
Inference in DSGE Models with Possible Weak Identi�cation�

Zhongjun Quy

Boston University

April 22, 2011; This version: September 18, 2013

Abstract

This paper considers inference in log-linearized DSGE models with weakly (including un-)
identi�ed parameters. The framework allows for analysis using only part of the spectrum, say
at the business cycle frequencies. First, we characterize weak identi�cation from a frequency
domain perspective and propose a score test for the structural parameter vector based on the
frequency domain approximation to the Gaussian likelihood. The construction heavily exploits
the structures of the DSGE solution, the score function and the information matrix. In par-
ticular, we show the test statistic can be represented as the explained sum of squares from
a complex-valued Gauss-Newton regression, where weak identi�cation surfaces as (imperfect)
multicollinearity. Second, we prove that asymptotically valid con�dence sets can be obtained
by inverting this test statistic and using Chi-square critical values. Third, we provide proce-
dures to construct uniform con�dence bands for the impulse response function, the time path
of the variance decomposition, the individual spectrum and the absolute coherency. Finally, a
simulation experiment suggests that the test has adequate size even with relatively small sam-
ple sizes. It also suggests it is possible to have informative con�dence sets in DSGE models
with unidenti�ed parameters, particularly regarding the impulse responses functions. Although
the paper focuses on DSGE models, the methods are applicable to other dynamic models with
well-de�ned spectra, such as stationary (factor-augmented) vector autoregressions.
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1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) models play an important role in quantitative

macroeconomics. Frequentist inference in such models is challenging. The likelihood surface can be

�at or display near ridges over a large portion of the parameter space (Canova and Sala, 2009), mir-

roring the weak identi�cation problem studied in the IV and GMM literature (Staiger and Stock,

1997 and Stock and Wright, 2000). For example, Del Negro and Schorfheide (2008) considered

a New Keynesian DSGE model and showed that the data provides similar support for a model

with moderate price and trivial wage rigidity and one in which both rigidities are high. In the

extreme case, varying the structural parameter vector in certain directions may leave the likeli-

hood unchanged, leading to so-called lack of identi�cation. Such an example is provided in Qu

and Tkachenko (2012), concerning the parameters in a Taylor rule equation. The above features

imply that the conventional framework for conducting inference, which relies on a
p
T -convergent,

asymptotically normal estimator, can be very inadequate.

Recently, several studies have considered developing inferential procedures robust to weak iden-

ti�cation. Guerron-Quintana, Inoue and Kilian (2013) obtained con�dence sets by inverting the

likelihood ratio test and the Bayes factor. Dufour, Khalaf and Kichian (2013) suggested inverting

moment based tests. In on-going work, Andrews and Mikusheva (2013) study two LM tests (di¤er-

ing in how the information matrix is calculated) from a time domain perspective. An comparison

with the latter is included in Section 7. In a related literature, Iskrev (2010), Komunjer and Ng

(2011) and Qu and Tkachenko (2012) proposed rank conditions for local identi�cation. They did

not consider weak identi�cation.

This paper develops identi�cation robust con�dence sets for the structural parameters and con�-

dence bands for impulse response functions from a frequency domain perspective, using a maximum

likelihood (Whittle, 1951) approach. Working in the frequency domain has two advantages. First,

the information matrix is particularly simple to calculate in frequency domain. This leads to a

simple and transparent test with a regression interpretation. Second, the researcher can choose

desired frequencies for inference. This is valuable because DSGE models are designed to explain

business cycle movements, not very long-run or very short-run �uctuations; see Del Negro, Diebold

and Schorfheide (2008). The latter �exibility is di¢ cult, if at all possible, to achieve in a time

domain framework. Because of these two features, we obtain a unique test that is robust to both

weak identi�cation and frequency speci�c misspeci�cations.

We start by characterizing weak identi�cation from a frequency domain perspective. The char-
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acterizing condition involves the eigenvalues of the information matrix, some of which converge to

zero as the sample size approaches in�nity. A subset of eigenvalues is allowed to be exactly zero,

permitting some parameters to be unidenti�ed for any sample size. The condition is motivated

by Rothenberg (1971) and can be viewed as a generalization of Corollary 1 in Qu and Tkachenko

(2012). The latter shows that the parameters are identi�ed from the population if and only if the

information matrix (expressed as a function of the spectral density) has full rank.

We then propose a score test for the structural parameter vector. Two features underlie its

robustness to weak identi�cation. First, its normalization matrix (i.e., the information matrix) is

computed directly from the model�s solution by exploiting its vector linear structure. In fact, if

this matrix was estimated from a �nite sample then it would lead to size distortions because its

dimension is typically high relative to the sample size. Second, the test statistic is related to the

explained sum of squares in a complex-valued multivariate Gauss-Newton regression, where the

regressors are non-random and are governed by the derivatives mentioned above. Irrespective of

the strength of identi�cation, the rank of the regressors matrix is always bounded by the dimension

of the structural parameter vector. This provides intuition why the test statistic has a Chi-square

limiting distribution with the degrees of freedom bounded by the dimension of the same vector; see

Section 5. This is the only test with such a regression structure in the weak identi�cation literature.

A con�dence set for the structural parameter vector can be obtained by inverting this statistic.

For implementation, we suggest a Metropolis algorithm. It mainly involves solving the model and

computing the spectral density and its �rst order derivatives at di¤erent parameter values.

Impulse response function plays a central role for assessing the implications of a DSGE model.

Building on the con�dence set for the structural parameter vector, we propose a con�dence band

that covers this function with desired probability (i.e., a uniform band) even under weak identi�ca-

tion. This is done by considering the envelope of the impulse response functions associated with all

the parameter values contained in the joint con�dence set. The same idea can be applied to obtain

con�dence bands for the time path of the variance decomposition, the individual spectrum and the

absolute coherency. It can also be used to study certain low frequency hypotheses as those in Sar-

gent and Surico (2011). These examples showcase the empirical importance of the joint con�dence

set, whose value is sometimes underappreciated in the frequentist literature.

We evaluate the �nite sample properties of the proposed procedures using a model studied in An

and Schorfheide (2007). The test shows good size properties even with relatively small sample sizes.

The results show that even unidenti�ed parameters can have tight con�dence intervals. This appears

to be a new �nding in the DSGE literature. The con�dence bands for impulse response functions
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can also be tight with unidenti�ed parameters. Intuitively, because observationally equivalent

parameter values may generate the same set of response functions, uncertainty about the former

does not necessarily translate into uncertainty about the latter. Canova and Sala (2009) also

observed that wide con�dence intervals for parameters can be accompanied by narrow bands for

impulse responses for the minimum distance estimator they consider.

We also consider the test�s properties when low frequency misspeci�cations are present (caused

by an unmodeled structural change in the steady state growth rate and/or a smoothly varying

in�ation target). The results show that using the business cycle frequencies can lead to valid

inference even when using the full spectrum erroneously rejects the null hypothesis 100% of the

time. In practice, this o¤ers researchers a choice. If the model is well speci�ed at all frequencies,

then all the frequencies should be used and the inference will be more precise. If the model is

misspeci�ed over some frequencies, then using parts of the spectrum is preferable.

This paper contributes to the literature that analyzes dynamic equilibrium models from a fre-

quency domain perspective. Altug (1989) applied the frequency domain likelihood to estimate

models with additive measurement errors. Hansen and Sargent (1993) considered the e¤ect of

seasonal adjustment on parameter estimation. Diebold, Ohanian and Berkowitz (1998) discussed

a general framework for loss function based estimation and model evaluation. Christiano and

Vigfusson (2003) applied frequency domain likelihood to study a model with time-to-plan in the

investment technology. Del Negro, Diebold and Schorfheide (2008) emphasized that the misspec-

i�cation of DSGE models is more prevalent at some frequencies than at others. They developed

a framework in which DSGE models are used to derive restrictions for vector autoregressions, but

only over selected frequencies of interest. Tkachenko and Qu (2012) and Sala (2013) analyzed

medium-scale DSGE models in the frequency domain. The current paper is the �rst to study

identi�cation robust inference from the frequency domain perspective.

The paper is structured as follows. Section 2 illustrates how to compute the spectral density.

Section 3 presents the framework and the assumptions. Section 4 characterizes weak identi�cation

from a frequency domain perspective. Section 5 proposes the score test and studies its asymptotic

properties. Section 6 discusses how to obtain robust con�dence sets. It also considers uniform

con�dence bands for impulse response functions and some other objects. Section 7 considers an

illustrative model and Section 8 concludes.
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2 Preliminaries: the spectrum of a log-linearized DSGE model

Suppose a DSGE model has been log-linearized around the steady state. Assume it has a unique

stable solution. Then, the solution can be computed and represented in a variety of ways using the

algorithms of Uhlig (1999), Klein (2000), King and Watson (2002) and Sims (2002). The methods

developed in this paper can work with any of these representations. Given that the spectral density

plays a central role in the analysis, below we illustrate how to compute it from Sims (2002).

Let � denote the structural parameter vector. Sims (2002) considered the following representa-

tion for a log-linearized system:

�0(�)St = �1(�)St�1 +	(�)�t +�(�)�t;

where �0(�);�1(�);	(�) and �(�) are coe¢ cients matrices, St includes endogenous variables (both

observed and latent), conditional expectations and exogenous shocks (if they are serially correlated),

�t is a vector of serially uncorrelated structural disturbances and �t contains expectation errors.

Under determinacy, its solution can be represented as St = �1(�)St�1 +�0(�)�t, or equivalently

St = (I � �1(�)L)�1�0(�)�t:

Let A(L) be a matrix of �nite-order lag polynomials to specify the observables:

Y dt (�) = A(L)St = A(L)(I � �1(�)L)�1�0(�)�t: (1)

Its spectral density is given by

f�(!) =
1

2�
H(exp(�i!); �)�(�)H(exp(�i!); �)�; (2)

where the superscript ���stands for the conjugate transpose, �(�) = Var(�t) and

H(L; �) = A(L)(I � �1(�)L)�1�0(�): (3)

As in the time domain, the above framework can easily handle models with latent endogenous

variables and measurement errors. In the former, we simply assign zero entries in A(L) to exclude

the latent variables. For the latter, suppose �t(�) are serially uncorrelated measurement errors

independent of Y dt (�) with covariance ��(�). Then, the spectral density of Y
d
t (�) + �t(�) is given

by
1

2�
H(exp(�i!); �)�(�)H(exp(�i!); �)� + 1

2�
��(�);

where H(�) is de�ned by (3).
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3 Setup and assumptions

Let fYtgTt=1 be a sample of random vectors. Assume there exists some (not necessarily unique) �0

such that

Yt = �(�0) + Y
d
t (�0);

where Y dt (�0) denotes the solution (1) when � = �0 and �(�0) is the mean of Yt implied by the

model�s steady state. We require four assumptions. Let jjxjj be the Euclidean norm of a vector x

and jjXjj be the vector induced norm of a matrix X. For a square matrix, let eig(X) denote its

eigenvalues as a vector. For a di¤erentiable function f� 2 Rk of � 2 Rq, let @f�0=@�0 be the k-by-q
matrix of partial derivatives evaluated at �0.

Assumption 1. �0 2 � � Rq with � being compact.

Assumption 2. The solution is unique and is representable as

Y dt (�) = H(L; �)�t(�) with H(L; �) =

1X
j=0

hj(�)L
j ; (4)

where hj(�) (j = 0; :::;1) are real valued matrices and �t(�) are serially uncorrelated structural
disturbances with a nonsingular covariance matrix �(�).

Assumption 3. There exist 0 < CL � CU <1 such that for all ! 2 [��; �] and all � 2 �:

(i) CL � eig(f�(!)) � CU ;

(ii) the elements of f�(!) belong to Lip(�) with � > 1
2 with respect to !;

1

(iii)
@ vec f�(!)@�0

 � CU and the elements of
@ vec f�(!)

@�0
belong to Lip(�) with �>1

2 with respect to !;

(iv) jj@�(�)=@�0jj � CU .

Assumption 4. fYtgTt=1 is a sequence of multivariate normal random vectors.

Assumption 1 imposes restrictions on the parameter space. The boundedness assumption is

unrestrictive as economic theory often provides natural bounds on DSGE parameters. The re-

quirement for closedness is to ensure that the procedure for computing the con�dence sets, which

involves searching over the parameter space, is well de�ned.

In Assumption 2, the dimensions of the variables and parameters are

Y dt (�) : nY � 1; �t : n� � 1; hj(�) : nY � n�; � : q � 1:
1Let g(!) be a scalar valued function de�ned on an interval B. We say g belongs to Lip(�) if there exists a �nite

constant M such that jg(!1)� g(!2)j �M j!1 � !2j� for all !1, !2 2 B.
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This assumption allows for noninvertibility and is weaker than assuming Y dt (�) follows a VAR.

