log s)ds� �(r)

Z 1

0
(1 + log s)dW (s)

���� ;
where �(r) =

R r
0 (1 + log s)

2ds and W (r) is a Wiener process de�ned on [0; 1].

The limiting distribution in Theorem 1 is a result of the following �rst-order Taylor approxi-

mation to (8):

W = sup
r2[";1]

������m�1=2
[mr]X
j=1

vj

�
Ij=(G0�

�2d0
j )� 1

�
�

0@m�1=2
mX
j=1

�
Ij=(G0�

�2d0
j )� 1

�1A0@m�1
[mr]X
j=1

vj

1A
+ 2�(r)m1=2(d̂� d0)

���+ op(1):
The three terms inside the absolute value signs correspond to the three terms in the limiting

distribution. Weak convergence is proved by �rst showing �nite-dimensional convergence and then

verifying tightness. The additional di¢ culty presented by Assumption H is addressed using a

martingale approximation technique developed in Wu and Shao (2007).

To simulate the limiting distribution, we approximate a Wiener process by n�1=2
P[nr]
i=1 ei with

ei � i:i:d:N(0; 1) and n=10,000 and record 10,000 realizations of W to tabulate its critical values.

The results are reported in Table 1, covering the following two cases " = 0:02 and 0:05:

Remark 4 Lemma 2 and Theorem 1 are useful for studying the distribution of other related test

statistics. For example, instead of (8), we can consider a Cramer-von Mises type statistic:

Z 1

"

 
mP
j=1

v2j

!�10@[mr]P
j=1

vj

0@ Ij

G(d̂)��2d̂j

� 1

1A1A2 dr:
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Then, it follows immediately that its limiting distribution is given byZ 1

"

�Z r

0
(1 + log s)dW (s)�W (1)

Z r

0
(1 + log s)ds� �(r)

Z 1

0
(1 + log s)dW (s)

�2
dr:

The following result implies that the W test is consistent against the alternatives (3) and (5).

Theorem 2 Suppose xt is generated by (3) or (5). Assume m=n1=2 ! 1; P (d̂ > �) ! 1 and

P (m�1Pm
j=1 Ij�

2d̂
j > �) ! 1 as n ! 1 with � being some arbitrarily small constant. Then,

W !p 1 as n!1:

The assumption m=n1=2 ! 1 is crucial for achieving consistency. P (d̂ > �) ! 1 ensures that

xt exhibits spurious long memory asymptotically. This is needed because we do not impose speci�c

parametric assumptions on the form of the trend or level shifts and thus are not directly ruling out

the situation in which they are asymptotically negligible. To understand intuitively what leads to

this condition, note that d̂ solves (c.f. (7)) :

m�1
mX
j=1

�2d̂j Ijvj = 0; (9)

where vj satis�es (1=m)
Pm
j=1 vj = 0, is monotonically increasing in j; and there exists j

� = �m with

� > 0 such that vj � 0 (vj > 0) for j � j� (j > j�). Also, j� is of higher order than n1=2 for large n

because m=n1=2 !1. Now, if xt is a stationary short memory process, then Ij is �at in j for both

j 2 [1; j�] and j 2 [j� + 1;m]. Therefore, d̂ will be close to zero in large samples. If xt is a¤ected

by level shifts or trends, then the Ij in [1; j�] will tend to increase while those in [j� + 1;m] will

stay �at, see (4) and Lemma 1. Therefore, d̂ needs to be positive to satisfy (9). It will be strictly

positive in large samples if the level shifts or trends are su¢ ciently pronounced. The condition

P (m�1Pm
j=1 Ij�

2d̂
j > �) ! 1 is a variance condition. To see this, consider a true long memory

process such as (2). Then, m�1Pm
j=1 Ij�

2d0
j converges in probability to �2" jB(1)j

2 =(2� jA(1)j2);

the long run variance of
�
B(L)A(L)�1"t

	
. Thus, these two conditions imply that xt mimics a long

memory process with strictly positive variance.

12



There is a close connection between the above results and Müller and Watson (2008, Section

5). They considered a small number of frequencies and showed that it is very di¢ cult to detect

spurious long memory, which is consistent with the �ndings in (4) and Lemma 1. However, our

result in Theorem 2 also shows that it is possible to construct useful tests if one is willing to

consider frequencies beyond j = O(n1=2), at the cost of making additional assumptions about these

frequencies.

Now consider the situation where both long memory and level shifts or smooth trends are

present. We say there is spurious long memory because the presence of the latter tends to bias

the estimate of d0 upward, thus spuriously increasing the apparent strength of long memory. We

still consider the models (3) and (5) but with zt now being a true long memory process. The next

Corollary shows the test is consistent against such alternatives.

Corollary 1 Suppose the process xt is generated by (3) or (5) but with zt being a true long memory

process, with memory parameter d0; satisfying Assumptions 1-4 or Assumption H. Also assume

m=n1=2 ! 1, P (d̂ � d0 > �) ! 1, and P (m�1Pm
j=1 Ij�

2d̂
j > �) ! 1 as n ! 1 with � being some

arbitrarily small constant. Then, W !p 1 as n!1:

The condition P (d̂�d0 > �)! 1 implies that the presence of level shifts or smooth trends spuri-

ously increases the strength of long memory even asymptotically. The condition P (m�1Pm
j=1 Ij�

2d̂
j >

�)! 1 is again a variance condition, as in Theorem 2. These two conditions imply that xt mimics

a long memory process with a memory parameter greater than d0 and strictly positive variance.

Remark 5 The above approach corresponds to a "speci�c-to-general" modelling approach, where

the simplest model (stationary long memory) is considered and tested, and additional features are

seen to be present if the test rejects the null hypothesis. This approach has some advantages. It

is simple because we do not need to specify the number of shifts or the form of the trend when

conducting the W test. The result is easy to interpret because non-rejection implies that a long

memory model is adequate and rejection suggests that the series contains a spurious long memory
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component. It gives clear modelling suggestions, that is, to build a long memory model if the W

test does not reject and incorporate trends or level shifts into the model if it does.

Now suppose the W test rejects the null hypothesis. Then, to determine whether a true long

memory component is also present, it is necessary to re-estimate the memory parameter after

accounting for level shifts or a smooth trend.

Suppose a smooth trend is conjectured to be present, then the following procedures are useful.

Beran and Feng (2002) proposed a class of models (SEMIFAR models) that allows for a fractional

component and a deterministic trend component (I thank a referee for pointing this out). The

fractional component is speci�ed as an ARFIMA process and the trend component is modelled

nonparametrically. The model can be estimated by combining parametric maximum likelihood

estimation with kernel smoothing in an iterative fashion. Robinson (1997) and Hurvich et al.

(2005) considered semiparametric estimation of the memory parameter in the presence of a smooth

trend, with both the long memory and the trend components speci�ed nonparametrically. Both

papers apply the local Whittle estimator. In the latter, the estimator is applied to the tapered,

di¤erenced series with a number of low frequencies trimmed from the estimator�s objective function.

These studies provide con�dence intervals for d̂ using which the evidence for long memory can be

assessed.

For the level shift case, we can consider the following three-step procedure. First, apply Lavielle

and Moulines (2000) to estimate the number and locations of the level shifts. Suppose k shifts are

detected, resulting in k+1 exclusive subsamples. Second, apply the local Whittle estimator to each

subsample to obtain d̂j (j = 1; :::; k+1). Third, construct an F test for d1 = ::: = dk+1 = 0: Under

the hypothesis that dj = 0 (j = 1; :::; k + 1) and some additional assumptions, most importantly

that the level shifts are not too small (formally, their magnitudes staying nonzero and �xed as

n!1); d̂j have the usual asymptotic distribution as in Robinson (1995b) and are asymptotically

independent for di¤erent j. Therefore, the F test has a Chi-square limiting distribution with k+1
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degrees of freedom. A rejection would then suggest that long memory is present after accounting

for level shifts.

5 A �nite sample correction to control the size

The short memory dynamics do not enter the asymptotic distribution. However, they may still have

an important impact in small samples. In the following, we propose a "prewhitening" procedure

that reduces the short memory component while maintaining the same limiting distribution for the

test. It involves estimating a low order ARFIMA model and �ltering the series using the estimated

autoregressive and moving average coe¢ cients.

