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Abstract

This paper proposes a nonparametric estimator for the state price density implied by a

cross-section of European options with di¤erent strikes and the same maturity. The proposed

estimator has two distinctive features. First, it extracts information from both call and put op-

tions, as opposed to only call options. Second, it does not require estimating any second-order

derivative. Instead, it is obtained as the solution to a constrained and penalized linear regres-

sion. The technical analysis faces two challenges because the state price density is de�ned by a

Fredholm integral equation of the �rst kind with an unbounded support, and the kernel function

is unbounded and non-di¤erentiable. We address these challenges by exploiting the structure of

the option pricing problem. After establishing the consistency and the convergence rate of the

estimator, we apply it to estimate the state price densities implied by the S&P500 index options

and those by the VIX options. The sample period includes the recent �nancial crisis and the

Great Recession, during which the turbulent market conditions imposed substantial challenges

on the estimation. We show that the procedure can work with both daily and high-frequency

observations. We also study whether the various features of this density can predict future asset

returns and obtain positive �ndings. Finally, we apply the method to examine the causal e¤ects

of monetary policy announcements on the market, using high-frequency data.
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1 Introduction

The state price density (SPD) corresponds to a probability distribution under which expected

returns on relevant �nancial assets are equal to the risk-free rate. The SPD exists if the market is

arbitrage-free, and it is unique if the market is also complete (Harrison and Kreps, 1979). All else

equal, its value in a density region increases if (i) the market assigns a higher probability for the

relevant states to occur, or (ii) the market assigns a higher price to the realized gains in these states.

Consequently, the change in this density can reveal how the �nancial market reacts dynamically

to policy interventions and economic fundamentals. The recent �nancial crisis calls for a better

understanding of these reactions. It also generates valuable data to study them.

The options market provides a natural laboratory for studying the dynamics of the SPD. Sup-

pose there is a continuum of strikes over a su¢ ciently wide range in the absence of arbitrage.

Then, it is possible to recover this density from a cross-section of European option prices and the

risk-free rate only. This identi�cation result, attributed to Cox and Ross (1976) and Breeden and

Litzenberger (1978), has inspired a sizable literature to study SPD estimation. The current paper

makes three contributions. First, it proposes a nonparametric estimator for the SPD. Second, it

applies this estimator to recover the SPDs implied by the S&P500 index options and those by the

VIX options. Third, it examines the predictive power of these densities for future asset prices and

presents positive �ndings. For the last two contributions, the sample period includes the recent

�nancial crisis and the Great Recession, during which the turbulent market environments imposed

substantial challenges for the estimation.

The proposed estimator has four features: (a) It is based on the method of sieves of Grenander

(1981). The SPD is approximated by a sequence of models, where the model complexity increases

progressively with sample size. (b) The estimator extracts information from both put and call

options, as opposed to only call options. This feature is essential for estimating both tails of the

density. (c) The method does not apply smoothing (i.e., averaging) over time. As a result, the esti-

mator is advantageous in situations where the density can jump abruptly by large magnitudes, for

example, during an economic crisis, after a signi�cant market event, or following a monetary policy

announcement. We document such abrupt changes in our empirical application. The disadvantage

is that the estimate no longer directly quanti�es the relation between the SPD and relevant state

variables. It sacri�ces e¢ ciency if the density evolved smoothly as a function of the correctly iden-

ti�ed state variables. (d) The estimator is the solution to a penalized constrained linear regression,

where the optimization problem is convex and easy to solve.

For comparison, it is informative to separate the existing estimation methods into parametric

and nonparametric methods. The parametric methods assume that the SPD, or the stochastic

process of the underlying asset, belongs to a parametric family. For example, Jarrow and Rudd
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(1982), Longsta¤ (1995), Abken, Madan and Ramamurtie (1996), Backus, Foresi, and Wu (2004),

and Beber and Brandt (2006) assume that the SPD has a four-parameter Gram-Charlier series

representation, with the four parameters capturing the mean, variance, skewness, and kurtosis of the

distribution. Melick and Thomas (1997) assume that the future price of the underlying asset at the

option�s expiration is drawn from a mixture of three lognormal distributions. Bates (2000) proposes

a two-factor stochastic volatility model with jumps for the underlying asset price, showing that the

model �ts the S&P 500 futures options better than without jumps. The parametric methods

are often parsimonious, with some of them well equipped at identifying relevant state variables.

However, constrained by the parametric assumptions, they may lack �exibility and su¤er from

misspeci�cation, especially when market conditions are rapidly changing, such as during a �nancial

crisis or after a major policy intervention. Therefore, to obtain an unbiased view of the SPD, it

is critical to confront such procedures with nonparametric estimates that do not require imposing

tight parametric structures.

The existing nonparametric methods typically estimate the density in two steps. First, a call

price function (or an implied volatility function) is estimated by kernel, polynomial, spline, or non-

parametric least square methods. Then, the second-order derivative of the call price function with

respect to the strike price is computed and used as an estimate for the SPD. Related methodolog-

ical contributions include Aït-Sahalia and Lo (1998), based on a kernel estimator; Aït-Sahalia and

Duarte (2003), based on constrained local polynomial estimators; Yatchew and Härdle (2006), using

nonparametric least squares; and Shimko (1993) and Figlewski (2010), using global polynomial and

spline methods, respectively. Some of these methods are applied or extended in, among others, Li

and Zhao (2009), Birru and Figlewski (2012), Kitsul and Wright (2013), and Song and Xiu (2016).

Unlike the aforementioned nonparametric methods, our proposed SPD estimator is obtained

by running a constrained linear regression without computing any derivatives. Hermite functions

generate the regressors, and the constraints help regulate the estimate. In practice, the user can

easily include both call and put options in the estimation or discard some observations based on

transaction volume or moneyness. Also, because the estimate is over the real line, there is no need

to separately estimate the tails, as in Figlewski (2010). The binomial tree method proposed by Ru-

binstein (1994) and Jackwerth and Rubinstein (1996) also does not require computing derivatives;

its di¤erences from the proposed method are in terms of (a), (b), and (d), described above.

Our conceptual framework treats the SPD estimation problem as an inverse problem involving

linear integral equations. The general literature on linear integral equations is quite rich (see Kress,

2014 for an introductory analysis); however, speci�c applications to option pricing are limited. Du,

Wang, and Du (2012) is an exception, which explicitly formulates the SPD estimation as a linear

inverse problem. However, unlike our approach, they do not introduce any basis function for the
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approximation. Instead, they discretize the integral and penalize the roughness (i.e., the second-

order derivative) of the estimator, arriving at a procedure that resembles the smoothing spline

estimation. They do not study the theoretical properties of the resulting estimator.

We illustrate the proposed method using both daily and high-frequency (e.g., minute-by-minute)

observations. Daily data are usually available for an extended period, which makes them ideal for

examining the SPD dynamics at business cycle frequencies. High-frequency data tend to be more

limited in their span; however, they contain valuable information about the immediate impacts of

monetary policies and other in�uential events on the �nancial market. We show that the method

is suitable for both types of applications.

The SPD is forward-looking. To explore this, we run predictive regressions for asset returns,

using various quantiles of the density as the predictor. The sample comprises daily observations

from January 2007 to April 2016, spanning the recent �nancial crisis and recovery. We also consider

a subsample excluding January 2007 �May 2009 to evaluate the impact of the �nancial crisis on

the predictive analysis. The predictive horizon is equal to one month (similar results hold for the

two-month horizon; see the online appendix). We �nd that the upper quantiles of the SPD have

signi�cant predictive power for the corresponding quantiles of the S&P 500 returns in both samples.

For lower quantiles, the results are mixed, with the predictive power being mostly absent. This

�nding of predictability is somewhat expected because the return volatility is strongly predictable

from the implied volatility. Still, the asymmetry between upper and lower quantiles suggests a

more nuanced picture that merits further consideration. We also �nd that the quantiles of the SPD

can predict the mean of the realized return in the subsample, but not the full sample. Since the

predictors exhibit only mild serial dependence, these regressions do not su¤er from the Stambaugh

bias as when the dividend yield is the predictor. To our knowledge, the above results are new to

the predictive regression literature.

Motivated by the �nding of predictive power, we suggest presenting a sequence of SPDs as

a way to re�ect the market�s perception (its prediction and the associated risk premium) of the

future. This proposal is inspired by the "River of Blood" measure of the Bank of England, which

is displayed as a fan chart to convey the central bank�s perception about future in�ation.

Finally, to illustrate the method�s potential for causal analysis, we consider two FOMC an-

nouncements made on December 18, 2013, and January 27, 2016. We estimate the SPDs within

a three-hour window surrounding the announcement using high-frequency data to trace out the

dynamic causal e¤ects. In each case, we �nd that the SPD remained mostly unchanged until

the announcement, reacted immediately at the news, and then continued to evolve over the next

90-minute interval. Beber and Brandt (2006) documented, using the parametric estimator of Jar-

row and Rudd (1982), that regularly scheduled macroeconomic announcements had e¤ects on the
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skewness and kurtosis of the SPD implied by Treasury bond futures options. The current paper il-

lustrates that similar analyses can be carried out using our nonparametric estimator. We conjecture

that the proposed method can be useful for identifying dynamic causal e¤ects in other contexts,

owing to its suitability for high-frequency data.

The remainder of the paper is organized as follows. Section 2 presents the estimator focusing

on its implementation. Section 3 studies the identi�cation and the asymptotic properties of the

estimator, while Section 4 examines its �nite sample properties. Section 5 presents empirical

applications related to the S&P500 and the VIX options. Section 6 o¤ers the conclusion. All

proofs are included in the online appendix.

