
Supplementary Appendix: Additional Results and Proofs

This appendix is structured as follows. Section S.1 includes additional theoretical results on

local identi�cation. Section S.2 considers Non-Gaussianity. Section S.3 illustrates the applicability

of the methods to other vector linear processes using the (factor augmented) VARMA model as an

example. Section S.4 contains additional results related to the An and Schorfheide (2007) model.

Section S.5 applies the methods to the Lubik and Schorfheide (2004) model. Section S.6 contains

the equations of the Smets and Wouters (2007) model and additional empirical results. Section S.7

contains additional proofs related to results in the main paper: proof of Theorem 1, followed by

two ancillary lemmas that are needed for proving Corollaries 5 and 6. Section S.8 contains proofs

of the results in this appendix. Some tables with parameter values, KL and empirical distances are

included at the very end.
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S.1 Additional conditions for local identi�cation

The next two results generalize Corollaries 1 and 2 in Qu and Tkachenko (2012) to provide iden-
ti�cation conditions based on the mean and the spectrum and a subset of frequencies. Let �(�)
denote the mean of Yt(�). Let W (!) be an indicator function symmetric about zero to select the
desired frequencies used for the identi�cation.

De�nition S.1 The parameter vector �0 is said to be locally identi�able from the �rst and second
order properties of fYtg at a point �0 if there exists an open neighborhood of �0 in which �(�1) =
�(�0) and f�1(!) = f�0(!) for all ! 2 [��; �] implies �1 = �0.

Corollary S.1 Assume �(�) is continuously di¤erentiable over an open neighborhood of �0. Let
Assumptions 1, 2 and 3 hold, but with G(�) in Assumption 3 replaced by

�G(�) =

Z �

��

�
@ vec f�(!)

@�0

���@ vec f�(!)
@�0

�
d! +

@�(�)0

@�

@�(�)

@�0
:

Then, � is locally identi�able from the �rst and second order properties of fYtg at a point �0 if and
only if �G(�0) is nonsingular.

Corollary S.2 Let Assumptions 1-3 hold, but with G(�) in Assumption 3 replaced by

GW (�) =

Z �

��
W (!)

�
@ vec f�(!)

@�0

���@ vec f�(!)
@�0

�
d!:

Then, � is locally identi�able at �0 from the second order properties of fYtg through the frequencies
speci�ed by W (!) if and only if GW (�0) is nonsingular.

We now consider the identi�cation of �D without making statements about that of �U . In-
tuitively, if �D is locally identi�able, then it is potentially possible to determine the parameters
describing technology and preferences, even though those governing the equilibrium beliefs may be
unidenti�able.

De�nition S.2 The structural parameter vector �D is said to be locally partially identi�able from
the second order properties of fYtg at �0 if there exists an open neighborhood of �0 in which f�1(!) =
f�0(!) for all ! 2 [��; �] necessarily implies �D1 = �D0 .

2

Corollary S.3 Under Assumptions 1-3, �D is locally partially identi�able from the second order
properties of fYtg at �0 if and only if G(�0) and

Ga(�0) =

24 G(�0)

@�D0 =@�
0

35
have the same rank.

2Note that, as in Rothenberg (1971, footnote p.586), the de�nition does not exclude there being two points
satisfying f�1(!) = f�0(!) and having the �

D arbitrarily close in the sense of


�D0 � �D1 

 = k�0 � �1k being arbitrarily

small.
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This result generalizes the �rst result of Corollary 3 in Qu and Tkachenko (2012). It can also
be used to check the local identi�cation of a further subset of �D without making statements about
the rest of �, simply by replacing �D0 with the corresponding parameter subset of interest.

Next, we consider the identi�cation of �D conditional on �U = �U0 . Intuitively, if �
D is locally

conditionally identi�able, then it is potentially possible to pin down the parameters describing
technology and preferences once we select a mechanism for equilibrium belief formation.

De�nition S.3 The structural parameter vector �D is said to be locally conditionally identi�able
from the second order properties of fYtg at � = �0 if there exists an open neighborhood of �D0 in
which f(�D1 ;�U0 )(!) = f(�D0 ;�U0 )

(!) for all ! 2 [��; �] necessarily implies �D1 = �D0 .

Corollary S.4 Under Assumptions 1-3, �D is locally conditionally identi�able from the second
order properties of fYtg at �0 if and only if

GD(�0) =

Z �

��

�
@ vec f�0(!)

@�D0

���@ vec f�0(!)
@�D0

�
d!

is nonsingular.

This result generalizes the �rst result of Corollary 4 in Qu and Tkachenko (2012). It can also be
used to check the local identi�cation of a further subset of �D conditioning on the rest of �, simply
by replacing �D with the corresponding parameter subset of interest. The above result follows
immediately from Theorem 1. Therefore, the proof is omitted. The above two results can also be
applied with both mean and spectrum and with a subset of frequencies selected by W (!):

In practice, these results can be applied sequentially. First, Theorem 1 can be applied to check
identi�cation based on the full spectrum. If the parameters are identi�ed, then Corollary S.2 can be
used to verify whether a subset of frequencies is su¢ cient for the identi�cation. If the identi�cation
fails, then Corollary S.1 can signify whether the information from the steady state can improve the
identi�cation. In addition, Corollaries S.3 and S.4 can be used to �nd out which parameters are
responsible for the lack of identi�cation. One can refer to Sections 3.1 and 3.2 in Qu and Tkachenko
(2012) for details on how such a procedure is carried out to pinpoint an identi�cation failure due to
the parameters in the Taylor rule equation. Because of the developments here, the same procedure
can now be carried out under indeterminacy.

S.2 Non-Gaussianity

When the condition cum (e"ta;e"sb;e"uc;e"vd) = 0 is relaxed, the variances in Theorem 3 will depend
on the joint fourth cumulant of the shocks. Also, using only the second order properties no longer
re�ects the highest distinguishing power possible. Below we analyze two situations.

Suppose we still intend to compare the models�second order properties. This can be the case
if the benchmark model is Gaussian, which performs well in matching the data�s second order
properties, and we wish to see whether such a feature is largely preserved by the non-Gaussian
structure. Then, the measure pfh(�0; �0; �; T ) can still be used, but the asymptotic variances
Vfh(�0; �0) and Vhf (�0; �0) will need to be modi�ed, whose formulas are given below.
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Corollary S.5 Let Assumptions 1, 2, 4 and 5 hold for both f�(!) and h�(!), but with the cumulant
condition in Assumption 5 replaced by cum (e"ta;e"sb;e"uc;e"vd) equal to �abcd if t = s = u = v and 0
otherwise. Then, the results in Theorem 3 still hold after rede�ning Vfh(�0; �0) and Vhf (�0; �0) as

Vfh(�0; �0) =
1

4�

Z �

��
tr
nh
I � f�0(!)h�1�0 (!)

i h
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where Mfh(�0; �0) equals

1
64�4

dim(e"t)P
a;b;c;d=1

�abcd

hR �
��H

�(!)(f�1�0 (!)� h
�1
�0
(!))H(!)d!

i
ab

hR �
��H

�(!)(f�1�0 (!)� h
�1
�0
(!))H(!)d!

i
cd
:

In the above [:]ab denotes the (a,b)-th element of the matrix, �abcd denotes the joint cumulant in
the null model, H(!) equals H(exp(�i!); �0) in (3), and H�(!) is its conjugate transpose. The
term Mhf (�0; �0) satis�es the same expression, but with �abcd now denoting the joint cumulant in
the alternative model and H(!) determined by the lag polynomial operator in h�0(!):

Now, suppose we wish to go beyond the second order properties. Then, the power of the resulting
likelihood ratio test will in general need to be computed with simulations. One possible procedure is
as follows. Let Lf (�0) and Lh(�0) denote the possibly non-Gaussian log likelihoods associated with
the benchmark structure f and the alternative structure h. First, generate time series of length T
under the structure f and repeat to obtain the empirical distribution of Lh(�0)�Lf (�0). Find the
critical value corresponding to its 100(1 � �)th percentile. Next, generate time series of length T
under the structure h and again obtain the empirical distribution. Finally, locate the percentile of
the latter distribution that corresponds to the critical value. One minus this percentile gives the
power of the test, or the empirical distance measure incorporating the higher order properties.

The simulation aspect prevents the comparison between a large number of models. Nevertheless,
one practical implementation can be as follows. Suppose the benchmark structure is Gaussian, and
we are interested in models that are close to it in second order properties but di¤er in higher orders.
Then, we can �rst use KLfh(�0; �) and pfh(�0; �; �; T ) to narrow down the set of alternative models
to compare with. For example, if the alternative models have Student-t innovations, this involves
narrowing down the degrees of freedom parameter to make the second order properties close to the
Gaussian model. If the remaining models form a relatively small set, simulation based comparisons
can then be carried out. This implementation re�ects that, in practice, a researcher is rarely
interested only in a model�s high order properties, but rather whether they o¤er improvements.
Therefore, being able to permit both analyses can be viewed as desirable.

S.3 Application to (factor augmented) VARMA models

This section illustrates the applicability of the results to other vector linear processes. Consider

A(L)Yt = �(L)ft +B(L)"t;

ft = �(L)ft�1 + �t;
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where Yt is an nY -by-1 vector of observables, ft contains the latent factors, "t and �t are two
sequences of serially uncorrelated structural shocks satisfying V ar ("t) = �; V ar (�t) = I and
E"t�

0
s = 0 for all t and s. A(L); B(L); �(L) and �(L) are �nite order matrix lag polynomials. If

�(L) = 0; then the model reduces to a VARMA model. If B(L) = I; it becomes a factor augmented
VAR. If �(L) = 0 and B(L) = I, then it is simply a structural VAR.

Assume all the roots of jA(z)j = 0 lie outside of the unit circle. Let � denote the vector of the
structural parameters in the model. Then, Yt has the following vector moving average representation

Yt = H1(L; �)"t +H2(L; �)�t; (S.1)

where
H1(L; �) = A(L)�1B(L), H2(L; �) = A(L)�1�(L)[I � �(L)L]�1:

Its spectral density equals

f�(!) =
1

2�
H1(exp(�i!); �)�H1(exp(�i!); �)� +

1

2�
H2(exp(�i!); �)H2(exp(�i!); �)�:

Some of the identi�cation restrictions, such as the diagonality of � or factor loading restrictions
on elements of �(L) can be directly incorporated, while other forms of restrictions, such as the
long run restrictions, can be written as constraints on �. Let  (�) = 0 be the collection of such
constraints one wishes to impose. Theorem 2 can then be used for checking global identi�cation.
There, global identi�cation at �0 holds if and only if

KL(�0; �1) > 0

for all �1 2 � with �1 6= �0 satisfying  (�1) = 0. The procedures in Section 5 are also applicable.
For example, we can contrast models with and without factor augmentations, models with di¤erent
identi�cation restrictions, or comparing a (factor augmented) VARMA with a DSGE model.

S.4 An and Schorfheide (2007)

S.4.1 A contrast between determinacy and indeterminacy

We draw parameter values from the posterior distribution in Table 1 and check the local identi-
�cation at each point. The following parameter bounds are used: � 2 [0:01; 10], � 2 [0:9; 0:999],
� 2 [0:01; 5],  1 2 [0:01; 0:9],  2 2 [0:01; 5], �r 2 [0:1; 0:99], �g 2 [0:1; 0:99], �z 2 [0:1; 0:99], �r 2
[0:01; 3], �g 2 [0:01; 3], �z 2 [0:01; 3], Mr� 2 [�3; 3], Mg� 2 [�3; 3], Mz� 2 [�3; 3], �� 2 [0:001; 3].
Out of the 4000 draws, the smallest eigenvalues are consistently above the tolerance levels (i.e., im-
plying the parameters are locally identi�ed), except for two cases. The two cases involve �r equal
to 0.983 and 0.987, which are close to the boundary value of 0:99. Further, for these two points,
the absolute and relative deviation measures increase noticeably along the curves, all exceeding
E-02 when k� � �0k reaches 0:050 and 0:709 respectively. For these values the empirical distance
measures for T=1000 equal 0.0524 and 0.0625. This suggests that the model is in fact identi�ed at
these two parameter values.

S-5



We also draw parameter values under determinacy from the posterior distribution in Table 1
and apply Theorem 1 to each point. The same parameter bounds are used, except  1 2 [1:1; 5]
and the elements in �U are no longer present. Out of the 4000 draws, there are 3998 cases with
the smallest eigenvalue below the default tolerance level (i.e., signaling identi�cation failure). Even
in the remaining two cases, the eigenvalues are very small, both being of order E-10, and barely
exceed the tolerance levels. Also, in both cases, the values of the two measures along the curves
(20) remain negligible, the largest still being of order E-05 after



�D � �D0 

 reaches 1. This shows
that the two parameter values are also locally unidenti�ed. In addition, in all cases considered, the
lack of identi�cation is caused by the four parameters in the Taylor rule.

S.4.2 Simulations

The empirical distance measures are derived using asymptotic arguments. It is important to examine
whether they closely track the power in �nite samples. To this end, we simulate the distribution of
the exact time domain test (16) under the null hypothesis, obtain the 5% critical value, and then
compare it with the simulated distribution under the alternative hypothesis to obtain the rejection
frequency. The number of replications is set to 5E5 in both simulations.

The exact powers corresponding to the nine columns of Table 2 are as follows. They are
uniformly close to the empirical distances reported in Table 3. Speci�cally, the nine sets of values
are (in the same order as the columns of Table 3): (0.0516, 0.0524, 0.0520, 0.0534); (0.0555, 0.0582,
0.0589, 0.0713); (0.0630, 0.0683, 0.0701, 0.1046); (0.0545, 0.0552, 0.0574, 0.0662); (0.0694, 0.0763,
0.0831, 0.1417); (0.0797, 0.0912, 0.0989, 0.2028); (0.0600, 0.0653, 0.0677, 0.0956); (0.0839, 0.0994,
0.1083, 0.2343); (0.1151, 0.1502, 0.1710, 0.4644).

Regarding computation, it takes approximately 24 hours to obtain one set of values on a Xeon
E5-2665 8-core 2.4Ghz processor, as opposed to about one minute to obtain a column of Table 3
using the asymptotic approximation. We will revisit the same issue when analyzing the Smets and
Wouters (2007) model.