Step 1. Estimate an ARFIMA(p; d; q) model for p; q = 0; 1. Determine the order using the Akaike

Information Criterion (AIC). Let �̂ = n�1
Pn
i=1 xt and â1 and b̂1 be the estimated autoregressive

and moving average coe¢ cients. Restrict the values of â1 and b̂1 to lie strictly within the unit

interval to ensure stationarity and invertibility, i.e., �1+� � â1; b̂1 � 1�� with � being some small

constant greater than zero. In simulations and empirical applications, we set � = 0:01:

Step 2. Compute x�t = (1 � â1L)(1 + b̂1L)
�1 (xt � �̂). Explicitly, let x�1 = x1 � �̂ and x�t =

(xt � �̂)�
Pt�1
k=1(�b̂1)k�1(â1 + b̂1) (xt�k � �̂) for t > 1. Use x�t instead of xt to construct W:

In Step 1, the time domain Gaussian likelihood is used for constructing the AIC. In simulations

and empirical applications, it is computed using the fracdi¤ package in R that implements Haslett

and Raftery (1989). The above procedure does not a¤ect the null limiting distribution, provided

Assumptions 2 and H are slightly strengthened.

Assumption F. (a) If Assumption 2 holds, then further assume �j = O(j�1=2�c) with c > 0

as j ! 1. (b) If Assumption H holds, then further assume �t satis�es a geometric moment

contraction (GMC) condition with order q > 4. That is, let ��k = F (:::; e0�1; e
0
0; :::; ek�1; ek) with

e0�j (j = 0; 1; :::) being independent copies of e�j . Assume k�k � ��kkq < C�k for some C < 1;

0 < � < 1 and all positive integers k.

Assumption F(a) ensures the square summability condition in Assumption 2 is satis�ed af-
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ter �ltering. It allows for stationary ARFIMA(p,d,q) models. F(b) ensures that Assumption H

continues to hold after �ltering. It allows for ARFIMA(p; d; q)-GARCH(r; s) and ARFIMA(p; d; q)-

EGARCH(r; s) models. See Shao and Wu (2007) for other nonlinear time series satisfying GMC

conditions.

Corollary 2 Assume xt satis�es the same conditions as in Theorem 1, with the additional require-

ment that Assumption F holds. Then, the W test constructed using x�t has the same null limiting

distribution as in Theorem 1.

We do not assume the true DGP is an ARFIMA process. It is just used as a reasonable ap-

proximation to the series so that some short memory dynamics can be removed. We have proposed

using ARFIMA(p; d; q) model with p; q � 1 as the basis for prewhitening. This is motivated by

a host of research documenting that low order ARFIMA models provide good approximations to

many processes considered in economics and �nance. For example, Andersen et al. (2003) stud-

ied the log realized volatility of the Deutschmark/Dollar and Yen/Dollar spot exchange rates and

showed that an AFRIMA(1; d; 0) approximation performs quite well when compared to other sta-

tionary time series models. Deo et al. (2006), Koopman et al. (2005) and Christensen and Nielsen

(2007) studied other volatility series, arriving at similar conclusions. Note that �̂ can be replaced

by estimated seasonal dummies. The procedure remains asymptotically valid.

6 Simulations for �nite sample properties

In this section, we examine the size and power properties of the W test using simulations. We will

also compare it to �ve test statistics in the existing literature.

The �rst test is due to Ohanissian et al. (2008), given by ORT = (TD̂)0 (T�T 0)�1 (TD̂), where

D̂ = (d̂(m1); :::; d̂(mM )); where d̂(mj) is the GPH estimate of d at aggregation level mj , T is an

(M � 1)�M matrix of constants and � is de�ned by equation (3) in their paper. As in Ohanissian

et al. (2008), the aggregation levels are 2j�1 with j = 1; :::;M . Constrained by the sample size,
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we set M = 4. The number of frequency ordinates used for each GPH estimate is the square root

of the length of each (temporally aggregated) series. The second test is the mean-td test of Perron

and Qu (2010). Let d̂a;c denote the log-periodogram estimate of d when c[na] frequencies are used

and let td(a; c1; b; c2)=
p
24c1[na]=�2(d̂a;c1 � d̂b;c2). Then, mean-td is de�ned as the average of the

td(1=3; c1; 1=2; 1) tests for c1 2 [1; 2]. Its limiting distribution is not available. As in Perron and Qu

(2010), a parametric bootstrap procedure is used to compute relevant critical values. Speci�cally,

for a given series, an ARFIMA(1,d,1) model is estimated and then the null distribution of the test

is simulated using this as the DGP. They also considered a sup-td test, which performs very similar

to the mean-td test in our simulations and is omitted to save space. The remaining three test

statistics are due to Shimotsu (2006). The Wc test compares estimates of d from k equally sized

subsamples. We set k = 4; following the suggestion in Shimotsu (2006). The �� and Zt tests apply

the KPSS and Phillips-Perron test to the dth di¤erenced series. For these three tests, the parameter

d is estimated using the local Whittle likelihood with m = 4[(n0:7)=4]. Results are obtained using

the Matlab code provided by Shimotsu.

For all local Whittle-based tests (W; ��;Wc and Zt), d̂ is obtained by minimizing the objective

function (6) over d 2 [�1=2; 1]. Note that this interval is greater than that stated in Assumption

1. This does not a¤ect the null limiting distribution of the test, however, and can deliver tests

with better size properties when d0 is close to 0.5 by avoiding the boundary issue. All tests are

constructed by �rst applying the �nite sample correction described in the previous section, except

for the mean-td test. Since the latter uses a bootstrap procedure to generate critical values, the

�nite sample correction is irrelevant. The data are generated using the fracdi¤ package designed

for the R environment. All results are based on 10,000 replications.

To evaluate the size of the test, we consider models with parameter values that are typical in

�nancial applications. The aforementioned research, along with others, suggests that d typically

takes on values between 0:30 and 0:45. We thus set d = 0:4 and consider the following speci�cations:

� DGP 1. ARFIMA(0; d; 0) : (1� L)0:4xt = et:
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� DGP 2. ARFIMA(1; d; 0) : (1� a1L)(1� L)0:4xt = et; where a1 = 0:4 and 0:8.

� DGP 3. ARFIMA(0; d; 1) : (1� L)0:4xt = (1 + b1L)et; where b1 = 0:4 and 0:8.

� DGP 4. ARFIMA(2; d; 0) : (1� a1L)(1� a2L)(1� L)0:4xt = et; where a1 = 0:5 and a2 = 0:3.

� DGP 5. xt = zt + �t; where (1� L)0:4zt = et and �t � i:i:d:N(0; var(zt)):

� DGP 6. (1� L)0:4xt = ut with ut = �tet; �
2
t = 1 + 0:10u

2
t�1 + 0:85�

2
t�1:

In all cases, et � i:i:d:N(0; 1). DGP 1 corresponds to the ideal situation for local Whittle estimation.

DGP 2 to DGP 4 contain substantial short memory components. Since DGP 4 is not a sub case of

ARFIMA(1,d,1) models, it is used to illustrate the e¤ectiveness of the �nite sample correction. DGP

5 consists of a fractionally integrated process a¤ected by measurement errors. Such a speci�cation

is relevant for applications to implied and realized volatility. The variance of the measurement error

is set equal to the variance of the zt component, following the simulation design of Bandi and Perron

(2006). DGP 6 exhibits strong conditional heteroskedasticity. For each DGP, we consider three

sample sizes: n=500, 1000, 2000. They are similar to the sample sizes in the empirical applications

in Section 7.

Table 2 presents empirical rejection frequencies at a 5% nominal level. The size of the W test

is fairly stable across di¤erent sample sizes, DGPs, and values of m and ". Overall, it appears to

be conservative, except there is a slight tendency toward over-rejection when m = n0:75 for DGP 4

and DGP 5. The ORT test exhibits the best size properties. The Wc test of Shimotsu (2006) tends

to overreject the null hypothesis, with the maximum rejection frequency being 0.108 for DGP 6.