2 The estimator

We consider European options on a common underlying asset with the same maturity date denoted

by T . As shown by Harrison and Kreps (1979), in the absence of arbitrage and market imperfection,

there exists a state price density f�t (�) for the payo¤ at time T , such that the prices of the call and
put options at time t satisfy

Ct(K) = e
�rt�

Z 1

0
(ST �K)+ f�t (ST )dST (1)

and

Pt(K) = e
�rt�

Z 1

0
(K � ST )+ f�t (ST )dST ; (2)

respectively, where K is the strike price, � = T � t, (ST �K)+ = max(ST �K; 0), rt is the risk-free
rate at time t, and ST denotes the potential price of the underlying asset at time T . Our framework

can allow for a time-varying risk-free rate rt; all subsequent analysis goes through after replacing

rt� with
R T
t rsds. The SPD leads to Arrow-Debreu prices when the number of states is �nite.

The proposed estimator of f�t (�) does not apply smoothing over t. As a result, we do not specify
the state variables a¤ecting f�t (ST ). To re�ect this feature, and to simplify the notation, we will

suppress the subscript t in subsequent analysis. In particular, we will write Ct(K), Pt(K), rt, and

f�t (ST ) as C(K), P (K), r, and f
�(ST ), respectively. Accordingly, (1) and (2) will be expressed as

C(K) = e�r�
R1
0 (ST �K)

+f�(ST )dST and P (K) = e�r�
R1
0 (K � ST )+f�(ST )dST , respectively.

2.1 Two issues in achieving e¤ective approximations

Before introducing the estimation procedure, we consider two issues that are important for a sieve

estimator of f�(�) to perform well in practice.

The �rst issue arises because the SPD is a dynamic object. Its dispersion di¤ers substan-

tially between asset classes, and it varies signi�cantly depending on, among other factors, market
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volatility, economic outlook, and time to maturity. Its dispersion eventually decreases to zero as t

approaches T . Because we aim to develop an estimator for general applications, we need a method

to standardize the density or the data before approximating the SPD. The usual standardization

method (i.e., dividing the data by their standard deviation) does not work here because we do not

observe direct realizations from the distribution associated with f�(�).
To address this issue, we apply the following change of variables:

x =
log(ST =S)� r�

�
p
�

(3)

and

z =
log(K=S)� r�

�
p
�

: (4)

where S is the spot price of the underlying asset at time t, r and � are de�ned in (1) and (2), and �

is equal to the Black-Scholes implied volatility for at-the-money call option of the same underlying

asset and maturity. Because the implied volatility is always reported as a summary statistic in

options data, these two transformations are straightforward to compute. We denote the density

after the change of variables by f(x). Then, (1) and (2) can be rewritten as

C(z) =

Z 1

�1
S
�
e
p
��x � e

p
��z
�+
f(x)dx (5)

and

P (z) =

Z 1

�1
S
�
e
p
��z � e

p
��x
�+
f(x)dx: (6)

We propose to approximate f(�) using a suitable set of basis functions. After estimating f(�),
we recover f�(�) by reversing the monotonic transformation (3), that is, by computing

f�(ST ) =
1

�
p
�ST

f

�
log(ST =S)� r�

�
p
�

�
: (7)

The SPD of the return RT = log(ST =S) is also straightforward to obtain, given by

1

�
p
�
f

�
RT � r�
�
p
�

�
:

The transformations (3) and (4) are not new. For example, (4) is often used as a measure

of moneyness to indicate how many standard deviations the option is in- or out-of-the-money;

see, for example, Carr and Wu (2003) and Beber and Brandt (2006). However, their role in the

current context is di¤erent, achieving the following two goals at once. First, the division by
p
��

serves as a variance-stabilizing transformation to ensure that the dispersion of f(x) is insensitive

to changes in market conditions and the time to maturity. In particular, if the dispersion of f�(x)

increases abruptly due to a large negative shock, the Black-Scholes volatility will rise instantly, and

the dispersion of f(x) will remain relatively unchanged. Because � is computed by inverting the
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Black-Scholes formula, it is not treated as an unknown parameter in the subsequent estimation.

Consequently, the estimation problem remains linear in parameters after the transformation. Sec-

ond, the logarithmic transformation log(ST =S) shifts the density�s support from the positive axis

to the real line. If f�(x) is close to the log-normal density, f(x) will be close to the normal density.

This feature is useful in addressing the second issue, described below.

The second issue is about the choice of basis functions for the approximation. This choice is

critical because the sample size is usually small, sometimes having less than a hundred observations

in total. The basis functions need to deliver an adequate approximation with a few terms only;

otherwise, the resulting method will not be useful in practice.

To address this issue, we observe that f(x) has three features. First, its support has no �xed

boundary. There is no simple rescaling of the data that can reduce the support of f(x) to, say,

[0; 1]. Second, this density is closely related to the normal density. When the stochastic process

for the underlying asset is a geometric Brownian motion with drift r and volatility �, this density

is exactly N(0; 1). Third, the density can have thicker tails than the normal distribution. These

three features suggest that Hermite functions are suitable basis functions for approximating f(x).

Recall that the Hermite functions {hj} are the complete orthonormal system in L2(�1;1) given
by

hj(x) =
Hj(x)

(2jj!�1=2)1=2
e�x

2=2 (j = 0; 1; 2; :::); (8)

where
R1
�1 h

2
j (x)dx = 1 for all j = 0; 1; 2; :::,

R1
�1 hi(x)hj(x)dx = 0 for all i 6= j, and fHjg are the

standard physicist�s Hermite polynomials given by

Hj(x) = (�1)j ex
2 dj

dxj
e�x

2
(j = 0; 1; 2; :::). (9)

By expressing f(x) in terms of hj(x), we obtain

f(x) �
1X
j=0

�jhj(x); (10)

where

�j =

Z 1

�1
f(x)hj(x)dx: (11)

The right-hand side of (10) is the Gauss-Hermite expansion of f(x). This expansion is well

de�ned under mild conditions. For example, by Theorem 9.1.6 in Szeg½o (2003, p.247), for any

function f(x) that is Lebesgue-measurable in [�1;+1], its Gauss-Hermite expansion converges to
f(x) uniformly on any �nite interval of R if the following four conditions hold: (i)

R a
�a jf(x)j dx exists

for every a > 0, (ii) there exists M <1 such that jf 0(x)j �M for all x 2 R, (iii)
R1
�1 jf

0(x)j dx <
1, and (iv) f(x) = O(ex

2=2 jxj��) for some � > 0 as jxj ! 1. Condition (i) is satis�ed here
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because f(x) is a density. Condition (iv) permits thicker tails than that of the normal distribution.

Throughout the paper, we assume that the Gauss-Hermite series expansion of f(x) is well de�ned.

Longsta¤ (1995) and Abken, Madan, and Ramamurtie (1996) considered the SPD estimation

under the assumption that it has a �nite-order Gram-Charlier series representation. Their es-

timator is parametric and is nonlinear in parameters (see Displays (8)-(9) and (20)-(22) in the

two papers, respectively). If we replace Hj(x) by the probabilist�s Hermite polynomial, Hej(x) =

(�1)j e(x2=2) dj
dxj
e�(x

2=2), and let �j = (1=j!)
R1
�1 f(x)Hej(x)dx, we obtain the Gram-Charlier series

approximation to f(x):

(2�)�1=2
JX
j=0

�jHej(x)e
�x2=2: (12)

However, as shown in Cramér (1946, p.223), for the Gram-Charlier series to converge, the tails of

f(x) in general need to approach zero faster than exp(�x2=4). This condition is restrictive given
the third feature of f(x) described above. As a result, the Gram-Charlier series is unsuitable for

directly approximating f(x) in (5) and (6).

2.2 The estimation procedure

Let fyi; zig (i = 1; :::; n) denote the sample of observed option prices and transformed strike prices
at time t (see (4)). Options with zero open interests or zero transaction volumes can be excluded

from the sample to avoid stale information. We assume that the data are ordered such that the

�rst nc observations are call options, and the remaining n�nc observations are put options. Then,

yi =

8<:
R1
�1 S

�
e
p
��x � e

p
��zi

�+
f(x)dx+ "iR1

�1 S
�
e
p
��zi � e

p
��x
�+
f(x)dx+ "i

for i = 1; :::; nc;

for i = nc + 1; :::; n;
(13)

where S denotes the spot price of the underlying asset at time t, and "i represents deviations from

the theoretical prices due to market frictions and other factors.

The estimation procedure is based on a Gauss-Hermite series approximation to f(x):

f(x) �
JX
j=0

�jhj(x), (14)

where �j is de�ned in (11) and J is the truncation order. It comprises the following steps:

STEP 1. For j = 0; :::; J , compute

xi;j =

8<:
R1
�1 S

�
e
p
��x � e

p
��zi

�+
hj(x)dx for i = 1; :::; nc;R1

�1 S
�
e
p
��zi � e

p
��x
�+
hj(x)dx for i = nc + 1; :::; n:

(15)

STEP 2. Let

xi = (xi;0; :::; xi;J)
0 and � = (�0; :::; �J)

0: (16)
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Solve the following optimization problem

min
�2HJ

nX
i=1

�
yi � x0i�

�2
+ �0Q��; (17)

where

HJ =

8<:� 2 RJ+1: infx2R

JX
j=0

�jhj(x) � �

9=; ; (18)

Q� is a (J +1)-dimensional regularization matrix, and � is a small negative constant, whose values

are speci�ed in the next subsection. Let �̂0; :::; �̂J be the solutions to (17). Compute

f̂(x) =
JX
j=0

�̂jhj(x):

STEP 3 (Optional). Compute the �nal estimate of f(x) as

ef(x) = max(0; f̂(x)� c); (19)

where c is a constant is such that Z 1

�1
ef(x)dx = 1: (20)

2.3 Discussion

In this subsection, we discuss several issues related to the method�s implementation, including the

choice of the tuning parameters. These issues are denoted as (I1) to (I6).

