
Computaton Appendix for

�Uniform Inference on Quantile E¤ects under Sharp Regression

Discontinuity Designs�

Zhongjun Qu and Jungmo Yoon

November 7, 2017

This appendix is structured as follows. Section 1 explains how to use the main functions to

select the bandwidth, estimate the QTE, test hypotheses, and construct uniform con�dence bands.

Section 2 outlines the structure of the replication �le for the simulation results reported in the

paper. Section 3 explains the empirical replication. Users can replace the current data �le with

theirs and conduct analysis parallel to that in the paper.

The R �le �qte_rdd.R�contains �ve functions for analyzing quantile treatment e¤ects under

sharp RD designs; �qte_rdd_funcs.R�contains some supporting functions. These functions are

used in �qte_rdd_sim.R�to reproduce the simulation results and in �qte_rdd_app.R�for the em-

pirical application.

This version: November 7, 2017. The code will be continually updated; see the authors�website

for the most recent version.

1

1 Five R functions

This section explains how to use the following �ve functions.

i. rdd.bandwidth()-- implements the �ve bandwidth selectors.

ii. rdd.rqpro()-- estimates conditional quantiles.

iii. rdd.qte()-- estimates the QTE and obtains the uniform and pointwise con�dence bands.

iv. Score()-- performs the Score test.

v. Wald()-- performs the (robust) Wald tests.

Henceforth, suppose that the outcomes, covariate values, and treatment indicators are saved in

objects y, x, and d. Put all R scripts in one directory. The �rst thing to do is to read the functions.

In R, type:

> source("qte_rdd.R")

Bandwidth: rdd.bandwidth(). To compute the bandwidth at the median, use:

> rdd.bandwidth(x,y,d,x.eval=0,tt=c(0.2,0.8),m=9,method=c(1,2,3,4,5),val=(2:10/20),

kr=3).

The �rst three entries x,y and d specify the variables to use. x.eval is the cuto¤ point, which

is set to be 0 in this example. tt de�nes the quantile range T , which is set to [0:2; 0:8]. The next
argument m is the number of quantiles to be estimated. In this example, we set m=9. One can get a

�ner approximation to the conditional quantile process by letting m=19 or 29, which can be done

without restrictions.

The argument method speci�es the bandwidth selectors. If method=1, users will get hcvn;0:5.

Likewise, setting method=2,3,4 or 5 will lead to hcvin;0:5, h
int
n;0:5, h

bdy
n;0:5, or h

ik
n;0:5 respectively. One

can ask for multiple bandwidths. For example, setting method=c(1,4,5) (or method=c(2,3)) will

produce all boundary (or interior) point bandwidths. One can also get all �ve bandwidths, as the

above command line shows. The argument val speci�es the candidate values for the cross validation

bandwidth. It is necessary to specify val regardless of the choice of method. It is because the MSE

optimal bandwidths (hintn;0:5, h
bdy
n;0:5 and h

ik
n;0:5) require estimates of conditional densities and h

cv
n;0:5

is used as a pilot bandwidth to do so. The last argument kr speci�es which kernel function to use.

By letting kr=3, we use the Epanechnikov kernel, but other options are available. See comments

in the function rdd.bandwidth().

2

There are two additional arguments that the user can specify: band and br. The option band

speci�es the bandwidth values to estimate the second order derivatives at the median. (The values

are needed for computing the MSE-optimal bandwidths.) If the user does not specify band, then

the following default values will be used: one half of the length of the support of x. So, for example,

for hbdyn;0:5 the default bandwidth values are 0:5 � (max(x)� x0) and 0:5 � (x0 �min(x)). If the user
chooses to specify band, then the values need to be entered in the following order. The �rst element

band[1] is for hintn;0:5, the next two elements band[2:3] are for h
bdy
n;0:5, and �nally band[4:5] are for

hikn;0:5. The last two cases each contains two values, for Q
00(� jx+0) and Q00(� jx

�
0) respectively. The

option br is needed only for hintn;0:5. If br=1, then when estimating the MSE-optimal bandwidth

with a local cubic regression, the intercepts on two sides of the cuto¤ are allowed to be di¤erent.

If br=0, then the intercepts are restricted to be equal. The default is br=0.

For example, a command that includes all the options mentioned above will look like

> rdd.bandwidth(x,y,d,x.eval=0,tt=c(0.2,0.8),m=9,method=c(1,2,3,4,5),val=(2:10/20),

kr=3,band=c(1,0.5,0.5,0.5,0.5),br=1).

If the user saves the outcome of rdd.bandwidth() in an object H, the median bandwidth of the

selected methods can be found in Hhcv, Hhcvi, H$hint, H$hbdy, or H$hik.

Estimating conditional quantiles: rdd.rqpro(). Once selected a bandwidth, the user can

proceed to estimate Q(� jx0), Q(� jx+0), or Q(� jx
�
0). To estimate Q(� jx0), run:

> rdd.rqpro(x,y,tt=c(0.2,0.8),m=9,x.eval=0,bandw=0.3,method=1,kr=3)

To estimate Q(� jx+0), run:

> rdd.rqpro(x[d==1],y[d==1],tt=c(0.2,0.8),m=9,x.eval=0,bandw=0.3,method=1,kr=3)

Most options have the same meanings as before. We explain the new ones. bandw indicates what

bandwidth to use for estimation. Just the median bandwidth would su¢ ce. If one sets bandw=0.3 as

above, the function will use 0.3 as the value of the bandwidth. method indicates which estimation

method to use: method=1 implements the First Procedure in Section 3 of the paper, method=2

uses the Second Procedure, and method=3 uses a naive quantile-by-quantile estimation procedure

without enforcing monotonicity.