S.4.3 Asymmetry

We compute the KL and the empirical distance measure using the values in Table 2 but with
the roles of �0 and �1 switched. The resulting values are all fairly close to those reported in
Table 3. This further implies that the extent of asymmetry is fairly small. Speci�cally, the val-
ues corresponding to the nine columns in Table 3 are (KL followed by the four empirical dis-
tances in each case): (5.19E-07, 0.0509, 0.0513, 0.0515, 0.0534); (1.57E-05, 0.0554, 0.0575, 0.0588,
0.0711); (7.56E-05, 0.0627, 0.0678, 0.0709, 0.1048); (1.04E-05, 0.0545, 0.0562, 0.0572, 0.0669);
(1.64E-04, 0.0703, 0.0786, 0.0838, 0.1436); (3.33E-04, 0.0804, 0.0939, 0.1023, 0.2063); (5.53E-
05, 0.0601, 0.0644, 0.0669, 0.0942); (4.26E-04, 0.0816, 0.0971, 0.1068, 0.2304); (1.22E-03, 0.1135,
0.1479, 0.1704, 0.4633).

We also carry out the same analysis using the parameter values in Table 4. The �nding is
very similar. Speci�cally, the KL and empirical distances corresponding to the four columns in
Table 5 are: (3.46E-14, 0.0500, 0.0500, 0.0500, 0.0500); (4.49E-14, 0.0500, 0.0500, 0.0500, 0.0500);
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(1.94E-05, 0.0560, 0.0584, 0.0598, 0.0738); (6.00E-05, 0.0605, 0.0650, 0.0677, 0.0965).
The above results imply that if we treated �1 as the benchmark and �0 as the alternative model,

the conclusions regarding (near) observational equivalence would remain the same.

S.4.4 Further illustrations of the empirical distance measure

This subsection further illustrates the informativeness of the empirical distance measure by consid-
ering a range of models di¤erent from the original An and Schorfheide (2007) model. Throughout
the analysis, the original model is regarded as the default speci�cation and the signi�cance level
for the empirical distance measure is set to 0.05.

First, consider a situation where the alternative model is known to be di¢ cult to distinguish from
the default model even with a large sample size. Speci�cally, we take a parameter vector from the
nonidenti�cation curve computed previously for �D0 in Subsection 8.1.1, such that



�D � �D0 

 = 1,
but truncate the values of the non-identi�ed parameters ( 1;  2; �r; �r) to leave 2 decimal places:
(2:06; 1:23; 0:68; 0:24). As expected, the KL criterion is small (1.04E-04), and the value of the
empirical distances equal 0.0662, 0.0725, 0.0763 and 0.1193 for T=80, 150, 200 and 1000. This
exercise is interesting as it illustrates the magnitude of the empirical distance measure that one
could expect when the models are nearly observationally equivalent.

Second, consider the case where all of the parameter values in �D are the same as in �D0 except for
the discount factor �, which is now lowered to 0.9852, implying a change in the discount rate from
2% to 6% on an annual basis. The KL criterion equals 1.25E-05. The empirical distance measure
equals 0.0535, 0.0553, 0.0564 and 0.0671 for the four sample sizes. These values are similar to those
in the previous paragraph. This con�rms the empirical fact that it is hard to estimate � to any
precision using the dynamic properties of aggregate data on consumption and interest rates.

Third, consider changing the Taylor rule weight  2 in �
D
0 to 1.23 while keeping all other pa-

rameters �xed at their original values. The KL criterion equals 0.0579. The empirical distance
measure equals 0.8295, 0.9883, 0.9987, 1.0000 for the four sample sizes. This suggests that it is
quite feasible to di¤erentiate between the two models with commonly used sample sizes. This also
provides a sharp contrast with the �rst situation. There,  1 and  2 were simultaneously changed
to more distant values, but resulted in near observational equivalence.

S.4.5 Global identi�cation from business cycle frequencies

First, we re-compute the empirical distance measures using only business cycle frequencies (i.e.,
with periods between 6 and 32 quarters). The values associated with the 9 parameter vectors in
Table 2 are all above 0.0500 and increasing with the sample size. This shows that there is no obser-
vational equivalence over business cycle frequencies. Meanwhile, the feasibility of distinguishing the
9 values from �0 clearly deteriorates. The empirical distances equal (compared with the rows of Ta-
ble 3): for T=80: 0:0505; 0:0523; 0:0547; 0:0531; 0:0635; 0:0702; 0:0595; 0:0696; 0:1034; for T=1000:
0:0517; 0:0592; 0:0720; 0:0621; 0:1127; 0:1518; 0:0811; 0:1345; 0:3015. Also, the distances between the
output gap and growth rules are (compared with the last two columns of Table 5) 0:0540 and
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0:0568 for T=80, and 0:0651 and 0:0753 for T=1000. Therefore, these rules are even closer to being
observationally equivalent when only considering their implications at business cycle frequencies.

Next, we minimize the KL criterion using only business cycle frequencies and obtain the em-
pirical distances. We �nd, interestingly, that the resulting parameter values are very similar to
those obtained using the full spectrum. For illustration, the counterpart to the case c=0.1 in
Table 2 equals: (2:41; 0:994; 0:49; 0:62; 0:27; 0:87; 0:66; 0:61; 0:27; 0:58; 0:62; 0:52;�0:06; 0:26; 0:18)0.
The patterns of parameter changes in the rest of the cases are also similar to those in Table 2.
Because of the closeness in parameter values, the resulting empirical distance measures are only
slightly below those in the previous paragraph. The details are omitted.

S.5 Lubik and Schorfheide (2004)

The log linearized model is

yt = Etyt+1 � �(rt � Et�t+1) + gt;
�t = �Et�t+1 + �(yt � zt);
rt = �rrt�1 + (1� �r) 1�t + (1� �r) 2(yt � zt) + "rt;
gt = �ggt�1 + "gt;

zt = �zzt�1 + "zt;

where yt denotes output, �t is in�ation, rt is the nominal interest rate, gt is government spending
and zt captures exogenous shifts of the marginal costs of production. The shocks satisfy "rt �
N(0; �2r), "gt � N(0; �2g) and "zt � N(0; �2z). Among the three shocks, "gt and "zt are allowed to
be correlated with correlation coe¢ cient �gz. The structural parameters are

�D = (� ; �; �;  1;  2; �r; �g; �z; �r; �g; �z; �gz)
0:

The state vector is St = (�t; yt; rt; gt; zt; Et�t+1; Etyt+1)0 and the observables are rt; yt and �t.
Lubik and Schorfheide (2004) applied the following transformation to the model�s solutions

to ensure the impulse responses are continuous at the boundary between the determinacy and
indeterminacy regions: St = �1St�1 + e�""t + ���t with e�" = �" + ��(�

0
���)

�1�0�(�
b
" � �"),

where �1, �� and �" are given in this paper�s Appendix A and �b" is the counterpart of �" with
 1 replaced by e 1 = 1 � (� 2=�) (1=� � 1). We apply the same transformation in order to be
consistent with their analysis. Finally, the sunspot shock �t and the sunspot parameter �U are
speci�ed in the same way as with the An and Schorfheide (2007) model.

S.5.1 Comparing determinacy and indeterminacy

First, consider local identi�cation at the posterior mean reported in Lubik and Schorfheide (2004,
Column 1 in Table 3):

�0 = (0:69; 0:997; 0:77; 0:77; 0:17; 0:60; 0:68; 0:82; 0:23; 0:27; 1:13; 0:14| {z }
�D

;�0:68; 1:74;�0:69; 0:20| {z }
�U

)0:
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The smallest eigenvalue of G(�0) equals 6.2E-04, well above the default tolerance level of 1.9E-09.
The absolute and relative deviation measures along the curve (20) corresponding to the smallest
eigenvalue exceed E-03 after k� � �0k reaches 0.085. The empirical distance corresponding to this
value for T=1000 equals 0.0585. This further con�rms that the parameter vector is locally identi�ed
at �0.

Next, we draw parameter values from the posterior distribution. The following parameter
bounds are imposed: � 2 [0:1; 1], � 2 [0:9; 0:999], � 2 [0:01; 5],  1 2 [0:01; 0:9],  2 2 [0:01; 5],
�r 2 [0:1; 0:99], �g 2 [0:1; 0:99], �z 2 [0:1; 0:99], �r 2 [0:01; 3], �g 2 [0:01; 3], �z 2 [0:01; 3],
�gz 2 [�0:9; 0:9], Mr� 2 [�3; 3], Mg� 2 [�3; 3], Mz� 2 [�3; 3], �� 2 [0:01; 3]. Out of 4000 draws,
the smallest eigenvalues are above the default tolerance level for 3996 cases. For the remaining 4
cases, the deviation measures increase noticeably along the curve (20), with absolute deviations
exceeding E-03 after k� � �0k reaches 0.08, and relative absolute deviations reaching 1E-03 when
k� � �0k reaches 0.45. The results indicate that these 4 points are also locally identi�ed. Therefore,
the local identi�cation property is not con�ned to the posterior mean, but rather is a generic feature.

Then, consider local identi�cation properties under determinacy. The smallest eigenvalue of
G(�D0 ) equals 2.5E-06 at the following posterior mean reported in Lubik and Schorfheide (2004,
Table 3):

�D0 = (0:54; 0:992; 0:58; 2:19; 0:30; 0:84; 0:83; 0:85; 0:18; 0:18; 0:64; 0:36)
0:

The Matlab default tolerance level equals 1.1E-11. The largest absolute and relative deviations
along the curve exceed E-03 when k� � �0k reaches 1. The corresponding empirical distance for
T=1000 equals 0.0818. Thus, � is locally identi�ed at �0. We also take random draws from
the posterior distribution of Lubik and Schorfheide (2004). Theorem 1 is then applied to all the
resulting values. Out of 4000 draws, 3997 cases have their smallest eigenvalues above the default
tolerance level. For the remaining 3 cases, the corresponding eigenvectors point consistently to the
weak identi�cation of �. After �xing its value, the eigenvalues become clearly above the tolerance
level. Therefore, like in the indeterminacy case discussed above, the local identi�cation property of
�D is again a generic feature.

In summary, Taylor rule parameters are locally identi�ed in this model but not in that of An
and Schorfheide (2007). These results provide strong evidence that parameter identi�cation is
a system property. The identi�cation conclusions reached from discussing a particular equation
without referring to its background system are often, at best, fragile.

S.5.2 Global identi�cation

This subsection considers global identi�cation at �0 (indeterminacy) and �D0 (determinacy).
Under indeterminacy, the parameters minimizing the KL criterion for c = 0:1; 0:5; 1:0 are re-

ported in Table S9 and the corresponding KL values and empirical distances are reported in Table
S10. They show a pattern similar to the case of An and Schorfheide (2007). On one hand, globally
no parameter value is found to be observationally equivalent to �0. On the other hand, even with
c = 1:0, there still exist models with dynamics that are empirically hard to distinguish from those
at �0. In all three cases, the parameter that moves the most is Mg�. We also repeat the analysis
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with Mg� �xed at its original value to examine whether the identi�cation improves substantially.
As shown in Panel (b) in Tables S9 and S10, when c is increased to 1:0, distinguishing between the
models becomes empirically feasible. In addition, the parameters that change the most are: �� for
c = 0:1 and Mr� for c = 0:5 and c = 1:0.

Under determinacy, the parameters minimizing the KL criterion are reported in Table S11 and
the KL values and empirical distances in Table S12. The empirical distances are all above 0.0500
and grow with the sample size, showing that the model is globally identi�ed at �D0 . However,
their values are quite small, suggesting that the models are hard to distinguish empirically. For
all three values of c, the parameters that shift the most are the weights  2 and  1. In fact, when
�xing all parameters except  2 and  1 at their original values and repeating the minimization, the
empirical distance values obtained are very similar. Therefore, the Taylor rule parameters are the
main source behind the weak identi�cation. In addition, we study the identi�cation strength when
 2 is �xed at its original value. As shown in Panel (b) of Table S12, the identi�cation improves
substantially. Fixing  1 instead of  2 leads to a similar pattern of empirical distances.

Given that the Taylor rule parameters are locally identi�ed under determinacy in this model
but not in the model of An and Schorfheide (2007), it is useful to further examine the strength
of this identi�cation. To this end, we trace out the curve in (20) by varying only the four Taylor
rule parameters and following the eigenvector corresponding to the smallest eigenvalue. Table S13
shows ten equally spaced points on the curve along each direction. In direction 1, the curve is
terminated when



�D � �D0 

 exceeds 1. In direction 2, it stops before  2 turns negative. The
table reveals two interesting features. First, the parameters are weakly identi�ed. As shown in
the last two columns in the Table, the empirical distance is only 0.1583 with T=1000 when the
Euclidean distance from �D0 reaches 1.0. Second, along the curve,  1 and  2 move substantially in
opposite directions, while �r and �r change very little. This suggests that the e¤ect of decreasing
(increasing) the weight on the in�ation target is largely o¤set by increasing (decreasing) the weight
on the output gap. This implies that, within this model, a hawkish policy (i.e., with  1 = 2.4840)
can have similar behavioral implications as a more dovish policy ( 1 =1.4830), depending on the
value of the output gap policy parameter.

We have also considered the identi�cation of the alternative monetary rules as we have done for
An and Schorfheide (2007). The results are very similar. That is, there exists an expected in�ation
rule that is observationally equivalent to the original rule and an output gap rule that is nearly so.
This holds under both determinacy and indeterminacy. The details are omitted to save space.