(I1) In HJ , the parameter � needs to be slightly negative to account for the e¤ect of the trun-
cation. This follows because, by (10), the truncation error is equal to f(x) �

PJ
j=0 �jhj(x) =P1

j=J+1 �jhj(x), which can be negative for some x 2 R. We suggest setting � to a value between
�1E-4 and �1E-3 in practice. In the R code we develop, � is speci�ed as an input parameter, so

that the user can apply di¤erent values, and compare the results.

(I2) The term �0Q�� is used to stabilize the estimate. We consider two speci�cations of Q�. The

�rst is a standard speci�cation:

Q� = �I (21)

where I is an identity matrix. This is used as the benchmark. The second speci�cation follows

Fuhry and Reichel (2012):

Q� = V D�V
0 (22)

with

D� = diag [max f�� n�1; 0g ;max f�� n�2; 0g ; :::;max f�� n�J+1; 0g] ; (23)
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where �1 � �2 � ::: � �J+1 are the ordered eigenvalues of n�1
Pn
i=1 xix

0
i, and V contains the

corresponding orthonormal eigenvectors as columns. Clearly,
Pn
i=1 xix

0
i + Q� = V diag[n�1 +

max f�� n�1; 0g, n�2 + max f�� n�2; 0g, :::, n�J+1 + max f�� n�J+1; 0g]V 0. Being di¤erent

from (21), the speci�cation (22) can be used to regularize a subset of eigenvalues of
Pn
i=1 xix

0
i.

For example, when J = 4 and n�3 > � > n�4, we have D� = diag [0; 0; 0; �� n�4; �� n�5] andPn
i=1 xix

0
i + Q� = V diag [n�1; n�2; n�3; �; �]V

0. Fuhry and Reichel (2012, Theorem 2.1) show

that
Pn
i=1 xix

0
i + V D�V

0 is the closest matrix to
Pn
i=1 xix

0
i in the Frobenius norm among all real

symmetric matrices with the smallest eigenvalue no less than �. Having a second regularization

method allows the user to check the robustness of the estimation results. The theory in the next

section holds under both methods.

(I3) The optimization problem in Step 2 is strictly convex. This follows because HJ is a convex
set, and the criterion function (17) is strictly convex. In simulations and empirical applications, we

implement this step using the routine solve.QP in R.

(I4) The parameter J controls the approximation error in (14), while � controls the degree of

regularization for a given J . Based on the theoretical and simulation results obtained in the next

two sections, we propose choosing J and � using the following procedure. Basically, this procedure

speci�es a su¢ ciently large J , and then uses � to regulate the estimates in case this J is larger

than necessary. First, set J =ceiling(2(n= log n)1=5), where the constant �2� is chosen such that

J + 1 is equal to 6 and 4 when n is around 200 and 20, respectively. Next, for this J , determine �

using cross validation. In our experimentations, the leave-one-out and the ten-fold cross validation

produce similar results. To implement the leave-one-out cross validation, let ĉ denote the (1,1)-th

element of n�1
Pn
i=1 xix

0
i. Write � as � = �ĉn

1=3, where the scaling by ĉ ensures that � will adapt

to the unit of measurement. Generate a grid of points between 0 and 0.1, and search � over this

grid to minimize
Pn
i=1(yi�x0i�̂(�i)(�))2, where �̂(�i)(�) is obtained from (17) while leaving out the

ith observation. The ten-fold cross validation is implemented in the same way, except that the ith

fold of the partition replaces the ith observation. The upper bound for the grid can be further

increased, although such values are never selected in our simulations and applications.

(I5) Step 3 of the procedure corresponds to the L2-projection of f̂(x) on the class of nonnegative

densities on the real line by Lemma 4 in Gajek (1986). That is, ef(x)minimizes R1�1 jf̂(x)�g(x)j2dx,
where g(x) can be any square-integrable function over R, satisfying g(x) � 0 and

R1
�1 g(x)dx = 1.

In our simulations and empirical applications, the di¤erences between ef(x) and f̂(x) are small.
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(I6) When computing the integrals (15) and (20),
R1
�1 needs to be replaced by

Rm
�m for some m >

0. We suggest setting m = max f10; log ng. A formal justi�cation is provided in the next section
(see Lemma A.1). Our theory also allows for an asymmetric range, as long as the strike coverage

expands similarly asymptotically on both sides. In our simulations and empirical applications, we

vary m between 10 and 30 and do not �nd any meaningful di¤erence in the results.

3 Properties of the estimator

We �rst study the identi�cation of the state space density based on put and call options, and

then establish the convergence rate of the estimator f̂(x). Throughout the analysis, the results are

conditional on the spot price S, the riskless rate r, and the scaling factor �.

3.1 Identi�cation based on call and put options

We consider the identi�cation of f�(x) in (1)-(2) based on a continuum of call and put options.

Let [Kc;L;Kc;U ] and [Kp;L;Kp;U ] denote the spans of the call and put strikes, respectively. These
two spans can be identical, or only partially overlap. For example, for S&P 500 options, Kp;L is
often smaller than Kc;L after excluding options with zero open interest. More generally, for index
options, there is more liquid coverage on the downside via out-of-the-money put options, implying

a lower Kp;L than Kc;L. De�ne

[KL;KU ] = [Kc;L;Kc;U ] [ [Kp;L;Kp;U ]:

Assumption 1 There exists a Lipschitz continuous density over x 2 R such that (1) and (2) hold
for K 2 [Kc;L;Kc;U ] and K 2 [Kp;L;Kp;U ], respectively, where [Kc;L;Kc;U ]\[Kp;L;Kp;U ] is nonempty.

The next lemma characterizes the identi�cation of f�(x) within and outside [KL;KU ].

Lemma 1 Suppose f�0 (x) satis�es Assumption 1. Let f
�
1 (x) be any density that is Lipschitz con-

tinuous over x 2 R. Then, the following two statements are equivalent:

(a) f�1 (x) satis�es (1) and (2) for K 2 [Kc;L;Kc;U ] and K 2 [Kp;L;Kp;U ], respectively.

(b) f�1 (x) is equal to f
�
0 (x) for any x 2 [KL;KU ]. Furthermore,

R KL
�1w(x)f

�
1 (x)dx =

R KL
�1w(x)f

�
0 (x)dx

and
R1
KU w(x)f

�
1 (x)dx =

R1
KU w(x)f

�
0 (x)dx, where w(x) = [1 x] and x 2 R.

Lemma 1 generalizes the identi�cation results in Cox and Ross (1976, p.154) and Breeden and

Litzenberger (1978) in two ways. First, the put options are included in the identi�cation analysis.

Second, the support of the density and that of the strikes are allowed to be di¤erent. The result

shows that f�(x) is point identi�ed only within [KL;KU ]. Outside this interval, it is not identi�ed,
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but it satis�es the integral restrictions stated in (b). Consequently, if [Kc;L;Kc;U ] and [Kp;L;Kp;U ]
are di¤erent, pooling the options can lead to better identi�cation than using the call options only.

The lemma can also be formulated equivalently in terms of f(x), after applying (3) and (4).

The next assumption imposes requirements on the data such that f�(x) is point identi�ed in

probability as n!1. Intuitively, we need the option strikes to be dense asymptotically, and their
range to cover all relevant positive out-of-the-money call and put option prices, such that we can

estimate the full SPD consistently. Let z(1); :::; z(n) be the order statistic of z1; :::; zn. Let F (x)

denote the CDF of f�(x).

Assumption 2 As n!1: (i) maxi�n�1F (z(i+1))�F (z(i))
p! 0;(ii) F (z(1))

p! 0 and F (z(n))
p! 1:

This Assumption is used in place of the more standard assumption of fz1; :::; zng being drawn
from a continuous distribution with support (�1;1). Bassett (1997) shows that the approximate
slope of the option curve implies bounds on the underlying cumulative distribution F (z). This

property allows us to evaluate Assumption 2�s empirical relevance using inequalities; see Online

Appendix B.

3.2 Asymptotic properties

We �rst present and discuss the assumptions. Then, we establish the convergence rate of the

estimator f̂(x).

The estimation problem has two nonstandard features. First, f(x) is de�ned by a Fredholm

integral equation of the �rst kind with an unbounded support, where the two kernel functions

S(e
p
��x � e

p
��z)+ and S(e

p
��z � e

p
��x)+ are unbounded and are non-di¤erentiable in x or z.