Other tests have decent size. We also repeated the analysis using un�ltered series to �nd that the

�nite sample correction has no e¤ect on ORT, a small e¤ect on Wc, and signi�cantly improves the

W , �� and Zt tests, especially for DGPs 2, 4 and 5. For example, for DGP 2 with a1 = 0:8 and

n = 500, the rejection frequencies would be 0.352 for the W test ("=0.02, m = n0:70); 0.000 for

the �� test and 0.593 for the Zt test if the �nite sample correction is not used. The size does not

improve when n is increased to 2000. Thus, the correction is indeed quite e¤ective.

For power properties, we consider six alternative models. The �rst �ve are the same as in
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Ohanissian et al. (2008). The last model contains a smooth but non-monotonic trend, for which

parameter values are chosen to make d̂ close to 0.4.

1. Nonstationary random level shift: yt = �t + "t; �t = �t�1 + �t�t; �t � i:i:d:B(1; 6:10=n); "t �

i:i:d:N(0; 5); �t � i:i:d:N(0; 1):

2. Stationary random level shift: yt = �t + "t; �t = (1� �t)�t�1 + �t�t; �t � i:i:d:B(1; 0:003); "t

and �t � i:i:d:N(0; 1):

3. Markov switching with iid regimes: yt � i:i:d:N(1; 1) if st = 0 and yt � i:i:d:N(�1; 1) if

st = 1; with state transition probabilities p10 = p01 = 0:001:

4. Markov switching with GARCH regimes: rt =
p
ht"t and ht = 1 + 2st + 0:4r

2
t�1 + 0:3ht�1;

where "t � i:i:d:N(0; 1); st = 0; 1 and p10 = p01 = 0:001: yt = log r
2
t :

5. White noise with a monotonic deterministic trend: yt = 3t�0:1 + "t; "t � i:i:d:N(0; 1):

6. White noise with a non-monotonic deterministic trend: yt = sin(4�t=n)+"t; "t � i:i:d:N(0; 3):

The studied sample sizes n vary between 500 and 9000 and we setm = n0:70. Other speci�cations

are the same as before. Table 3 reports size-unadjusted power at a 5% nominal level, with bold

numbers denoting the highest power among all tests. The results are encouraging. For models 1-4

and 6, the power of the W test with " = 0:02 is the highest among all tests once n reaches 3000.

The power di¤erence is often substantial, particularly for models 2-4 and 6. The power of ORT,

mean-td and Zt is in general much lower. Note that Ohanissian et al. (2008) showed that the

power of their test is 1 when the sample size is 610304. Thus, their test is more suitable for very

large sample sizes, which may be available when analyzing high-frequency data1. The �� and Wc

tests of Shimotsu (2006) have merits, with the �� test being very powerful at detecting monotonic

trends, a property inherited from the KPSS test. However, their power is quite low under DGPs 2,

3 and 4. Thus, the W test performs the best overall, in the sense that it has decent power against

a wide range of alternatives for sample sizes typical in �nancial applications.

1For n = 9000, we also tried to increase the number of aggregation levels to M = 8 for Ohanissian et al.�s (2008)
test. The rejection frequencies are 0.46, 0.20, 0.11, 0.21, 0.24 and 0.23 for the six respective processes.
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Finally, the results show that a large trimming (" = 5%) may lead to nonnegligible loss in power.

Note that in �nancial applications we typically face samples of a few thousands observations. In

such cases, based on these limited simulation results, " = 2% seems to achieve a good balance in

terms of size and power and is thus suggested in practice.

7 Applications

We apply the W test to three time series for which empirical evidence of long memory has been

documented. The series are: (1) monthly temperature for the northern hemisphere for the years

1854-1989, (2) monthly US in�ation rates from January 1958 to December 2008, and (3) realized

volatility for Japanese Yen/US dollar spot exchange rates from December 1, 1986 to June 30, 1999.

The W test uses m = n0:70 unless stated otherwise. Other speci�cations are the same as above.

The results from the tests are summarized in Table 4.

The temperature series was obtained from Beran (1994, pp.257-261). It contains 1632 obser-

vations and is shown in Figure 3(a). The local Whittle estimate is 0.33 using m = n0:70. The W

test is signi�cant at the 1% level for both " =0.02 and " =0.05. To obtain some further insight, we

can consider local Whittle estimates using di¤erent numbers of frequencies: n1=3 � m � n4=5. The

estimates are shown in �gure 3(b), as a function of m. The result is very informative. It shows that

when a small number of frequencies is used, the estimate is above 0:5 and it decreases signi�cantly

as more frequencies are included. This �nding is consistent with the presence of level shifts or

smooth trends, but inconsistent with stationary fractional integration (see Figures 1(b) and 2(b)).

Figure 3(c) provides more evidence. It reports memory parameter estimates using observations up

to nb; with nb ranging between 300 and 1632. The estimates vary substantially. This again suggests

that nonstationarity is genuinely present in the sample. Among the other tests, �� and Wc rejects

at 1% level while the rest do not reject even at 5% level. This is consistent with the simulation

evidence that �� and Wc have relatively higher power among the remaining �ve tests.

The in�ation series was constructed from the consumer price index for all urban consumers
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and all items (the series SA0, seasonally unadjusted, available at Bureau of Labor Statistics). It

contains 612 observations and is plotted in Figure 4(a). The local Whittle estimate is 0.33 using

m = n0:70. The W test is signi�cant at the 5% level when "=0.02 and at the 1% level when "=0.05.

Figures 4(b) and 4(c) reveal qualitatively similar �ndings to Figure 3, presenting evidence against

the null hypothesis of stationary long memory. Among the other tests, Wc rejects at 1% level, ��

barely rejects at 5% level and the rest do not reject.

The realized volatility series was constructed using 5-minute returns for the Yen/$ spot rate,

obtained from Olsen and Associates. The series was constructed following the same procedure as

discussed in Andersen et al. (2001). More speci�cally, we �rst obtained the daily realized variances

by summing the squared 5-minute returns. Then, we applied the logarithm transformation to

obtain log realized volatility. The weekends and holidays were dropped following Andersen et al.

(2001). This left a sample of 2960 observations. The local Whittle estimate is 0.47 using m = n0:70.

The W test equals 0.41 when "=0.02 and 0.37 when "=0.05, which are well below the 10% critical

values in both cases. Figures 5(b) and 5(c) show that the memory parameter estimates remain

stable when changing the number of frequency ordinates or the sample size. Other tests lead to

the same conclusion. We also repeated the analysis using 30-minute returns. The result remains

qualitatively the same.

The above results suggest that the evidence for stationary long memory may not be as strong

as is often perceived. They also suggest that more research is needed to understand the nonlinear

and nonstationary aspects of the relevant processes.

7.1 Further simulation evidence

In the �rst two applications, the sample sizes are relatively small and there is pronounced het-

eroskedasticity. We now consider simulations calibrated to empirical estimates obtained from these

two series to assess whether the W test has decent size and power in such contexts. Speci�cally,
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we estimate the model

xt = zt + �t with (1� a1L)(1� L)dzt = (1 + b1L)et (10)

under both the null and the alternative hypotheses and then use the parameter estimates to generate

simulated data. Note that (10) allows for long memory even under the alternative hypothesis.

For the temperature series, �t is assumed to be a smooth trend under the alternative hy-

pothesis. It is estimated nonparametrically using the same kernel as in Robinson (1997): �̂t =

(nb)�1
Pn
s=1K ((nt� s)=(nb))xt with K(v) = (1=2) f1 + cos(�v)g for jvj � 1 and b = 0:1. Other

parameters are estimated via a time domain Gaussian likelihood function applied to (xt � �̂t). To

preserve the heteroskedasticity present in the data, we use the wild bootstrap (Wu, 1986). Specif-

ically, the disturbances e�t are generated from the estimated residuals by e�t = stêt with st being

i.i.d. random variables taking value �(
p
5� 1)=2 with probability (

p
5+ 1)=(2

p
5) and (

p
5+ 1)=2

with probability (
p
5� 1)=(2

p
5). This leads to the following two DGPs:

� Temp-H0. (1� 0:056L)(1� L)0:354zt = (1 + 0:015L)e�t and �̂t = �0:149 for all t,

� Temp-H1. (1� 0:560L)(1� L)0:000zt = (1� 0:174L)e�t and �̂t is depicted in Figure 3(a).