The similarities and di¤erences in the identi�cation properties of the two models can be summa-
rized as follows. (1) Both models are globally identi�ed at the posterior mean under indeterminacy.
(2) Under determinacy, the model of Lubik and Schorfheide (2004) is globally identi�ed at the
posterior mean while that of An and Schorfheide (2007) is not locally identi�ed. For the latter, the
Taylor rule parameters are the source of the lack of identi�cation, while for the former the same
parameters lead to near observational equivalence. (3) Both models possess parameters that are
weakly identi�ed, although those parameters can di¤er across models. For both models and under
both determinacy and indeterminacy, �xing a small number of parameters can lead to a substantial
improvement in global identi�cation.
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S.6 Smets and Wouters (2007)

The vector of observable variables includes output (yt), consumption (ct), investment (it); wage
(wt), labor hours (lt), in�ation (�t) and the interest rate (rt). As in Smets and Wouters (2007),
�ve parameters are �xed as follows: �p = �w = 10; � = 0:025; gy = 0:18; �w = 1:50. The analysis
allows the remaining 34 structural parameters to vary. They are ordered as

�D = (�ga; �w; �p; �;  ; '; �c; �; �p; �w; �w; �p; �p; �l; r�; r�y; ry; �; �a; �b; �g;

�i; �r; �p; �w; �a; �b; �g; �i; �r; �p; �w; 
; 100(1=� � 1))0:

The bounds imposed on the parameters throughout the analysis follow those used in Smets and
Wouters (2007), except the lower bound for r� is raised to 1.1, the upper bounds for the autore-
gressive coe¢ cients of the seven shocks are lowered to 0.99, and those for the moving average
coe¢ cients are lowered to 0.90: �ga 2 [0:01; 2], �w 2 [0:01; 0:9], �p 2 [0:01; 0:9], � 2 [0:01; 1],
 2 [0:01; 1], ' 2 [2; 15], �c 2 [0:25; 3], � 2 [0:001; 0:99], �p 2 [1; 3], �w 2 [0:01; 0:99], �w 2 [0:3; 0:95],
�p 2 [0:01; 0:99], �p 2 [0:5; 0:95], �l 2 [0:25; 10], r� 2 [1:1; 3], r�y 2 [0:01; 0:5], ry 2 [0:01; 0:5],
� 2 [0:5; 0:975], �a 2 [0:01; 0:99], �b 2 [0:01; 0:99], �g 2 [0:01; 0:99], �i 2 [0:01; 0:99], �r 2 [0:01; 0:99],
�p 2 [0:01; 0:99], �w 2 [0:01; 0:99], �a 2 [0:01; 3], �b 2 [0:025; 5], �g 2 [0:01; 3], �i 2 [0:01; 3],
�r 2 [0:01; 3], �p 2 [0:01; 3], �w 2 [0:01; 3], 
 2 [0:1; 0:8]; 100(��1 � 1) 2 [0:01; 2])0:

Below is an outline of the log linearized system. They are consistent with Smets and Wouters�
(2007) code.

The aggregate resource constraint: It satis�es

yt = cyct + iyit + zyzt + "
g
t :

Output (yt) is composed of consumption (ct), investment (it), capital utilization costs as a function
of the capital utilization rate (zt), and exogenous spending ("

g
t ). The latter follows an AR(1) model

with an i.i.d. Normal error term (�gt ); and is also a¤ected by the productivity shock (�
a
t ) as follows:

"gt = �g"
g
t�1 + �ga�

a
t + �

g
t :

The coe¢ cients cy; iy and zy are functions of the steady state spending-output ratio (gy), steady
state output growth (
), capital depreciation (�), household discount factor (�); intertemporal
elasticity of substitution (�c), �xed costs in production (�p), and share of capital in production (�):
iy = (
�1+�)ky; cy = 1�gy� iy; and zy = Rk�ky. Here, ky is the steady state capital-output ratio,
and Rk� is the steady state rental rate of capital: ky = �p (L�=k�)

��1 = �p
�
((1� �)=�)

�
Rk�=w�

����1
with w� =

�
��(1� �)(1��)=[�p

�
Rk�
��
]
�1=(1��)

, and Rk� = ��1
�c � (1� �):

Households: The consumption Euler equation is

ct = c1ct�1 + (1� c1)Etct+1 + c2(lt � Etlt+1)� c3(rt � Et�t+1)� "bt : (S.2)
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where lt is hours worked, rt is the nominal interest rate, and �t is in�ation. The disturbance "bt
follows

"bt = �b"
b
t�1 + �

b
t :

The relationships of the coe¢ cients in (S.2) to the habit persistence (�), steady state labor market
mark-up (�w), and other structural parameters highlighted above are

c1 =
�=


1 + �=

; c2 =

(�c � 1)
�
wh�L�=c�

�
�c (1 + �=
)

; c3 =
1� �=


(1 + �=
)�c
;

where
wh�L�=c� =

1

�w

1� �
�

Rk�ky
1

cy
;

where Rk� and ky are de�ned as above, and cy = 1� gy � (
 � 1 + �)ky:
The dynamics of households�investment are given by

it = i1it�1 + (1� i1)Eti+1 + i2qt + "it;

where "it is a disturbance to the investment speci�c technology process, given by

"it = �i"
i
t�1 + �

i
t:

The coe¢ cients satisfy

i1 =
1

1 + �
(1��c)
; i2 =

1�
1 + �
(1��c)

�

2'

;

where ' is the steady state elasticity of the capital adjustment cost function. The corresponding
arbitrage equation for the value of capital is given by

qt = q1Etqt+1 + (1� q1)Etrkt+1 � (rt � Et�t+1)�
1

c3
"bt , (S.3)

with q1 = �
��c (1� �) = (1� �)=(Rk� + 1� �):

Final and intermediate goods market: The aggregate production function is

yt = �p (�k
s
t + (1� �) lt + "at ) ;

where � captures the share of capital in production, and the parameter �p is one plus the �xed
costs in production. Total factor productivity follows the AR(1) process

"at = �a"
a
t�1 + �

a
t :

The current capital service usage (kst ) is a function of capital installed in the previous period (kt�1)
and the degree of capital utilization (zt):

kst = kt�1 + zt:
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Furthermore, the capital utilization is a positive fraction of the rental rate of capital (rkt ):

zt = z1r
k
t ; where z1 = (1�  )= ;

and  is a positive function of the elasticity of the capital utilization adjustment cost function and
normalized to be between zero and one. The accumulation of installed capital (kt) satis�es

kt = k1kt�1 + (1� k1) it + k2"it;

where "it is the investment speci�c technology process as de�ned before, and k1 and k2 satisfy

k1 =
1� �


, k2 =

�
1� 1� �




��
1 + �
(1��c)

�

2':

The price mark-up satis�es
�pt = � (kst � lt) + "at � wt;

where wt is the real wage. The New Keynesian Phillips curve is

�t = �1�t�1 + �2Et�t+1 � �3�pt + "
p
t ;

where "pt is a disturbance to the price mark-up, following the ARMA(1,1) process given by

"pt = �p"
p
t�1 + �

p
t � �p�

p
t�1:

The MA(1) term is intended to pick up some of the high frequency �uctuations in prices. The
Phillips curve coe¢ cients depend on price indexation (�p) and stickiness (�p), the curvature of the
goods market Kimball aggregator (�p ), and other structural parameters:

�1 =
�p

1 + �
(1��c)�p
; �2 =

�
(1��c)

1 + �
(1��c)�p
; �3 =

1

1 + �
(1��c)�p

�
1� �
(1��c)�p

� �
1� �p

�
�p
��
�p � 1

�
�p + 1

� :

Finally, cost minimization by �rms implies that the rental rate of capital satis�es

rkt = � (kst � lt) + wt:

Labor market: The wage mark-up is

�wt = wt �
�
�llt +

1

1� �=
 (ct � (�=
)ct�1)
�
;

where �l is the elasticity of labor supply. Real wage wt adjusts slowly according to

wt = w1wt�1 + (1� w1) (Etwt+1 + Et�t+1)� w2�t + w3�t�1 � w4�wt + "wt ;

where the coe¢ cients are functions of wage indexation (�w) and stickiness (�w) parameters, and
the curvature of the labor market Kimball aggregator (�w ):

w1 =
1

1 + �
(1��c)
; w2 =

1 + �
(1��c)�w
1 + �
(1��c)

; w3 =
�w

1 + �
(1��c)
;

w4 =
1

1 + �
(1��c)

�
1� �
(1��c)�w

�
(1� �w)

�w ((�w � 1) �w + 1)
:

The wage mark-up disturbance follows an ARMA(1,1) process:

"wt = �w"
w
t�1 + �

w
t � �w�wt�1:
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Monetary policy: The empirical monetary policy reaction function is

rt = �rt�1 + (1� �) (r��t + ry (yt � y�t )) + r�y((yt � y�t )�
�
yt�1 � y�t�1

�
) + "rt :

The monetary shock "rt follows an AR(1) process:

"rt = �r"
r
t�1 + �

r
t :

The variable y�t stands for the time-varying optimal output level that is the result of a �exible
price-wage economy. Since the equations for the �exible price-wage economy are essentially the
same as above, but with the variables �pt and �

w
t set to zero, we omit the details.

S.6.1 Global identi�cation under determinacy

The second and third veri�cation methods in Section 7 give the following results. Corresponding
to the three c values of panel (a), the two deviation measures equal [1.2060,0.0188], [5.8134,0.0877]
and [11.0631,0.1657] and the maximum di¤erences between the cdfs with T=1.0E5 increase from
0.1248 to 0.1368 and 0.1681. Therefore, these two methods also support that no observational
equivalence is present.

We consider di¤erent neighborhood speci�cations to evaluate the results reported in Subsection
8.2.1. First, we replace jj � jj1 by the L1 and L2 norms. The results are reported in Tables S14,
S15, S16 and S17. In both cases, the conclusions remain qualitatively the same. Speci�cally, no
observational equivalence is found and ' and �l move the most in all but three cases. In the latter
cases, they remain among the three parameters that move the most. Next, we consider relative
di¤erences, replacing jj�� �0jj1 with jj(�� �0):=w(�0)jj1 with w(�0) being the lengths of the 90%
credible sets reported in Smets and Wouters (2007, Tables 1A and 1B). When all the parameters are
allowed to vary, 
 (i.e., the trend growth rate) and 100(��1 � 1) (i.e., the discount rate) are found
to move the most in relative terms. These two parameters a¤ect both the dynamic and steady state
properties, with the latter utilized when forming the credible sets in Smets and Wouters (2007), but
not here when constructing the KL. In light of this, we �x these two parameters in the subsequent
analysis. The results are reported in Tables S18 and S19. Again, no observational equivalence is
found. Further, the parameters that move the most in relative terms are r� followed by �l and
'. The appearance of r� is new, while �l and ' are consistently found to move the most under
absolute changes. The empirical distances are slightly above those in Table 8, with the highest
being 0.3462 when T=150. In summary, the results are overall consistent with those reported in
the paper. In addition, they reveal substantially lower distinguishability between parameter values
than what one might conclude from reading only the posterior credible sets.

Next, as in Subsection 8.1.2, we group parameters into the subsets corresponding to monetary
policy (sel=(r�; r�y; ry; �; �r; �r)), exogenous shock processes (sel=(�ga; �w; �p, �a; �b; �g; �i; �r; �p,
�w; �a; �b; �g; �i; �r; �p; �w)), and behavioral parameters (sel=(�;  ; '; �c; �; �p; �w; �w; �p; �p; �l; 
;
100(1=��1)). We then conduct the identi�cation analysis with the constraint f� : jj�(sel)��0(sel)jj1 �
cg used throughout. The results are reported in Tables S20 and S21. First, the results for the be-
havioral parameters are identical to those in the �rst three columns of Tables 7 and 8 with the
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constraint binding for ' in all cases. Second, for the monetary policy parameters, the constraint
is binding for r� except for the case with c = 1:0, where increasing r� by 1.0 would exceed the
upper bound for this parameter. For the latter, the constraint binds for �r. It is notable that,
compared to the case with c = 0:5, the empirical distances jump from 0.2432 to 1.0 for T=150
because r� is forced to be within the bounds. Third, for the parameters related to the exogenous
shock processes, constraint binds for �p in cases c = 0:1; 0:5, and for �i when c = 1:0, where the
latter occurs due to �p not being able to increase beyond its upper bound. The empirical distances
at T=150 for c = 0:1; 0:5; 1:0 equal 0:1413; 0:5760; 0:8392. Overall, the shock parameters appear to
be better identi�ed compared with the other two subsets. Finally, consistent with the full vector
case, no observational equivalence is detected.

S.6.2 Identi�cation of policy rules

The second and third veri�cation methods in Section 7 give the following results. Corresponding to
the three columns of Table 9, the two deviation measures equal [53.16,0.4262], [148.3,1.4473] and
[190.1,1.4917] and the maximum di¤erences between the cdfs with T=1.0E5 equal 0.59, 1.00 and
1.00. These two methods support that no observational equivalence is present.

S.6.3 Simulations

We consider the parameters in the columns of Table 7. The simulation design is the same as for
the An and Schorfheide (2007) model. The six sets of values are as follows (in the same order as in
Table 8): (0.0546, 0.0554, 0.0562, 0.0640); (0.0711, 0.0808, 0.0851, 0.1497); (0.0945, 0.1156, 0.1284,
0.3125); (0.0562, 0.0609, 0.0617, 0.0806); (0.0890, 0.1093, 0.1227, 0.2881); (0.1347, 0.1873, 0.2176,
0.6170).

Regarding computation, it takes approximately 26 hours to obtain one set of values on a Xeon
E5-2665 8-core 2.4Ghz processor. It takes about two minutes to obtain a column of Table 8.

S.6.4 Asymmetry

We compute the KL and the empirical distance measure using the values in Table 7 with the
roles of �0 and �1 switched. The values corresponding to the six columns in Table 8 are (KL fol-
lowed by the four empirical distances in each case): (8.15E-06, 0.0538, 0.0553, 0.0561, 0.0646);
(1.86E-04, 0.0703, 0.0793, 0.0848, 0.1500); (6.66E-04, 0.0933, 0.1150, 0.1290, 0.3111); (2.87E-
05, 0.0574, 0.0603, 0.0620, 0.0799); (5.88E-04, 0.0899, 0.1096, 0.1223, 0.2864); (1.89E-03, 0.1343,
0.1832, 0.2158, 0.6134). These values are all fairly close to those in Table 8.

We also carry out the same analysis using the parameter values in Table 10. The KL and
empirical distances corresponding to the eight columns in Table 10 are (KL followed by empirical
distances at T=80 and 150 as in Table 10): (0.6706, 1.0000, 1.0000); (0.3447, 1.0000, 1.0000);
(0.0079, 0.2914, 0.4465); (0.0296, 0.6699, 0.8937); (0.1271, 0.9948, 1.0000); (0.1962, 0.9998, 1.0000);
(0.0266, 0.6422, 0.8505); (0.1154, 0.9737, 0.9998). The KL values are close to those in Table 10
except for the �rst value. All the empirical distances are close to the corresponding values in Table
10.