In other words, we can write the call pricing function C(z) =
R1
�1 S

�
e
p
��x � e

p
��z
�+
f(x)dx

as C(z) =
R1
�1K(x; z)f(x)dx with K(x; z) = S

�
e
p
��x � e

p
��z
�+
, where K(x; z) diverges to

in�nity for any �xed z as x ! 1. Second, as J and n increase, the (J + 1)-th diagonal element
of n�1

Pn
i=1 xix

0
i diverges to in�nity, while its smallest eigenvalue approaches zero, the orders

of which are unknown. These features, particularly the �rst one, imply that the results in the

recent econometric literature on linear inverse problems, such as those in Blundell, Chen, and

Kristensen (2007), Carrasco, Florens, and Renalt (2007), Horowitz (2011, 2014), and Horowitz and

Lee (2012), can not be directly applied to our analysis. More generally, to the best of our knowledge,

most asymptotic results for linear integral equations are obtained under settings where the kernel

function is smooth and bounded, and the support is compact. Unfortunately, both conditions are

violated with the current problem. We are unaware of any existing results that would imply our

estimator�s statistical properties, in particular, its rate of convergence. Fortunately, the option

pricing problem has speci�c structures that we can exploit. To this end, we begin by stating the
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following assumption, which concerns the real axis decay of the SPD and the asymptotic behavior

of its Hermite coe¢ cients.

Assumption 3 The density f(x) and its Hermite coe¢ cients satisfy: (i) there exist a > 0 and

� > 1, such that f(x) = O(e�ajxj
�

) as jxj ! 1 along the real axis; and (ii) there exist r > 0 and

p > 0, such that, for �j in (11),

�j = O(exp(�pjr)) as j !1: (24)

Assumption 3(i) allows heavier tails than that of a normal distribution. It is important to note

that this assumption is imposed on f(x), not on f�(x). The latter density does not satisfy this

assumption even when the underlying asset price follows a geometric Brownian motion. Su¢ cient

conditions for Assumption 3(ii) can be found in the literature. For example, Hille (1940, Theorem

1) shows that (24) holds with p =
p
2� and r = 1=2 if (a) f(x) is analytic and f(z) is di¤erentiable

over a strip �� � y � � for some � > 0, where z = x+ iy; and (b) for every given c with 0 � c < � ,
there exists a �nite B(c) such that jf(z)j � B(c) exp[� jxj

�
c2 � y2

�1=2
] for �1 < x < 1 and

�c � y � c. Building on Hille�s result, Boyd (1984) shows that (24) holds with r > 1=2 if (a) f(z)
is di¤erentiable over the complex plane; (b) and f(x) � exp(�a jxj�) for some � > 1 as jxj ! 1
along the real axis, where a is some �nite constant, and ���denotes that the two sides can di¤er by
an algebraic factor. Assumption 3(ii) requires r > 0, substantially weaker than requiring r � 1=2.

The results of Hille (1940) and Boyd (1984) imply that Assumption 3(ii) holds in the following

four settings: (S1) f(x) is equal to the product of a normal density and a �nite order polynomial in x;

(S2) f(x) is a �nite mixture, with each mixing component being a normal distribution multiplied

by a �nite order polynomial in x; (S3) f(x) is a �nite mixture, where the mixing components

satisfy the conditions of Hille (1940), possibly with di¤erent � , or the conditions of Boyd (1984),

possibly with di¤erent a and �; and (S4) f(x) is any density that has a �nite order Hermite series

representation. In (S2) and (S3), Assumption 3(ii) holds because the Hermite coe¢ cients of a

�nite mixture are equal to the sum of the individual coe¢ cients. Finally, (S2) and (S4) imply that

Assumption 3(ii) is compatible with the parametric models considered in Jarrow and Rudd (1982),

Longsta¤ (1995), Abken, Madan and Ramamurtie (1996), and Melick and Thomas (1997), because

(S2) and (S4) include the densities of these models as special cases.

Assumption 3(i) rules out some heavy-tailed distributions. For example, if ST has a Lévy

distribution (i.e., f�(x) � x�3=2 as x ! 1), then the SPD satis�es f(x) � exp(��
p
�x=2) as

x!1, violating the requirement � > 1 in Assumption 3(i). However, because the mean of a Lévy
distribution is in�nite, the price of any call option with a �nite strike is also in�nite, casting doubt

on whether such a distribution is directly useful for option pricing without any truncation.
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Assumption 3 is the key assumption of the paper. Given its importance, we now examine it in

the context of several commonly used parametric models for option pricing. The �rst model, which

is also the most general one, is a stochastic volatility model with contemporaneous jumps in return

and volatility (SVCJ, see Du¢ e, Pan, and Singleton, 2000 and Eraker, 2004). Its dynamics under

the risk neutral measure is given by

dSt
St

= rtdt+
p
VtdWt + (e

Zst � 1)dNt � ���dt (25)

dVt = k(� � Vt)dt+ �v
p
VtdBt + Z

v
t dNt;

where St is the spot price of the underlying asset; rt is the risk free rate;Wt and Bt are two Brownian

motions such that E(dWtdBt) = �dt; Nt � Poi(�) is a Poisson counting process with a constant
intensity �; Zst denotes the jump in the return with Z

s
t � N(�s; �2s); and Zvt denotes the jump in

the volatility which follows an exponential distribution: Zvt � Exp(�v). Amongst the parameters,
� determines the long run level of the volatility, k a¤ects the speed of the mean-reversion, �v is

the volatility-of-volatility parameter, and ����, with �� = exp(�s + �2s=2)� 1, compensates for the
instantaneous change in the expected return due to the presence of Zst . When restricting �v = 0,

the model in (25) reduces to a stochastic volatility model with jumps in return only. When further

restricting �s = �s = � = 0, the model reduces to the baseline stochastic volatility model. Finally,

by further restricting Vt to be constant, we obtain the Black-Scholes model. We denote these

three models by SVJ, SV, and BS, respectively. Du¢ e, Pan, and Singleton (2000) show that the

SPDs implied by the SVCJ, SVJ, and SV models have closed-form expressions (up to numerical

integration). This feature allows us to examine Assumption 3 in close detail.

To make this analysis empirically relevant, we estimate the parameters of the four models using

daily observations on the S&P500 index and its options. To re�ect di¤erent market conditions, we

choose three representative time periods and estimate the model parameters (except for � and �)

separately. These three periods are 2008.10 - 2009.4 (Crisis Period), 2009.6 - 2009.12 (Recovery

Period), and 2013.6 - 2013.12 (Expansion Period), during which the average VIX levels are equal

to 50, 25, and 15, respectively. After obtaining twelve sets of parameter estimates (i.e., four models

and three periods), we apply them to compute the implied SPDs, and then run regressions to

estimate the values of � and r de�ned in Assumption 3. The results are summarized in Tables 1

and 2; see their footnotes for additional details on computation. As the results show, the estimated

values of � and r are well above one and zero, respectively. The estimated values of � are close to

two in the BS case, consistent with the normality of the resulting distributions. In the remaining

cases, the estimated values of � for the left tail are always less than two, while those for the right

tail are greater than two, indicating thicker left and thinner right tails than those of a normal

distribution. Figures 1 and 2 provide additional information by displaying the tails of the densities,
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the associated Hermite coe¢ cients, and the �tted values from the regressions for the crisis period

under the BS and SVCJ models. The remaining cases are similar and are displayed in Figures

S1-S10 of the online appendix. The goodness of �t is seen to be adequate in all cases. Together,

these results support that Assumption 3 is compatible with the four parametric models for option

pricing.

We now examine how the approximation error f(x)�
PJ
j=0 �jhj(x) depends on J for the SVCJ

model. The results for the crisis and expansion periods (Figures 3 and 4) show that the errors are

large when J = 1, they substantially decrease when J increases to 3, and become negligible when

J = 5. The recovery period results are similar; we report them in the online appendix (Figure S11)

to save space. Further, in Figures 5-6 and S12, we display the same approximations but in terms

of the index level�s densities (i.e., f�(ST ) in (7)) to re�ect the e¤ect of the transformation (3). The

conclusions are the same. Finally, because the �ndings for the SV and SVJ models are similar,

we omit them to save space. These results are encouraging, showing that it is possible to achieve

parsimonious and adequate approximations across di¤erent data generating processes and market

conditions.

The next two assumptions concern the sampling process, the tuning parameters J , �, and �,

and the ill-posedness of the inverse problem.

Assumption 4 (i) fzi; "ig are independent of fzj ; "jg for i 6= j; (ii) E("i) = 0, E("2i ) = �2i with
0 < �2i <1, and "i is independent of zi for any i. (iii) maxi2fnc+1;:::;ng zi = Op (log n).

Assumption 5 As n ! 1: (i) log n=Jr + J=n1=5 ! 0; (ii)  = Op(J
�) for some � < 1, where

 = [�0(n�1
Pn
i=1 xix

0
i)
�1=2�]1=2; (iii) �=n! 0; and (iv) � < 0 and � is independent of n.

Assumption 4(ii) allows for heteroskedasticity. Assumption 4(iii) ensures that the integral
R1
�1

in (13) can be adequately approximated by
R logn
� logn. Assumption 4(iii) is for put options only. It al-

lows mini2f1;:::;ng zi and maxi2f1;:::;ncg zi to approach �1 and +1 at any rate. For call options, the

tail integrals
R � logn
�1 S

�
e
p
��x � e

p
��z
�+
f(x)dx and

R1
logn S

�
e
p
��x � e

p
��z
�+
f(x)dx are positive

and bounded from above by
R � logn
�1 Se

p
��xf(x)dx and

R1
logn Se

p
��xf(x)dx, respectively. Because

these two upper bounds do not involve z, we do not need any restriction on z to approximate them.

In other words, Assumption 4(iii) is not needed for call options because the call price C(z) is a

non-negative, decreasing function of z.