Assumption 2 encompasses models with measurement errors. To see this, suppose we observe

Yt = �(�0) + Y
d
t (�0) + �t(�0), where �t(�) are serially uncorrelated measurement errors with a non-

singular covariance matrix ��(�) and E(�t(�)�0s(�)) = 0 for all t and s. De�ne �at (�) = (�t(�)0; �t(�)0)
0

and Ha(L; �) =
P1
j=0 h

a
j (�)L

j with ha0(�) = [h0(�), InY ] and h
a
j (�) = [hj(�); 0nY ] for j > 0. Then,

Yt � �(�0) satis�es (4) with H(L; �)�t(�) replaced by Ha(L; �)�at (�). Therefore, the subsequent

results apply automatically to models with measurement errors.

Assumption 3(i) requires the spectral density matrix being �nite and nonsingular. If unit

roots are present in the DSGE model, then it requires appropriately di¤erencing the series prior

to applying the methods. 3(ii) and 3(iii) assume the spectral density and its �rst derivatives are

smooth in !. They can be veri�ed under more primitive conditions. Speci�cally, 3(ii) is satis�ed

if
P1
j=0 j

� jjhj(�)jj � 1 (Hannan, 1970, p. 311-312). The latter holds because (1) implies hj(�)

decays exponentially. Assumption 3(iii) is satis�ed if
P1
j=0 j

� jj@ vechj(�)=@�0jj � 1, which holds
if jj@ vec�1(�)=@�0jj �M and jj@ vec�0(�)=@�0jj �M for some M > 0 and all � 2 �.

Assumption 4 requires normality. If it is violated, then the distribution of the proposed test

will depend on nuisance parameters. This is because non-Gaussian features such as skewness or

excess kurtosis will alter the information matrix. The possibility of relaxing of this assumption is

discussed in Section 5. Note that this assumption is common in the DSGE literature.

In the next three sections, we consider inference on �0 based on the mean and the spectrum.

The inference on the dynamic parameters (i.e., excluding the parameters a¤ecting only the mean

of Yt) based on the full or parts of the spectrum is treated as a special case.

4 Weak identi�cation from a frequency domain perspective

Weak identi�cation re�ects both the model structure and the criterion function used for inference.

The inference here is based on the frequency domain maximum likelihood. We start with a brief

review of the basic ideas underlying it.

4.1 The frequency domain maximum likelihood

Let !j denote the Fourier frequencies, i.e., !j = 2�j=T (j = 1; 2; :::; T � 1). The discrete Fourier
transforms and periodograms of Yt at such frequencies are

wT (!j) =
1p
2�T

TX
t=1

Yt exp (�i!jt) and IT (!j) = wT (!j)wT (!j)
� :
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At the zero frequency, let

w�;T (0) =
1p
2�T

TX
t=1

(Yt � �(�)) and I�;T (0) = w�;T (0)w�;T (0)
� :

Under Assumption 2, asymptotically wT (!j) (j = 1; 2; :::; T � 1) have complex-valued multivariate
normal distributions with densities (Hannan, 1970, p. 223-225)

1

�nY det f�0(!j)
exp

h
�tr

n
f�1�0 (!j)wT (!j)wT (!j)

�
oi

;

while w�;T (0) � N(0; f�0(0)). Because the Fourier transforms are asymptotically independent for

!j + !k 6= 2�, an approximate log-likelihood function for �, up a constant addition, is given by

�1
2

T�1X
j=1

�
log det (f�(!j)) + tr

�
f�1� (!j)IT (!j)

	�
� 1
2

�
log det (f�(0)) + tr

�
f�1� (0)I�;T (0)

	�
: (5)

Hansen and Sargent (1993) originally derived (5) as an approximation to the time domain Gaussian

likelihood and used it to understand the e¤ect of seasonal adjustment on parameter estimation.

In this paper, we consider the following generalized version of (5):

LT (�) = �1
2

T�1X
j=1

W (!j)
�
log det (f�(!j)) + tr

�
f�1� (!j)IT (!j)

	�
(6)

�1
2
W (0)

�
log det (f�(0)) + tr

�
f�1� (0)I�;T (0)

	�
;

whereW (!) is an indicator function that selects the desired frequencies for inference. In particular,

to conduct inference using the second but not the �rst order properties, we set W (0) = 0 and

W (!j) = 1 for all !j 6= 0. To conduct inference using only the business cycle frequencies (with

periods of 6�32 quarters, see King and Watson, 1996), with quarterly observations we setW (!j) = 1

if !j 2 [�=16; �=3] [ [5�=3; 31�=16] and 0 otherwise. The latter allows us to assess the model�s
business cycle implications without �rst �ltering the data. The above �exibility is di¢ cult, if at all

possible, to achieve in the time domain.

4.2 Weak identi�cation

This section characterizes weak identi�cation from a frequency domain perspective. The charac-

terizing condition is motivated by Rothenberg (1971) and Qu and Tkachenko (2012) and stated

using the eigenvalues of the information matrix. Some eigenvalues approach zero as T !1, such
that the local curvature of the likelihood remains small in some directions in the presence of a large

sample size.
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Let the superscript �0�denote the transpose without taking the conjugate. The score of (6) is

DT (�0) =
1

2
p
T

T�1X
j=0

W (!j)

�
@ vec f�0(!j)

@�0

�� �
f�1�0 (!j)

0 
 f�1�0 (!j)
�
vec (IT (!j)� f�0(!j))

+
1

2�
p
T
W (0)

TX
t=1

@�(�0)
0

@�
f�1�0 (0)(Yt��(�0)); (7)

where IT (0) = I�0;T (0). Under normality, the information matrix is

MT (�0) =
1

2T

T�1X
j=0

W (!j)

�
@ vec f�0(!j)

@�0

�� �
f�1�0 (!j)

0 
 f�1�0 (!j)
� @ vec f�0(!j)

@�0
(8)

+
1

2�
W (0)

@�(�0)
0

@�
f�1�0 (0)

@�(�0)

@�0
:

Here, the information matrix has a simple expression because, although fYtgTt=1 can have a complex
dependence structure, their Fourier transforms are asymptotically independent with mean zero and

known variances. Expressions (7) and (8) further simplify if the goal is to conduct inference on

dynamic parameters based on the full spectrum or the business cycle frequencies. The involved

derivatives only need to be taken with respect to the dynamic parameters. The second term in the

expressions will no longer be present. Also, the summations should start at j = 1 instead of j = 0.

Because MT (�0) is real and symmetric, its eigen-decomposition always exists:

MT (�0) = QT (�0)�T (�0)QT (�0)
�1, (9)

where the columns of QT (�0) are the orthonormal eigenvectors and �T (�0) contains the eigenvalues

in a non-increasing order. Partition �T (�0) as

�T (�0) =

26664
�1T (�0) 0 0

0 �2T (�0) 0

0 0 �3T (�0)

37775 ;
where �1T (�0), �2T (�0) and �3T (�0) are q1; q2 and q3 dimensional diagonal matrices, respectively.

Assumption W. (i) The diagonal elements of T�1T (�0) diverge to 1; (ii) The diagonal elements
of T�2T (�0) converge to positive constants; (iii) �3T (�0) = 0 for any T ; (iv) The elements of�

@ vec f�0(!)=@�
0�QT (�0)�+T (�0)1=2 (10)

are �nite and belong to Lip(�) with � > 1=2 with respect to !, where �+T (�0)
1=2 is the square root

of the Moore-Penrose Pseudoinverse of �T (�0).
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W(i)-W(iii) allow for di¤erent degrees of identi�cation. �1T (�0) corresponds to parameter

directions that are strongly or semi-strongly identi�ed (the latter notion follows Andrews and

Cheng, 2012). �2T (�0) imply directions that are weakly identi�ed, while �3T (�0) corresponds to

directions along which the parameter values are observationally equivalent for any sample size.

The condition is related to Corollary 1 in Qu and Tkachenko (2012), which shows �0 is locally

identi�ed if and only if the information matrix has full rank. (They allowed f�0(!) to be singular.

In the nonsingular special case, the above statement applies.) Here, the eigenvalues are sample

size-dependent, therefore identi�cation is no longer a zero-one phenomenon.

W(i)-W(iii) are related to the characterizing conditions in the IV and GMM literature (Staiger

and Stock, 1997, Stock and Wright, 2000 and Kleibergen, 2005). This is illustrated along two

dimensions in the on-line appendix. First, it is shown that the latter conditions can also be stated

using the eigenvalues that measure the local curvature of the criterion functions. Next, it is shown

using a two-equation model that the conditions in Staiger and Stock (1997) translate into W(i) to

W(iii). Prior to our work, Guerron-Quintana, Inoue and Kilian (2013) also suggested using the

local curvature of the likelihood to characterize weak identi�cation. The key di¤erences are that

we work in the frequency domain and that we make no identifying assumptions about the reduced

form parameters.

W(iv) strengthens Assumption 3(iii) by requiring su¢ cient smoothness of @ vec f�0(!)=@�
0 in

!. The e¤ect of QT (�0) is to map the row vectors of @ vec f�0(!)=@�
0 into a new coordinate system

common to all ! 2 [��; �]. The assumption thus requires @ vec f�0(!)=@�0 to be well behaved in
this new coordinate system. If �0 is strongly identi�ed, the assumption is trivially satis�ed. Under

weak identi�cation, it is less transparent because some entries in �+T (�0)
1=2 diverge to in�nity. In

the on-line appendix, it is shown that this assumption is satis�ed in the simple dynamic model.

In more general models, when a formal justi�cation is not possible, the assumption can still be

inspected using a graphical procedure. Speci�cally, because the matrix (10) is non-random and is

fully determined by the DSGE model, its components can be plotted as a function of the frequency

index under any given �. Although this is not a formal test, it can be quite informative about

the smoothness and magnitudes of the elements of (10). This point will be further illustrated in

Section 7.

5 A frequency domain score test

This section proposes a score test and studies its properties under weak identi�cation. It also

discusses its �exibility for allowing for low frequency misspeci�cations.
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De�ne

ST (�0) = DT (�0)
0M+

T (�0)DT (�0)

where M+
T (�) denotes the Moore-Penrose Pseudoinverse of MT (�).

To better understand the properties of ST (�0) under weak identi�cation, we show that it can be

given a regression interpretation. Consider the following complex-valued multivariate regression:

Yj = Xj� + Uj ; (j = 0; 1; :::; T � 1); (11)

where Yj is a vector andXj is a matrix, whose values are speci�ed below, � is an unknown parameter
vector and Uj is a vector of regression errors. The least square estimator is

�̂ =

0@T�1X
j=0

X�
jXj

1A+0@T�1X
j=0

X�
jYj

1A
and the explained sum of squares is

ESS =

T�1X
j=0

bY�j bYj =
0@T�1X
j=0

Y�jXj

1A0@T�1X
j=0

X�
jXj

1A+0@T�1X
j=0

X�
jYj

1A : (12)

To establish the relation between ESS and ST (�0), we need the following notation. Let H be a pos-

itive de�nite Hermitian matrix (e.g., H = f�0(!)). Then, H has the following eigen-decomposition

(Horn and Johnson, 2005, Theorem 4.1.5): H = U�U�, where � is a real-valued diagonal matrix

and U is unitary. De�ne H1=2 = U�1=2U� and H�1=2 = U��1=2U�. Then, H1=2, H�1=2, H 0 
H,

(H1=2)0 
H1=2 and (H�1=2)0 
H�1=2 are Hermitian (Horn and Johnson, 2006, p. 243).

Lemma 1 Under Assumption 3, we have ST (�0) = (1=2)ESS with

Xj =

24 W (!j)
�
f
�1=2
�0

(!j)
0 
 f�1=2�0

(!j)
�
@ vec f�0 (!j)

@�0

W (0) (�f�0(0))
�1=2 @�(�0)

@�0

35 ; (13)

Yj =

24 W (!j)
�
f
�1=2
�0

(!j)
0 
 f�1=2�0

(!j)
�
vec (IT (!j)� f�0(!j))

W (0) (�f�0(0))
�1=2 T�1

PT
t=1 (Yt��(�0))

35 ;
for j = 0; 1; :::; T � 1; where IT (0) = I�0;T (0) :

In the Lemma, the matrix Xj is nonrandom and of dimension (n2Y + nY )� q. Its components

(f
�1=2
�0

(!j)
0 
 f

�1=2
�0

(!j)) and (�f�0(0))
�1=2 are scaling factors. They are invariant to the strength

of identi�cation. The identi�cation strength is embedded in @ vec f�0(!j)=@�
0 and @�(�0)=@�0. If
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some parameters are weakly identi�ed, then by Assumption W there exists a vector c(�0) such that�
@�(�0)=@�

0� c(�0) = O(T�1=2) and [@ vec f�0(!j)=@�
0]c(�0) = O(T�1=2) for all j = 0; :::; T � 1. The

columns of Xj are thus (imperfectly) multicollinear. In the extreme case when some parameters are

unidenti�ed, we have
�
@�(�0)=@�

0� c(�0) = 0 and [@ vec f�0(!j)=@�0]c(�0) = 0 for all j = 0; :::; T �1.
Consequently, Xj exhibits perfect multicollinearity.