S-15



Finally, we consider the parameter values related to the three alternative policy rules in Subsec-
tion 8.2.2. The KL and empirical distances are: (0.0084, 0.2813, 0.4414, 0.5398, 0.9914); (0.0530,
0.7721, 0.9513, 0.9854, 1.0000); (0.1667, 0.9990, 1.0000, 1.0000, 1.0000). The above values are close
to those reported in Table 9.

S.6.5 Global identi�cation from business cycle frequencies

This subsection carries out the analysis similar to that in Subsection S.4.5. The �ndings can
be summarized as follows. First, the model is still globally identi�ed at �D0 when only business
cycle frequencies are considered. The respective parameter values minimizing the KL de�ned in
(9) are broadly similar to those in Table 7. Second, distinguishing between alternative policy
rules is still feasible at typical sample sizes. For T=80, the distances at the minimizers of (9)
are 0:1356; 0:2596; 0:8305 and for T=150, they grow to 0:1785; 0:3743; 0:9615 (these values can
be contrasted with the second and the third rows in Table 9). It is notable that the changes in
empirical distances vary substantially across the policy rules. For the expected in�ation and the
output growth rules the empirical distances are more than halved compared to the full spectrum
case. In contrast, the empirical distances for the output gap rule change relatively little.

Finally, we also repeated the analysis summarized in Table 10 using business cycle frequencies.
The resulting empirical distances at the minimizers of (9) with T=80 in the same order as in the ta-
ble are (these can be compared with the second row in Table 10): 0:9460; 0:9370; 0:1090; 0:2221; 0:5894,
0:7662; 0:2433; 0:6631. Overall, the values imply that the statements made in the preceding sub-
section about the relative importance of various frictions also hold when con�ning attention to
the business cycle frequencies. Also, as in the case with monetary rules, the changes in empirical
distances vary substantially across frictions. The results for price and wage stickiness display very
little change, while those for price and wage indexation as well as for the variable capital utilization
fall dramatically to about a third of the respective values for the full spectrum. The empirical dis-
tances for the remaining real frictions decrease moderately. These �ndings are informative in view
of the fact that the current generation of DSGE models is designed for business cycle movements,
not �uctuations at very low or high frequencies.

S.7 Proofs related to results in the main paper

The proof for Theorem 1 is essentially the same as that for Theorem 1 in Qu and Tkachenko (2012,
supplementary appendix). This is because, after the parameter augmentation, � determines the
second order properties of the process. We outline the main steps. Let

f�(!)
R =

24 Re(f�(!)) Im(f�(!))

� Im(f�(!)) Re(f�(!))

35 , (S.4)

where Re() and Im() denote the real and the imaginary parts of a complex matrix. Because
f�(!) is Hermitian, f�(!)R is real and symmetric. Further, let R(!; �) = vec(f�(!)R). Because the
correspondence between f�(!) and R(!; �) is one to one, to prove the results it su¢ ces to consider

S-16



R(!; �). In addition, Lemma A1 in Qu and Tkachenko (2012, supplementary material) states that�
@ vec f�(!)

@�0

���@ vec f�(!)
@�0

�
=
1

2

�
@R(!; �)

@�0

�0�@R(!; �)
@�0

�
: (S.5)

This implies that the left hand side, therefore G(�), is real, symmetric and positive semide�nite.
Proof of Theorem 1. The relationship (S.5) implies that G(�) equals

1

2

Z �

��

�
@R(!; �0)

@�0

�0�@R(!; �0)
@�0

�
d!:

This allows us to adopt the arguments in Theorem 1 in Rothenberg (1971) to prove the result.
Suppose �0 is not locally identi�ed. Then, there exists an in�nite sequence of vectors f�kg1k=1

approaching �0 such that, for each k: R(!; �0) = R(!; �k) for all ! 2 [��; �] . For an arbitrary
! 2 [��; �], by the mean value theorem and the di¤erentiability of f�(!) in �;

0 = Rj(!; �k)�Rj(!; �0) =
@Rj(!;e�(j; !))

@�0
(�k � �0);

where the subscript j denotes the j-th element of the vector and e�(j; !) lies between �k and �0 and
in general depends on both ! and j. Let dk = (�k � �0)= k�k � �0k, then

@Rj(!;e�(j; !))
@�0

dk = 0 for every k.

The sequence fdkg lies on the unit sphere and therefore it has a convergent subsequence with a limit
point d (note that d does not depend on j or !). Assume fdkg itself is the convergent subsequence.
As �k ! �0; dk approaches d and

lim
k!1

@Rj(!;e�(j; !))
@�0

dk =
@Rj(!; �0)

@�0
d = 0;

where the convergence result holds because f�(!) is continuously di¤erentiable in �. Because this
holds for an arbitrary j and !, it holds for the full vector R(!; �0) and upon integration. Thus,

d0
�Z �

��

�
@R(!; �0)

@�0

�0�@R(!; �0)
@�0

�
d!

�
d = 0:

Because d 6= 0, G(�0) is singular.
To show the converse, suppose that G(�) has a constant reduced rank in a neighborhood of

�0 denoted by �(�0). Then, consider the characteristic vector c(�) associated with one of the zero
roots of G(�). Because G(�)c(�) = 0, we haveZ �

��

�
@R(!; �)

@�0
c(�)

�0�@R(!; �)
@�0

c(�)

�
d! = 0:

Because the integrand is continuous in ! and always nonnegative, it must equal 0 for ! 2 [��; �]
and all � 2 �(�0). This further implies

@R(!; �)

@�0
c(�) = 0 (S.6)
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for all ! 2 [��; �] and all � 2 �(�0). Because G(�) is continuous and has a constant rank in �(�0),
the vector c(�) is continuous in �(�0). Consider the curve � de�ned by the function �(v) which
solves for 0� v � �v the di¤erential equation

@�(v)

@v
= c(�); �(0) = �0:

Then,
@R(!; �(v))

@v
=
@R(!; �(v))

@�(v)0
@�(v)

@v
=
@R(!; �(v))

@�(v)0
c(�) = 0 (S.7)

for all ! 2 [��; �] and 0 � v � �v, where the last equality uses (S.6). Thus, R(!; �) is constant
on the curve �. This implies that f�(!) is constant on the same curve and that �0 is locally
unidenti�able. This completes the proof.

The next two lemmas are needed for Corollaries 5 and 6. Note that the dimension of 
�0
approaches in�nity as T !1, while that of f�0(!) stays �nite.

Lemma S.1 Under the conditions stated in Corollary 5, we have, for all 1 � j; k; l � p+ q:

(i) : T�1=2Y 0
@
�1�0
@�j

Y = T�1=2
T�1X
i=1

tr

(
I (!i)

@f�1�0 (!i)

@�j

)
+ op(1);

(ii) : T�1=2
@ log det
�1�0

@�j
= T�1=2

T�1X
i=1

@ log det f�1�0 (!i)

@�j
+ o(1);

(iii) : T�1 tr

 
@
�0
@�j

@
�1�0
@�k

!
= � 1

2�

Z �

��
tr

�
f�1�0 (!)

@f�0(!)

@�j
f�1�0 (!)

@f�0(!)

@�k

�
d! + o(1);

(iv) : sup
�2B(�0)

���� 1T @3L(�)
@�j@�k@�l

���� = Op(1),

where the spectral density of Y can be either f�0(!) or f�T (!), and B(�0) denotes the open neigh-
borhood of �0 speci�ed in Corollary 5.

Proof of Lemma S.1. The results (i) and (ii) follow from arguments in Brockwell and Davis
(1991, p.392-393), but applied to multivariate processes. We present the main steps. The proof of
(iii) requires some new arguments. We give more details.

The proof of (i) consists of three steps. Steps 1 and 2 obtain approximations to the right and
left hand sides of (i), while Step 3 bridges the approximations. Step 1. Let qm(!) be the m-th
order Fourier series approximation to f�1�0 (!):

qm(!) =
X
jkj�m

bk exp (�i!k) ; (S.8)

where

bk = (2�)
�1
Z �

��
f�1�0 (!) exp (i!k) d!: (S.9)
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We require m being of order T 1=5. Then, the approximation errors satisfy (see Display (10.8.42) in
Brockwell and Davis (1991))


qm(!)� f�1�0 (!)


+ 


@qm(!)=@�j � @f�1�0 (!)=@�j


 = O(T�3=5) uniformly over ! 2 [��; �]:

(S.10)
This implies

T�1=2
T�1X
i=1

I (!i)

"
@f�1�0 (!i)

@�j
� @qm(!i)

@�j

#
= Op(T

�3=5+1=2) = op (1) : (S.11)

Step 2. Because qm(!) is the spectral density of a VMA(m) process, q�1m (!) is the spectral density
of a VAR(m) process. This VAR process is an m-th order approximation to Yt(�0), while q�1m (!)
is the associated approximation to f�0(!). Let Hm be the covariance matrix of this VAR process.
Then, applying the arguments that lead to Displays (10.8.17) and (10.8.45) in Brockwell and Davis
(1991, p.392-393), we have

T�1=2Y 0

 
@
�1�0
@�j

� @H�1
m

@�j

!
Y = T�1=2Y 0

�
H�1
m

@Hm
@�j

H�1
m � 
�1�0

@
�0
@�j


�1�0

�
Y = op (1) ; (S.12)

where the last equality follows from the triangle inequality, jjH�1
m �
�1�0 jj = jj


�1
�0
(Hm � 
�0)H�1

m jj =
O(T�3=5) and jj@Hm=@�j � @
�0=@�j jj = O(T�3=5). Step 3. To bridge the two approximations
in (S.11) and (S.12), we introduce a new matrix, eH�1

m , which equals the covariance matrix of a
VMA(m) process with spectral density (4�2)�1qm(!). The (j; k)-th nY -by-nY block of this matrix
is given by ehjk = (4�2)�1 Z �

��
qm(!) exp (i(j � k)!) d!: (S.13)

Then, we have

T�1=2
T�1X
i=1

I (!i)
@qm(!i)

@�j
� T�1=2Y 0@

eH�1
m

@�j
Y = op (1) ; (S.14)

T�1=2Y 0

 
@H�1

m

@�j
� @ eH�1

m

@�j

!
Y = op (1) ;

where the second equality follows from the arguments in Brockwell and Davis (1991, Displays
(10.8.18)-(10.8.20)) and the continuous di¤erentiability of f�0(!) with respect to �. The result (i)
follows by combining (S.11), (S.12) and (S.14).

For the result (ii), note that

T�1=2 tr

(

�0

@
�1�0
@�j

)
= T�1=2E

(
Y (�0)

0@

�1
�0
(�)

@�j
Y (�0)

)
;

where Y (�0) = (Y1(�0)
0; :::; YT (�0)

0)0. The quantity inside the expectation operator has the same
structure as the left hand side of (i), therefore can be analyzed in the same way. The display
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therefore equals

T�1=2
T�1X
i=1

E tr

(
I (!i)

@f�1�0 (!i)

@�j

)
+ o (1) = T�1=2

T�1X
i=1

tr

(
f�0(!i)

@f�1�0 (!i)

@�j

)
+ o (1) : (S.15)

This proves (ii).
Now consider the result (iii):

T�1 tr

 
@
�0
@�j

@
�1�0
@�k

!

=
1

2T
tr

 �
@
�0
@�j

� @Hm
@�j

�
@
�1�0
@�k

!
+
1

2T
tr

 
@Hm
@�j

 
@
�1�0
@�k

� @ eH�1
m

@�k

!!
+
1

2T
tr

 
@Hm
@�j

@ eH�1
m

@�k

!
:

By the Von Neumann�s trace inequality, the �rst term on the right hand side satis�es

1

2T

�����tr
 
@(
�0 �Hm)

@�j

@
�1�0
@�k

!����� � 1

2T

TX
i=1

�i�i = Op(T
�3=5); (S.16)

where f�igTi=1 and f�ig
T
i=1 are the singular values of the two components inside the trace operator

in decreasing order and the last equality follows because �i = Op(T
�3=5) and �i = Op(1). The

second term can be analyzed in the same way. To further analyze the third term, let ha�b and eha�b
denote the (a; b)-th nY -by-nY blocks of Hm and eH�1

m respectively. Then:

1

2T
tr

 
@Hm
@�j

@ eH�1
m

@�k

!
= tr

(
1

2T

TX
a=1

TX
b=1

@ha�b
@�j

@ehb�a
@�k

)
:

The term inside the curly brackets satis�es

1

2T

TX
a=1

TX
b=1

@ha�b
@�j

@ehb�a
@�k

=
1

2T

TX
a=1

TX
b=1

�Z �

��

@q�1m (!)

@�j
exp (i(a� b)!) d!

�
@ehb�a
@�k

= �

Z �

��

@q�1m (!)

@�j

 
(2�T )�1

TX
b=1

TX
a=1

@ehb�a
@�k

exp (�i(b� a)!)
!
d!

= �

Z �

��

@q�1m (!)

@�j

@
�
(2�T )�1

PT
b=1

PT
a=1

ehb�a exp (�i(b� a)!)�
@�k

d!

= �

Z �

��

@q�1m (!)

@�j

@
�
(2�)�1

PT�1
s=�T+1 (1� jsj =T )ehs exp (�is!)�

@�k
d!

= �

Z �

��

@q�1m (!)

@�j

@
h
(2�)�1

Pm
s=�m (1� jsj =T )ehs exp (�is!)i

@�k
d!

= �

Z �

��

@q�1m (!)

@�j

@
�
(4�2)�1qm(!)

�
@�k

d! + o(1);
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where the �rst equality uses the de�nition of Hm, the second follows from exchanging the order
of the summation and the integration, the third involves exchanging the order of summation and
di¤erentiation, the fourth follows from rearranging the terms, the �fth follows because ehs equals zero
for jsj > M , and the last equality follows because the quantity inside the brackets is a summation
under the triangular window with the bandwidth m = O(T 1=5). By (S.10), the leading term in the
last line of the preceding display converges to

1

4�

Z �

��

@f�1�0 (!)

@�j

@f�0(!)

@�k
d! = � 1

4�

Z �

��
f�1�0 (!)

@f�0(!)

@�j
f�1�0 (!)

@f�0(!)