Assumption 5(i) requires the truncation order J to increase faster than (log n)1=r to ensure that

the bias from the Hermite series approximation is asymptotically negligible. Assumption 5 (ii)

imposes an upper bound on the decay rate of the Hermite coe¢ cients relative to the eigenspace

of n�1
Pn
i=1 xix

0
i, where xi and � are de�ned in Step 2 of the estimation procedure; see (16).
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The parameter  is related to, but di¤erent from, the sieve measure of ill-posedness �n de-

�ned in Blundell, Chen, and Kristensen (2007). To see this, let �min denote the smallest eigen-

value of n�1
Pn
i=1 xix

0
i and let ujk denote the (j; k)-th element of (n

�1Pn
i=1 xix

0
i)
�1=2. Then,

 = (
PJ
j;k=0 �j�ku(j+1)(k+1))

1=2 and �n = �
1=2
min. Because �j decays to zero at the rate exp(�pjr),

the coe¢ cients in the summation
PJ
j;k=0 �j�ku(j+1)(k+1) are close to zero except when j and k

are both small, which implies that the diverging rate of  can be much slower than that of ��1=4min

as J ! 1. By imposing a restriction on , instead of on �n, this assumption allows the inverse
problem to be severely ill-posed, as long as  decays at the rate Op(J�) for some � <1.

The parameter � in Assumption 5(iii) appears in the regularization matrix Q�. Note that Q�

is not a generic matrix. Instead, it is de�ned explicitly in (21) and (22). In Assumptions 5(ii) and

5(iii), we impose regularity conditions on � and n�1
Pn
i=1 xix

0
i. These conditions determine the

properties of Q�, allowing us to derive the convergence rate. Finally, Assumption 5 (iv) implies

that the e¤ect of � on the estimator f̂(x) is negligible asymptotically.

Theorem 1 Let Assumptions 1-5 hold. Then, for any x 2 R:

f̂(x)� f (x) = Op

 ��
n

�1=4
J1=2+� +

r
J

�

!
;

where (�=n)1=4 J1=2+� re�ects the bias caused by the Tikhonov regularization:

B(x) = �E

24h (x)0 nX
i=1

xix
0
i +Q�

!�1
Q��

35 :
Theorem 1 holds for both regularization methods described in Step 2 of the estimation pro-

cedure. By letting J � (log n)1=r+c1 for some �nite c1 and � � nc2 with 2=7 < c2 < 1=3, we

obtain f̂(x) � f (x) = Op(n
�1=7). This rate corresponds to the optimal convergence rate when

estimating the second-order derivative of a smooth function using a second-order polynomial and

a second-order kernel. Note that the terms (�=n)1=4 J1=2+� and
p
J=� are both increasing in J .

This re�ects Assumptions 3 and 5(i), under which the bias from the Hermite series approximation

is asymptotically negligible.

4 Finite sample properties

We �rst study the e¤ects of the truncation order and the regularization method on the precision

of the proposed estimator. Then, we compare this estimator with several notable estimators in the

literature: the constrained local linear estimator of Aït-Sahalia and Duarte (2003), the positive

convolution approximation (PCA) approach of Bondarenko (2003), and the four-parameter Gram-

Charlier series estimator of Jarrow and Rudd (1982) and Longsta¤ (1995).
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4.1 The e¤ects of tuning parameters on the estimator

To study this issue, we generate option prices using the SVCJ model with the parameter values

set to those in Table 1. The error "i is set to mi% of the theoretical price level with a cap of 5

dollars, where mi is independently and uniformly distributed as U(�10; 10). To mimic the S&P500
options market, we let St = 1000, nc = 68, and np = 72, so that the total number of options is

equal to 140. The spans of the call and put strikes are [660,1330] and [540, 1290], respectively. The

time-to-maturity is equal to 31 days, and the scaling factor � is equal to the Black-Scholes implied

volatility for the at-the-money call option. For each regularization method and truncation order,

the parameter � is determined by the ten-fold cross validation. The outcomes with � = 0 are

also reported, which serve as a benchmark for comparison. The reported mean integrated squared

errors (MISE) are based on 5000 simulation replications.

Table 3 presents the results. In all cases, the smallest MISE is achieved when 3 � J � 7, and the
decrease in the MISE (if there is any) is always small when J increases from 4 to 7. This �nding

shows that a small number of sieve terms can deliver adequate approximations across di¤erent

market conditions. A comparison with � = 0 shows that the Tikhonov regularization is useful in

stabilizing the performance of the estimator. In particular, the regularization has little e¤ect on the

estimator when J is small, whereas it leads to a signi�cant reduction in the MISE when J is large.

Between the two regularization methods, using Q� = V D�V 0 produces smaller MISEs overall than

using Q� = �I, although the di¤erence is mild and occurs mainly when J � 7. Note that if we let
J =ceiling(2(n= log n)1=5), we obtain J = 4.

4.2 Comparison with other estimators

We use the DGP of Aït-Sahalia and Duarte (2003) for this comparison. The spot price, interest

rate, and dividend yield are equal to St = 1365, rt = 4:5%, and �t = 2:5%, respectively. The

time-to-maturity is equal to 30 days, and the spans of the put and call strikes are both [1000; 1700].

The implied volatility is a linear function of the strike price: it equals 40% when K = 1000 and

20% when K = 1700. At each volatility level, the option price is generated using the Black-Scholes

formula, which is then contaminated by an additive noise with a uniform distribution. In addition

to considering nc = np = 25, we also consider a larger sample size nc = np = 50. We report the

MISEs in Table 4 and display the empirical distributions of the density estimates for nc = 25 in

Figures 7-10. The �gures reveal how the methods perform for di¤erent parts of the distribution.

For the proposed sieve method, by letting J =ceiling(2(n= log n)1=5), we obtain J = 4. We also

report the MISEs for J = 3; 5, and 6 to examine result sensitivity.

The �rst method we compare with is the constrained local linear estimator of Aït-Sahalia

and Duarte (2003). However, their paper does not provide a bandwidth selection rule for this
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estimator. To this end, we apply the optimal bandwidth for estimating the conditional mean in

an unconstrained local linear regression (i.e., their expression (3.21)), and adjust the constant C0;1

such that the bandwidth minimizes the ex-post MISE under the current simulation design with

nc = 25. Because this bandwidth choice requires the knowledge of the true DGP, it favors their

method. The implementation uses call options only, as in their work.

The second method is that of Bondarenko (2003). The estimator solve the optimization problem

min
f̂ �W�z

h ([v;w])

npX
i=1

�
Pi � e�r�

Z Ki

�1

�Z y

�1
f̂(x)dx

�
dy

�
;

where Pi is the price of a put option, Ki is a strike price, f̂(x) represents the SPD of ST , e�r�

provides the discounting by the risk-free rate, and [v; w] = [1000; 1700] for the current setting. The

set W�z
h ([v; w]) is determined by

W�z
h ([v; w]) =

8<:g(x) =
MX
j=1

aj�h(x� zj)

������ aj � 0;
MX
j=1

aj = 1

9=; ;
where aj (j = 1; :::;M) are unknown coe¢ cients and �h(x� zj) = �((x� zj)=h)=h, i.e., a Gaussian
kernel centered at zj with bandwidth (i.e., standard deviation) equal to h. As in Bondarenko (2003),

we distribute zj evenly between the strikes 1000 and 1700, and set �z = zj � zj�1 = 0:5h. Bon-
darenko (2003) suggested that a reasonable range forM is from 21 to 25. We follow this suggestion,

and then determine the value ofM within this range by 10-fold cross validation. Finally, as in Bon-

darenko (2003), we require that the estimator satisfy the following two constraints:
R1
�1 f̂(x)dx = 1

and e�(r��)�
R1
0 xf̂(x)dx = St with � being the daily dividend rate. The implementation uses put

options only, as in the original study.

The third estimator is that of Jarrow and Rudd (1982) and Longsta¤ (1995), which assumes

that SPD of ST belongs to a four-parameter family:

f(x) =
exp

�
�x2=2

�
p
2���

�
1 +

�

6

�
x3 � 3x

�
+


24

�
x4 � 6x+ 3

��
;

where

x =
ln(ST =St)�

�
�� �2=2

�
�

�
p
�

and �; �; �, and  are unknown parameters. This method is parametric because the model�s

complexity does not vary with the sample size. The estimate for the SPD is determined by the

value of (�; �; �; ) that minimizes the sum of squared pricing errors. The estimation can use a

subset of options or all options. We use all options because it delivers the best performance for the

current simulation design.
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Table 4 shows that the proposed sieve estimator produces smaller MISEs than all competing

methods when using the default truncation order J =ceiling(2(n= log n)1=5) and the default penal-

ization method. Some potential explanations for this di¤erence in performance are as follows. (i)

The constrained local linear estimator uses call options only. Because the noises in call options

are higher at lower strikes by the simulation design, the left tail�s estimation is imprecise. This

feature is clear from Figure 8, which shows that the left tail�s estimates are much more volatile than

the right tail. The proposed estimator uses all options; therefore, it can overcome this limitation.

(ii) The positive convolution approximation estimator requires estimating about 20 parameters.