For the in�ation rate series, �t is assumed to contain two level shifts under the alternative

hypothesis. The break dates are �xed exogenously as in Bos et al. (1999). They correspond to a

break shortly before the �rst oil crisis (1973:07) and shortly after the second oil crisis (1982:07). �t

is estimated using OLS and is depicted in �gure 4(a). Other aspects are the same as before. This

leads to the following two DGPs:

� In�-H0. (1� 0:896L)(1� L)0:388zt = (1� 0:892L)e�t and �̂t = 0:039 for all t,

� In�-H1. (1� 0:412L)(1� L)0:118zt = (1� 0:143L)e�t ; �̂1=0:029; �̂188=0:088 and �̂296=0:029:

The results are summarized in Table 5. TheW test exhibits good size properties, with rejection

frequencies varying between 2.2% and 6.6%. It also has decent power given that the sample sizes are

relatively small. Among the competing tests, the �� test performs very well under Temp-H1, but

has virtually no power under In�-H1. The Wc test performs very well under In�-H1, but has very
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low power under Temp-H1. These �ndings are entirely consistent with the ones reported in Section

6. They are also broadly consistent with the pattern we observe in Table 4, except that there the

�� test rejects the null hypothesis when applied to the in�ation rate series. This is possibly due to

its size distortions (c.f. Panel b in Table 5), or because the in�ation series entails more complex

dynamics than allowed in the model (10). For the temperature series, we varied b between 0.05 and

0.20 while maintaining all other parameter values at the estimated values and the result remain

the same qualitatively.

8 Conclusion

We have considered the issue of distinguishing between true and spurious long memory. We �rst

compared the spectral domain properties of stationary long memory processes with short memory

processes containing level shifts or smoothly varying trends. We then proposed a simple test statistic

based on the derivatives of the pro�led local Whittle likelihood function. The limiting distribution

under the null hypothesis was derived using theory of empirical processes. Simulations showed the

test has decent size and power properties. The test was applied to three time series for which

empirical evidence for long memory has been documented. The result of this empirical exercise

suggests that the evidence for stationary long memory may not be as strong as is often perceived.
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Appendix A. Proof of Main Results

This appendix contains proofs for Lemma 1, Theorem 1 and 2. Proofs for Lemma 2, Corollary

1 and 2 can be found in the supplementary appendix.

Proof of Lemma 1. The proof is a direct extension of Künsch (1986, p.1026). Consider
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where the �rst inequality uses summation by parts and
Pn
s=1 cos(�js) = 0, the third is becausePt
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Hence, Ih(�j) = O(n�1��2j ): �

Proof of Theorem 1: The proof consists of three steps.

Step 1: Represent the statistic as a quantity linear in (d̂ � d0). Since m�1Pm
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and ed lies between d0 and d̂. The �rst term in the Taylor expansion can be rewritten as
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Combining (A.2) and (A.3), we have
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Step 2: Prove �nite dimensional convergence. Consider the �rst term in (A.4). Because
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First, the asymptotic normality of (
Pn
t=1 zt;rs)s=1;:::;p follows from Robinson (1995b, Theorem 2)

and Shao and Wu (2007, Theorem 3.1). Second, for 0 � r1 � r2 � 1;
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j =n) = O(m=n)! 0; see Robinson (1995b, p.1645). The second
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holds.
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Thus, it can be analyzed in the same way as the second term. The detail is omitted.

Step 3: Prove tightness. We follow Nielsen (2004) and use Theorem 13.5 of Billingsley (1999).
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This completes the proof. �

Proof of Theorem 2. The proof uses the property that, for the two processes considered, Ij =

Op(1) when jn�1=2 ! 1. Note that vj is monotonically increasing in j with v1 < 0 and vm > 0.
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We study the two terms separately. The �rst term satis�es0@ mX
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which is strictly positive and of exact order m1=2. For the second term, because m=n1=2 ! 1,

j�=n1=2 !1. Thus, for j� � j � m, Ij = Op(1). Further, vjIj=(G(d̂)��2d̂j ) = Op(�
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�j = o(1). Thus, the second term is of order lower than m1=2 and is dominated asymptotically by

the �rst term (A.9). This shows A!p 1 as n!1. �
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Table 2. Empirical size at 5% nominal level

n The proposed W test Other existing tests

m=n0:60 m=n0:65 m=n0:70 m=n0:75 ORT Wc �� Zt mean-td
"=2% "=5% "=2% "=5% "=2% "=5% "=2% "=5%

DGP1: (1�L)0:4xt= et
500 0.010 0.013 0.015 0.017 0.013 0.014 0.016 0.019 0.059 0.082 0.035 0.007 0.062

1000 0.017 0.023 0.018 0.026 0.020 0.022 0.023 0.024 0.052 0.075 0.038 0.015 0.050

2000 0.024 0.027 0.021 0.026 0.024 0.026 0.028 0.029 0.057 0.068 0.037 0.023 0.055

DGP2: (1�0.4L)(1�L)0:4xt= et
500 0.011 0.017 0.016 0.020 0.019 0.019 0.013 0.018 0.056 0.080 0.048 0.003 0.051

1000 0.016 0.020 0.018 0.021 0.019 0.024 0.017 0.019 0.050 0.074 0.042 0.013 0.051

2000 0.020 0.027 0.024 0.032 0.027 0.028 0.024 0.024 0.059 0.074 0.040 0.026 0.055

DGP2: (1�0.8L)(1�L)0:4xt= et
500 0.010 0.013 0.011 0.011 0.006 0.009 0.008 0.013 0.062 0.083 0.052 0.026 0.071

1000 0.018 0.019 0.012 0.014 0.011 0.014 0.010 0.012 0.055 0.077 0.059 0.008 0.076

2000 0.019 0.020 0.017 0.016 0.018 0.016 0.013 0.015 0.050 0.066 0.047 0.005 0.065

DGP3: (1�L)0:4xt=(1+0.4L)et
500 0.011 0.014 0.015 0.019 0.018 0.021 0.021 0.024 0.062 0.086 0.036 0.019 0.052

1000 0.017 0.021 0.021 0.028 0.023 0.033 0.028 0.032 0.057 0.078 0.036 0.031 0.053

2000 0.020 0.027 0.025 0.030 0.031 0.034 0.038 0.043 0.057 0.072 0.040 0.036 0.054

DGP3: (1�L)0:4xt=(1+0.8L)et
500 0.011 0.018 0.014 0.017 0.018 0.024 0.024 0.028 0.062 0.084 0.032 0.027 0.057

1000 0.012 0.019 0.022 0.029 0.022 0.033 0.032 0.040 0.051 0.075 0.035 0.030 0.053

2000 0.019 0.023 0.027 0.031 0.029 0.033 0.035 0.038 0.058 0.070 0.039 0.032 0.046

DGP4: (1�0.5L)(1�0.3L)(1�L)0:4xt= et
500 0.009 0.013 0.005 0.009 0.010 0.018 0.014 0.036 0.063 0.086 0.025 0.044 0.063

1000 0.026 0.026 0.019 0.024 0.015 0.024 0.035 0.069 0.062 0.074 0.061 0.021 0.096

2000 0.046 0.042 0.033 0.033 0.026 0.028 0.044 0.073 0.057 0.067 0.089 0.012 0.097

DGP5: xt=(1�L)�0:4et+�t
500 0.020 0.028 0.029 0.031 0.033 0.035 0.058 0.056 0.063 0.083 0.079 0.011 0.066

1000 0.029 0.028 0.036 0.043 0.046 0.053 0.059 0.054 0.055 0.076 0.091 0.007 0.063

2000 0.041 0.043 0.050 0.054 0.059 0.058 0.078 0.065 0.051 0.064 0.098 0.011 0.067

DGP6: (1�L)0:4xt= ut with ut= �tet; �2t=1+0.10u2t�1+0.85�2t�1
500 0.019 0..023 0.023 0.024 0.032 0.033 0.032 0.033 0.054 0.100 0.038 0.007 0.059

1000 0.022 0.024 0.024 0.031 0.025 0.032 0.029 0.037 0.058 0.108 0.042 0.012 0.068

2000 0.023 0.029 0.025 0.036 0.029 0.038 0.036 0.037 0.056 0.108 0.040 0.025 0.057

Note: " is the trimming proportion. ORT: the test of Ohanissian et al. (2008); Wc; ��and Zt: tests of Shimotsu
(2006); mean-td: the test of Perron and Qu (2010); the mean-td test is constructed using un�ltered series.