@�k
d!:

This proves (iii).
We now prove (iv). By the chain rule:

1

T

@3L(�)
@�j@�k@�l

=
1

2T
tr

�

�1�

@
�
@�l


�1�
@2
�
@�j@�k

�
� 1

2T
tr

�

�1�

@3
�
@�j@�k@�l

�
(S.17)

� 1

2T
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�1�
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�
@�l
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@�k


�1�
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@�j
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+
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2T
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�1�

@2
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@�k@�l
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� 1
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�1�
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@�k


�1�
@
�
@�l


�1�
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2T
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�

�1�

@
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@�k


�1�
@2
�
@�j@�l

�
+
1

2T
Y 0
�1�

@
�
@�l


�1�
@
�
@�k


�1�
@
�
@�j


�1� Y � 1

2T
Y 0
�1�

@2
�
@�k@�l


�1�
@
�
@�j


�1� Y

+
1

2T
Y 0
�1�

@
�
@�k


�1�
@
�
@�l


�1�
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�
@�j


�1� Y � 1

2T
Y 0
�1�
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�
@�k


�1�
@2
�
@�j@�l


�1� Y

+
1

2T
Y 0
�1�

@
�
@�k


�1�
@
�
@�j


�1�
@
�
@�l


�1� Y � 1

2T
Y 0
�1�

@
�
@�l


�1�
@2
�
@�j@�k


�1� Y

+
1

2T
Y 0
�1�

@3
�
@�j@�k@�l


�1� Y � 1

2T
Y 0
�1�

@2
�
@�j@�k


�1�
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�
@�l


�1� Y

+
1
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Y 0
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�1� Y � 1
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Y 0
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@
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�1�
@
�
@�k


�1� Y � 1
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Y 0
�1�
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�
@�j


�1�
@2
�
@�k@�l


�1� Y

+
1

2T
Y 0
�1�

@
�
@�j


�1�
@
�
@�k


�1�
@
�
@�l


�1� Y:

The following three results hold and are needed for analyzing the terms on the right hand side.
First, by the law of large numbers, we have

1

T
kY k2 = Op(1): (S.18)

Second, by Lemma 3.1(ii) in Davies (1973), we have


�1� 

 � 1

2�
sup

!2[��;�]



f�1� (!)


 ; (S.19)
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Third, by the argument in the proof of Lemma 3.1(i) in Davies (1973), we have



@
�@�j





 � 2� sup
!2[��;�]





@f�(!)@�j





 ; (S.20)



 @2
�
@�j@�k





 � 2� sup
!2[��;�]





@2f�(!)@�j@�k





 ;



 @2
�
@�j@�k@�l





 � 2� sup
!2[��;�]





 @3f�(!)

@�j@�k@�l





 :
The four expressions on the right hand side in (S.19) and (S.20) are all �nite uniformly over
� 2 B(�0) under the assumptions stated in Corollary 5.

We now apply the three results to bound the terms in (S.17). The �rst term satis�es

1

T

����tr�
�1� @
�
@�l


�1�
@2
�
@�j@�k

����� � 1p
T

����
�1� @
�
@�l

���� 1p
T

����
�1� @2
�
@�j@�k

����
� 1p

T

��
�1� �� 



@
�@�l





 1p
T

��
�1� �� 



 @2
�
@�j@�k






� nY




�1� 

2 



@
�@�l









 @2
�
@�j@�k






= O (1) ;

where the three inequalities follow from (B.1) and the equality holds because of (S.19) and (S.20).
The second to the sixth terms can be analyzed in the same way and are all O (1). The seventh
term satis�es

1

T

����Y 0
�1� @
�
@�l


�1�
@
�
@�k


�1�
@
�
@�j


�1� Y

���� � 1p
T
jY j 1p

T

����
�1� @
�
@�l


�1�
@
�
@�k


�1�
@
�
@�j


�1� Y

����
� 1

T
kY k2






�1� @
�
@�l


�1�
@
�
@�k


�1�
@
�
@�j


�1�






� 1

T
kY k2




�1� 

4 



@
�@�l









@
�@�k









@
�@�j






= Op (1) ;

where the inequalities again follow from (B.1) and the equality holds because of (S.19), (S.20) and
(S.18). The remaining terms in (S.17) can be analyzed in the same way as this term and are all
Op (1). The above results hold uniformly over B(�0) because the derivatives and the inverse of the
spectral density matrix are �nite for all � belonging to this neighborhood.
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Lemma S.2 Under the conditions stated in Corollary 6, we have, for all 1 � j; k � p+ q:

(i) : T�1=2 tr
n

�1f 
�

o
=
T 1=2

2�

Z �

��
tr
n
f�1�0 (!)�(!)

o
d! + o(1);

(ii) : T�1 tr
n
[
�1f 
�]

2
o
=
1

2�

Z �

��
tr
n
[f�1�0 (!)�(!)]

2
o
d! + o(1);

(iii) : T�1=2Y 0
�1f 
�

�1
f Y = T�1=2

TX
j=1

tr
n
f�1�0 (!j)�(!j)f

�1
�0
(!j)I (!j)

o
;

(iv) : T�1Y 0[
�1f 
�]
2
�1f Y =

1

2�

Z �

��
tr
n
[f�1�0 (!)�(!)]

2
o
d! + o(1);

(v) : T�1Y 0[
�1f 
�]
2(
�1h � 
�1f )Y = op(1);

where �(!);
f ;
h and 
� are de�ned in (17), (18) and (B.21) and the spectral density of Y can
be either f�0(!) or h�T (!):

Proof of Lemma S.2. The proof of (i) is similar to that of Lemma S.1.(iii). However, because the
trace operator is multiplied by T�1=2 rather than T�1, some arguments need to be strengthened.
Let H�1

m and eH�1
m have the same de�nitions as in Lemma S.1 (c.f., Steps 2 and 3 in its proof).

Adding and subtracting terms:

T�1=2 tr
n

�1f 
�

o
= T�1=2 tr

� eH�1
m 
�

�
+T�1=2 tr

��

�1f �H�1

m

�

�

�
+T�1=2 tr

��
H�1
m � eH�1

m

�

�

�
;

The second and third terms on the right hand side are both of order O(T�3=5+1=2) = o(1) in light
of (S.16). Therefore,

T�1=2 tr
n

�1f 
�

o
= T�1=2 tr

� eH�1
m 
�

�
+ o(1):

To further analyze the leading term on the right side, let ga�b and eha�b denote the (a; b)-th nY -by-
nY blocks of 
� and eH�1

m respectively. Then,

T�1=2 tr
� eH�1

m 
�

�
= tr

(
T�1=2

TX
a=1

TX
b=1

ga�behb�a
)
:

The term inside the curly brackets equals

T�1=2
TX
a=1

TX
b=1

�Z �

��
�(!) exp (i(a� b)!) d!

�ehb�a (S.21)

= T 1=2
Z �

��
�(!)

 
T�1X

k=�T+1
(1� jkj =T )ehk exp (�ik!)

!
d!:

Applying the de�nition of bk (see (S.9)), we have


ehk � (2�)�1bk


 = (4�2)�1 



Z �

��
[qm(!)� f�1�0 (!)] exp (ik!) d!





 = O(T�3=5):
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Consequently, the right hand side of (S.21) equals

T 1=2
Z �

��
�(!)

 
(2�)�1

T�1X
k=�T+1

(1� jkj =T ) bk exp (�ik!)
!
d! + o(1):

By Assumption 6, bk = O(k�4). The preceding display therefore equals

T 1=2
Z �

��
�(!)

 
(2�)�1

1X
k=�1

bk exp (�ik!)
!
d! + o(1) =

T 1=2

2�

Z �

��
�(!)f�1�0 (!)d! + o(1):

This proves Lemma S.2(i).
The proof of Lemma S.2(ii) relies on Lemma 3.1 in Davies (1973). Let Q = � 
 I, where �

denotes a T �T matrix whose (j; k)-th element (j; k = 1; :::; T ) equals exp(2�i(j�1)(k�1)=T )=
p
T

and I is the nY � nY identity matrix. Let Pf and P� be nY T � nY T dimensional block diagonal
matrices whose j-th diagonal blocks (j = 1; :::; T ) are equal to f�0(!j�1) and �(!j�1) respectively.
The following identity follows from properties of the trace operator:

T�1 tr
n
[
�1f 
�]

2
o
= T�1 tr

n
(Q
�1f Q�)(Q
�


�1
f 
�Q

�)
o
: (S.22)

Adding and subtracting terms, the right hand side can be rewritten as

T�1 tr
n
(Q
�1f Q� � P�1f )(Q
�


�1
f 
�Q

�)
o
+ T�1 tr

n
(Q
�Q

�)(Q
�1f 
�Q
�P�1f )

o
:

The �rst term is bounded by
���T�1=2 �Q
�1f Q� � P�1f

���� 


pnYQ
�
�1f 
�Q�


. The �rst norm is

o(1) by Lemma 3.1(iv) in Davies (1973), while the second is �nite by Lemma 3.1(i)-(ii) in the same
paper. Therefore, this term is negligible. Consequently, (S.22) equals

T�1 tr
n
(Q
�Q

�)(Q
�1f 
�Q
�P�1f )

o
+ o(1): (S.23)

Note that the leading term in (S.23) has the same structure as the right hand side of (S.22).
Therefore, the same argument as between (S.22) and (S.23) can be applied. This process can be
continued, leading to

T�1 tr
n
[
�1f 
�]

2
o

= T�1 tr
n
[P�1f P�]

2
o
+ o(1)

= T�1 tr

8<:
T�1X
j=0

[f�1�0 (!j)�(!j)]
2

9=;+ o(1)
! 1

2�

Z �

��
tr
n
[f�1�0 (!)�(!)]

2
o
d!:

This proves Lemma S.2(ii).
Consider Lemma S.2(iii). Let �m(!) be the m-th order Fourier series approximation to �(!).

Let eRm be an nY T -dimensional square matrix whose (j; k)-th nY -by-nY block is given by
erjk = (4�2)�1 Z �

��
�m(!) exp (i(j � k)!) d!: (S.24)
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Continue to let m be of order T 1=5. Then, by Step 2 in the proof of Lemma S.1(i), we have

T�1=2Y 0(
�1f 
�

�1
f )Y = T�1=2Y 0( eH�1

m
eRm eH�1

m )Y + op (1) . (S.25)

To relate the right hand side of (S.25) to the periodograms of Y , we need a further approximation
to eH�1

m . Let �H�1
m be a nY T -dimensional square matrix whose (j; k)-th nY -by-nY block is given by

�hjk = (2�T )
�1

TX
a=1

qm(!a) exp (i(j � k)!a) if jj � kj � m and 0 otherwise. (S.26)

The di¤erence between �hjk and ehjk (recall ehjk is the (j; k)-th block of eH�1
m ;see (S.13)) is that the

latter is de�ned using an integral rather than an average. Because jj � kj = O(T 1=5), this di¤erence
is small: jj�hjk�ehjkjj � CT�4=5 for some C <1 and for all j and k. Applying this result along with
the argument in Brockwell and Davis (1991, display (10.8.16)), we have jj eH�1

m � �H�1
m jj = O(T�3=5).

Similarly, let �Rm be an nY T -dimensional square matrix whose (j; k)-th nY -by-nY block is given by

�rjk = (2�T )
�1

TX
a=1

�m(!a) exp (i(j � k)!a) if jj � kj � m and 0 otherwise. (S.27)

Comparing this with (S.24) and applying the same argument as above, we have jj eRm � �Rmjjj =
O(T�3=5). Consequently,

T�1=2Y 0( eH�1
m
eRm eH�1

m )Y = T�1=2Y 0( �H�1
m
�Rm �H

�1
m )Y +Op(T

�1=10)

= T�1=2
TX

j;k;l;n=1

Y 0j �hjk�rkl�hlnYn +Op(T
�1=10):

We further analyze the leading term on the right hand side. Expressing �hjk and �rkl using their
spectral densities as in (S.26) and S.27), we can write this leading term as

1

4�2T 5=2

TX
j;k;l;n;a;b=1

Y 0j qm(!a)�m(!b) exp (i(j � k)!a) exp (i(k � l)!b) �hlnYn

=
1

4�2T 5=2

TX
j;l;n;a;b=1

Y 0j qm(!a)�m(!b)�hlnYn exp (ij!a) exp (�il!b)
TX
k=1

exp (ik (!b � !a)) :

The summation over k equals zero unless !b = !a. The preceding display therefore simpli�es to

1

4�2T 3=2

TX
j;l;n;a=1

Yjqm(!a)�m(!a)�hlnYn exp (ij!a) exp (�il!a) :

Expressing �hln using its spectral density and repeating the same argument, we can further write
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the preceding display as

1

2�T 3=2

TX
j;n;a=1

Y 0j qm(!a)�m(!a)qm(!a)Yn exp (ij!a) exp (�in!a)

= T�1=2
TX
a=1

tr

8<:qm(!a)�m(!a)qm(!a)
24(2�T )�1 TX

j;n=1

YnY
0
j exp (i(j � n)!a)

359=;
= T�1=2

TX
a=1

tr fqm(!a)�m(!a)qm(!a)I (!a)g

= T�1=2
TX
j=1

tr
n
f�1�0 (!j)�(!j)f

�1
�0
(!j)I (!j)

o
+ op(1);

where the last equality applies (S.10). This proves Lemma S.2(iii).
Consider Lemma S.2(iv). By the proof of S.2(iii), we have

T�1Y 0([
�1f 
�]
2
�1f )Y = T�1

TX
j=1

tr
n
[f�1�0 (!j)�(!j)]

2f�1�0 (!j)I (!j)
o
+ op(1):

The result then follows by the law of large numbers. For the result S.2(v), note that

T�1Y 0([
�1f 
�]
2(
�1h � 
�1f ))Y = �T

�3=2Y 0([
�1f 
�]
3
�1h )Y:

The right hand side is of order O(T�1=2) by the proof of (iii). This proves Lemma S.2(v).