Although the constraints embedded in W�z
h ([v; w]) help stabilize the estimates as explained in

Bondarenko (2003), the remaining degrees of freedom are still high for the sample sizes considered

here. Consequently, the estimates exhibit high variability, especially in the right tail, where the put

option prices are noisier. See Figure 9. The proposed sieve estimator estimates fewer parameters,

equal to 5 when J =ceiling(2(n= log n)1=5). Consequently, the estimates are more tightly distributed

around the true value. (iii) The parametric estimator of Jarrow and Rudd (1982) and Longsta¤

(1995) solves a non-convex optimization problem. It is not straightforward to impose restrictions to

prevent large negative density estimates. As a result, the estimates take on unreasonable values in

a substantial portion of our simulation replications. For example, after sorting the estimates f̂(x)

at each x, we �nd that they reach -0.52, -0.14, -0.13, -0.10, -0.08, and -0.06 at the following quantile

levels across x values: 0, 0.05, 0.10, 0.20, 0.30, and 0.40. See Figure 10. In contrast, the proposed

sieve estimator solves a convex optimization problem, for which imposing parameter restrictions

is straightforward. In particular, our implementation guarantees that the density estimates are

bounded from below by �0:001. Overall, the di¢ culty in borrowing information from constraints

explains why the parametric estimator exhibits higher variability than the proposed sieve estima-

tor. We also repeated the above simulation using a smaller sample size with nc = np = 20. The

conclusions are the same; see Supplemental Table S2 and Figure S13 for details.

The above results also show that discarding call or put options can result in substantial e¢ ciency

losses. It is interesting to study how to generalize the methods of Aït-Sahalia and Duarte (2003)

and Bondarenko (2003) to incorporate more data into the estimation, potentially by using the

put-call parity. However, such an investigation is beyond the scope of the current paper.

5 Applications

We �rst estimate the state price densities implied by the S&P 500 index options and by the VIX

options using daily observations from January 18, 2007, to April 27, 2016. Then, we study the

predictive power of these densities using quantile and least square regressions. Next, we discuss

a proposal to use the state price densities to measure the market�s perception of the near future.
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Finally, to illustrate the application of the method to high-frequency data, we consider two FOMC

announcements, and, for each one, we trace out the state price densities within a short time window

to examine its causal e¤ect on the �nancial market. The data used for the �rst three analyses are

obtained from Optionmetrics and the last analysis from Ivolatility. All results reported are obtained

using J =ceiling(2(n= log n)1=5), under the standard Tikhonov regularization with � determined by

the 10-fold cross-validation.

5.1 State price densities during the recent �nancial crisis and recovery

To study the state price densities implied by the S&P 500 index options, we �rst delete the options

with zero open interest or zero transaction volume to avoid stale information. We then identify

the trading days with at least 40 di¤erent option strikes with � = 30 in the data. In the sample,

there are 279 trading days with � = 30. Among them, 232 days have at least 40 di¤erent option

strikes. The remaining 47 days are excluded from the analysis. Note that the expiration date was

the third Friday of each month at the beginning of the sample. Later, the CBOE o¤ered more

settlement dates as the demand for options increased over time. For prices, Optionmetrics provides

the best closing bid and ask quotes for the records dated March 4th 2008 and older, and the best

15:59 EST bid and ask quotes for the records dated March 5th 2008 till present. The midpoint of

these quotes and the closing price of the index value are used for our estimation. Because we do

not use the restriction on the spot price (i.e., St = e�(r��)�
R1
0 xf�(x)dx), we do not require the

option prices and the index value to be exactly synchronized. Instead, the index value induces a

monotonic transformation (see (3) and (4)), which can be inverted after the estimation (see (4)).

After the data processing and the estimation, we obtain 232 state price densities with � = 30.

The 0:1, 0:25, 0:5, 0:75, and 0:9 quantiles of these densities are reported in Figure 11. The realized

monthly returns are also included in the same �gure for ease of comparison.

The results reveal interesting connections between the realized return and the state price density.

In particular, they show that 44:3% of the realized returns landed between the 0:25 and 0:75

quantiles of the estimated densities, and 85:3% of the realized returns landed between the 0:1 and

0:9 quantiles. To further examine their connections under the �nancial crisis and other major

market disruptions, we consider four adverse events that each triggered a more than 3% loss in the

index value: September 15, 2008 (-4.7%), when Lehman Brothers �led bankruptcy; September 29,

2008 (-8.7%), when the House rejected a $700 billion bailout plan; May 6, 2010 (-3.24%), when

automated trading triggered the "�ash crash"; and August 8, 2011 (-6.66%), when Standard &

Poors downgraded the US credit rating. The �ndings are summarized below.

First, the densities� left tails indicate that some fear was already building up in the �nancial

market before September 2008. In particular, in the �rst three months of 2007, the 10th percentiles
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of the densities corresponded to market returns of �3:6%, �3:5%, and �4:8%, respectively. From
June to August of 2008, these values worsened substantially to �8:6%, �10:0%, and �7:6%, re-
spectively. Second, the densities reveal that, in the beginning, the market greatly underestimated

the severity of the market outcome. For example, on September 18, 2008, three days after the

bankruptcy of Lehman Brothers, the 10th percentile of the density implied a market loss of 14:6%.

Although this magnitude is unusually high from a historical perspective, it is well below the subse-

quent loss of 24:9%. Except for a thickened left tail, this density did not indicate any clear tendency,

such as a large increase in the dispersion, implying that the market was still perceiving a severe

crisis as unlikely. Third, a comparison of the timing shows that a subsequent signi�cant decline in

the index value triggered a jump in the density�s dispersion. In particular, from September 18 to

October 23, the 10th and 90th percentiles of the density jumped from �14:6% and 9:3% to �35:8%
and 18:9%, respectively. Clearly, at that point, the market was no longer perceiving a �nancial

crisis as an unlikely event but a reality whose consequence was very uncertain. For the remaining

three adverse events, we observe similar jumps in the dispersion of the densities after large negative

realized returns, which implies that the timings and magnitudes of these events were unexpected

and that, when they occurred, they signi�cantly impacted the market�s perception of the future.

To further illustrate the dynamics of the state price density over this period, in Figure 12, we

display three densities obtained using the data on October 23, 2008 (during the �nancial crisis),

June 18, 2009 (the tipping point between the recession and the recovery), and June 20, 2013

(during the expansion). The �gures show that, as the underlying economic conditions improved,

not only the dispersion of the density declined substantially, its left tail also continued to decrease

towards the center of the distribution. This �nding suggests that changing-in-variance does not

fully describe the rich dynamics in the data.

In theory, because the state price density is equal to the product of the physical likelihood

and the risk attitude (i.e., marginal utility), bimodality can occur if the decrease in the former is

more than o¤set by the increase in the latter as we move away from the center of the distribution.

However, in practice, except for a few studies, including the current one and Jackwerth and Rubin-

stein (1996, Figure 4), most studies document densities with tails decaying monotonically to zero.

Therefore, it is essential to examine whether the bimodality feature reported here is due to irregu-

larities in option prices (e.g., caused by illiquid quotes) or the Gauss-Hermite approximation. For

the �rst possibility, we display the option prices for the three dates in Supplemental Figure S14. No

visible irregularity is detected. Next, we exclude the three lowest and three highest strikes for both

put and call options (i.e., excluding 12 observations in each case) and repeat the estimation. The

results do not change; see Supplemental Figure S15. Based on these considerations, we conclude

that the bimodality is unlikely the result of any data irregularity. For the second possibility, we
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repeat the estimation with the J�s value increased by one. The estimates, shown in Figure S16,

display the same pattern as in Figure 12. In addition, classifying the bimodality as an artifact does

not explain why the second mode is always in the left tail and why it moved closer to the center

of the distribution as the market condition improved. Together, the evidence supports that the

bimodality is a genuine feature of the state price density behind the data.

For the VIX options, we consider the same sample period and process the data in the same way,

except that we use the trading days that have at least 20 di¤erent option strikes with � = 30 in the

data. This yields 111 state price densities with � = 30. The results, summarized in Figure 13, show

that 43:2% of the realized VIX values landed between the 0:25 and 0:75 quantiles of the estimated

densities, and 79:3% of the VIX values landed between the 0:1 and 0:9 quantiles. As in Figure

11, the quantile bands show that the market initially underestimated the severity of the market

outcome. In particular, on the following three dates in 2008, July 21, August 18, and September

22, the medians of the state price densities were 18.2, 17.2, and 19.4, and the 90th percentiles were

only 30.0, 28.9, and 34.1, whereas the realized VIX levels were 20.4, 36.2, and 69.7, respectively.

After the House rejected the $700 billion bailout plan and a series of adverse events, on October 22,

the 90th percentile of the density jumped to 67.5, which was now comparable to the realized VIX

of 74:3. Figure 14 displays three representative densities, showing that as the economy improved,

the density shifted to the left, and the right tail decreased towards the center of the distribution.

Figures 11-14 convey an important message in the asset and derivatives pricing literature.

That is, by estimating a sequence of state price densities, we can uncover rich information about

the market�s perception of downside risks. Such information is not easy to obtain through other

channels. The "perception" here is a mix of predictions and associated risk premia. One of the

challenges in this literature is to disentangle the state price density into the e¤ects of objective

expectations and risk premia; however, investigating this issue is outside the scope of the current

paper.

5.2 Predictive power of the state price density

We consider predictive mean and quantile regressions using quantiles of the state price density as

the predictor. The prediction horizon is set as one month. The quantiles are computed based on

the estimated densities in the previous subsection. Using estimated quantiles, instead of the true

ones, does not bias the results towards overrejection of the null hypothesis of no predictability as

long as the pricing errors are serially uncorrelated. In addition to the full sample (2007:1�2016:4),
we also consider a subsample 2009:6� 2016:4. This allows us to evaluate the e¤ect of the �nancial
crisis on the parameter estimates and document the di¤erences. Below, we highlight the empirical

�ndings. Providing theoretical explanations for them is beyond the scope of the current paper.