Table 3. Finite sample power of the tests at a 5% nominal level

n Test statistics Mean of d̂
W ("=0.02) W ("=0.05) ORT Wc �� Zt mean-td

Nonstationary random level shift
500 0.19 0.16 0.09 0.17 0.37 0.00 0.19 0.23
1000 0.27 0.21 0.11 0.26 0.48 0.00 0.25 0.24
3000 0.76 0.48 0.26 0.51 0.74 0.00 0.51 0.25
5000 0.92 0.76 0.34 0.76 0.84 0.00 0.64 0.26
7000 0.97 0.89 0.44 0.75 0.89 0.00 0.74 0.26
9000 0.98 0.95 0.53 0.81 0.93 0.00 0.77 0.26
Stationary random level shift
500 0.21 0.20 0.08 0.33 0.32 0.00 0.14 0.24
1000 0.44 0.41 0.10 0.60 0.42 0.00 0.19 0.31
3000 0.92 0.89 0.11 0.82 0.33 0.00 0.15 0.42
5000 0.98 0.98 0.10 0.76 0.21 0.00 0.07 0.46
7000 1.00 1.00 0.14 0.71 0.13 0.00 0.04 0.49
9000 1.00 1.00 0.16 0.66 0.08 0.00 0.02 0.50
Markov switching with iid regimes
500 0.17 0.17 0.07 0.32 0.21 0.02 0.07 0.15
1000 0.46 0.46 0.09 0.59 0.36 0.01 0.16 0.25
3000 0.91 0.91 0.12 0.89 0.47 0.00 0.19 0.41
5000 0.98 0.98 0.10 0.79 0.41 0.00 0.15 0.45
7000 1.00 1.00 0.09 0.66 0.32 0.00 0.08 0.47
9000 1.00 1.00 0.08 0.51 0.22 0.00 0.05 0.49
Markov switching with GARCH regimes
500 0.02 0.02 0.07 0.12 0.08 0.06 0.06 0.14
1000 0.06 0.05 0.07 0.11 0.20 0.03 0.13 0.14
3000 0.47 0.23 0.15 0.20 0.42 0.01 0.34 0.17
5000 0.78 0.55 0.21 0.27 0.47 0.00 0.45 0.19
7000 0.92 0.77 0.23 0.29 0.48 0.00 0.47 0.19
9000 0.98 0.90 0.26 0.30 0.47 0.00 0.48 0.20
White noise with a monotonic trend
500 0.02 0.02 0.06 0.10 0.37 0.00 0.08 0.10
1000 0.03 0.02 0.07 0.12 0.43 0.00 0.14 0.11
3000 0.13 0.06 0.13 0.22 0.91 0.00 0.32 0.12
5000 0.44 0.21 0.19 0.35 0.99 0.00 0.44 0.13
7000 0.77 0.46 0.24 0.51 1.00 0.00 0.55 0.13
9000 0.93 0.73 0.30 0.62 1.00 0.00 0.62 0.13
White noise with a non-monotonic trend
500 0.83 0.51 0.09 0.05 0.01 0.00 0.11 0.41
1000 0.95 0.60 0.09 0.03 0.00 0.00 0.17 0.45
3000 1.00 0.80 0.12 0.01 0.06 0.00 0.27 0.44
5000 1.00 0.97 0.15 0.00 0.48 0.00 0.34 0.43
7000 1.00 0.99 0.16 0.00 0.95 0.00 0.39 0.42
9000 1.00 1.00 0.17 0.00 1.00 0.00 0.43 0.41
Note. ": the trimming proportion. ORT: the test of Ohanissian et al. (2008); Wc; �� and Zt: tests
of Shimotsu (2006); mean-td: the test of Perron and Qu (2010); the mean-td test is constructed
using un�ltered series.
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The frequency index
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Figure 1(a): Spectral domain properties of processes with level shifts 
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Figure 1(b): Local Whittle estimates with different m for processes with level shifts
 

Note. The DGP is (3) with zt, ηt ∼ i.i.d.N(0, 1) and πt ∼ i.i.d.B(1, 5/n). The sample size n=1000 and the
results reported are empirical means based on 5000 replications. Figure 1(a) depicts the log periodograms
as a function of the frequency index. An extra line, log(0.0015λ−2

j ), is superimposed to highlight the slope
of the periodogram when j = o(n1/2). The dashed line is the estimated spectral density function, imposing
the false restriction that the series are of true long memory. Figure 1(b) reports the local Whittle estimates
using different bandwidths m ranging between n1/3 and n0.8.
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Figure 2(a): Spectral domain properties of processes with smooth trends 
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Figure 2(b): Local Whittle estimates with different m for processes with smooth trends
 

Note. The DGP is (4) with h(x) = 2x − 4x2 and zt being i.i.d.N(0, 1). The sample size n=1000 and the
results reported are empirical means based on 5000 replications. Figure 2(a) depicts the log periodograms
as a function of the frequency index. An extra line, log(0.0009λ−2

j ), is superimposed to highlight the slope
of the periodogram when j = o(n1/2). The dashed line is the estimated spectral density function, imposing
the false restriction that the series are of true long memory. Figure 2(b) reports the local Whittle estimates
using different bandwidths m ranging between n1/3 and n0.8.



Figure 3: Results for the northern hemisphere temperature series
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Figure 4: Results for the US inflation rate series
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Figure 5: Results for the Yen/Dollar Spot Exchange Rate Series
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Supplementary Appendix not for Publication

This appendix will be made available electronically. It contains proofs for Lemma 2, Corollary 1

and 2 and some auxiliary lemmas. As a matter of notation, f�j and I�j denote the spectral density

and periodogram of �t at frequency �j . fj and Ij are short for fxj and Ixj with xt being the long

memory process de�ned in the paper.

Proof of Lemma 2: We �rst establish a uniform weak law of large numbers. For any �xed

r1 2 [0; 1], Qm(r1) !p r1 by Robinson (1995b, p. 1638) and Shao and Wu (2007, p. 920, A.13).

Using Theorem 2.1 of Newey (1991), it then su¢ ces to show that the process Qm(r) is stochastically

equicontinuous on [0; 1], i.e., for an arbitrary r 2 [0; 1] and any �; � > 0; there exists a � > 0; such

that P
�
sups2[�]r jQm(r)�Qm(s)j > �

�
< � for large m, where [�]r = fs : 0 � s � 1; js� rj � �g.

To show this, let [�]+r denote the elements in the set [�]r that are no less than r. Then,

P

0@ sup
s2[�]+r

1

m

[ms]X
j=[mr]+1

Ij�
2d0
j > �

1A � P

0@ 1

m

[m(r+�)]X
j=[mr]+1

Ij�
2d0
j > �

1A � 1

m�

[m(r+�)]X
j=[mr]+1

E(Ij�
2d0
j )

� 1

m�

[m(r+�)]X
j=[mr]+1

C ! �C

�
; for some 0 < C <1;

where the �rst inequality holds because the summands are non-negative, the second is due to

Markov�s inequality, and the third is due to Theorem 2 of Robinson (1995a) and Shao and Wu

(2007, p. 920, A.13). �C=� can be made arbitrarily small by choosing a small �: This proves the

�rst result.