If the user saves the output of rdd.rqpro() in an object A, the quantile index used in estimation

can be found in A$taus and the corresponding conditional quantile estimates can be found in A$Q0.

3

Estimating QTE: rdd.qte(). The QTE, �(�), and its uniform and pointwise con�dence bands

can be estimated by

> rdd.qte(x,y,d,x.eval=0,alpha=0.9,tt=c(0.2,0.8),m=9,bandw=0.3,kr=3,bias=0,eql=0)

When alpha=0.9, one will get the 90% con�dence band. This function has two new options,

bias and eql. The former determines whether to use the robust con�dence bands, and the latter

indicates whether to use the equality constraint for the bias. So, for example, if bias=1,eql=0,

one will get the robust uniform and pointwise bands using quantile-by-quantile bias estimation. If

bias=0,eql=0, one will get the uniform and pointwise bands without bias correction.

If a user saves the outcome of the function in an object B, the QTE estimate, �̂(�), can be found

in B$qte, and the uniform and pointwise bands can be found in B$uci and B$pci.

The score test: Score(). To implement the Score test for treatment signi�cance, run:

> Score(x,y,x.eval=0,alpha=c(0.9,0.95),tt=c(0.2,0.8),m=9,bandw=0.3,kr=3)

The option alpha sets the desired con�dence level 1 � �. So, when alpha=c(0.9,0.95), one
will get critical values at the 10% and 5% levels. The other options are the same as before. If a

user saves its outcome in an object S, the Score test statistic and critical values can be found in

S$test and S$crit.

The Wald tests: Wald(). To implement the Wald tests, run:

> Wald(x,y,d,x.eval=0,alpha=c(0.9,0.95),tt=c(0.2,0.8),m=9,bandw=0.3,bandw2=0.3,

kr=3,test.type=c(1,2,3),sign.opt=1,eql=0)

This function produces the following output: (i) the conventional Wald test without bias cor-

rection, (ii) the robust Wald test with bias correction.

If eql=1, one can get the robust Wald test with the equality constraint on the biases. The

argument bandw speci�es the value of hn;0:5 and bandw2 speci�es the value of bn;0:5. The option

test.type determines which hypothesis to test. The values 1,2 and 3 indicate the treatment signif-

icance, homogeneity and unambiguity hypothesis, respectively. One can test a single hypothesis by

setting test.type=1 or test all three hypotheses by test.type=c(1,2,3). The option sign.opt

sets the sign of the treatment unambiguity hypothesis. If sign.opt=1, the e¤ects are unambigu-

ously positive under the null hypothesis, and if sign.opt=2, the e¤ects are unambiguously negative

under the null hypothesis.

4

If a user saves the outcome of the function in an object W, the test statistic and critical values

of the conventional Wald test can be found in W$wald.test and W$wald.crit. The results for the

robust Wald test can be found in W$wald.robust.test and W$wald.robust.crit.

2 Replicating the simulation results

The replication script is �qte_rdd_sim.R�. Running it over di¤erent models, sample sizes, bandwidth

choices replicates results in the simulation section.

The script contains fairly detailed comments to provide step by step instructions.

3 Replicating empirical �ndings

The �ve functions we have discussed so far are optimized for small to medium sample sizes. From

our experience, they work e¢ ciently when the number of observations is 10,000 or less. In our

application, the sample size, 457,615, turns out to be too big for some of these functions. Speci�-

cally, the four functions, rdd.bandwidth(), rdd.qte(), Score(), and Wald(), have routines that

heavily rely on matrix operations. However, as the size of a matrix grows, these operations

may slow down the computation or even stop it. To address this, we have developed alterna-

tive versions of the functions that are more suitable for larger sample sizes. For example, the

following results hold regarding the distributions of the Wald tests (using notations in Section 5):

(nhn;�)
�1Pn

i=1 diKi;�zi;�z
0
i;� !p fX(x0)N

+(�) and (nbn;�)
�1Pn

i=1 diKi;� �zi;� �z
0
i;� !p fX(x0) �N

+(�).

The original functions calculate the left hand side expression by matrix multiplication, while the

alternative functions use the right hand side expressions directly. In doing so, they use the fact that

N+(�) or �N+(�) can be explicitly determined once the kernel function is �xed and the marginal

density of X can be easily estimated.

These four new functions have an extension .app at the end of their names: rdd.bandwidth.app(),

rdd.qte.app(), Score.app(), and Wald.app(). The new functions have the same arguments as

the original ones, so can be used in the same way as before. But be aware that when applied

to a small to medium sample sizes, they can be slower than the functions without .app(). This

can make a signi�cant di¤erence if one uses the codes for simulation studies as in Section 8 of the

current paper.

The replication script is �qte_rdd_app.R�. The script contains fairly detailed comments to

provide step by step instructions.

5