21



We �rst consider the S&P 500 case. The results for the predictive mean regressions are sum-

marized in Table 5, where each column represents a separate least-square regression. For example,

in the �rst column, the one-month-ahead realized return on the S&P 500 index is regressed on the

10th percentile of the estimated state price density. The p-values that are below 10% are in bold.

When the �nancial crisis is excluded from the sample (i.e.. for 2009:6� 2016:4), the estimates are
all statistically signi�cant. Because the �rst-order correlations of the predictors are below 0:80,

this evidence for predictability is unlikely to be spurious. However, when the �nancial crisis is

included in the sample (i.e., for 2007:1 � 2016:4), none of the estimates is statistically signi�cant.
Is this break-down due to the unusual nature of the recent crisis, or is it commonly associated with

major market disruptions? This question requires an extended sample and is left for future study.

Note that the estimates for the lower quantiles are negative, while those for the upper quantiles

are positive, implying that lower (higher) quantiles of the density and the future return tend to

move in opposite (same) directions. This pattern is consistent with a risk-return trade-o¤; that

is, a higher dispersion of the state price density predicts a higher return on the S&P 500 index.

The above evidence for predictability is based on in-sample estimates. To examine out-of-sample

predictability, we would need to generate estimates of the regression coe¢ cients and then compare

the forecasting performance with a benchmark model. We leave this investigation for future work.

The results for the predictive quantile regressions are summarized in Table 6, where, in each col-

umn, a quantile of the state price density is used to predict the corresponding quantile of the return

distribution. Interestingly, for quantiles that are above the median, the estimates are statistically

signi�cant, irrespective of whether the �nancial crisis is included in the sample. Meanwhile, for

quantiles that are below the median, the estimates are insigni�cant in most cases. This asymmetry

merits further consideration.

We also repeat the analysis using the trading days with at least 50, instead of 40, di¤erent

option strikes. The results (see Tables S3 and S4) are essentially the same as those in Tables 5 and

6. In addition, we consider a longer forecasting horizon of 60 days. The �ndings (see Tables S5

and S6) are qualitatively similar to those in Tables 5 and 6, showing that they are not unique to

the monthly horizon.

The results for the VIX case are reported in Supplemental Tables S7 and S8. The estimates are

signi�cant in all cases. This �nding is unsurprising because VIX is strongly serially correlated. At

the same time, it provides favorable evidence for the performance of the proposed estimator.

The above analysis contributes to the growing literature that uses some aspects of the state price

density to predict future returns or risk premia. For example, Bollerslev, Tauchen, and Zhou (2009)

show that the variance risk premium (the gap between the VIX and realized variance) can predict

the equity risk premium. Some studies have used the tail of the state price density to forecast future
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returns; see Andersen, Fusari, and Todorov (2015) by parametric methods and Andersen, Todorov,

and Ubukata (2020) by nonparametric methods. Interestingly, most of these procedures tend to

�nd predictability at intermediate horizons, e.g., three to eight months. Results obtained using our

methods suggest that such predictability exists at shorter horizons, of one and two months.

5.3 A measure for market perception

Every state price density represents the market�s valuation about a future day. Given this property,

we propose to use a sequence of densities corresponding to di¤erent option maturities to measure

the market�s perception about the near future. We illustrate this proposal in Figure 15, where we

display the quantiles of nine state price densities estimated using VIX options on May 16, 2016, for

� = 9; 16; 23; 30; 37; 65; 93; 128; 156. These densities are asymmetric with a long right tail, implying

that the market was concerned about downside risk, i.e., the risk associated with a higher VIX

value than its current level. This concern is more pronounced at longer horizons. For example,

when � = 9, 65, and 156, the density�s medians are 15:9; 16:6, and 17.5, respectively, while their

0.9 quantiles are 19:9, 28:4, and 33.1. This measure is model-free because it does not apply any

parametric model for the VIX index. Its value re�ects not only expectations of future volatility

levels, but also the associated risk premia.

5.4 Identifying causal e¤ects using high-frequency data

The proposed estimator can be used to identify and estimate the impact of a monetary policy shock

on the �nancial market. We illustrate this point by considering two FOMC announcements made

on December 18, 2013 and January 27, 2016. In each case, we estimate the state price densities

implied by the S&P500 options over �ve-minute intervals within a three-hour window of the policy

announcement. The quantiles of the estimates are displayed in Figure 16.

On December 18, 2013, the Committee announced that it would be tapering back on QE3, by

slowing down its purchase of mortgage-backed securities at a pace of $35 billion per month rather

than $40 billion per month, and the longer-term Treasury securities at a pace of $40 billion per

month rather than $45 billion per month. It also rea¢ rmed that the exceptionally low target range

for the federal funds rate of 0 to 0.25% would be in place at least as long as the unemployment rate

remained above 6.5%. Figure 16(a) reveals that the state price density remained approximately

unchanged until the announcement, reacted immediately at the news, and then continued to evolve

over the next 90-minute interval. The most signi�cant change in the density is a reduction in its

left tail. The changes in the quantiles above the median are much smaller. Therefore, the main

causal e¤ect of this announcement is on the perception of tail probability and/or the associated

risk premium, not the overall growth potential.
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On January 27, 2016, the Committee announced that it would maintain the target range for the

federal funds rate at 0.25% to 0.5%. It also expressed a view that the economic conditions would

warrant only gradual increases in the federal funds rate and that the federal funds rate would likely

remain, for some time, at a low level. Figure 16(b) shows that the market reacted negatively to

the announcement. Di¤erent from the previous case, this announcement did not impact the lower

or upper tails only. Instead, it caused a small downward change in the overall distribution.

In the above analysis, we have controlled for factors that can a¤ect the market outside a small

window by using high-frequency data. In practice, similar analyses can be carried out to study the

causal e¤ects of other events on the market. Prior to our work, Hattori, Schrimpf, and Sushko (2016)

examined the impact of unconventional monetary policy announcements on investors�expectations

of tails risks. Their analysis is at the daily frequency and is based on computing the second-order

derivatives of the option pricing function.

6 Conclusion

This paper has proposed a sieve estimator for the state price density implied by a cross-section of

European options with di¤erent strikes and the same maturity. A variance-stabilizing transforma-

tion enables the estimator to perform well across asset classes under di¤erent market conditions.

The empirical applications demonstrate that the estimator is suitable for both daily and high-

frequency data. The results from predictive regressions suggest that the state price density has

predictive power for future returns. Finally, the analysis of two FOMC announcements shows that

the method can be used to identify and estimate causal e¤ects using high-frequency data.
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Table 2: Tail Decay Rates and Hermite Coefficients

Crisis Recovery Expansion

r κ(L) κ(R) r κ(L) κ(R) r κ(L) κ(R)

BS 1.103 2.051 1.952 1.089 2.028 1.973 1.069 2.016 1.984

SV 0.461 1.287 2.142 0.534 1.460 2.358 0.552 1.329 2.298

SVJ 0.464 1.361 2.889 0.537 1.452 2.582 0.482 1.423 2.810

SVCJ 0.523 1.342 2.636 0.629 1.446 2.528 0.535 1.408 2.701

Note. The tail decay is estimated using f(x) = b exp(−a |x|κ) + u(x) with x ∈ [0.5, 5] for the right
tail and x ∈ [−5,−0.5] for the left tail. The estimates are denoted by κ(R) and κ(L), respectively.
The Hermite coefficients are estimated using log(|βj |) = q − pjr + ej , where j = 0, 1, ..., 8 for the
BS model, and j = 0, 1, ..., 30 and for the remaining three models. The logarithm transformation is
used because the values of |βj | are small after the first few j. The upper bound of j for the BS model
is smaller because |βj | approaches zero very rapidly to the extent that the values are dominated by
rounding errors when j is outside this range. All estimates are significant at the 1% level.
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Table 4: Mean Integrated Squared Errors of the Estimators

Estimator nc = np = 25 nc = np = 50

J Qα = 0 Qα = αI Qα = V DαV
′ Qα = 0 Qα = αI Qα = V DαV

′

3 0.0373 0.0374 0.0373 0.0365 0.0364 0.0365

Sieve 4 0.0501 0.0397 0.0445 0.0315 0.0267 0.0286

5 0.0679 0.0513 0.0579 0.0409 0.0327 0.0365

6 0.0881 0.0637 0.0571 0.0522 0.0386 0.0351

Local linear 0.1011 0.0870

PCA 0.2675 0.1883

Parametric 0.0477 0.0280

Note. For the sieve estimator, the three columns display the MISEs over 5000 replication with no regularization
(Qα = 0), the standard Tikhonov regularization (Qα = αI), and the modified Tikhonov of Fuhry and Reichel
(Qα = V DαV

′), respectively. Setting J =ceiling(2(n/ logn)1/5), gives J=4 for both sample sizes. The parameter α
is determined by 10-fold cross validation. The last three rows of the table correspond to the constrained local linear
estimator of Ait-Sahalia and Duarte (2003), the positive convolution approximation estimator of Bondarenko (2003),
and the four-parameter Gram-Charlier series estimator of Jarrow and Rudd (1982) and Longstaff (1995).