S.8 Proofs for results in this supplementary appendix

Proof of Corollary S.1. Let

�R(!; �) =

24 R(!; �)

1p
�
�(�)

35 ;
then

�G(�) =
1

2

Z �

��

�
@ �R(!; �)

@�0

�0�
@ �R(!; �)

@�0

�
d!:

Using this representation, the proof proceeds in the same way as in Theorem 1, with R(!; �)

replaced by �R(!; �). The detail is omitted.
Proof of Corollary S.2. This follows immediately from the proof of Theorem 1 because W (!) is
nonnegative and the integrand of G(�) is positive semide�nite.
Proof of Corollary S.3. Recall � = (�D0; �U 0)

0
. Suppose �D0 is not locally identi�ed. Then, there

exists an in�nite sequence of vectors f�kg1k=1 approaching �0 such that

R(!; �0) = R(!; �k) for all ! 2 [��; �] and each k.
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By the de�nition of the partial identi�cation,
�
�Dk
	
can be chosen such that



�Dk � �D0 

 = k�k � �0k >
" with " being some arbitrarily small positive number. The values of �Uk can either change or stay
�xed in this sequence; no restrictions are imposed on them besides those in the preceding display.
As in the proof of Theorem 1, in the limit, we have

@R(!; �0)

@�0
d = 0;

with dD 6= 0 (where dD is comprised of the elements in d that correspond to �D). Therefore, on
one hand,

G(�0)d = 0;

on the other hand, because dD 6= 0 and, by de�nition, @�D0 =@�0 = [Idim(�D); 0dim(�U )], we have

@�D0
@�0

d = dD 6= 0;

which implies
Ga(�0)d 6= 0:

Thus, we have identi�ed a vector that falls into the orthogonal column space of G(�0) but not of
Ga(�0): Because the former orthogonal space always includes the latter as a subspace, this result
implies that Ga(�0) has a higher column rank than G(�0).

To show the converse, suppose that G(�) and Ga(�) have constant ranks in a neighborhood of
�0 denoted by �(�0). Because the rank of G(�) is lower than that of Ga(�); there exists a vector
c(�) such that

G(�)c(�) = 0 but Ga(�)c(�) 6= 0;

which implies for all ! 2 [��; �] and all � 2 �(�0) (see arguments leading to (S.6))

@R(!; �)

@�0
c(�) = 0;

but 24 @R(!; �)=@�0

@�D=@�0

35 c(�) =
24 0

cD(�)

35 6= 0;
where cD(�) denotes the elements in c(�) that correspond to �D. Because G(�) is continuous and
has constant rank in �(�0), the vector c(�) is continuous in �(�0). As in Theorem 1, consider the
curve � de�ned by the function �(v) which solves for 0� v � �v the di¤erential equation

@�(v)

@v
= c(�); �(0) = �0:

On one hand, because cD(�) 6= 0 and cD(�) is continuous in �; points on this curve correspond to
di¤erent �D: On the other hand,

@R(!; �(v))

@v
=
@R(!; �(v))

@�(v)0
@�(v)

@v
=
@R(!; �(v))

@�(v)0
c(�) = 0
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for all ! 2 [��; �] and 0 � v � �v; implying f�(!) is constant on the same curve. Therefore, �D0 is
not locally partially identi�able.
Proof of Corollary S.5. Relaxing the cumulant condition does not a¤ect the asymptotic nor-
mality. Therefore, it su¢ ces to verify that the asymptotic variances have the stated expressions.
We only consider the null hypothesis as the proof under the alternative hypothesis is similar. Let
�(!) = f�1�0 (!j)� h

�1
�0
(!j). Then, (B.5) can be written as

1

2T 1=2

T�1X
j=1

tr f�(!j)(I(!j)� f�0(!j))g =
nYX
k;l=1

8<: 1

2T 1=2

T�1X
j=1

�kl(!j)(Ilk (!j)� f�0lk(!j))

9=; ;

where �kl(!j) is the (k; l)-th element of �(!j) and other quantities are de�ned analogously. Denote
the quantity in the curly brackets by A(k; l). Applying the same argument as in Proposition 10.8.5
in Brockwell and Davis (1991), we have

A(k; l) =
1

2T 1=2

T�1X
j=1

dim(e"t)X
a;b=1

�kl(!j)Hla(!j)
�
Ie"ab (!j)� EIe"ab (!j)

�
H�
bk(!j) + op(1);

where Ie"ab (!j) is the (a; b)-th element of the periodogram of e"t and H�
bk(!j) the (b; k)-th element of

H�(!j). Note that H�
bk(!j) = Hkb(!j). The covariance between A(k; l) and A(m;n) then equals

1

4T

T�1X
j;h=1

dim(e"t)X
a;b;c;d=1

�kl(!j)Hla(!j)H
�
bk(!j) Cov(I

e"
ab (!j) ; I

e"
cd (!h))�mn(!h)Hnc(!h)H

�
dm(!h) + o(1)

=
1

4T

T�1X
j;h=1

dim(e"t)X
a;b;c;d=1

�kl(!j)Hla(!j)H
�
bk(!j) Cov(I

e"
ab (!j) ; I

e"
cd (!h))�nm(!h)H

�
cn(!h)Hmd(!h) + o(1):

Proposition 11.7.3 in Brockwell and Davis (1991) shows for 0 < !j ; !h < �:

Cov
�
Ie"ab (!j) ; Ie"cd (!h)

�
=

8<: 1
4�2T

�abcd +
1
4�2

�ac�db

1
4�2T

�abcd

if !j = !h;

if !j 6= !h,

where �ac is the covariance between the a-th and the c-th elements of e"t. Applying this result, the
preceding summation equals

1

8�2T

T�1X
j=1

8<:
dim(e"t)X
a;c=1

�kl(!j)Hla(!j)�acH
�
cn(!j)

dim(e"t)X
b;d=1

�nm(!j)Hmd(!j)�dbH
�
bk(!j)

9=;
+

1

16�2T 2

dim(e"t)X
a;b;c;d=1

�abcd

24T�1X
j=1

H�
bk(!j)�kl(!j)Hla(!j)

T�1X
h=1

H�
cn(!h)�nm(!h)Hmd(!h)

35+ o(1):
The �rst term converges to

1

4�

Z �

��
�kl(!)f�0ln(!)�nm(!)f�0mk(!)d!:
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Upon taking summation over 1� k; l;m; n � nY , it equals

1

4�

Z �

��
tr
n�
f�1�0 (!)� h

�1
�0
(!)
�
f�0(!)

�
f�1�0 (!)� h

�1
�0
(!)
�
f�0(!)

o
d!

=
1

4�

Z �

��
tr
nh
I � f�0(!)h�1�0 (!)

i h
I � f�0(!)h�1�0 (!)

io
d!:

Meanwhile, the second term summed over 1� k; l;m; n � nY equals

1

16�2T 2

dim(e"t)X
a;b;c;d=1

�abcd

24T�1X
j=1

nYX
k;l=1

H�
bk(!j)�kl(!j)Hla(!j)

T�1X
h=1

nYX
m;n=1

H�
cn(!h)�nm(!h)Hmd(!h)

35
! 1

16�2

dim(e"t)X
a;b;c;d=1

�abcd

�
1

2�

Z �

��
H�(!)

�
f�1�0 (!)� h

�1
�0
(!)
�
H(!)d!

�
ba

�
�
1

2�

Z �

��
H�(!)

�
f�1�0 (!)� h

�1
�0
(!)
�
H(!)d!

�
cd

:

Because �abcd = �bacd, the right hand side can also be expressed as

1

16�2

dim(e"t)X
a;b;c;d=1

�abcd

�
1

2�

Z �

��
H�(!)

�
f�1�0 (!)� h

�1
�0
(!)
�
H(!)d!

�
ab

�
�
1

2�

Z �

��
H�(!)

�
f�1�0 (!)� h

�1
�0
(!)
�
H(!)d!

�
cd

:

This completes the proof.
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Table S1. Parameter values minimizing the KL criterion, AS (2007) model, L1 norm
(a) All parameters can vary (b) � �xed (c) � and  2 �xed

�0 c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0
� 2.51 2.46 2.24 3.08 2.51 2.51 2.51 2.51 2.51 2.51
� 0.995 0.995 0.994 0.996 0.996 0.998 0.999 0.997 0.999 0.999
� 0.49 0.49 0.50 0.50 0.48 0.45 0.43 0.47 0.41 0.38
 1 0.63 0.63 0.60 0.69 0.64 0.57 0.49 0.63 0.62 0.61
 2 0.23 0.25 0.34 0.02 0.19 0.43 0.67 0.23 0.23 0.23
�r 0.87 0.87 0.88 0.86 0.87 0.88 0.90 0.87 0.88 0.88
�g 0.66 0.66 0.66 0.66 0.66 0.66 0.65 0.66 0.65 0.65
�z 0.60 0.61 0.62 0.58 0.60 0.60 0.60 0.60 0.61 0.61
�r 0.27 0.27 0.27 0.27 0.27 0.27 0.28 0.27 0.27 0.27
�g 0.58 0.58 0.58 0.57 0.58 0.59 0.60 0.58 0.60 0.62
�z 0.62 0.62 0.61 0.66 0.61 0.56 0.51 0.59 0.48 0.36
Mr� 0.53 0.52 0.51 0.57 0.53 0.50 0.48 0.52 0.49 0.47
Mg� -0.06 -0.06 -0.05 -0.08 -0.06 -0.04 -0.03 -0.05 -0.03 -0.01
Mz� 0.26 0.26 0.26 0.27 0.27 0.31 0.35 0.28 0.39 0.63
�� 0.19 0.184 0.179 0.186 0.185 0.182 0.177 0.184 0.170 0.116
Note. KL is de�ned as KLff (�0; �c) with �0 corresponding to the default speci�cation. All values are rounded
to the second decimal place except for � and ��. The bold value signi�es the parameter that moves the most.

Table S2. KL and empirical distances between �c and �0, AS (2007) model, L1 norm
(a) All parameters can vary (b) � �xed (c) � and  2 �xed
c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0

KL 1.62E-07 4.38E-06 2.12E-05 3.12E-06 6.28E-05 1.68E-04 5.99E-06 1.27E-04 3.52E-04
T=80 0.0505 0.0528 0.0564 0.0523 0.0610 0.0685 0.0533 0.0658 0.0799
T=150 0.0507 0.0539 0.0588 0.0532 0.0656 0.0769 0.0546 0.0728 0.0937
T=200 0.0508 0.0545 0.0603 0.0537 0.0684 0.0820 0.0553 0.0770 0.1023
T=1000 0.0519 0.0605 0.0751 0.0587 0.0981 0.1418 0.0624 0.1255 0.2091
Note. KL is de�ned as KLff (�0; �c) with �c given in the columns of Table S1. The empirical distance measure
equals pff (�0; �c; 0:05; T ), where T is speci�ed in the last four rows of the Table.

Table S3. Parameter values minimizing the KL criterion, AS (2007) model, L2 norm
(a) All parameters can vary (b) � �xed (c) � and  2 �xed

�0 c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0
� 2.51 2.42 2.98 3.48 2.51 2.51 2.51 2.51 2.51 2.51
� 0.995 0.995 0.996 0.994 0.994 0.996 0.999 0.998 0.999 0.999
� 0.49 0.49 0.49 0.52 0.50 0.46 0.42 0.45 0.38 0.40
 1 0.63 0.62 0.68 0.70 0.61 0.50 0.35 0.62 0.61 0.61
 2 0.23 0.27 0.06 0.01 0.33 0.71 1.17 0.23 0.23 0.23
�r 0.87 0.87 0.86 0.85 0.88 0.90 0.92 0.87 0.88 0.88
�g 0.66 0.66 0.66 0.66 0.66 0.65 0.65 0.66 0.65 0.64
�z 0.60 0.61 0.58 0.57 0.60 0.60 0.59 0.61 0.60 0.66
�r 0.27 0.27 0.27 0.26 0.27 0.28 0.28 0.27 0.27 0.27
�g 0.58 0.58 0.57 0.56 0.58 0.59 0.60 0.59 0.62 0.61
�z 0.62 0.62 0.65 0.69 0.63 0.57 0.50 0.55 0.35 0.23
Mr� 0.53 0.52 0.56 0.60 0.53 0.50 0.46 0.51 0.47 0.48
Mg� -0.06 -0.06 -0.08 -0.10 -0.06 -0.05 -0.03 -0.05 -0.01 -0.01
Mz� 0.26 0.26 0.27 0.27 0.26 0.30 0.37 0.31 0.65 1.15
�� 0.19 0.184 0.186 0.184 0.186 0.185 0.175 0.182 0.110 0.001
Note. KL is de�ned as KLff (�0; �c), where �0 corresponds to the default speci�cation. All values are rounded
to the second decimal place except for � and ��. The bold value signi�es the parameter that moves the most.



Table S4. KL and empirical distances between �c and �0, AS (2007) model, L2 norm
(a) All parameters can vary (b) � �xed (c) � and  2 �xed
c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0

KL 4.47E-07 1.36E-05 6.97E-05 9.79E-06 1.54E-04 3.18E-04 3.02E-05 3.65E-04 9.61E-04
T=80 0.0509 0.0550 0.0616 0.0540 0.0673 0.0761 0.0577 0.0807 0.1059
T=150 0.0512 0.0569 0.0665 0.0557 0.0752 0.0888 0.0608 0.0948 0.1347
T=200 0.0514 0.0580 0.0694 0.0566 0.0800 0.0967 0.0626 0.1036 0.1534
T=1000 0.0532 0.0694 0.1014 0.0660 0.1362 0.1951 0.0811 0.2137 0.3980
Note. KL is de�ned as KLff (�0; �c) with �c given in the columns of Table S3. The empirical distance measure
equals pff (�0; �c; 0:05; T ), where T is speci�ed in the last four rows of the Table.

Table S5. Parameter values minimizing the KL criterion, AS (2007) model, weighted constraints
(a) All parameters can vary (b) � �xed (c) � and  2 �xed

�0 c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0
� 2.51 2.48 2.33 2.21 2.60 2.96 2.06 2.67 3.31 3.41
� 0.995 0.994 0.992 0.988 0.995 0.995 0.995 0.995 0.995 0.995
� 0.49 0.49 0.51 0.54 0.49 0.49 0.47 0.49 0.50 0.44
 1 0.63 0.63 0.62 0.61 0.64 0.69 0.50 0.63 0.64 0.64
 2 0.23 0.25 0.32 0.38 0.19 0.02 0.66 0.23 0.23 0.23
�r 0.87 0.87 0.87 0.88 0.87 0.86 0.90 0.87 0.87 0.87
�g 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.65
�z 0.60 0.61 0.62 0.63 0.60 0.58 0.62 0.59 0.57 0.57
�r 0.27 0.27 0.27 0.27 0.27 0.27 0.28 0.27 0.27 0.27
�g 0.58 0.58 0.58 0.57 0.57 0.57 0.59 0.57 0.56 0.58
�z 0.62 0.62 0.62 0.62 0.63 0.65 0.57 0.63 0.65 0.44
Mr� 0.53 0.53 0.52 0.52 0.54 0.57 0.47 0.54 0.57 0.55
Mg� -0.06 -0.06 -0.06 -0.06 -0.06 -0.08 -0.04 -0.07 -0.09 -0.07
Mz� 0.26 0.26 0.25 0.25 0.26 0.27 0.28 0.26 0.29 0.61
�� 0.19 0.185 0.181 0.175 0.186 0.187 0.177 0.187 0.183 0.035
Note. KL is de�ned as KLff (�0; �c), where �0 contains parameter values of the default speci�cation. All
values are rounded to the second decimal place except for � and ��. The constraint is given by f�c :
j(�c � �0):=w(�0)j1 � cg, where w(�0) contains the lengths of the 90% credible sets from Table 1. The bold
value signi�es the binding constraint.