Let Fm(r) = m1=2(Qm(r)�r):We will �rst show �nite dimensional convergence and then prove

tightness. For the former, it su¢ ces to show that for 0 � r1 � r2 � 1,

Fm(r1) �!d N(0; r1) and Cov(Fm(r1); Fm(r2))! r1: (B.1)

The �rst expression of (B.1) follows immediately. Consider the second result. Lemma B.7 shows

that Fm(r) can be approximated by m�1=2P[mr]
j=1 (2�I"j � 1) with the approximation error being

uniformly op(1) over r 2 [0; 1]. Note that

m�1=2
[mr]X
j=1

(2�I"j � 1) =
nX
t=1

z�t;r

B-1



with

z�t;r � "t

t�1X
k=1

bt�k;r"k and bt;r = 2n
�1m�1=2

[mr]X
j=1

cos(t�j): (B.2)

Thus, it su¢ ces to analyze Cov(
Pn
t=1 z

�
t;r1 ;

Pn
t=1 z

�
t;r2) :

E

 
nX
t=1

t�1X
s=1

bt�s;r1"s

t�1X
l=1

bt�l;r2"l

!
=

4

n2m

[mr1]X
j=1

[mr2]X
l=1;l 6=j

nX
t=1

t�1X
s=1

cos((t� s)�j) cos((t� s)�l)

+
4

n2m

[mr1]X
j=1

nX
t=1

t�1X
s=1

cos2((t� s)�j)

=
4

n2m

[mr1]X
j=1

[mr2]X
l=1;l 6=j

�
�n
2

�
+

4

n2m

[mr1]X
j=1

n2

4
! r1:

To prove tightness, we follow Nielsen (2004) and use Theorem 13.5 of Billingsley (1999). That is,

we show that for every m and r1 � r � r2,

E

0@�����
nX
t=1

z�t;r �
nX
t=1

z�t;r1

�����
2 �����

nX
t=1

z�t;r2 �
nX
t=1

z�t;r

�����
2
1A � K( m(r2)�  m(r1))2; (B.3)

where K is some �nite constant and  m(:) is a function on [0; 1] that is �nite, nondecreasing, and

satis�es lim�!0 lim supm!1 j m(s+ �)�  m(s)j ! 0 uniformly in s 2 [0; 1]. To verify this, we

apply Lemma B.8, leading to

E

0@�����
nX
t=1

z�t;r �
nX
t=1

z�t;r1

�����
2 �����

nX
t=1

z�t;r2 �
nX
t=1

z�t;r

�����
2
1A � C

 
nX
t=1

t�1X
s=1

bt�s(r1; r)
2

! 
nX
k=1

t�1X
l=1

bk�l(r; r2)
2

!
;

where C is some constant, bt�s(r1; r) = bt�s;r � bt�s;r1 ; and bk�l(r; r2) is de�ned analogously.

Consider the �rst term:

nX
t=1

t�1X
s=1

bt�s(r1; r)
2 =

4

n2m

nX
t=1

t�1X
s=1

0@ [mr]X
j=[mr1]+1

cos((t� s)�j)

1A2

=
4

n2m

[mr]X
j=[mr1]+1

nX
t=1

t�1X
s=1

cos2((t� s)�j)

+
4

n2m

[mr]X
j=[mr1]+1

[mr]X
k=[mr1]+1;k 6=j

nX
t=1

t�1X
s=1

cos((t� s)�j) cos((t� s)�k)

� 2

m
([mr]� [mr1]) :

B-2



The second term can be bounded analogously. Hence, the left hand side of (B.3) is bounded from

the above by C
�
2
m ([mr2]� [mr1])

	2
. Let  m(s) = [ms] =m. The proof is complete. �

Proof of Corollary 1. The proof is similar to that of Theorem 2. The argument preceding

(A.8) goes through without modi�cation. Thus we only need to consider the second term in (A.8).

It is easy to verify that the true long memory component dominates the level shift or the trend

component for j 2 [j�;m]. Thus, Ij = Op(�
�2d0
j ) for j 2 [j�;m]. Consequently, vjIj=(G(d̂)��2d̂j ) =

Op(�
2(d̂�d0)
j ) = Op(�

2�
j ) = op(1), where the �rst equality uses G(d̂) = m�1Pm

j=1 Ij�
2d̂
j and the

variance condition in Corollary 1, the second equality is due to P (d̂ � d0 > �) ! 1, and the last

equality is because �j = o(1). This implies A!p 1 as n!1: �

Proof of Corollary 2. Because �̂ � �0 = Op(n
d0�1=2) = op(1) and the correction involves an

ARMA(1,1) �lter, replacing �0 by �̂ has no e¤ect on the asymptotic property of the procedure.

Without loss of generality, we can further assume �0 is zero because the Fourier transform is

invariant to the mean when evaluated at non-zero frequencies.

First suppose Assumptions 1-4 and F(a) hold for the original series. Let �(L) = (1� â1L)=(1+

b̂1L) and  (L) =
P1
j=0 �jL

j . It su¢ ces to analyze the process x�t = �(L) (L)"t�j . Because

�1 + � � â1; b̂1 � 1� �, the power transfer function jj�(e�i�)jj2 satis�es


�(e�i�)


2 = O(1 + �2) as �! 0 + : (B.4)

Thus Assumption 1 holds for the transformed process. To verify Assumption 2, we note that

x�t =
1X
j=0

��j"t�j with j��j j � j�j j+ 2
j�1X
s=0

j�j�s�1j (1� �)s :

Because �j = O(j�1=2�c) for j !1; there exists a constant M, such that j�j j �Mj�1=2�c for all

j > 0. Hence,

j��j j � Mj�1=2�c + 2M

j�2X
s=0

(j � s� 1)�1=2�c (1� �)s + 2M (1� �)j�1

� 2Mj�1=2�c

(
1 +

j�2X
s=0

����1� s+ 1

j

�����1=2�c (1� �)s
)
+ 2M (1� �)j�1 :

The summation inside of the curly brackets is bounded for all j, because (1� �)s decreases to

zero at an exponential rate as s increases, while j1� (s+ 1) =jj�1=2�c diverges only hyperbolically.
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The second term, 2M (1� �)j�1 ; is of lower order than j�1=2�c for the same reason. Thus, j��j j =

O(j�1=2�c) as j !1 and Assumption 2 is satis�ed. Assumption 3 can be veri�ed by di¤erentiating

�(e�i�) (e�i�) and applying the chain rule.

Now suppose Assumption 1, H and F(b) hold for the original series. The �ltered series satis�es

Assumption 1 because of (B.4). It also satis�es F(b) because the GMC property is preserved

under ARMA �lter. Because F(b) implies H(a) and H(b), Assumption F continues to hold. This

completes the proof. �

Lemma B.1 (1=m)
P[mr]
j=1 vj =

R r
0 (1+log x)dx+O(

1
m1�� ) and (1=m)

P[mr]
j=1 v

2
j =

R r
0 (1+log x)

2dx+

O( 1
m1�� ) uniformly in r 2 [0; 1], where � is some arbitrarily small positive number.

Proof: We prove the result using the Euler-Maclaurin formula which states that if k is a natural

number and g(�) is a twice di¤erentiable function de�ned for all real numbers between 0 and k,

then the following equality holds:

kX
j=1

g(j) =

Z k

1
g(x)dx+

g(1) + g(k)

2
+
1

12
(g0(k)� g0(1)) +R;

where R satis�es jRj � 2
(2�)2

R k
1 jg

00(x)j dx. Let k = [mr] and apply the above result with

g(x) = log(
x

m
);

then

1

m

[mr]X
j=1

log
j

m
=

Z r

1=m
log xdx+

Z [mr]
m

r
log xdx+

log [mr]� 2 logm
2m

+
1

12m

�
1

[mr]
� 1
�
+
1

m
R;

where jRj � 2
(2�)2

R [mr]
1

1
x2
dx = O(1). Thus, 1m

P[mr]
j=1 log

j
m =

R r
1=m log xdx+O(

logm
m ) =

R r
0 log xdx+

O( 1
m1�� ), where the last equality is due to

R 1=m
0 jlog xj dx =

R1
m

�
jlog xj
x�

�
( 1
x2�� )dx = O(m��1): Hence,

1

m

[mr]X
j=1

vj =

Z r

0
log xdx� r

Z 1

0
log xdx+O(

1

m1�� ) =

Z r

0
(1 + log x)dx+O(

1

m1�� ):