Asymptotically, Yj has mean zero with an identity covariance matrix. It is uncorrelated with
Xj because the latter is nonrandom. Therefore, the explained sum of squares ESS is naturally

expected to be related to a Chi-square limiting distribution with the degrees of freedom determined

by the column rank of Xj , which can be smaller than q if some parameters are unidenti�ed. Here,

ST (�0) equals (1/2)ESS but not ESS because I(2� � !) = I(!). Note that Xj being nonrandom

plays an important role in achieving the robustness to weak identi�cation.

The insight that score tests can in some occasions be expressed using projected values from linear

regressions dates back to Breusch and Pagan (1980), where the relationship was considered as a

computational device. Under the above speci�cations of Xj and Yj , (11) is a complex-valued Gauss-
Newton regression. Davidson and MacKinnon (1993, Chapter 6) provided a detailed discussion of

Gauss-Newton regressions applied to estimation and hypothesis testing. The current paper is the

�rst that uses such a relationship to understand testing procedures under weak identi�cation.

Theorem 1 Let Assumptions 1-4 and W hold. Then,

lim
T!1

Pr (ST (�0) � c)! Pr
�
�2r � c

�
;

where �2r is a Chi-square variable with r degrees of freedom, r=q�q3, q=dim(�0) and q3=dim(�3T (�0)):

Normality is a key assumption for Theorem 1 to hold. If it is violated, the distribution of

ST (�0) will depend on nuisance parameters. This is because the variance of the score DT (�0) is no

longer MT (�0), but rather dependent on the third and fourth moments of the structural shocks.

Speci�cally, its (j; l)-th element equals

[MT (�0)]jl +

�
1

4�

�2X
n�
a;b;c;d=1�abcd

"
1

2�

Z �

��
W (!)H�(!)

@f�1�0 (!)

@�j
H(!)dw

#
ab

(14)

�
"
1

2�

Z �

��
W (!)H�(!)

@f�1�0 (!)

@�l
H(!)dw

#
cd

+
1

8�2
(Ajl +Alj)

where [:]ab denotes the (a,b)-th element of the matrix, [:]c denotes the c-th element of the vec-

tor, MT (�0) is given by (8), �abcd is the fourth cross cumulant of �ta; �tb; �tc and �td, H(!) =

11



H(exp(�i!); �0) =
P1
j=0 hj(�0) exp(�i!j), H�(!) is its conjugate transpose, @f�1�0 (!)=@�j is the

derivative of f�1�0 (!) with respect to the j-th element of � and

Ajl =

n�X
a;b;c=1

�abc

(Z �

��
W (!)

"
H�(!)

@f�1�0 (!)

@�j
H(!)

#
ab

d!

)
�
�
W (0)

@�(�0)
0

@�l
f�1�0 (0)H(0)

�
c

with �abc = E(�ta�tb�tc). Note that the term (Ajl +Alj) is absent when the inference concerns only

the dynamic parameters.

If the DSGE model fully speci�es the distributions of the shocks, then �abcd and �abc can be cal-

culated as functions of the structural parameters. For example, if the shocks follow t distributions,

then �abcd can be expressed as a function of the degrees of freedom parameters and Ajl = Alj = 0.

In such a situation, a modi�ed test statistic can be constructed as

eST (�0) = DT (�0)
0 fM+

T (�0)DT (�0) ; (15)

where fMT (�0) is given by (14). Its limiting distribution is the same and can be established using

similar arguments as in Theorem 1. Its size and power properties are illustrated in Section 7.

5.1 Implementing the test

Theorem 1 suggests the following procedure for inference.

� Apply an eigenvalue decomposition to MT (�0) to determine dim(�3T (�0)). We suggest using

theMATLAB default tolerance level: tol = dim(MT (�0))eps(kMT (�0)k), where eps(kMT (�0)k)
equals the machine precision (2�52) times the maximum eigenvalue of MT (�0).

� Set the eigenvalues below tol to exact zeros and use the new �T (�0) and the original QT (�0)

to recompute MT (�0); see (9). Use this MT (�0) and the original DT (�0) to compute ST (�0).

� Reject the null hypothesis of � = �0 if ST (�0) exceeds the critical value of the �2r distribution.

It is desirable to let the tolerance level depend on MT (�0), say its maximum eigenvalue or the

average of its eigenvalues. Also, it is important to set the eigenvalues below tol to exact zero. This

ensures that the column rank of Xj will be exactly r. Otherwise, over-rejection may occur when

the �2r distribution is used for inference. The above procedure exploits the feature that MT (�0)

is nonrandom. Without this feature, the eigenvalues would be sample dependent and the rank

estimation in general would not work.

12



The procedure involves choosing a tolerance level for deciding the rank of MT (�0). This intro-

duces some arbitrariness. The following two step method, due to Qu and Tkachenko (2012, p.120),

can be used to reduce the arbitrariness and to improve the robustness of the rank estimator.

Step 1. Compute the ranks of MT (�0) using a range of tolerance levels. Locate the outcomes

with the smallest rank.

Step 2. Derive the non-identi�cation curves conditioning on the smallest rank reported. (Under

correct rank estimation, the curves consist of parameter values observationally equivalent to �0, i.e.,

with �(�) = �(�0) and f�(!) = f�0(!) for all ! 2 [��; �]. See Section 3.1 in Qu and Tkachenko,
2012, for the de�nition and computation of non-identi�cation curves.) Compute �(�) and f�(!)

using the values on the curves and measure their di¤erences from �(�0) and f�0(!) over ! 2 [��; �].
The purpose of Step 1 is to avoid over-estimating the rank. It may result in under-estimation,

which is further addressed in Step 2. The idea is, if this has occurred, then some curves reported

in Step 2 will in fact correspond to parameter subsets that are locally identi�able. Consequently,

noticeable discrepancies should emerge as we move along such curves away from �0. There, the

discrepancies can be interpreted in light of the magnitude of f�0(!) and the distance of � from

�0. This is typically more straightforward than interpreting the magnitudes of the eigenvalues of

MT (�0). In the application in Section 7.1, we consider tolerance levels between 10�10 � tol and

1010 � tol. The results show consistently that the Taylor rule parameters are not identi�ed.
In some occasions, the result might be inclusive even after implementing the above method.

Then, we can set the degrees of freedom to dim(�0). This leads to a conservative test without

a¤ecting its asymptotic validity because of the regression interpretation (11).

As an additional feature, the test continues to have correct size if the rank is under-estimated.

Intuitively, this is because the test behaves asymptotically as the sum of independent �21 variables.

Setting a non-zero eigenvalue to zero is equivalent to removing a variable from the sum. This does

not alter the Chi-square distribution except that the degree of freedom is reduced by one. Some

power might be lost if the eigenvector corresponds to a major deviation from the null hypothesis.

Such issues are illustrated in Section 7 (see Tables 3; 4; 6 and 7).

5.2 Robustness to low frequency misspeci�cation

DSGE models are often designed to explain business cycle movements, not very long run or

very short run �uctuations. At the latter frequencies, such models can be severely misspeci�ed.

Schorfheide (2010) emphasized that "many time series exhibit low frequency behavior that is di¢ -

cult, if not impossible, to reconcile with the model being estimated. This low frequency misspeci-
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�cation contaminates the estimation of shocks and thereby inference about the sources of business

cycle". Therefore, it is valuable to be able to conduct inference excluding the very low frequencies,

and more generally to compare inferential results when di¤erent sets of frequencies are allowed to

enter. The proposed procedure allows for such investigations through the speci�cation of W (!).

Later in Section 7.7, we explicitly consider two types of low frequency misspeci�cations. In one

case, the growth rate of productivity is a¤ected by a structural change at an unknown date. In

the other, the in�ation target has an unmodeled smoothly varying trend. The results show that

using the business cycle frequencies can lead to valid inference even when using the full spectrum

erroneously rejects the null hypothesis 100% of the time.

Recently, several studies have analyzed the e¤ect of low frequency misspeci�cations on parame-

ter estimation from a frequency domain perspective. Perron and Qu (2010) considered a weakly

stationary process (e.g., ARMA models) a¤ected by occasional level shifts. They showed in Propo-

sition 3 that the level shift component a¤ects the periodogram only up to j = O(T 1=2). Thus,

out of a total of T � 1 Fourier frequencies, only an asymptotically negligible fraction of O(T�1=2)
is distorted. Qu (2011, Lemma 1) obtained a similar result for a stationary process a¤ected by a

smoothly varying trend. These results suggest that consistent parameter estimation is possible un-

der such misspeci�cations by judiciously excluding a number of frequency components. McCloskey

and Hill (2013) obtained such estimators for ARMA, GARCH and stochastic volatility models.

Tkachenko and Qu (2012) analyzed Smets and Wouters�(2007) model using only the business cy-

cle frequencies and compared with results obtained using the full spectrum. They found notably

di¤erent parameter values and impulse response functions. The work here further develops this

literature by simultaneously allowing for the selection of frequencies and weak identi�cation.

6 Con�dence sets robust to weak identi�cation

Because of the duality between con�dence sets and hypothesis tests, a valid con�dence set for �

can be constructed by inverting ST (�). Speci�cally, applying Theorem 1, an asymptotically valid

100(1� �)% con�dence set is given by

C� (1� �) =
�
� 2 � : ST (�) � �2q�q3(1� �)

	
where �2s(1 � �) denotes the 100(1 � �)-th percentile of a Chi-square variable with s degrees of

freedom. Because this set contains the minimizers of the likelihood function, it is always nonempty.

To obtain this set, a direct grid search is computationally infeasible even for small scale DSGE

models. We suggest using a Metropolis algorithm. The idea is to use Metropolis steps to generate
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frequent draws from regions of � where the values of ST (�) are small and infrequent draws where

ST (�) are large. This delivers a grid over � that adapts to the shape of ST (�), being dense at

the desired areas (i.e., where ST (�) takes values near or below �2q�q3(1 � �)) and sparse at the

unimportant areas (i.e., where ST (�) is far above �2q�q3(1 � �)). The con�dence set can then be

approximated using the values of � for which ST (�) do not exceed �2q�q3(1� �).
Let �(�) be an indicator that equals 1 over � and 0 otherwise. Because of Assumption 1, �(�)

acts as a uniform prior with a compact support. This ensures that the resulting quasi-posterior

will be proper even if ST (�) is �at. The basic steps for constructing the con�dence set are:

1. Choose a starting value �(0) and set j = 0.

2. Draw �� from some proposal distribution q(:j�(j)):

3. Calculate the ratio

s = min

(
�(��)e�

1
2
ST (�

�)

�(�(j))e�
1
2
ST (�

j)

q(�(j)j��)
q(��j�(j))

; 1

)
and set

�(j+1) =

8<: ��

�(j)

with probability s

with probability 1� s.

4. Increase j by 1 and then repeat Steps 2 and 3. Continue until j = B for some large B.

5. Sort the draws according to the values of ST (�) and keep those satisfying ST (�(j)) � �2q�q3(1�
�) (j = 1; :::; B). Use the envelope of these draws to form the con�dence set.

The above procedure is motivated by Chernozhukov and Hong (2003) in which MCMC is used

as a computational device for classical estimation. Because the goal here is not to obtain a point

estimate for �, the assumptions for asymptotic distributions (Assumptions 2-4 in Chernozhukov

and Hong, 2003) are not required.

Steps 1 to 5 cover only the basic aspects. In practice, it is important to �ne tune them to

better account for the potential ridges or local minima in the surface of ST (�). For example, we

have incorporated the following elements when analyzing the model of An and Schorfheide (2007)

in Section 7. First, in Steps 2 and 3, two di¤erent proposal distributions are applied iteratively to

generate new parameter values. More speci�cally, write the new draw in Step 2 as �� = �(j) + ".

The �rst distribution gives " � N(0;MT (�
(j))) with c being a tuning constant, while the second

gives " = cVT (�
(j)) or �cVT (�(j)) with VT (�(j)) being the eigenvector corresponding to the smallest

eigenvalue of MT (�
(j)). These two distributions produce draws that travel across and along the

15



ridges of ST (�). Second, for each proposal distribution, we let the tuning parameter c take on

multiple values. This prevents the sampling process from getting locked in some small neighborhood

of a local minimum. Finally, multiple Markov Chains are run with di¤erent initial values. The

con�dence set is then obtained by merging the accepted values from all the chains.

Once the joint con�dence set is obtained, con�dence sets for parameter subvectors can be ob-

tained using the projection method, i.e., we use the �rst k Cartesian coordinates of the MCMC

draws in Step 5 to form a con�dence set for the �rst k parameters in �. Such a method is im-

plemented in Guerron-Quintana, Inoue and Kilian (2013). A discussion of this method in the IV

context can be found in Dufour and Taamouti (2005).

6.1 Extensions

Below, we propose procedures to construct uniform con�dence bands for the impulse response

function and some other objects.