Table S6. KL and empirical distances between �c and �0, AS (2007) model, weighted constraints
(a) All parameters can vary (b) � �xed (c) � and  2 �xed
c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0

KL 2.85E-07 6.18E-06 2.29E-05 7.47E-07 1.91E-05 9.90E-05 4.82E-06 1.01E-04 2.48E-04
T=80 0.0509 0.0542 0.0579 0.0512 0.0563 0.0635 0.0528 0.0638 0.0719
T=150 0.0512 0.0554 0.0605 0.0516 0.0586 0.0694 0.0540 0.0699 0.0825
T=200 0.0513 0.0562 0.0621 0.0519 0.0600 0.0731 0.0546 0.0736 0.0891
T=1000 0.0527 0.0634 0.0778 0.0542 0.0739 0.1136 0.0609 0.1148 0.1691
Note. KL is de�ned as KLff (�0; �c) with �c given in the columns of Table S5. The empirical distance measure
equals pff (�0; �c; 0:05; T ), where T is speci�ed in the last four rows of the Table.



Table S7. Parameter values minimizing the KL criterion, AS (2007) model, subset constraints
(a) Monetary policy (b) Shock processes (c) Behavioral

�0 c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0
� 2.51 2.31 2.00 2.38 2.91 2.96 2.38 2.41 3.01 3.51
� 0.995 0.994 0.992 0.999 0.994 0.999 0.999 0.995 0.996 0.994
� 0.49 0.50 0.49 0.42 0.52 0.41 0.39 0.49 0.49 0.52
 1 0.63 0.61 0.49 0.32 0.67 0.63 0.38 0.62 0.68 0.70
 2 0.23 0.33 0.73 1.23 0.11 0.20 0.96 0.27 0.06 0.01
�r 0.87 0.88 0.90 0.92 0.86 0.87 0.92 0.87 0.86 0.85
�g 0.66 0.66 0.66 0.65 0.66 0.65 0.64 0.66 0.66 0.66
�z 0.60 0.61 0.63 0.60 0.57 0.60 0.66 0.61 0.58 0.57
�r 0.27 0.27 0.28 0.28 0.27 0.27 0.28 0.27 0.27 0.26
�g 0.58 0.58 0.59 0.60 0.56 0.60 0.62 0.58 0.57 0.56
�z 0.62 0.61 0.57 0.51 0.72 0.35 0.20 0.62 0.65 0.69
Mr� 0.53 0.51 0.47 0.45 0.57 0.52 0.44 0.52 0.57 0.60
Mg� -0.06 -0.06 -0.04 -0.02 -0.08 -0.04 0.01 -0.06 -0.08 -0.10
Mz� 0.26 0.26 0.27 0.35 0.23 0.76 1.26 0.26 0.27 0.27
�� 0.19 0.181 0.174 0.179 0.190 0.001 0.001 0.183 0.186 0.183
Note. KL is de�ned as KLff (�0; �c), where �0 contains parameter values of the default speci�cation. All
values are rounded to the second decimal place except for � and ��. The bold value signi�es the binding
constraint. The italicized values signify that the parameter belongs to the constrained subset.

Table S8. KL and empirical distances between �c and �0, AS (2007) model, subset constraints
(a) Monetary policy (b) Exogenous shocks (c) Behavioral

c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0
KL 3.06E-06 1.23E-04 3.32E-04 3.58E-05 2.75E-04 1.14E-03 5.19E-07 1.57E-05 7.57E-05
T=80 0.0523 0.0646 0.0767 0.0583 0.0751 0.1119 0.0510 0.0553 0.0621
T=150 0.0531 0.0714 0.0898 0.0616 0.0866 0.1446 0.0513 0.0574 0.0672
T=200 0.0536 0.0755 0.0980 0.0636 0.0939 0.1661 0.0515 0.0586 0.0703
T=1000 0.0585 0.1228 0.1998 0.0842 0.1819 0.4446 0.0534 0.0710 0.1041
Note. KL is de�ned as KLff (�0; �c) with �c given in the columns of Table S7. The empirical distance measure
equals pff (�0; �c; 0:05; T ), where T is speci�ed in the last four rows of the Table.

Table S9. Parameter values minimizing the KL criterion
Indeterminacy, LS (2004) model

(a) All parameters can vary (b) Mg� �xed
�0 c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0

� 0.69 0.69 0.69 0.70 0.69 0.70 0.72
� 0.997 0.998 0.999 0.999 0.953 0.999 0.999
� 0.77 0.77 0.77 0.77 0.78 0.85 0.93
 1 0.77 0.77 0.77 0.78 0.76 0.74 0.71
 2 0.17 0.17 0.16 0.13 0.18 0.31 0.47
�r 0.60 0.60 0.60 0.60 0.60 0.61 0.61
�g 0.68 0.68 0.68 0.68 0.68 0.66 0.64
�z 0.82 0.82 0.82 0.82 0.82 0.83 0.83
�r 0.23 0.23 0.23 0.23 0.23 0.24 0.24
�g 0.27 0.27 0.29 0.31 0.27 0.29 0.32
�z 1.13 1.13 1.13 1.14 1.16 1.07 1.02
�gz 0.14 0.15 0.11 0.07 0.13 0.17 0.20
Mr� -0.68 -0.69 -0.64 -0.59 -0.66 -1.18 -1.68
Mg� 1.74 1.84 1.24 0.74 1.74 1.74 1.74
Mz� -0.69 -0.70 -0.65 -0.61 -0.66 -0.79 -0.89
�� 0.20 0.13 0.39 0.50 0.10 0.16 0.01

Note. KL is de�ned as KLff (�0; �c). All values are rounded to the second decimal
place except for �. The bold value signi�es the binding constraint.



Table S10. KL and empirical distances between �c and �0
Indeterminacy, LS (2004) model

(a) All parameters can vary (b) Mg� �xed
c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0

KL 4.06E-07 1.22E-05 5.41E-05 5.45E-06 1.10E-03 3.90E-03
T=80 0.0507 0.0550 0.0604 0.0520 0.1084 0.2021
T=150 0.0510 0.0569 0.0646 0.0531 0.1392 0.2926
T=200 0.0512 0.0580 0.0671 0.0538 0.1593 0.3518
T=1000 0.0529 0.0686 0.0941 0.0604 0.4219 0.8739
Note. KL is de�ned as KLff (�0; �c) with �c given in the columns of Table S9. The
empirical distance measure equals pff (�0; �c; 0:05; T ), where T is speci�ed in the last
four rows of the Table.

Table S11. Parameter values minimizing the KL criterion
Determinacy, LS (2004) model

(a) All parameters can vary (b)  2 �xed
�D0 c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0

� 0.54 0.54 0.55 0.55 0.55 0.56 0.57
� 0.992 0.900 0.900 0.900 0.900 0.900 0.900
� 0.58 0.62 0.62 0.62 0.63 0.65 0.67
 1 2.19 2.09 1.71 1.23 2.29 2.69 3.19
 2 0.30 0.40 0.80 1.30 0.30 0.30 0.30
�r 0.84 0.84 0.84 0.84 0.84 0.86 0.88
�g 0.83 0.83 0.83 0.83 0.83 0.84 0.84
�z 0.85 0.85 0.85 0.85 0.85 0.85 0.85
�r 0.18 0.18 0.18 0.18 0.18 0.18 0.19
�g 0.18 0.18 0.18 0.18 0.18 0.19 0.19
�z 0.64 0.64 0.64 0.64 0.64 0.64 0.64
�gz 0.36 0.36 0.36 0.36 0.35 0.32 0.29

Note. KL is de�ned as KLff (�D0 ; �Dc ). All values are rounded to the second decimal
place except for �. The bold value signi�es the binding constraint.

Table S12. KL and empirical distances between �Dc and �
D
0 ,

Determinacy, LS (2004) model
(a) All parameters can vary (b)  2 �xed
c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0

KL 1.06E-07 1.28E-05 6.26E-05 1.05E-04 2.10E-03 6.20E-03
T=80 0.0504 0.0544 0.0602 0.0650 0.1479 0.2729
T=150 0.0506 0.0563 0.0648 0.0713 0.2017 0.4011
T=200 0.0507 0.0573 0.0675 0.0751 0.2373 0.4810
T=1000 0.0515 0.0683 0.0970 0.1178 0.6541 0.9659
Note. KL is de�ned as KLff (�D0 ; �Dc ) with �Dc given in the columns of Table S11. The
empirical distance measure equals pff (�D0 ; �

D
c ; 0:05; T ), where T is speci�ed in the last

four rows of the Table.



Table S13. Empirical distances by altering the Taylor rule parameters, LS(2004) model
 1  2 �r �r



�Dj � �D0 

 KL T = 80 T = 1000

�D0 2.1900 0.3000 0.8400 0.1800 � � � �
(a) Direction 1

�D1 2.1194 0.3720 0.8399 0.1800 0.1009 1.23E-06 0.0516 0.0555
�D2 2.0486 0.4442 0.8398 0.1800 0.2019 5.17E-06 0.0533 0.0617
�D3 1.9779 0.5163 0.8397 0.1801 0.3029 1.22E-05 0.0552 0.0688
�D4 1.9072 0.5884 0.8396 0.1801 0.4039 2.28E-05 0.0572 0.0769
�D5 1.8365 0.6605 0.8395 0.1801 0.5049 3.75E-05 0.0593 0.0863
�D6 1.7658 0.7326 0.8394 0.1802 0.6059 5.70E-05 0.0617 0.0969
�D7 1.6951 0.8048 0.8392 0.1802 0.7069 8.19E-05 0.0642 0.1092
�D8 1.6244 0.8769 0.8391 0.1803 0.8079 1.13E-04 0.0670 0.1233
�D9 1.5537 0.9490 0.8390 0.1803 0.9089 1.52E-04 0.0700 0.1395
�D10 1.4830 1.0212 0.8389 0.1804 1.0099 1.98E-04 0.0733 0.1583

(b) Direction 2
�D1 2.2193 0.2701 0.8400 0.1800 0.0419 1.99E-07 0.0505 0.0520
�D2 2.2487 0.2401 0.8401 0.1800 0.0839 7.83E-07 0.0511 0.0541
�D3 2.2781 0.2101 0.8401 0.1800 0.1259 1.73E-06 0.0516 0.0562
�D4 2.3075 0.1801 0.8402 0.1800 0.1679 3.02E-06 0.0521 0.0583
�D5 2.3369 0.1501 0.8402 0.1800 0.2099 4.64E-06 0.0526 0.0604
�D6 2.3664 0.1201 0.8403 0.1800 0.2519 6.56E-06 0.0531 0.0626
�D7 2.3958 0.0901 0.8403 0.1800 0.2939 8.77E-06 0.0536 0.0648
�D8 2.4252 0.0601 0.8404 0.1800 0.3359 1.12E-05 0.0541 0.0670
�D9 2.4546 0.0302 0.8404 0.1799 0.3779 1.40E-05 0.0546 0.0692
�D10 2.4840 0.0002 0.8405 0.1799 0.4199 1.70E-05 0.0551 0.0714
Note. �Dj represent equally spaced points taken from the curve determined by the smallest eigenvalue
from changing the four parameters in the monetary policy rule. The curve is extended from �D0 along
two directions. Along Direction 1, the curve is truncated when k�Dj � �D0 k exceeds 1. Along Direction
2, the curve is truncated at the closest point to zero where  2 is still positive. KL is de�ned as
KLff (�

D
0 ; �

D
j ). The last two columns are empirical distance measures de�ned as pff (�

D
0 ; �

D
j ; 0:05; T ).



Table S14. Parameter values miminizing the KL criterion, SW(2007) model, L1 norm
(a) All parameters can vary (b) ' �xed

�D0 c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0
�ga 0.52 0.52 0.52 0.52 0.52 0.52 0.53
�w 0.84 0.84 0.84 0.84 0.84 0.84 0.83
�p 0.69 0.69 0.69 0.69 0.69 0.68 0.70
� 0.19 0.19 0.19 0.20 0.19 0.18 0.20
 0.54 0.54 0.53 0.52 0.54 0.54 0.54
' 5.74 5.78 5.97 6.21 5.74 5.74 5.74
�c 1.38 1.38 1.38 1.37 1.38 1.37 1.43
� 0.71 0.71 0.71 0.72 0.71 0.72 0.70
�p 1.60 1.60 1.60 1.61 1.60 1.59 1.61
�w 0.58 0.58 0.57 0.57 0.58 0.59 0.56
�w 0.70 0.70 0.70 0.71 0.70 0.71 0.69
�p 0.24 0.24 0.24 0.25 0.24 0.23 0.25
�p 0.66 0.66 0.66 0.66 0.66 0.66 0.66
�l 1.83 1.84 1.89 1.95 1.86 1.95 1.59
r� 2.04 2.04 2.02 2.00 2.04 2.05 2.08
r�y 0.22 0.22 0.22 0.21 0.22 0.22 0.22
ry 0.08 0.08 0.08 0.08 0.08 0.08 0.08
� 0.81 0.81 0.81 0.81 0.81 0.81 0.81
�a 0.95 0.95 0.95 0.95 0.95 0.95 0.95
�b 0.22 0.22 0.22 0.22 0.22 0.22 0.23
�g 0.97 0.97 0.97 0.97 0.97 0.97 0.97
�i 0.71 0.71 0.71 0.70 0.71 0.71 0.71
�r 0.15 0.15 0.15 0.15 0.15 0.15 0.15
�p 0.89 0.89 0.89 0.89 0.89 0.89 0.89
�w 0.96 0.96 0.96 0.96 0.96 0.96 0.96
�a 0.45 0.45 0.45 0.45 0.45 0.45 0.45
�b 0.23 0.23 0.23 0.23 0.23 0.23 0.23
�g 0.53 0.53 0.53 0.53 0.53 0.53 0.53
�i 0.45 0.45 0.45 0.45 0.45 0.45 0.45
�r 0.24 0.24 0.24 0.24 0.24 0.24 0.24
�p 0.14 0.14 0.14 0.14 0.14 0.14 0.14
�w 0.24 0.24 0.24 0.24 0.24 0.24 0.24

 0.43 0.42 0.38 0.34 0.45 0.56 0.20

100(��1 � 1) 0.16 0.18 0.24 0.31 0.13 0.01 0.45
Note. KL is de�ned as KLff (�D0 ; �Dc ). The bold values signify parameters that move the most.