The second result can be proved in a similar way. �
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Lemma B.2 Let d̂ denote the local Whittle estimate of d and �(d0; d̂) the interval between d0 and

d̂. Under Assumptions 1-4 or Assumption H, for k=0,1, and 2, we have

sup
d2�(d0;d̂)

sup
r2[0;1]

������ 1m
[mr]X
j=1

j2d0Ij (log j)
k � 1

m

[mr]X
j=1

j2dIj (log j)
k

������ = op(n
2d0):

Proof: The arguments follow Robinson (1995b, pp.1642-1643). Fix � > 0 and choose n and m

such that (logm)2 > 2�: De�ne M =
n
d: (logm)5 jd� d0j � �

o
: Then, for � > 0

P

0@ sup
d2�(d0;d̂)

sup
r2[0;1]

1

m

������
[mr]X
j=1

j2d0Ij (log j)
k �

[mr]X
j=1

j2dIj (log j)
k

������ > �

�
2�

n

��2d01A
� P (d̂ =2M)+P

0@ sup
r2[0;1];d2M

1

m

������
[mr]X
j=1

j2d0Ij (log j)
k �

[mr]X
j=1

j2dIj (log j)
k

������ > �

�
2�

n

��2d01A :

The �rst term is o(1) by Robinson (1995b), with a correction by Andrews and Sun (2004, p.600),

and Shao and Wu (2007). For the second term,

sup
r2[0;1];d2M

m�1

������
[mr]X
j=1

j2d0Ij (log j)
k �

[mr]X
j=1

j2dIj (log j)
k

������ � sup
d2M

m�1
mX
j=1

j2d0Ij (log j)
k
���1� j2(d�d0)���

� 2e� (logm)k�2m�1
mX
j=1

j2d0Ij = 2e� (logm)
k�2

�
2�

n

��2d0
(G0 + op(1)) ;

where the last equality follows from m�1Pm
j=1 �

2d0
j Ij !p G0: The second term can be made arbi-

trarily small by choosing a small �: This completes the proof. �

Lemma B.3 Let d̂ denote the local Whittle estimate of d and �(d0; d̂) the interval between d0 and

d̂. Under Assumptions 1-4 or Assumption H, for k=0,1, and 2, we have

sup
d2�(d0;d̂)

sup
r2[0;1]

������ 1m
[mr]X
j=1

vkj
Ij

G(d)��2dj

� 1

m

[mr]X
j=1

vkj

������ = op (1) . (B.5)

Proof. We have, uniformly in r 2 [0; 1];

1

m

[mr]X
j=1

vkj
Ij

G(d)��2dj

=
m�1P[mr]

j=1 v
k
j Ij�

2d
j

m�1Pm
j=1 Ij�

2d
j

=
m�1P[mr]

j=1 v
k
j Ijj

2d0 + op(n
2d0)

m�1Pm
j=1 Ijj

2d0 + op(n2d0)
=
1

m

[mr]X
j=1

vkj
Ij

G0�
�2d0
j

+ op(1);
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where the �rst equality is because G(d) = m�1Pm
j=1 �

2d
j Ij , the second equality follows from Lemma

B.2, and the last equality follows from m�1Pm
j=1 �

2d0
j Ij !p G0. The above result implies

sup
d2�(d0;d̂)

sup
r2[0;1]

������ 1m
[mr]X
j=1

vkj
Ij

G(d)��2dj

� 1

m

[mr]X
j=1

vkj

������ = sup
r2[0;1]

������ 1m
[mr]X
j=1

vkj

 
Ij

G0�
�2d0
j

� 1
!������+ op(1):

Using summation by parts, the leading term on the right hand side is bounded from above by

sup
r2[0;1]

0@ 1

m

[mr]�1X
s=1

���vks+1 � vks ���
������
sX
j=1

 
Ij

G0�
�2d0
j

� 1
!������+ 1

m
(log [mr])k

������
[mr]X
j=1

 
Ij

G0�
�2d0
j

� 1
!������
1A :

The �rst term in the preceding expression is bounded by (see Robinson 1995b, p.1643)

1

m

mX
s=1

log(s+ 1) + 2

s

������
sX
j=1

 
Ij

G0�
�2d0
j

� 1
!������ = Op

�
(logm)2

m1=2

�
:

For the second term, using Lemma 2, we have

sup
r2[0;1]

0@ 1

m
(log [mr])k

������
[mr]X
j=1

 
Ij

G0�
�2d0
j

� 1
!������
1A

= sup
r2[0;1]

(log [mr])2

m1=2
jW (r)j+ op

�
(log [mr])2

m1=2

�
= Op

�
(logm)2

m1=2

�
:

This proves (B.5). �

The next lemma concerns the behavior of the periodograms under Assumption H. Let Zk =P1
t=0E(�t+kjFk) and

"k =
1

2�G0
(Zk � E(ZkjFk�1)): (B.6)

Then, f"kg1k=0 forms a martingale di¤erence sequence in Lq with E("k2) = 2�f�(0)=(2�G0) ' 1.

Lemma B.4 Under Assumption H, for any �xed r 2 (0; 1]:

m�1=2
[mr]X
j=1

vj

 
Ij

G0�
�2d0
j

� 1
!
�m�1=2

[mr]X
j=1

vj (2�I"j � 1) = op(1):

Proof: This is immediate from Theorem 3.1 in Shao and Wu (2007). �

The next result proves tightness and is needed to strengthen the pointwise convergence result

in Lemma (B.4) to uniform convergence.
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Lemma B.5 Under Assumption H, for any 0 < � < 1;

sup
r2[�;1]

������m�1=2
[mr]X
j=1

vj

 
Ij

G0�
�2d0
j

� 2�I"j

!������ = Op(1)

Proof: We have, for any � 2 (0; r];������m�1=2
[mr]X
j=1

vj

 
Ij

G0�
�2d0
j

� 2�I"j

!������
�

������m�1=2
[mr]X

j=[m�]+1

vj

 
Ij

G0�
�2d0
j

� 2�I"j

!������+
������m�1=2

[m�]X
j=1

vj

 
Ij

G0�
�2d0
j

� 2�I"j

!������
=

������m�1=2
[mr]X

j=[m�]+1

vj

 
Ij

G0�
�2d0
j

� 2�I"j

!������+ oP (1);
where the �rst inequality is due to the triangle inequality, and the op(1) term is due to Lemma B.4.

Upon recursive substitution, we have������ 1pm
[mr]X

j=[m�]+1

vj

 
Ij

G0�
�2d0
j

� 2�I"j

!������
� 1p

m

[mr]X
j=[m�]+1

�����vj Ijfj
 

fj

G0�
�2d0
j

� 1
!
+ vj

�
Ij
fj
� I�j
f�j

�
+ vj

�
I�j
f�j

� 2�I"j
������

� 1p
m

mX
j=[m�]+1

jvj j
Ij
fj

����� fj

G0�
�2d0
j

� 1
�����+ 1p

m

mX
j=[m�]+1

jvj j
���� Ijfj � I�j

f�j

����+ 1p
m

mX
j=[m�]+1

jvj j
���� I�jf�j � 2�I"j

����
= (a) + (b) + (c);

where the last inequality is again due to the triangle inequality. For term (a),

Pr ((a) > C1)

� 1

C1m1=2

mX
j=1

jvj jE
�
Ij
fj

� ����� fj

G0�
�2d0
j

� 1
�����

� C2

C1m1=2

mX
j=1

jvj j
����� fj

G0�
�2d0
j

� 1
�����

� C2

C1m1=2

m�1X
s=1

jvs+1 � vsj
sX
j=1

����� fj

G0�
�2d0
j

� 1
�����+ C2

C1m1=2
(logm)

mX
j=1

����� fj

G0�
�2d0
j

� 1
�����

where the �rst inequality is due to Markov�s inequality with C1 being an arbitrary constant, the

second inequality is because E (Ij=fj) � C2 uniformly over j = 0; :::;m (c.f. Lemma A.2 in Shao and
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Wu, 2007), and the third inequality is due to summation by parts. Because jvs+1 � vsj � 1=s and

fj=(G0�
�2d0
j )� 1 = O(��j ) by Assumption 1, the �rst term in the last line of the display is of order