Let IRjl (k; �0) be the impulse response of the j-th variable in Yt to the l-th orthogonal shock

in �t at the horizon k when the true parameter value is �0. The next de�nition speci�es a uniform

con�dence band for IRjl (k; �0).

De�nition 1 Let CIR(k;T ) be a con�dence band for IRjl (k; �0) indexed by k 2 [0;1). We say it
is uniform at the level 1� � if

lim inf
T!1

Pr (IRjl (k; �0) 2 CIR(k;T ) for all k 2 [0;1)) � 1� �

The band can be constructed by considering the envelope of the impulse response functions

associated with all the parameter values contained in the joint con�dence set obtained in the

previous subsection. Without loss of generality, consider the impulse response function of the j-th

variable in Yt to the l-th orthogonal shock. This function, when evaluated at horizon k, equals

to the (j; l)-th element of IR (k; �) = hk (�) �
1=2 (�), where hk (�) is the k-th coe¢ cients matrix in

the vector moving average representation (4). This is easily computed using the output from Sims

(2002), because (see (1); without loss of generality, assume A(L) = A)

IR (k; �) = A�k1(�)�0(�)�
1=2 (�) :

The band can be obtained in three steps.

� Step 1. Apply the Metropolis-Hastings algorithm described above to construct C� (1� �).
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� Step 2. Compute the impulse response function using all parameter values in C� (1� �). This
step can be approximated using the MCMC draws from Step 1 satisfying ST (�) � �2q�q3(1��).

� Step 3. Sort the resulting values at each horizon of interest. Use their maxima and minima
to form a con�dence band.

Because IR (k; �) is a deterministic function of � and k, this band covers the impulse response

function with probability at least (1��) asymptotically. (A proof for this claim is provided in the

on-line appendix.) It is important to note that the band can be narrow even if some parameters are

unidenti�ed. This is because if two di¤erent parameter values produce the same spectral density

over ! 2 [��; �] (therefore unidenti�ed), they may also lead to the same set of impulse response
functions.2 This feature will be illustrated in Section 7.

The same idea can be applied to construct con�dence sets for the time path of the variance

decomposition, or other objects that are deterministic functions of the structural parameter vector.

Below we discuss two such examples. As a matter of notation, let ej be the j-th column of an

identity matrix whose dimension depends on the context.

Individual spectrum and coherency. The spectrum of the j-th variable in Yt is given by

e0jf�(!)ej . The absolute coherency, which measures the strength of correlation between the j-th

and l-th variable at a particular frequency !, is given by

je0jf�(!)eljq
e0jf�(!)eje

0
lf�(!)el

:

It is useful to contrast the model implied con�dence bands for these two quantities with some model

free (i.e, nonparametric) estimates computed directly from the data. This can potentially reveal

the frequencies at which the model captures or misses important dynamic features in the data.

Because the quantities are deterministic functions of �, their con�dence bands uniform in ! can

again be computed using the three-step procedure outlined above.

Low frequency hypotheses. Lucas (1980) used the slopes of univariate regressions of moving

averages of in�ation (�t) and interest rates (rt) on money growth (�mt) to illustrate the two central

implications of the quantity theory of money: that a given change in the rate of money growth

induces (i) an equal change in the rate of price in�ation and (ii) an equal change in nominal rates

2Having the same spectrum is necessary but not su¢ cient for having the same impulse response function. For
example, for any noninvertible MA(1) process, there always exists an invertible MA(1) with the same spectrum but
a di¤erent impulse response function.
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of interest. Whiteman (1984) observed that the slopes are related to the coherency between the

respective variables at frequency zero. In our notation, the estimated slope approximates

e0jf�(0)el
e0jf�(0)ej

(16)

where j corresponds to �mt and l is either �t or rt. Sargent and Surico (2011) used DSGE models

to show that the slopes are policy dependent. They tacked this issue from a Bayesian perspective.

The methods developed in this paper can be used to construct frequentist con�dence intervals for

(16), therefore to evaluate whether a unit slope is consistent with the model and the data.

7 Finite sample properties

This section �rst examines the �nite sample properties of the following objects: the proposed tests,

the con�dence intervals and the con�dence bands for the impulse response functions. Then, it

considers the performance of the tests under non-Gaussian innovations and low frequency misspec-

i�cations.

The model is taken from An and Schorfheide (2007):

yt = Etyt+1 + gt � Etgt+1 �
1

�
(rt � Et�t+1 � Etzt+1) (17)

�t = �Et�t+1 + �(yt � gt)

rt = �rrt�1 + (1� �r) 1�t + (1� �r) 2(yt � gt) + �rt

gt = �ggt�1 + �gt

zt = �zzt�1 + �zt;

where �rt � N(0; �2r), �gt � N(0; �2g) and �zt � N(0; �2z) are serially and mutually independent

shocks. The observables are GDP growth (Y GRt), in�ation (INFLt) and interest rate (INTt):

Y GRt = (Q) + 100(yt � yt�1 + zt) (18)

INFLt = �(A) + 400�t

INTt = �(A) + r(A) + 4(Q) + 400rt

where (Q) = 100( � 1); �(A) = 400(� � 1); r(A) = 400(1=� � 1) with  being a constant in the
technological shock equation and � the steady state in�ation rate. The parameter vector is

� = (� ; �;  1;  2; �r; �g; �z; 100�r; 100�g; 100�z; r
(A); �(A); (Q)):
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The �rst 11 parameters are dynamic parameters (r(A) depends on � which appears in the log-

linearized equations). The parameter values are taken from Table 2 in An and Schorfheide (2007):

�0 = (2; 0:15; 1:5; 1:00; 0:60; 0:95; 0:65; 0:2; 0:8; 0:45; 0:40; 4:00; 0:50): (19)

We consider three designs that correspond to di¤erent treatments of the mean and the spectrum:

Design 1 (BC frequencies). Inference on the 11 dynamic parameters based on business cycle

frequencies (i.e., periods of 6�32 quarters): ! 2 [�=16; �=3] [ [5�=3; 31�=16].

Design 2 (Full spectrum). Inference on the dynamic parameters based on the full spectrum.

Design 3 (Mean and full spectrum). Inference on � based on the mean and the full spectrum.

When implementing the tests, @�(�)=@�0 is computed analytically while @ vec f�(!)=@�0 is com-

puted using a two-point method with step size 10�6. We consider four empirically relevant sample

sizes to evaluate the size and power properties: T = 80; 160; 240; 320. In each case, we report

rejection frequencies based on 5000 replications.

7.1 The model�s identi�cation properties

This subsection illustrates the model�s identi�cation properties for a better understanding of the

simulation results. We focus on Design 2 with T = 80, although the �ndings are quite similar

under Designs 2 and 3. The MATLAB default tolerance level yields rank(MT (�0)) = 10 < 11. The

method of Qu and Tkachenko (2012, Section 3.1) shows there exists a unique non-identi�cation

curve generated by ( 1;  2; �r; �r). The curve extends in both the positive and negative directions

around �0. In Direction 1, it is truncated before  2 turns negative. Along Direction 2, it reaches

an indeterminacy region before any natural bounds are violated, and is truncated at the last point

that yields a determinate solution. Table 1 reports 10 evenly spaced points along each direction.

Two interesting patterns emerge. First, for  1 and  2, the curve extends over a fairly large

neighborhood:  1 varies between 0:99 and 4:87, while  2 between 0:00 and 1:15. Second, the

corresponding neighborhoods for �r and �r are relatively small: �r can only change between 0:58

and 0:60, while 100�r between 0:19 and 0:20. The latter feature suggests that the data can still be

informative about �r and �r even though they are not separately identi�able from  1 and  2.

The rank estimate is insensitive to the sample size considered. The smallest eigenvalue equals

4.4E-15, 4.8E-15, 4.8E-15 and 5.4E-15 when T = 80; 160; 240 and 320. They are well below the

default tolerance level 3.6E-13. This insensitivity follows because the summands in MT (�0) are de-
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terministic and smooth functions of !. This di¤ers from usual score tests in which the normalization

matrices are sample dependent.

The rank result is recon�rmed after applying the two step procedure discussed in Section 5.1.

Speci�cally, in Step One, the minimal rank equals 9 when considering a wide range of tolerance

levels: 10j � dim(MT (�0))eps(kMT (�0)k) (j = �10;�9; :::; 10). Two curves are obtained in Step 2,
generated by ( 1;  2; �r; �r) and r

(A) (or equivalently �). The values on the �rst curve (i.e., those

in Table 1) produce essentially the same spectral density as f�0(!) with the maximum absolute

di¤erence being 1.4E-7. This con�rms that  1;  2; �r; �r are not separately identi�able. In contrast,

noticeable discrepancies emerge when increasing the value of r(A) from 0.4. When the value reaches

4:0 (i.e., when � changes from 0.999 to 0.990), the maximum di¤erence between f�(!) and f�0(!)

reaches 0:002. Further increases lead to greater di¤erences. This con�rms that r(A) is locally

identi�ed, but only weakly, from the second order properties of the observables.

The reduced form parameters in this model are not immune to identi�cation problems. Specif-

ically, a minimal state space representation of the model�s solution evaluated at �0 is given by0BBB@
zt+1

gt+1

rt+1

1CCCA =

0BBB@
0:65 0 0

0 0:95 0

0:1548 0 0:4

1CCCA
| {z }

A

0BBB@
zt

gt

rt

1CCCA+
0BBB@

1 0 0

0 1 0

0:2382 0 0:6667

1CCCA
| {z }

B

0BBB@
�zt+1

�gt+1

�rt+1

1CCCA
| {z }

�t+1

;

0BBB@
rt+1

yt+1

�t+1

1CCCA =

0BBB@
0:1548 0 0:4

0:2724 0:95 �0:3637

0:0764 0 �0:0909

1CCCA
| {z }

C

0BBB@
zt

gt

rt

1CCCA+
0BBB@
0:2382 0 0:6667

0:4191 1 �0:6061

0:1176 0 �0:1514

1CCCA
| {z }

D

0BBB@
�zt+1

�gt+1

�rt+1

1CCCA :

The covariance of �t+1, �(�0), is not separately identi�able from B and D without further normal-

izations. We therefore �x �(�0) and treat the non-zero elements in A;B;C and D as reduced form

parameters. Denote the collection of these parameters as �. Write � = �0 when � = �0:

The rank condition in Qu and Tkachenko (2012, Theorem 1) shows that �0 is unidenti�able

based on the second order properties of frt; yt; �tg. The criterion function G (�0) has four zero
eigenvalues, suggesting there are multiple sources contributing to the identi�cation failure. In fact,

for any invertible lower triangular 3-by-3 matrix U with U21 = U32 = 0, replacing A; B and C by

UAU�1, UB and CU�1 leaves the dynamic properties of frt; yt; �tg unchanged. This result con�rms
that the reduced form parameters in a minimal state space representation can be unidenti�able even

after �xing the covariance matrix of the structural shocks and imposing the knowledge about the
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zero entries. Guerron-Quintana, Inoue and Kilian (2013) found similar results in their applications.

They suggested deducting the number of free parameters in U from the degrees of freedom of the

likelihood ratio test. This identi�cation feature also poses computational challenges because the

likelihood is �at in multiple dimensions and it has a continuum of global maximizers.

7.2 Size in �nite samples

The test statistics are constructed by setting the smallest eigenvalue in the information matrix to

zero. The �210 (for dynamic parameters) and �
2
12 (for the full parameter vector) distributions are

used to determine whether rejection occurs. The results are summarized in the �rst panel of Table

2. The rejection rates are overall close to the nominal levels. Some mild over-rejections persist

under Designs 2 and 3, with the maximum rejection frequencies being 9:5% and 14:4% at the 5%

and 10% nominal levels, respectively. This appears to be because the spectral density is close to

being singular near the zero frequency. When the lowest frequency component is excluded, the

rejection frequencies under Design 2 decrease to 7:3% and 11:9% at the 5% and 10% nominal levels

when T = 320. Therefore, the over rejection is not a problem with the test statistics, but rather the

speci�cation of the model and how it is applied to the data. In such a context, the adequacy of the

proposed procedures should be judged according to the results using the business cycle frequencies.

The above experiment considers a particular parameter value. It remains to verify whether the

size is controlled in a more general situation. We draw parameter values from a prior distribution

given in An and Schorfheide (2007, Table 2). In addition to requiring determinacy, the following

bounds are also imposed on the permissible parameter values: � � [1e-5; 5], � � [0; 1],  1 � [0; 5],
 2 � [0; 2], �r � [0; 0:9], �g � [0; 0:99], �z � [0; 0:99], 100�r � [1e-5; 2], 100�g � [1e-5; 2], 100�z �
[1e-5; 2], r(A) � [0; 5], �(A) � [0; 20], (Q) � [0; 5]. The bounds are su¢ ciently wide to allow for

estimates reported in the DSGE literature. To avoid confounding the results with the issue of near

unit roots, the parameters �r; �g and �z are �xed at their original values throughout the draws

(their bounds are needed later when constructing con�dence intervals). The rejection frequencies

are summarized in the second panel in Table 2. The results are quite similar to the previous case.