Table S15. KL and empirical distances between �Dc and �
D
0 , SW(2007) model, L1 norm

(a) All parameters can vary (b) ' �xed
c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0

KL 2.86E-06 7.05E-05 2.77E-04 4.89E-06 1.18E-04 5.30E-04
T=80 0.0525 0.0632 0.0785 0.0530 0.0662 0.0892
T=150 0.0533 0.0682 0.0905 0.0541 0.0730 0.1077
T=200 0.0538 0.0712 0.0980 0.0548 0.0771 0.1195
T=1000 0.0585 0.1039 0.1884 0.0611 0.1238 0.2707
Note. KL is de�ned as KLff (�D0 ; �Dc ) with �Dc given in the columns of Table S14. The empirical
distance equals pff (�D0 ; �

D
c ; 0:05; T ), where T is speci�ed in the last four rows of the Table.



Table S16. Parameter values miminizing the KL criterion, SW(2007) model, L2 norm
(a) All parameters can vary (b) ' �xed

�D0 c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0
�ga 0.52 0.52 0.52 0.52 0.52 0.52 0.52
�w 0.84 0.84 0.84 0.84 0.84 0.85 0.85
�p 0.69 0.69 0.69 0.69 0.69 0.68 0.68
� 0.19 0.19 0.19 0.19 0.19 0.18 0.18
 0.54 0.54 0.53 0.53 0.54 0.53 0.52
' 5.74 5.84 6.24 6.74 5.74 5.74 5.74
�c 1.38 1.38 1.38 1.38 1.37 1.35 1.32
� 0.71 0.71 0.71 0.72 0.71 0.72 0.73
�p 1.60 1.60 1.61 1.61 1.60 1.59 1.59
�w 0.58 0.58 0.57 0.57 0.58 0.58 0.58
�w 0.70 0.70 0.70 0.71 0.70 0.72 0.74
�p 0.24 0.24 0.24 0.24 0.24 0.24 0.24
�p 0.66 0.66 0.66 0.66 0.66 0.66 0.66
�l 1.83 1.84 1.85 1.87 1.87 2.27 2.79
r� 2.04 2.04 2.02 2.01 2.04 2.03 2.02
r�y 0.22 0.22 0.22 0.22 0.22 0.21 0.20
ry 0.08 0.08 0.08 0.08 0.08 0.08 0.08
� 0.81 0.81 0.81 0.81 0.81 0.81 0.81
�a 0.95 0.95 0.95 0.95 0.95 0.95 0.95
�b 0.22 0.22 0.22 0.22 0.22 0.21 0.21
�g 0.97 0.97 0.97 0.97 0.97 0.97 0.97
�i 0.71 0.71 0.70 0.70 0.71 0.71 0.71
�r 0.15 0.15 0.15 0.15 0.15 0.14 0.14
�p 0.89 0.89 0.89 0.89 0.89 0.89 0.89
�w 0.96 0.96 0.96 0.96 0.96 0.96 0.96
�a 0.45 0.45 0.45 0.45 0.45 0.45 0.45
�b 0.23 0.23 0.23 0.23 0.23 0.23 0.23
�g 0.53 0.53 0.53 0.53 0.53 0.53 0.53
�i 0.45 0.45 0.45 0.45 0.45 0.45 0.45
�r 0.24 0.24 0.24 0.24 0.24 0.24 0.24
�p 0.14 0.14 0.14 0.14 0.14 0.14 0.14
�w 0.24 0.24 0.24 0.24 0.24 0.24 0.24

 0.43 0.43 0.42 0.42 0.49 0.61 0.64

100(��1 � 1) 0.16 0.17 0.20 0.23 0.09 0.01 0.01
Note. KL is de�ned as KLff (�D0 ; �Dc ). The bold value signi�es the parameter that moves the most.

Table S17. KL and empirical distances between �Dc and �
D
0 , SW(2007) model, L2 norm

(a) All parameters can vary (b) ' �xed
c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0

KL 8.06E-06 1.84E-04 6.62E-04 2.07E-05 5.23E-04 1.80E-03
T=80 0.0538 0.0705 0.0939 0.0562 0.0894 0.1365
T=150 0.0553 0.0795 0.1157 0.0586 0.1078 0.1843
T=200 0.0562 0.0850 0.1297 0.0601 0.1196 0.2159
T=1000 0.0646 0.1499 0.3112 0.0747 0.2697 0.6010
Note. KL is de�ned as KLff (�D0 ; �Dc ) with �Dc given in the columns of Table S16. The empirical
distance equals pff (�D0 ; �

D
c ; 0:05; T ), where T is speci�ed in the last four rows of the Table.



Table S18. Parameter values miminizing KL, SW(2007) model, weighted constraints
(a) � and 
 �xed (b) �; 
 and r� �xed (c) �; 
; r�, �l �xed

c 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0
�ga 0.52 0.52 0.53 0.53 0.52 0.52 0.52 0.52 0.51 0.51
�w 0.84 0.84 0.83 0.83 0.84 0.85 0.86 0.84 0.84 0.84
�p 0.69 0.69 0.69 0.69 0.69 0.68 0.68 0.69 0.70 0.70
� 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19
 0.54 0.54 0.55 0.56 0.54 0.52 0.50 0.54 0.54 0.53
' 5.74 5.69 5.54 5.41 6.09 5.89 6.06 6.08 7.47 9.19
�c 1.38 1.39 1.43 1.48 1.38 1.34 1.32 1.38 1.38 1.39
� 0.71 0.71 0.70 0.69 0.71 0.73 0.74 0.71 0.72 0.72
�p 1.60 1.60 1.59 1.59 1.60 1.59 1.59 1.60 1.61 1.62
�w 0.58 0.58 0.59 0.59 0.58 0.57 0.57 0.58 0.57 0.56
�w 0.70 0.70 0.69 0.69 0.70 0.74 0.77 0.70 0.71 0.71
�p 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.25
�p 0.66 0.66 0.65 0.65 0.66 0.66 0.67 0.66 0.67 0.67
�l 1.83 1.81 1.75 1.67 1.84 2.77 3.70 1.83 1.83 1.83
r� 2.04 2.10 2.33 2.63 2.04 2.04 2.04 2.04 2.04 2.04
r�y 0.22 0.22 0.23 0.24 0.22 0.20 0.19 0.22 0.22 0.22
ry 0.08 0.08 0.10 0.13 0.08 0.08 0.08 0.08 0.08 0.08
� 0.81 0.81 0.83 0.85 0.81 0.82 0.82 0.81 0.81 0.82
�a 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
�b 0.22 0.22 0.23 0.24 0.22 0.21 0.21 0.22 0.22 0.22
�g 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
�i 0.71 0.71 0.72 0.72 0.70 0.70 0.70 0.70 0.69 0.67
�r 0.15 0.15 0.14 0.14 0.15 0.13 0.12 0.15 0.15 0.14
�p 0.89 0.89 0.89 0.89 0.89 0.89 0.88 0.89 0.89 0.89
�w 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
�a 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
�b 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23
�g 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53
�i 0.45 0.45 0.46 0.46 0.45 0.45 0.45 0.45 0.45 0.45
�r 0.24 0.24 0.24 0.25 0.24 0.24 0.23 0.24 0.24 0.24
�p 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
�w 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24

 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43

100( 1� � 1) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
Note. The constraint is given by f�c : j(�c��0):=w(�0)j1 � cg, where w(�0) contains the lengths of the 90%
credible sets from SW(2007). The bold value signi�es the binding constraint.

Table S19. KL and empirical distances, SW(2007) model, weighted constraints
(a) � and 
 �xed (b) �; 
 and r� �xed (c) �; 
; r�, �l �xed

c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0
KL 6.81E-05 1.36E-03 4.22E-03 9.64E-05 1.74E-03 4.83E-03 9.67E-05 1.77E-03 5.12E-03
T=80 0.0605 0.1133 0.1950 0.0643 0.1346 0.2299 0.0643 0.1341 0.2333
T=150 0.0653 0.1500 0.2891 0.0703 0.1812 0.3377 0.0703 0.1812 0.3462
T=200 0.0682 0.1744 0.3513 0.0739 0.2120 0.4072 0.0739 0.2124 0.4188
T=1000 0.0994 0.4914 0.8896 0.1142 0.5898 0.9282 0.1142 0.5952 0.9399

Note. KL is de�ned as KLff (�D0 ; �Dc ) with �Dc given in the columns of Table S18. The empirical
distance equals pff (�D0 ; �

D
c ; 0:05; T ), where T is speci�ed in the last four rows of the Table.



Table S20. Parameter values miminizing the KL criterion, SW(2007) model, subset constraints
(a) Monetary policy (b) Exogenous shocks (c) Behavioral parameters

c 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0
�ga 0.52 0.52 0.53 0.47 0.52 0.52 0.56 0.52 0.52 0.52
�w 0.84 0.84 0.83 0.80 0.85 0.86 0.81 0.84 0.84 0.84
�p 0.69 0.69 0.69 0.75 0.59 0.19 0.68 0.69 0.69 0.69
� 0.19 0.19 0.19 0.22 0.19 0.19 0.19 0.19 0.19 0.19
 0.54 0.54 0.56 0.52 0.54 0.54 1.00 0.54 0.54 0.53
' 5.74 5.66 5.43 2.79 5.70 5.73 2.00 5.84 6.24 6.74
�c 1.38 1.40 1.46 1.36 1.38 1.38 2.28 1.38 1.38 1.38
� 0.71 0.71 0.69 0.60 0.71 0.71 0.52 0.71 0.71 0.72
�p 1.60 1.60 1.59 1.78 1.60 1.59 1.69 1.60 1.61 1.61
�w 0.58 0.58 0.59 0.99 0.59 0.60 0.63 0.58 0.58 0.57
�w 0.70 0.70 0.69 0.50 0.70 0.71 0.63 0.70 0.70 0.71
�p 0.24 0.24 0.24 0.24 0.18 0.02 0.26 0.24 0.24 0.24
�p 0.66 0.66 0.65 0.61 0.66 0.68 0.58 0.66 0.66 0.66
�l 1.83 1.81 1.71 0.52 1.87 1.90 1.03 1.83 1.85 1.86
r� 2.04 2.14 2.54 3.00 2.05 2.05 3.00 2.04 2.02 2.01
r�y 0.22 0.22 0.24 0.50 0.22 0.22 0.29 0.22 0.22 0.22
ry 0.08 0.09 0.12 0.28 0.08 0.08 0.17 0.08 0.08 0.08
� 0.81 0.82 0.85 0.50 0.81 0.81 0.85 0.81 0.81 0.81
�a 0.95 0.95 0.95 0.94 0.95 0.95 0.96 0.95 0.95 0.95
�b 0.22 0.22 0.23 0.40 0.22 0.22 0.37 0.22 0.22 0.22
�g 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.97 0.97 0.97
�i 0.71 0.71 0.72 0.75 0.71 0.71 0.99 0.71 0.70 0.70
�r 0.15 0.15 0.14 0.85 0.15 0.15 0.16 0.15 0.15 0.15
�p 0.89 0.89 0.89 0.99 0.87 0.81 0.91 0.89 0.89 0.89
�w 0.96 0.96 0.96 0.98 0.96 0.96 0.95 0.96 0.96 0.96
�a 0.45 0.45 0.45 0.43 0.45 0.45 0.43 0.45 0.45 0.45
�b 0.23 0.23 0.23 0.16 0.23 0.23 0.17 0.23 0.23 0.23
�g 0.53 0.53 0.53 0.54 0.53 0.53 0.56 0.53 0.53 0.53
�i 0.45 0.45 0.46 0.52 0.45 0.45 1.45 0.45 0.45 0.45
�r 0.24 0.24 0.24 1.24 0.24 0.24 0.27 0.24 0.24 0.24
�p 0.14 0.14 0.14 0.08 0.13 0.10 0.14 0.14 0.14 0.14
�w 0.24 0.24 0.24 0.31 0.24 0.25 0.25 0.24 0.24 0.24

 0.43 0.45 0.48 0.65 0.43 0.40 0.10 0.43 0.43 0.42

100(��1 � 1) 0.16 0.14 0.09 0.20 0.13 0.12 0.01 0.17 0.19 0.22
Note. KL is de�ned as KLff (�D0 ; �Dc ). The bold value signi�es the binding constraint. The italicized values
signify that the parameter belongs to the constrained subset.

Table S21. KL and empirical distances between �Dc and �
D
0 , SW(2007) model, subset constraints

(a) Monetary policy (b) Exogenous shocks (c) Behavioral parameters
c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0

KL 1.86E-04 3.25E-03 6.21E-01 1.00E-03 1.05E-02 1.26E-01 8.15E-06 1.86E-04 6.66E-04
T=80 0.0683 0.1677 0.9983 0.1109 0.3937 0.7609 0.0539 0.0706 0.0941
T=150 0.0771 0.2432 1.0000 0.1413 0.5760 0.8392 0.0553 0.0796 0.1159
T=200 0.0825 0.2936 1.0000 0.1610 0.6759 0.8756 0.0562 0.0852 0.1299
T=1000 0.1469 0.8079 1.0000 0.4161 0.9981 0.9959 0.0646 0.1505 0.3123

Note. KL is de�ned as KLff (�D0 ; �Dc ) with �Dc given in the columns of Table S20. The empirical
distance equals pff (�D0 ; �

D
c ; 0:05; T ), where T is speci�ed in the last four rows of the Table.
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