O(m�+1=2=n) = o(1) in view of Assumption H. The second term is of order O(m�+1=2 log(m)=n) =

o(1). Thus, term (a) is Op(1). For term (b)

Pr ((b) > C1) � 1

C1m1=2

mX
j=[m�]+1

jvj jE
���� Ijfj � I�j

f�j

����
� C3

C1m1=2

mX
j=[m�]+1

j�1=2 jvj j �
C3

C1m1=2 [m�]1=2

mX
j=[m�]+1

jvj j ;

where the second inequality uses Lemma A.3. in Shao and Wu (2007), stating that E
��� Ijfj � I�j

f�j

��� =
O(j�1=2) uniformly over j=1,...,m. The preceding display can be made arbitrarily small by choosing

a large C1, implying term (b) is Op(1): Term (c) can be analyzed similarly and is also Op(1). �

Lemma B.6 Under Assumptions 1-4, or Assumption H, Lemma B.4 holds with the approximation

error being uniformly op(1) over r 2 [�; 1] for any 0 < � < 1:

Proof: Under Assumptions H, Lemma B.4 implies �nite dimensional convergence and Lemma B.5

tightness. The uniformity follows. Under Assumptions 1-4, Robinson (1995b) proved Lemma B.4,

see Eq. (4.8) and Eq. (4.11). It is easy to verify that Lemma B.5 still holds. This completes the

proof. �

Lemma B.7 Lemma B.4-B.6 hold when vj and � are replaced by 1 and 0, respectively. �

Proof: Lemma B.4, with vj replaced by 1, is proved in Nielsen (2004, p.157). The proof of the

rest involves repeating the same argument as in Lemma B.5 and B.6. The detail is omitted.

Lemma B.8 Let zt;r = "t
Pt�1
s=1 ct�s;r"s with ct;r = 2n

�1m�1=2P[mr]
j=1 vj cos(t�j) and "t de�ned in

Assumption 2 or (B.6). Then, for 0 � r1 � r � r2 � 1; we have

E

0@�����
nX
t=1

zt;r �
nX
t=1

zt;r1

�����
2 �����

nX
t=1

zt;r2 �
nX
t=1

zt;r

�����
2
1A � C

 
nX
t=1

t�1X
s=1

ct�s(r1; r)
2

! 
nX
t=1

t�1X
h=1

ct�h(r; r2)
2

!
;

where C is a constant that does not depend on r1, r or r2; ct�s(r1; r)=ct�s;r�ct�s;r1 ; and ct�h(r; r2)

is de�ned analogously. This result also holds when zt;r is replaced by z�t;r (c.f. B.2) and ct by bt.
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Proof: Let zt(s; r) = zt;r � zt;s: Then,

E

0@�����
nX
t=1

zt;r �
nX
t=1

zt;r1

�����
2 �����

nX
t=1

zt;r2 �
nX
t=1

zt;r

�����
2
1A

= E
nX
t=1

zt(r1; r)
2zt(r; r2)

2 + E
nX
t=1

nX
k 6=t

zt(r1; r)
2zk(r; r2)

2 + 2E
nX
t=1

nX
l 6=t

zt(r1; r)zl(r1; r)zt(r; r2)zl(r; r2):

= (T.1)+(T.2)+(T.3)

We analyze the three terms separately.

(T.2) = E
nX
t=1

"2t

 
t�1X
s=1

ct�s(r1; r)"s

!2X
k<t

"2k

 
k�1X
h=1

ck�h(r; r2)"h

!2

+E

nX
k=1

"2k

 
k�1X
h=1

ck�h(r; r2)"h

!2X
t<k

"2t

 
t�1X
s=1

ct�s(r1; r)"s

!2
:

Due to symmetry, it su¢ ces to consider the �rst term, which equals to

nX
t=1

X
k<t

E

 
t�1X
s=1

ct�s(r1; r)
2"2s

!
"2k

 
k�1X
h=1

ck�h(r; r2)
2"2h

!
(I)

+
nX
t=1

X
k<t

k�1X
s=1

k�1X
h=1;h 6=s

ct�s(r1; r)ct�h(r1; r)ck�s(r; r2)ck�h(r; r2) (II):

Because E("4t ) <1, term (I) is bounded by

C1

nX
t=1

X
k<t

(

t�1X
s=1

ct�s(r1; r)
2)(

k�1X
h=1

ck�h(r; r2)
2) � C1

nX
t=1

(

t�1X
s=1

ct�s(r1; r)
2)

nX
t=1

(

t�1X
h=1

ct�h(r; r2)
2) (B.7)

for some 0 < C1 < 1. Applying the Cauchy-Schwarz inequality to the elements of (II), we havePk�1
s=1 jct�s(r1; r)ck�s(r; r2)j �

�Pk�1
s=1 ct�s(r1; r)

2
�1=2 �Pk�1

s=1 ck�s(r; r2)
2
�1=2

and

k�1X
h=1;h 6=s

jct�h(r1; r)ck�h(r; r2)j �
 
k�1X
h=1

ct�h(r1; r)
2

!1=2 k�1X
h=1

ck�h(r; r2)
2

!1=2
:

Combining these two results:

j(II)j �
nX
t=1

X
k<t

 
k�1X
s=1

ct�s(r1; r)
2

! 
k�1X
h=1

ck�h(r; r2)
2

!
(B.8)

�
nX
t=1

 
t�1X
s=1

ct�s(r1; r)
2

!
nX
t=1

 
t�1X
h=1

ct�h(r; r2)
2

!
;
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which is proportional to (B.7). Hence,

j(I) + (II)j � C2

nX
t=1

 
t�1X
s=1

ct�s(r1; r)
2

!
nX
t=1

 
t�1X
h=1

ct�h(r; r2)
2

!
with C2 = C1 + 1: (B.9)

Apply the Cauchy-Schwarz inequality to (T.3):

jE(T:3)j � E

 
nX
t=1

zt(r1; r)
2

! 
nX
t=1

zt(r; r2)
2

!

= E

0@ nX
t=1

zt(r1; r)
2

nX
k=1;k 6=t

zk(r; r2)
2

1A+ E nX
t=1

zt(r1; r)
2zt(r; r2)

2; (B.10)

where the �rst term is the same as (T.2) and the second term equals (T.1).

Finally, we turn to (T.1). It equals to

�4

nX
t=1

 
E
t�1X
s=1

t�1X
k=1

t�1X
h=1

t�1X
l=1

ct�s(r1; r)ct�k(r1; r)ct�h(r; r2)ct�l(r; r2)"s"k"h"l

!

= �24

nX
t=1

 
t�1X
s=1

ct�s(r1; r)
2ct�s(r; r2)

2

!
+ �4

nX
t=1

0@ t�1X
s=1

t�1X
h=1;h 6=s

ct�s(r1; r)
2ct�h(r; r2)

2

1A
+2�4

nX
t=1

0@ t�1X
s=1

ct�s(r1; r)ct�s(r; r2)
t�1X

k=1;k 6=s
ct�k(r1; r)ct�k(r; r2)

1A
� C3

nX
t=1

 
t�1X
s=1

t�1X
h=1

ct�s(r1; r)
2ct�h(r; r2)

2

!
(III)

+2�4

nX
t=1

0@ t�1X
s=1

ct�s(r1; r)ct�s(r; r2)
t�1X

k=1;k 6=s
ct�k(r1; r)ct�k(r; r2)

1A (IV )

for some constant C3. Applying the same arguments that lead to (B.8), we have j(IV )j �

2�4
Pn
t=1

Pt�1
s=1 ct�s(r1; r)

2
Pt�1
k=1 ct�k(r; r2)

2: Hence,

j(III) + (IV )j � C4

 
nX
t=1

t�1X
s=1

ct�s(r1; r)
2

! 
nX
t=1

t�1X
h=1

ct�h(r; r2)
2

!
; (B.11)

where C4=C3 + 2�4. Combining (B.9), (B.10), and (B.11) leads to the desired result. �
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