We now purposely misspecify the rank of the information matrix and examine the tests�size

properties. In Table 3, all eigenvalues of the information matrix are treated as non-zeros and the

distributions of �211 and �
2
13 are used for inference. As expected, the tests reject less frequently

compared with Table 2. The rates are between 4:5%-8:2% and 7:9%-12:5% at the two nominal

levels. Table 4 reports the results when two eigenvalues are classi�ed as zeros and the distributions

of �29 and �
2
11 are used for inference. There, the size continues to be adequate: the overall rejection
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rates are between 6:6%-10:8% and 10:8%-15:8% at the two nominal levels. In the above, the rank

of the information matrix stayed �xed across parameter values. Yet another alternative is to re-

estimate its rank with the MATLAB default when each time a parameter is drawn, and then use

this rank for computing the test statistics and for inference. This led to virtually the same results

as in Table 2 and is omitted to save space. In summary, the size appears fairly robust to the

classi�cation of the zero eigenvalues.

To put the above results into perspective, we note that in this model the distributions of the

conventional Wald and likelihood ratio (LR) tests are highly nonstandard. For the Wald test,

because the MLE �̂ can lie close to a point distant from �0 on the non-identi�cation curve even

in large samples,
p
T (�̂ � �0) can take on a very large value. Consequently, the test can diverge

if a �nite covariance matrix is used to standardize the above di¤erence. For the conventional LR

test, because the likelihood surface displays a ridge along the non-identi�cation curve, the standard

quadratic approximation is no longer adequate. Consequently, the Chi-square approximation to

the limiting distribution also breaks down. In contrast, The distribution of the ST (�) test is not

established under an expansion around a point estimate, therefore the inference is not a¤ected by

the above non standard features. Instead, the key assumption validating the asymptotic distribution

is Assumption W(iv). In this model,
�
@ vec f�0(!)=@�

0�QT (�0)�+T (�0)1=2 is a n2Y -by-q matrix. The
elements in its �rst row are plotted in Figure 1 as a function of ! to illustrate their magnitudes and

smoothness in !. The remaining elements exhibit similar features and are omitted to save space.

The �gure supports Assumption W(iv).

7.3 Finite sample power

We perturb the individual element of �0 (only the dynamic parameters in Designs 1 and 2) given

in (19) by a �xed percentage and then compute the rejection frequencies. Speci�cally, we take a

uniform random draw from the index set f1; :::; 13g (or f1; :::; 11g in Designs 1 and 2) and change
the corresponding element of the parameter vector by �% of its value (increasing or decreasing it

with equal probability) without altering the others. This is repeated to generate 5000 parameter

values yielding determinacy, which are then used to simulate 5000 processes and to compute the

test statistics. The size-adjusted rejection frequencies are reported in Table 5.

The �rst panel is for � = 20. Using the business cycle frequencies, the ST (�0) test achieves

51:1%-61:4% of the power attainable using the full spectrum. The rejection rates under Designs 2

and 3 are similar. Because Design 3 involves more parameters, the power is not necessarily higher

than under Design 2. The second panel corresponds to � = 40. There, the ratios are between
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48:5%-86:1%. Designs 2 and 3 continue to show similar rejection frequencies.

We misspecify the rank of the information matrix and compute the size adjust rejection frequen-

cies. In Table 6, all eigenvalues are treated as non-zeros. In Table 7, the two smallest eigenvalues

are treated as zeros. In both tables, the power is very similar to that in Table 5. Intuitively, a

small eigenvalue implies that the likelihood surface lacks curvature in the corresponding direction.

There is little to lose, or even something to gain, from treating it as zero.

In summary, the results from Designs 1 and 2 suggest that the tests using only business cycle

frequencies can be informative. Meanwhile, although the above analysis allows us to compare power

across di¤erent designs, it is not ideal because the alternatives are limited to some particular para-

meter directions. If the alternative parameter values were instead on the non-identi�cation curve,

then the power of the tests would be the same as their size. The informativeness of the di¤erent

procedures will be further studied in the next two subsections through the lenses of con�dence

intervals and impulse responses. Prior to that, we �rst report a comparison with Andrews and

Mikusheva�s (2013) tests using the current model.

Andrews and Mikusheva (2013) studied two LM tests, LMo and LMe, from a time domain

perspective. Given that they can not be applied to Designs 1 and 2, below we only consider

their �nite sample properties under Design 3. Panel (a) in Table 8 summarizes their rejection

frequencies under the null hypothesis. The two tests perform quite di¤erently. The LMo test

exhibits substantial size distortions, while the LMe test performs similarly to ST (�0). The di¤erence

follows from the handling of the information matrix. The LMo test tries to estimate it from a �nite

sample. This involves estimating q(q + 1)=2 unknown parameters with q being the dimension

of �0. The noise in this estimate can signi�cantly a¤ect the test�s size, especially under weak

identi�cation. The LMe test, similarly as ST (�0), computes the information matrix directly from

the model, therefore is una¤ected by this problem. In the frequency domain, there is a simple

formula available for computing the information matrix, while in the time domain one needs to

use some tailored procedures or simulations. Andrews and Mikusheva (2013) suggest using the

method of Iskrev (2008), along with the MATLAB toolbox E4. Panel (b) in Table 8 summarizes

their rejection frequencies under the alternative hypothesis. Overall, the values are similar to those

reported in the last two columns in Tables 5. Speci�cally, the di¤erences between LMe and ST (�0)

are within in 0:02 to 0:09, and LMo and ST (�0) within �0:17 to 0:10. These results are consistent
with those reported in Andrews and Mikusheva (2013) using a di¤erent model.
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7.4 Con�dence intervals for structural parameters

Table 9 summarizes the length of the 90% con�dence intervals when � equals (19) and T = 240.

Column 4 corresponds to the business cycle case. First, the intervals reveal little information about

� ,  1,  2 and r
(A) (or equivalently �). This is consistent with �ndings reported elsewhere in the

literature. For example, An and Schorfheide (2007, P.133-134) documented similar results about � ,

 1 and  2 from a Bayesian perspective. It is also well known that � is di¢ cult to estimate with data

on aggregate quantities. Second, the intervals reveal limited information about �r and �. Third,

the intervals related to the exogenous disturbances (�g; �z; 100�r; 100�g and 100�z) are relatively

informative. This is again consistent with the �ndings of An and Schorfheide (2007, P.133-134).

Column 5 corresponds to the full spectrum case. The intervals for � ,  1,  2 and r
(A) are little

changed; the others narrow substantially. The e¢ ciency gain from using the full spectrum is clearly

parameter speci�c. Column 6 incorporates the steady state parameters. There, the intervals remain

roughly the same except for r(A). The latter interval narrows because r(A) is tied to the steady

state of the interest rate.

The above comparison shows that inference using only business cycle frequencies can be in-

formative (see �g; �z; 100�r; 100�g and 100�z), while using the full spectrum can bring substantial

gain in e¢ ciency. In practice, this o¤ers researchers a choice. If the model is reasonably speci�ed

at all frequencies, then the full spectrum should be used and the inference will be more precise. If

the model is misspeci�ed over some frequencies, then using parts of the spectrum is preferable.

Importantly, the results suggest that it is possible to have informative con�dence intervals in

DSGE models with unidenti�ed parameters. Further, even unidenti�ed parameters themselves

can have tight con�dence intervals; see �r and �r in Columns 5 and 6. To see why the latter

has happened in this model, note that �r and �r are elements of the Taylor rule parameters

( 1;  2; �r; �r) which lie on an non-identi�cation curve depicted in Table 1. The likelihood function

is completely �at along this curve but has curvature in all other directions. For �r and �r, the

curve occupies only a relatively small neighborhood. Consequently the e¤ect of the identi�cation

failure is relatively mild. The con�dence intervals can still be tight. More generally, such a feature

can arise if identi�cation failure involves multiple parameters but the non-identi�ed directions are

limited relative to the number of such parameters.

7.5 Con�dence bands for impulse responses

We illustrate the properties of the 90% uniform con�dence bands using a simulated process with

�0 equal to (19) and T = 240. The maximum horizon equals 20. The bands are computed using
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merged outcomes from 20 independent Markov chains with each chain producing 2000 valid draws.

Figure 2 contains con�dence bands using only business cycle frequencies. In each plot, the

shaded area is the 90% uniform con�dence band. The solid line is the true impulse response

function. The bands are in general fairly wide but can be informative. They show that the

three shocks have signi�cant immediate e¤ects on all the variables, with the exception of �gt on

in�ation and interest rate, which are identically zero dictated by the structure of the model. They

correctly estimate the signs of the responses and are indicative of the possible magnitudes. Figure

3 corresponds to the full spectrum. All bands narrow substantially and are now fairly informative.

This is an interesting �nding, given that the model has unidenti�ed parameters. Figure 4 contains

results using the mean and the spectrum. The bands are similar to those in Figure 3. They are

not necessarily narrower than those in Figure 3 because additional parameters are present.

Therefore, it is possible to have informative interval estimates of the impulse response functions

in DSGE models with unidenti�ed parameters. Because observationally equivalent parameter val-

ues may correspond to the same response functions, uncertainty about parameter values does not

necessarily translate into uncertainty about the latter. For a further illustration, we computed the

impulse response functions using the 20 points reported in Table 1. The maximum di¤erence be-

tween them is of order 1E�7. This con�rms that in this model, the parameters on the identi�cation
curve do deliver the same impulse responses.

7.6 Non-Gaussian innovations

This subsection studies the �nite sample properties of the modi�ed test (15) when the shocks follow

Student-t distributions. Speci�cally, we let

�rt
i:i:d:� t(0; �2r ; �r); �gt

i:i:d:� t(0; �2g; �g); �zt
i:i:d:� t(0; �2z; �z);

where t(0; �2; �) denotes a Student-t distribution with location parameter 0, scale parameter �2

and � degrees of freedom. The values �r, �g and �z are taken from the last three columns in Table 2

in Cúrdia, Del Negro and Greenwald (2013). They are treated as additional structural parameters

when constructing the tests. All other speci�cations are the same as in (17).

The rejection frequencies are summarized in Table 10. Panel (a) corresponds to the null hy-

pothesis. The values are fairly close to the nominal levels. Panel (b) corresponds to the alternative

hypothesis. There, the power is overall lower than that reported in Table 5, however the overall pat-

tern is similar. In particular, using the business cycle frequencies, the test achieves 65:0%� 75:0%
and 59:8%� 84:9% of the power attainable using the full spectrum when � = 20 and 40.
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7.7 Robustness to low frequency misspeci�cation

This subsection studies the tests� size properties when the data exhibit certain unmodeled low

frequency variations. First, we suppose the growth rate of technology, and therefore the means of

Y GRt and INTt, are a¤ected by a structural change at Tb:

(Q)(t) = (Q) + � � 1(t � Tb): (20)

Second, we suppose the in�ation target, and therefore the means of INFLt and INTt, are time

varying:

�(A)(t) = �(A) + �(t): (21)

In both cases, the log linearized solution still satis�es (17) if we abstract from the e¤ect of learning

and assume that the change in the in�ation target is su¢ ciently smooth. Misspeci�cation arises

only when relating the observables to their log deviations using the time invariant relationship

(18). Frequency domain methods provide a simple way to account for such misspeci�cations without

requiring specifying the location of the change or the time path of the policy target. This is possible

because such variations mainly a¤ect the very low frequencies, which can be simply excluded or

downweighted when conducting inference. Note that the above two misspeci�cations are di¤erent

from Cogley (2001). In the latter, the degree of integration (i.e., unit root versus stationarity) for

the technology process is misspeci�ed. This a¤ects the model�s dynamics at all frequencies and, as

shown in Cogley (2001), removing the low frequencies o¤ers little help.

In order to make the analysis empirically relevant, we calibrate the values of �; Tb and �(t)

using U.S. quarterly time series over the period 1947:Q1�2012:Q3 (263 observations). For � and

Tb, we regress GDP growth rates (Series GDPC1 obtained from the Saint Louis Fed Website) on

a constant and a break in the intercept. The sum of squared residuals is minimized at Tb = 105,

which corresponds to 1973:Q1. The estimated break magnitude equals �0:23. Because the series in
the model and the actual data have di¤erent standard deviations, we multiply �0:23 by their ratio
to make the magnitude more comparable. Such calculations lead to � = �0:26. To obtain �(t),
we apply local regression to the in�ation series (CPIAUCSL_PCH), using the loess command in R

with the bandwidth parameter set to 0:5T . We then set �(t) to be the �tted smooth curve adjusted

by the relative standard deviations. The resulting (Q)(t) and �(t) each contain 263 values. The

�rst 80, 160 and 240 values are used to simulate samples of corresponding sizes and the 263 values

are linearly interpolated to generate samples of 320 observations.

Table 11 reports the rejection frequencies when the test statistics are constructed using busi-

ness cycle frequencies only (BC), business cycle and all the higher frequencies (BC+High) and the
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full spectrum (Full). Panel (a) corresponds to (20). The test based on business cycle frequencies

performs quite well for all the sample sizes considered. Its rejection rates are only mildly in�ated,

falling between 6:7%�8:4% and 11:8%�13:1% at 5% and 10% nominal levels, respectively. In con-
trast, the test using the full spectrum su¤ers from serious size distortions. Its rejection frequencies

reach 62:5% and 70:1% when T = 320. The test using all but the very low frequencies (BC+High)

performs similarly to using only the business cycle frequencies. This con�rms that the di¤erence

between BC and Full is indeed due to the low frequencies. Panel (b) corresponds to (21). The BC

based test continues to perform well even when the full spectrum based test rejects close to 100%

of the time. Panel (c) corresponds to the situation where both (20) and (21) are present. There,

the di¤erence is even more pronounced. Overall, the results suggest that substantial robustness

can be achieved by excluding a relative small number of low frequency components.

8 Conclusion

This paper has developed asymptotically valid con�dence sets for parameters in log-linearized DSGE

models allowing an unknown subset to be weakly (including un-) identi�ed. It also developed uni-

form con�dence bands for impulse response functions and other objects that are functions of the

structural parameters. The framework is fairly general, permitting latent endogenous variables,

measurement errors and also inference using only part of the spectrum. The simulation experiment

using a calibrated model suggests that the tests have decent sizes in relatively small samples. It

also suggests that it is possible to obtain informative results in DSGE models with unidenti�ed pa-

rameters. Although the paper has focused on DSGE models, the methods developed are applicable

to other dynamic models satisfying Assumptions 1-4 and W such as the FAVAR.

Joint con�dence sets are sometimes considered as not useful in the frequentist literature be-

cause they can be quite conservative about individual parameters. This paper suggests that this

need not be the case. They can be useful for a wide range of purposes, including (1) constructing

uniform con�dence bands for the impulse response functions, the time path of the variance decom-

position, the individual spectrum and absolute coherency and (2) examining certain low frequency

hypotheses. Parameters in DSGE models are often highly correlated. This can be seen from the

non-identi�cation curve reported in Table 1, and is also emphasized in the literature, for example

by Del Negro and Schorfheide (2008). Such dependence is captured by joint con�dence sets, but not

by individual con�dence intervals. It is therefore desirable to develop methods that can facilitate

the visualization and characterization of such sets in a high dimensional setting. We view this as a

challenging task that deserves further investigation.
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Appendix

The following Lemma is needed for proving Theorem 1. Its proof, along with some other
intermediate results, are in the online appendix.

Lemma A.1 Suppose Assumptions 1-4 and W hold. Let �cT (�0) denote the upper-left non-zero
corner of �T (�0) (i.e., the submatrix containing �1T (�0) and �2T (�0)) and let QcT (�0) be the cor-
responding orthonormal eigenvectors. De�ne

�1T =
1

2
p
T

T�1X
j=1

�T (!j)
� vec (IT (!j)� f�0(!j)) ; �2T =

1

2�
p
T

TX
t=1

 �T (Yt��(�0)),

where

�T (!) = W (!)
�
f�1�0 (!)

0 
 f�1�0 (!)
���@ vec f�0(!)

@�0

�
QcT (�0)�

c
T (�0)

�1=2
�
;

 T = W (0)f�1�0 (0)
@�(�0)

@�0
QcT (�0)�

c
T (�0)

�1=2:

Then
�1T + �2T !d N(0; Iq1+q2);

where Iq1+q2 is a (q1 + q2)-dimensional identity matrix.

Proof of Theorem 1. Consider the �rst result. BecauseMT (�0) is real and positive semi-de�nite,
by the property of the Moore-Penrose Pseudoinverse (p.35 in Magnus and Neudecker, 2002),

M+
T (�0) = QcT (�0)�

c
T (�0)

�1QcT (�0)
0;

where �cT (�0) and Q
c
T (�0) are de�ned as in the previous Lemma. Thus,

ST (�0) = DT (�0)
0QcT (�0)�

c
T (�0)

�1QcT (�0)
0DT (�0)

=
h
�cT (�0)

�1=2QcT (�0)
0DT (�0)

i0 h
�cT (�0)

�1=2QcT (�0)
0DT (�0)

i
:

Let �T = �
c
T (�0)

�1=2QcT (�0)
0DT (�0). From the previous Lemma, �T !d N(0; Iq1+q2). This implies

ST (�0)!d �2q1+q2 . �

A-1



Table 1. Parameter values along the non-identi�cation curve

 1  2 �r 100�r
�0 1.5 1.0 0.6 0.2

Direction 1

�1 1.836868445 0.900004035 0.598458759 0.199486255

�2 2.173736829 0.800008051 0.596905592 0.198968539

�3 2.510605180 0.700012143 0.595340369 0.198446796

�4 2.847473509 0.600016358 0.593762961 0.197920981

�5 3.184341764 0.500020520 0.592173193 0.197391053

�6 3.521209942 0.400024625 0.590570930 0.196856970

�7 3.858078165 0.300029089 0.588956076 0.196318654

�8 4.194946193 0.200033105 0.587328358 0.195776097

�9 4.531814220 0.100037328 0.585687731 0.195229219

�10 4.868682201 0.000041617 0.584034010 0.194677969

Direction 2

��1 1.449287583 1.015053453 0.600230997 0.200077000

��2 1.398575164 1.030106903 0.600461720 0.200153908

��3 1.347862753 1.045160386 0.600692186 0.200230727

��4 1.297150322 1.060213806 0.600922373 0.200307461

��5 1.246437899 1.075267255 0.601152303 0.200384106

��6 1.195725490 1.090320753 0.601381980 0.200460662

��7 1.145013063 1.105374198 0.601611380 0.200537132

��8 1.094300631 1.120427628 0.601840515 0.200613515

��9 1.043588191 1.135481038 0.602069376 0.200689808

��10 0.992875774 1.150534530 0.602297996 0.200766012
Note. �j represent equally spaced points taken from the non-identi�cation curve
extended from �0. Along Direction 1, the curve is truncated at the closest point
to zero where  2 is still positive. Along Direction 2, the curve is truncated at the
last point yielding a determinate solution.



Table 2. Rejection frequencies under the null hypothesis

T BC frequencies Full spectrum Mean and full spectrum

5% 10% 5% 10% 5% 10%

�0 taken from Table 2 in AS (2007)

80 0.084 0.130 0.086 0.125 0.095 0.135

160 0.073 0.117 0.073 0.115 0.078 0.127

240 0.065 0.109 0.073 0.138 0.078 0.140

320 0.060 0.108 0.087 0.143 0.085 0.144

�0 drawn from a prior distribution

80 0.089 0.135 0.088 0.135 0.102 0.156

160 0.076 0.122 0.080 0.122 0.086 0.136

240 0.067 0.114 0.083 0.142 0.086 0.145

320 0.065 0.111 0.083 0.145 0.084 0.149
Note. The �rst panel: �0 is taken from the last column of Table 2 in An and Schorfheide
(2007). The second panel: �0 is randomly drawn from the prior distribution speci�ed in Table
2 in An and Schorfheide (2007); the values of �r; �g; �z are �xed at their original values.

Table 3. Null rejection frequencies under alternative computations of the test statistics

(All eigenvalues are treated as non-zeros)

BC frequencies Full spectrum Mean and full spectrum

T 5% 10% 5% 10% 5% 10%

�0 taken from Table 2 in AS (2007)

80 0.067 0.102 0.061 0.097 0.079 0.109

160 0.055 0.089 0.055 0.085 0.061 0.100

240 0.051 0.085 0.066 0.107 0.060 0.111

320 0.045 0.079 0.068 0.108 0.067 0.113

�0 drawn from a prior distribution

80 0.072 0.107 0.071 0.109 0.082 0.125

160 0.059 0.093 0.059 0.094 0.069 0.108

240 0.054 0.089 0.069 0.110 0.066 0.116

320 0.047 0.083 0.072 0.116 0.067 0.123
Note. See Table 2.



Table 4. Null rejection frequencies under alternative computations of the test statistics

(The two smallest eigenvalues are treated as zeros)

BC frequencies Full spectrum Mean and full spectrum

T 5% 10% 5% 10% 5% 10%

�0 taken from Table 2 in AS (2007)

80 0.084 0.130 0.071 0.115 0.093 0.140

160 0.071 0.116 0.072 0.121 0.070 0.115

240 0.068 0.112 0.083 0.131 0.080 0.130

320 0.082 0.108 0.084 0.137 0.090 0.142

�0 drawn from a prior distribution

80 0.090 0.135 0.082 0.128 0.108 0.158

160 0.076 0.118 0.078 0.131 0.074 0.126

240 0.071 0.116 0.085 0.136 0.086 0.140

320 0.066 0.114 0.086 0.138 0.091 0.146
Note. See Table 2.

Table 5. Size adjusted power

T BC frequencies Full spectrum Mean and full spectrum

5% 10% 5% 10% 5% 10%

Randomly perturb the elements of �0 by 20%

80 0.166 0.224 0.290 0.374 0.282 0.384

160 0.230 0.319 0.418 0.519 0.451 0.548

240 0.279 0.356 0.546 0.637 0.593 0.675

320 0.337 0.414 0.632 0.697 0.661 0.721

Randomly perturb the elements of �0 by 40%

80 0.288 0.360 0.593 0.689 0.637 0.730

160 0.445 0.536 0.747 0.782 0.785 0.821

240 0.556 0.660 0.791 0.831 0.835 0.874

320 0.671 0.729 0.815 0.847 0.859 0.894
Note. �0 is taken from the last column of Table 2 in An and Schorfheide (2007).



Table 6. Size adjusted power under alternative computations of the test statistics

(All eigenvalues are treated as non-zeros)

T BC frequencies Full spectrum Mean and full spectrum

5% 10% 5% 10% 5% 10%

Randomly perturb the elements of �0 by 20%

80 0.157 0.223 0.283 0.368 0.287 0.387

160 0.223 0.309 0.418 0.519 0.446 0.546

240 0.301 0.381 0.541 0.634 0.572 0.666

320 0.340 0.416 0.610 0.687 0.643 0.716

Randomly perturb the elements of �0 by 40%

80 0.293 0.365 0.607 0.698 0.625 0.729

160 0.439 0.533 0.750 0.787 0.791 0.822

240 0.571 0.664 0.780 0.822 0.817 0.859

320 0.669 0.720 0.802 0.835 0.860 0.902
Note. See Table 5.

Table 7. Size adjusted power under alternative computations of the test statistics

(The two smallest eigenvalues are set to exact zeros)

T BC frequencies Full spectrum Mean and full spectrum

5% 10% 5% 10% 5% 10%

Randomly perturb the elements of �0 by 20%

80 0.186 0.253 0.328 0.416 0.322 0.411

160 0.254 0.350 0.460 0.573 0.496 0.600

240 0.318 0.414 0.579 0.666 0.599 0.689

320 0.371 0.467 0.629 0.705 0.693 0.765

Randomly perturb the elements of �0 by 40%

80 0.328 0.413 0.658 0.737 0.670 0.752

160 0.474 0.577 0.752 0.795 0.791 0.827

240 0.612 0.712 0.803 0.837 0.829 0.875

320 0.699 0.756 0.812 0.853 0.865 0.905
Note. See Table 5.



Table 8. Andrews and Mikusheva�s (2012) tests

LMe LMo

T 5% 10% 5% 10%

(a) Size

80 0.079 0.121 0.198 0.289

160 0.070 0.113 0.138 0.211

240 0.071 0.118 0.115 0.182

320 0.069 0.114 0.098 0.162

(b) Size adjusted power

Randomly perturb the elements of �0 by 20%

80 0.329 0.413 0.305 0.376

160 0.474 0.580 0.482 0.559

240 0.642 0.726 0.577 0.668

320 0.751 0.805 0.686 0.761

Randomly perturb the elements of �0 by 40%

80 0.660 0.751 0.514 0.581

160 0.823 0.855 0.708 0.797

240 0.887 0.916 0.901 0.944

320 0.929 0.948 0.955 0.967
Note. �0 is taken from the last column of Table 2 in An and Schorfheide (2007).
The tests are computed by setting the smallest eigenvalue of the information
matrix to zero.



Table 9. Lengths of the 90% con�dence intervals

Parameter �0 Bounds BC frequencies Full spectrum Mean and full spectrum

� 2 [1e-5; 5] 4.92, [0.05, 5.00] 4.17, [0.74, 4.99] 4.10, [0.85, 5.00]

� 0:15 [0; 1] 0.63, [0.03, 0.66] 0.26, [0.08, 0.33] 0.27, [0.08, 0.34]

 1 1:5 [0; 5] 4.16, [0.84, 5.00] 4.11, [0.89, 5.00] 4.03, [0.96, 5.00]

 2 1:00 [0; 2] 2.00, [0.00, 2.00] 2.00, [0.00, 2.00] 2.00, [0.00, 2.00]

�r 0:60 [0; 0:9] 0.74, [0.11, 0.89] 0.32, [0.46, 0.78] 0.34, [0.46, 0.79]

�g 0:95 [0; 0:99] 0.44, [0.55, 0.99] 0.11, [0.88, 0.99] 0.10, [0.89, 0.99]

�z 0:65 [0; 0:99] 0.49, [0.43, 0.93] 0.25, [0.56, 0.81] 0.26, [0.57, 0.82]

100�r 0:2 [1e-5; 2] 0.34, [0.14, 0.48] 0.08, [0.17, 0.26] 0.08, [0.17, 0.25]

100�g 0:8 [1e-5; 2] 0.66, [0.66, 1.32] 0.24, [0.71, 0.94] 0.24, [0.71, 0.94]

100�z 0:45 [1e-5; 2] 0.63, [0.23, 0.87] 0.30, [0.32, 0.63] 0.31, [0.32, 0.64]

r(A) 0:4 [0; 5] 5.00, [0.00, 5.00] 5.00, [0.00, 5.00] 2.16, [0.00, 2.16]

�(A) 4:00 [0; 20] � � 2.13, [3.23, 5.32]

(Q) 0:50 [0; 5] � � 0.76, [0.00, 0.76]

Coverage � � 0.96 0.98 0.98
Note. The sample size is 240. Column 2: true parameter values. Column 3: bounds for permissible
parameter values. Columns 4 to 6: lengths of the con�dence intervals over 100 replications. In each
cell, the �rst value is the median length of the intervals. The remaining two values are the medians of
their lower and upper limits. The last row gives the frequencies that the con�dence set contains the
true parameter vector.



Table 10. Finite sample properties with Student-t innovations

T BC frequencies Full spectrum Mean and full spectrum

5% 10% 5% 10% 5% 10%

(a) Size

df = (8:2; 11:4; 7:5)

80 0.061 0.084 0.061 0.088 0.070 0.100

160 0.040 0.062 0.046 0.073 0.052 0.078

240 0.034 0.058 0.050 0.077 0.054 0.084

320 0.030 0.053 0.046 0.075 0.052 0.078

df = (5:9; 8:3; 5:5)

80 0.070 0.096 0.077 0.104 0.084 0.115

160 0.048 0.071 0.062 0.087 0.067 0.096

240 0.043 0.067 0.062 0.094 0.070 0.102

320 0.038 0.061 0.066 0.097 0.067 0.097

df = (8:1; 7:6; 5:6)

80 0.068 0.092 0.073 0.102 0.081 0.112

160 0.045 0.068 0.057 0.083 0.063 0.091

240 0.040 0.065 0.060 0.090 0.065 0.096

320 0.035 0.060 0.058 0.089 0.061 0.091

(b) Size adjusted power

df = (8:1; 7:6; 5:6); randomly perturb the elements of �0 by 20%

80 0.124 0.192 0.179 0.256 0.168 0.252

160 0.165 0.246 0.254 0.346 0.289 0.371

240 0.206 0.286 0.315 0.438 0.348 0.443

320 0.272 0.349 0.393 0.498 0.430 0.548

df = (8:1; 7:6; 5:6); randomly perturb the elements of �0 by 40%

80 0.207 0.276 0.328 0.447 0.392 0.488

160 0.331 0.415 0.554 0.629 0.598 0.662

240 0.428 0.524 0.631 0.686 0.668 0.727

320 0.520 0.600 0.652 0.707 0.693 0.745
Note. The degrees of freedom parameters are taken from Cúrdia, Del Negro and Greenwald
(2013); the other parameters are from the last column of Table 2 in An and Schorfheide (2007).



Table 11. Robustness to low frequency misspeci�cations

T (a) Structural change in (b) Smoothly varying (c) Combined changes

technology growth in�ation target

BC BC+High Full BC BC+High Full BC BC+High Full

80 0.084 0.076 0.079 0.086 0.080 0.124 0.086 0.080 0.124

5% 160 0.082 0.087 0.319 0.069 0.071 0.968 0.081 0.087 0.943

240 0.070 0.079 0.527 0.063 0.068 0.990 0.073 0.080 0.988

320 0.067 0.072 0.625 0.062 0.067 1.000 0.070 0.074 1.000

80 0.128 0.123 0.123 0.129 0.126 0.179 0.129 0.126 0.179

10% 160 0.131 0.139 0.412 0.113 0.122 0.979 0.131 0.140 0.958

240 0.119 0.132 0.615 0.108 0.122 0.993 0.122 0.135 0.992

320 0.118 0.121 0.701 0.109 0.114 1.000 0.118 0.129 1.000
Note. �0 is taken from the last column of Table 2 in An and Schorfheide (2007). BC, BC+High and
Full correspond to inference using business cycle frequencies, business cycle and higher frequencies, and
the full spectrum.



Figure 1. A graphical illustration of Assumption W(iv)
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Figure 2. Uniform confidence bands for impulse response functions

(90%, BC frequencies)
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Note. R, G and Z: shocks to monetary policy, exogenous spending and technology. Gray area: the

uniform band. Solid line: the true impulse response. Y-axis: percent. X-axis: horizon.



Figure 3. Uniform confidence bands for impulse response functions

(90%, the full spectrum)
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Note. R, G and Z: shocks to monetary policy, exogenous spending and technology. Gray area: the

uniform band. Solid line: the true impulse response. Y-axis: percent. X-axis: horizon.



Figure 4. Uniform confidence bands for impulse response functions

(90%, the mean and full spectrum)
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Note. R, G and Z: shocks to monetary policy, exogenous spending and technology. Gray area: the

uniform band. Solid line: the true impulse response. Y-axis: percent. X-axis: horizon.



Online Appendix

Proof of Lemma A.1. The proof uses similar arguments as in Dunsmuir (1979), but allowing for
weak identi�cation and selecting a subset of frequencies using W (!). It consists of two steps. Step
1 proves asymptotic normality and Step 2 veri�es that the limiting covariance matrix is an identity
matrix.
Step 1. First consider �1T . Rewrite it as

�1T =
1

2
p
T

T�1X
j=1

�T (!j)
� vec (IT (!j)� EIT (!j)) (B.1)

+
1

2
p
T

T�1X
j=1

�T (!j)
� vec (EIT (!j)� f�0(!j)) : (B.2)

The term (B.2) is asymptotically negligible. Speci�cally, EIT (!) can be expressed as EIT (!) =PT�1
s=�T+1 (1� jsj =T ) �(s) exp (�is!) with �(s) = (1=(2�))

R �
�� f�0(!) exp (is!) d!. Using the prop-

erty of the Cesaro sum and that f�0(!) belongs to the Lipschitz class of degree � with respect to !,
we have (Hannan, 1970, p. 513) sup!2[��;�] kvec (EIT (!)� f�0(!))k = O(T��). The term (B.2) is
therefore bounded by

1

2
T 1=2 sup

!2[��;�]
k�T (!)k sup

!2[��;�]
kvec (EIT (!)� f�0(!))k = O

�
T��+1=2

�
= o(1);

where the �rst equality is because �T (!) is �nite by Assumption W and the last follows because
� > 1=2. Thus, to derive the limiting distribution of �1T ; it su¢ ces to consider (B.1) only.

Let �TM (!) denote the (M � 1)-th order Cesaro sum of the Fourier series for �T (!):

�TM (!) =
M�1X

s=�M+1

�
1� jsj

M

�
�T (s) exp (�is!)

with �T (s) = 1=(2�)
R �
�� �T (!) exp (is!) d!. Then,

(B.1) =
1

2
p
T

T�1X
j=1

�TM (!j)
� vec (IT (!j)� EIT (!j)) (B.3)

+
1

2
p
T

T�1X
j=1

(�T (!j)� �TM (!j))� vec (IT (!j)� EIT (!j)) :

The second term will be asymptotically negligible if, because of conjugacy,

1

2
p
T

[T=2]X
j=1

(�T (!j)� �TM (!j))� vec (IT (!j)� EIT (!j)) = op (1) : (B.4)

Establishing this result faces some di¢ culty because �T (!) has a �nite number of discontinuities
within [0; �] due to the presence of W (!), implying �T (!j)��TM (!j) does not converge uniformly
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to zero over [0; �] (the Gibbs phenomenon). However, results in Hannan (1970, p. 506-507) imply
that �TM (!) converges uniformly to �T (!) over all closed intervals excluding the jumps. At the
jumps, the approximation errors remain bounded. Assume the jumps occur at e!k (k = 1; :::;K).
Then, for any " > 0 there exist �nite constants M > 0 and C > 0 independent of T , such that

k�TM (!)� �T (!)k �

8<: C

"

if ! 2 I1 � [Kk=1[e!k � "; e!k + "]
if ! 2 [0; �] but ! =2 I1:

Apply the above partition, (B.4) can be decomposed into

1

2
p
T

[T=2]X
j=1

1 (!j 2 I1) (�T (!j)� �TM (!j))� vec (IT (!j)� EIT (!j)) (T1)

+
1

2
p
T

[T=2]X
j=1

1 (!j =2 I1) (�T (!j)� �TM (!j))� vec (IT (!j)� EIT (!j)) (T2).

For the �rst term:

kV ar(T1)k � C2

T

[T=2]X
j=1

1 (!j 2 I1) kV ar fvec (IT (!j)� EIT (!j))gk

+
C2

T

[T=2]X
j=1

[T=2]X
h=1;h 6=j

1 (!j 2 I1) kE fvec (IT (!j)� EIT (!j)) vec (IT (!h)� EIT (!h))�gk

� C2

T

[T=2]X
j=1

1 (!j 2 I1)D +
C2

T 2

[T=2]X
j=1

[T=2]X
h=1

1 (!j 2 I1)D;

where D is some �nite constant and the second inequality follows from Theorem 11.7.1 in Brockwell
and Davis (1991), i.e., for any !j and !h in [0; �];

E fvec (IT (!j)� EIT (!j)) vec (IT (!h)� EIT (!h))�g =

8<: O(1) if h = j,

O(T�1) otherwise.

Because the length of I1 can be made arbitrarily small by choosing a small " and a large M , we
have V ar(T1) = o(1). Similar arguments can be applied to (T2):

kV ar(T2)k � T�1"2
[T=2]X
j=1

1 (!j =2 I1)D + "2T�2
[T=2]X
j=1

[T=2]X
h=1

1 (!j =2 I1)D � 2D"2;

which can again be made small by choosing a small " and a large M . Thus, V ar(T2) = o(1).
Combining the above results, we have proved (B.4).
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It remains to analyze the �rst term in (B.3). Apply the de�nition of �TM (!j):

1

2
p
T

T�1X
j=1

�TM (!j)
� vec (IT (!j)� EIT (!j))

=
1

4�

M�1X
s=�M�1

�
1� jsj

M

�
�T (s)

�
np

T vec
�
�̂(s)� E�̂(s)

�o
(T3)

+
1

4�

M�1X
s=�M�1

�
1� jsj

M

�
�T (s)

�
np

T vec
�
�̂(s� T )� E�̂(s� T )

�o
; (T4)

where the last equality uses
PT
s=1 exp (�is!j) = 0 unless s = kT (k = 0;�1; :::) and

�̂(s) =

8<: T�1
PT�s
t=1 (Yt+s � �(�0)) (Yt � �(�0))

0

�̂(�s)0
if 0 � s � T � 1

if � T + 1 � s � 0:
:

Term (T4) converges in probability to zero. This is becauseM is �nite, �T (s)
� is uniformly bounded

and
p
T vec(�̂(s�T )�E�̂(s�T ))!p 0 for each jsj < M by the de�nition of �̂(s�T ) (note that the

summation in the de�nition of �̂(s�T ) involves at most M terms). In (T3),
p
T vec(�̂(s)�E�̂(s))

satis�es a central limit theorem for each jsj � M , see Hannan (1976). Thus, (T3) converges to a
vector of normal random variables because M is �nite. Therefore, �1T has a multivariate normal
limiting distribution. For �2T ,  T is �nite because of Assumption W. Its asymptotic normality
then follows from the central limit theorem.
Step 2. For �1T it su¢ ces to examine the covariance matrix of (T3). Apply the de�nition of �T (s)
and use the relationship between the vec and the trace operator. Its l-th element can be written
as

�TM (l) =
1

8�2

M�1X
s=�M�1

�
1� jsj

M

�Z �

��
W (!)tr

n
B(l; !)

p
T (�̂(s)� E�̂(s))

o
exp (�is!) d!; (B.5)

where

B(l; !) = f�1�0 (!)

 
qX
k=1

@f�0(!)

@�k

h
QcT (�0)�

c
T (�0)

�1=2
i
kl

!
f�1�0 (!)

with [:]kl denoting the (k; l)-th element of the matrix inside the bracket. Because B(l; !) is an
nY -by-nY matrix, (B.5) can be further rewritten as

�TM (l) =
1

8�2

M�1X
s=�M�1

�
1� jsj

M

�Z �

��
W (!)

8<:
nYX
a;b=1

Bba(l; !)
p
T
�
�̂ab(s)� E�̂ab(s)

�9=; exp (�is!) d!;
where Bba(l; !) is the (b,a)-th element of the corresponding matrix. Therefore,

Cov(�TM (l); �TM (k))

=
1

64�4

nYX
a;b;c;d=1

Z �

��

Z �

��
W (r)Bba(l; r)W (�)Bdc(k; �)

�
M�1X

s;h=�M+1

�
1� jsj

M

��
1� jhj

M

�
�E

n
T
�
�̂ab(s)� E�̂ab(s)

��
�̂cd(h)� E�̂cd(h)

�o
exp (�isr) dr exp (ih�) d� (B.6)
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The only random elements in (B.6) are the sample autocovariances, which satisfy (see eq. (3) in
p.397 in Hannan, 1976)

E
n
T
�
�̂ab(s)� E�̂ab(s)

��
�̂cd(h)� E�̂cd(h)

�o
! 2�

Z �

��
fac(!)fbd (!) exp (�i(h� s)!) d! (T5)

+2�

Z �

��
fad(!)fbc (!) exp (i(s+ h)!) d!; (T6)

where fac(!) stands for the (a,c)-th element of f�0 (!). Applying (T5) to (B.6) leads to

1

8�

Z �

��

qX
a;b;c;d=1

fac(!)fbd (!)

 Z �

��
W (r)Bba(l; r)

(
1

2�

M�1X
s=�M+1

�
1� jsj

M

�
exp (�is(r � !))

)
dr

!

�
 Z �

��
W (�)Bdc(k; �)

�

(
1

2�

M�1X
h=�M+1

�
1� jhj

M

�
exp (�ih(! � �))

)
d�

!
d!:

The two terms inside the two curly brackets are Fejér�s kernels. Therefore,Z �

��
W (r)Bba(l; r)

(
1

2�

M�1X
s=�M+1

�
1� jsj

M

�
exp (�is(r � !))

)
dr ! W (!)Bba(l; !);

Z �

��
W (�)Bdc(k; �)

�

(
1

2�

M�1X
h=�M+1

�
1� jhj

M

�
exp (�ih(! � �))

)
d� ! W (!)Bdc(k; !)

�

uniformly over all closed intervals excluding the jumps. At the jumps, the approximation error is
�nite, therefore it does not interfere with the limiting results. The e¤ect of (T6) can be analyzed
similarly. Combining the two results, we have

Cov(�TM (l)�TM (k))

! 1

8�

Z �

��

nYX
a;b;c;d=1

W (!)
n
fac(!)fbd (!)Bba(l; !)Bdc(k; !)

� + fad(!)fbc (!)Bba(l; !)Bdc(k;�!)�
o
d!

=
1

4�

Z �

��
W (!)tr ff�0(!)B(k; !)f�0(!)B(l; !)g d!

=
1

2T

T�1X
j=1

W (!j) vec (B(l; !j))
� �f�0(!j)0 
 f�0(!j)� vec (B(k; !j)) + o(1);

where the �rst equality usesBdc(k; !)� = Bcd(k; !); fbd (!) = fdb (!) ; fbc (!) = fcb (!) ; Bdc(k;�!)� =
Bdc(k; !) and the last equality follows because the summand belongs to Lip(�) with � > 1=2. In
matrix notation, the above result can be stated as

V ar (�1T )

= �cT (�0)
�1=2QcT (�0)

0

�

8<: 1

2T

T�1X
j=0

W (!j)

�
@ vec f�0(!j)

@�0

��
(f�1�0 (!j)

0 
 f�1�0 (!j))
@ vec f�0(!j)

@�0

9=;QcT (�0)�
c
T (�0)

�1=2 + o(1):
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Now consider �2T . It is asymptotically independent of �1T , satisfying

V ar (�2T )!
1

2�
�cT (�0)

�1=2QcT (�0)
0
�
W (0)

@�(�0)
0

@�
f�1�0 (0)

@�(�0)

@�0

�
QcT (�0)�

c
T (�0)

�1=2:

Therefore, V ar (�1T + �2T ) = �
c
T (�0)

�1=2QcT (�0)
0MT (�0)Q

c
T (�0)�

c
T (�0)

�1=2+ o(1)! Iq1+q2 , where
the last equality uses the de�nition of QcT (�0) and �

c
T (�0). �

Additional Proof. This proof shows that the con�dence band covers the impulse response func-
tion with probability at least (1� �) asymptotically. Let C� (1� �) denote the (1� �) con�dence
set for � obtained by inverting ST (�) and CIR the con�dence band for the impulse response func-
tion obtained from Steps 1 to 3. By construction, if �0 2 C� (1� �), then IR (�0) 2 CIR. Thus, if
IR (�0) =2 CIR, then �0 =2 C� (1� �). Equivalently, Pr (IR (�0) =2 CIR) � Pr (�0 =2 C� (1� �)). As
T !1, Pr (�0 =2 C� (1� �))! �. Therefore, lim T!1 Pr (IR (�0) =2 CIR) � �. �

Eigenvalue conditions corresponding to other characterizations of weak identi�cation
We illustrate that the characterizing conditions for weak identi�cation used in the IV and GMM
literature can be stated using the curvatures of the criterion functions used for inference as in
Assumption W.

Linear IV (Staiger and Stock, 1997): Consider the model y = Y � + u; Y = Z� + v, where y
and Y are T � 1 vectors, Z is a T � K matrix of instruments and u and v are T � 1 vectors of
disturbances with Euu0 = �2uIT . The objective function is Q (�) = (y � Y �)

0 PZ (y � Y �). Its �rst
order derivative, normalized by T�1=2, equals

DT (�0) = �2T�1=2u0Z�� 2T�1=2
�
u0Z
� �
Z 0Z

��1 �
Z 0v
�
:

If �0 is strongly identi�ed, i.e., � is nonzero and independent of T , then the �rst term in DT (�0)
is of exact order Op(1) and the second is Op

�
T�1=2

�
. Therefore,

lim
T!1

E
�
DT (�0)DT (�0)

0� = lim
T!1

4T�1E
�
�0Z 0Z�

�
�2u;

consistent with the order of �1T (�0) in Assumption W. If �0 is weakly identi�ed, i.e., � = T�1=2C,
then DT (�0) is of exact order Op

�
T�1=2

�
. Therefore the eigenvalue of E(DT (�0)DT (�0)

0) is of
order O(T�1), consistent with the order of �2T (�0) in Assumption W.

Weak identi�cation in a CU-GMM setting (Kleibergen, 2005): Consider inference based on the
moment restriction E�t (�0) = 0 with �0 2 Rm. Without loss of generality, assume �t (�0) is serially
uncorrelated. Let fT (�) = T�1=2

PT
t=1 �t (�). Then the CU-GMM criterion function is given by

QT (�) = fT (�)
0 V̂ff (�)

�1 fT (�), where V̂ff (�)!p Vff (�)=limT!1Var(fT (�)). De�ne

@fT (�0)

@�0
= qT (�0) = (q1;T (�0) ; :::; qm;T (�0)) :
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Kleibergen (2005) characterized the strength of identi�cation using the order of EqT (�0). Under
strong identi�cation, T�1=2EqT (�0) has a �xed full rank value while under weak identi�cation
T�1=2EqT (�0) = T�1=2C. We have

DT (�0)
0 = 2T�1=2fT (�0)

0 V̂ff (�0)
�1
�
R̂T (�0)� EqT (�0)

�
(a)

+2T�1=2fT (�0)
0 V̂ff (�0)

�1 EqT (�0) ; (b)

where the j-th column of R̂T (�0) equals qj;T (�0)�V̂�f;j (�0) V̂ff (�0)�1 fT (�0), i.e., the residual from
projecting qj;T (�0) onto fT (�0); V̂�f;j (�0) is the sample covariance between fT (�0) and qj;T (�0).
Thus

E
�
DT (�0)DT (�0)

0� = E(a0a) + E(b0b) + E(a0b) + E(b0a):
The �rst term E(a0a) is of order O

�
T�1

�
irrespective of the strength of identi�cation. The second

term E(b0b) is of exact order O(1) under strong and O(T�1) under weak identi�cation, respectively.
The order of E(b0b) + E(a0b) is always lower than that of E(b0b). Therefore, the eigenvalues of
E(DT (�0)DT (�0)0) are O(1) under strong identi�cation and O(T�1) under weak identi�cation,
consistent with Assumption W in the paper.

Weak identi�cation under a GMM setting (Stock and Wright, 2000): Consider the same setup
as in the CU-GMM case, but with inference based on the following GMM criterion function

QT (�) = fT (�)
0WT fT (�) ;

where WT is some consistent estimate of the optimal weighting matrix that is, without loss of
generality, assumed to be non-random. Then,

DT (�0)
0 = 2T�1=2fT (�0)

0WT

�
qT (�0)� R̂T (�0)

�
(c)

+2T�1=2fT (�0)
0WT

�
R̂T (�0)� EqT (�0)

�
(d)

+2T�1=2fT (�0)
0WTEqT (�0) : (e)

Simple algebra shows that the leading term in E(DT (�0)DT (�0)0) is

E(c0c) + E(c0e) + E(e0c) + E(d0d) + E(e0e):

The �rst four terms are always of order O(T�1) irrespective of the strength of identi�cation. The
last term converges to a positive de�nite matrix under strong identi�cation. Therefore, all the
eigenvalues of E(DT (�0)DT (�0)0) are of order O(1) under strong identi�cation.

Under weak identi�cation, Stock and Wright (2000) assumed that � admits a partition: � =�
�0; �0

�0, such that � is weakly identi�ed while � is strongly identi�ed. Speci�cally, let mT (�; �) =

EfT (�; �) and write mT (�; �) = mT (�0; �0) + T�1=2m1T (�; �) + m2T (�) with m1T (�; �) =

T 1=2 (mT (�; �)�mT (�0; �)) and m2T (�) = mT (�0; �) �mT (�0; �0). Stock and Wright (2000)
assumed (c.f. Assumption C in their paper)

m1T (�; �)! m1 (�; �) and m2T (�)! m2 (�) :
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Let CT =Diag(T 1=2Idim(�); Idim(�)), then

CTE(e0e)CT
= 4T�1CTEqT (�0)0WTE

�
fT (�0) fT (�0)

0�WTEqT (�0)CT
= 4T�1CTEqT (�0)0 (WTVff (�0)WT )EqT (�0)CT

! 4
h
@m1(�0;�0)

@�0
@m2(�0)
@�0

i0
V �1ff (�0)

h
@m1(�0;�0)

@�0
@m2(�0)
@�0

i
:

The limit is a positive de�nite matrix. Therefore, in large samples, E(e0e) has dim(�) eigenvalues
that are O(1) and dim(�) eigenvalues of order O(T�1). So is E(DT (�0)DT (�0)0):

Weak identi�cation in a two-equation model
The model consists of two equations:

rt = yt + ��t + ut;

�t = ��t�1 + vt;

with var (ut) = �2u; var (vt) = �2v, cov(ut; vt) = �uv and Eutus = Evtvs = Eutvs = 0 for all t 6= s.
The �rst equation is a monetary policy rule (Taylor, 1993) with yt and �t being deviations of GDP
and in�ation from their targets and the second equation describes the in�ation dynamics. The
parameter of interest is �. To simplify the derivation, we assume �,  and �2v, are known. The
unknown parameter vector is therefore � = (�; �2u; �uv).

Rewrite the model as

ert = ��t + ut; (B.7)

�t = ��t�1 + vt

with ert = rt � yt. It can then be viewed as a dynamic version of the limited information simulta-
neous equation model, in which �t is the endogenous explanatory and �t�1 is the instrument. The
parameter � is weakly identi�ed if � is small. Intuitively, because there is little persistence in �t, it
is di¢ cult to di¤erentiate between systematic policy responses (��t) and random disturbances (ut).
Geometrically, it is possible to move � along a certain direction such that the likelihood surface
changes little. In the extreme case with � = 0, � becomes unidenti�ed. Then, there exists a path
along which the likelihood is completely �at (It turns out changing � in the direction given by
(1;�2�uv;��2v) yields such a non-identi�cation curve).

We let � = T�1=2c with c > 0; other parameter values are independent of T . Let W (!) = 1 for
all ! 2 [��; �].

Lemma B.1 Let �0 denote the true value of � = (�; �2u; �uv), then MT (�0) satis�es:

1. It has two positive eigenvalues �1T and �2T satisfying T�1T !1 and T�2T !1.

2. The smallest eigenvalue �3T satis�es

T�3T !
16�2�4vc

2

(1 + �4v + 4�
2
uv) (�

2
v�
2
u � �2uv)

:
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3. The elements of
@ vec f�0(!)

@�0
QT (�0)�T (�0)

�1=2

are bounded and Lipschitz continuous in !.

Note that Lemma B.1.1 corresponds to Assumption W(i), while B.1.2 corresponds to W(ii).
B.1.3 is a stronger result than W(iv).
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