Table 5: Predictive Mean Regressions for S&P500 Returns Using a Quantile as the Predictor

Quantile 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

01/18/2007 - 04/27/2016

Estimate -0.12 -0.36 -0.72 -1.84 0.63 0.57 0.42 0.30 0.21

s.d. 0.14 0.34 0.62 1.37 1.91 0.86 0.50 0.34 0.24

p-value 0.42 0.30 0.25 0.16 0.73 0.51 0.41 0.39 0.39

R-square 0.01 0.01 0.02 0.02 0.00 0.00 0.01 0.01 0.01

06/18/2009 - 04/27/2016

Estimate -0.36 -1.27 -2.45 -5.34 3.12 2.07 1.39 0.98 0.69

s.d. 0.09 0.31 0.57 1.40 1.17 0.56 0.36 0.25 0.18

p-value 1e-4 1e-5 2e-5 2e-4 8e-3 3e-4 2e-4 1e-4 1e-4

R-square 0.06 0.10 0.10 0.07 0.03 0.07 0.08 0.08 0.08

Note. Each column represents a least square regression. For example, the first column dis-
plays the results from a least square regression of the one-month-ahead realized return on the
10th percentile of the state price density. The standard errors allow for heteroscedasticity
and autocorrelation. The estimates that are significant at the 10% level are in bold.

Table 6: Predictive Quantile Regressions for S&P500 Returns

Quantile 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

01/18/2007 - 04/27/2016

Estimate 0.25 0.28 -0.60 -1.58 1.60 2.15 1.61 1.01 0.79

s.d. 0.06 0.97 1.06 1.61 1.78 0.55 0.19 0.14 0.21

p-value 5e-5 0.77 0.57 0.33 0.37 1e-4 1e-16 2e-13 2e-4

06/18/2009 - 04/27/2016

Estimate -0.28 -0.72 -1.72 -5.98 2.93 2.14 1.86 1.33 1.22

s.d. 0.24 0.61 1.16 2.70 1.93 0.62 0.53 0.35 0.21

p-value 0.24 0.24 0.14 0.03 0.13 4e-5 5e-4 1e-4 1e-8
Note. Each column represents a quantile regression. For example, the first column displays the
results from a 10th percentile quantile regression of the one-month-ahead realized return on
the 10th percentile of the state price density. The standard errors allow for heteroscedasticity
and autocorrelation. The estimates that are significant at the 10% level are in bold.



Figure 1: Density tails and Hermite coefficients implied by 
 the Black-Scholes model (the crisis period)
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Note. In (a) and (b), the solid line represents the true values, and the dotted line (indistinguishable
from the solid line) represents the fitted values from the regressions. In (c), the circles denote the
actual Hermite coefficients, and the dotted line the fitted regression line.



Figure 2: Density tails and Hermite coefficients implied by 
 the SVCJ model (the crisis period)
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Note. In (a) and (b), the solid line represents the true values, and the dotted line (barely distin-
guishable from the solid line) represents the fitted values from the regressions. In (c), the circles
denote the actual Hermite coefficients, and the dotted line the fitted regression line.



Figure 3: Hermite Series approximations with different truncation orders for
 the SVCJ model (the crisis period)
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Note. The density is for the transformed variable x. The solid and dashed lines represent the true
density and the approximation, respectively.



Figure 4: Hermite Series approximations with different truncation orders for
 the SVCJ model (the expansion period)
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Note. The density is for the transformed variable x. The solid and dashed lines represent the true
density and the approximation, respectively.



Figure 5: Hermite series approximations and the original density for
 the SVCJ model (the crisis period)
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Note. The density is for the original variable S. The solid and dashed lines represent the true density
and the approximation, respectively.



Figure 6: Hermite series approximations and the original density for
 the SVCJ model (the expansion period)
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Note. The density is for the original variable S. The solid and dashed lines represent the true density
and the approximation, respectively.



Figure 7: The empirical distribution of the Sieve estimator
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Note. The solid line: the true density; the dashed line: the median; the two dot-dash lines: the 0.025
and 0.975 quantiles; the shaded area: the entire set of estimates.

Figure 8: The empirical distribution of the constrained 
 local linear estimator
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Note. See Figure 7. This estimator is local, therefore it does not estimate the SPD beyond the strike
range.



Figure 9: The empirical distribution of the positive 
 convolution approximation estimator
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Note. See Figure 7.

Figure 10: The empirical distribution of the parametric estimator
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Note. See Figure 7.





Figure 12: Three representative state price densities implied by S&P500 options
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Figure 14: Three representative state price densities implied by VIX options
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Sieve Estimation of Option-Implied State Price Density

by Junwen Lu and Zhongjun Qu
Boston University

This appendix has three parts. The �rst part (Online Appendix A) presents the proofs. The
second part (Online Appendix B) provides some additional results related to Assumption 2 and
the empirical application. The third part consists of some tables and �gures.

Online Appendix A

The following notation is used throughout. jjxjj is the Euclidean norm of a vector x. jjXjj is
the vector induced norm of a matrix X. The symbol �!p�denotes convergence in probability, and
Op(�) and op(�) denote the usual notation for the orders of stochastic magnitude.
Proof of Lemma 1. �(a) ) (b)�: We �rst prove f�1 (x) = f�0 (x) for any x 2 [KL;KU ]. Then, we
show that the two integral restrictions hold when x =2 [KL;KU ].

The proof for f�1 (x) = f
�
0 (x) for any x 2 [KL;KU ] is by contradiction. Suppose that this equality

does not hold, that is, f�1 (x) 6= f�0 (x) for some x 2 [KL;KU ]. Without loss of generality, assume
f�1 (x) > f

�
0 (x) at this x. Then, we have either x 2 [Kc;L;Kc;U ] or x 2 [Kp;L;Kp;U ].

Suppose x 2 [Kc;L;Kc;U ]. By the continuity of f�1 (x) and f�0 (x), there exists an interval of
positive length, [l; u] � [Kc;L;Kc;U ], such that f�1 (x) > f�0 (x) for all x 2 [l; u]. De�ne

d = min
x2[l;u]

(f�1 (x)� f�0 (x)) : (A.1)

Consider three strike prices K1;K2; and K3 which belong to [l; u] and satisfy K3 = K2+� = K1+2�
for some � > 0. By Assumption 1, as in Breeden and Litzenberger (1978), we have

C(K1)� 2C(K2) + C(K3)
�2

=

RK2

K1
(x�K1)f�0 (x)dx

�2
�
RK3

K2
(x�K2)f�0 (x)dx

�2
+

RK3

K2
f�0 (x)dx

�
: (A.2)

The right hand side of (A.2) depends on f�0 (x) only through x 2 [l; u]. Let fmin = minx2[K1;K3] f
�
0 (x)

and fmax = maxx2[K1;K3] f
�
0 (x). Because (x�Ki)fmin � (x�Ki)f�0 (x) � (x�Ki)fmax for x � Ki

and i = 1; 2, the �rst two terms on the right hand side of (A.2) satisfy

1

2
fmin �

RK2

K1
(x�K1)f�0 (x)dx

�2
� 1

2
fmax and

1

2
fmin �

RK3

K2
(x�K2)f�0 (x)dx

�2
� 1

2
fmax,

respectively. Therefore, the di¤erence between the �rst two terms in (A.2) is bounded from below
and above by (fmin� fmax)=2 and (fmax� fmin)=2, respectively. Because f�0 (x) is Lipschitz contin-
uous, we have jfmax � fminj =2 � C(K3 �K1)=2 = C�, where C is a �nite constant independent of
l and u. The di¤erence between the �rst two right hand side terms in (A.2) is thus bounded from
below and above by �C� and C�, respectively. From this result, it follows that (A.2) satis�es

�C�+
RK3

K2
f�0 (x)dx

�
� C(K1)� 2C(K2) + C(K3)

�2
� C�+

RK3

K2
f�0 (x)dx

�
: (A.3)

A-1



Because f�1 (x) satis�es (1) for all K 2 [Kc;L;Kc;U ], it must satisfy the inequality (A.3), that is,

�C�+
RK3

K2
f�1 (x)dx

�
� C(K1)� 2C(K2) + C(K3)

�2
� C�+

RK3

K2
f�1 (x)dx

�
: (A.4)

The results (A.3) and (A.4) jointly imply

�C�+
RK3

K2
f�1 (x)dx

�
� C�+

RK3

K2
f�0 (x)dx

�
;

or, equivalently, [
RK3

K2
(f�1 (x) � f�0 (x))dx]=� � 2C�. Applying (A.1) to the left hand side of this

inequality, we obtain d � 2C�. Because C and d are independent of �, and � can be made arbitrarily
small, we arrive at a contradiction.

Now, Suppose x 2 [Kp;L;Kp;U ]. By the identity (K � x)+ = (x�K)+ � (x�K), we have

P (K1)� 2P (K2) + P (K3)
�2

=
C(K1)� 2C(K2) + C(K3)

�2
:

As a result, the same argument as the x 2 [Kc;L;Kc;U ] case can be applied, which also leads to a
contradiction. Therefore, we have f�1 (x) = f

�
0 (x) for any x 2 [KL;KU ]:

Next, we consider the situation where x =2 [KL;KU ]. Without loss of generality, assume Kc;U �
Kp;U . Let K1 and K2 denote two generic strike prices satisfying Kc;L � K1 < K2 � Kc;U . By (1),

C(K2) =

Z 1

K2

xf�0 (x)dx�K2
Z 1

K2

f�0 (x)dx and C(K1) =
Z 1

K1

xf�0 (x)dx�K1
Z 1

K1

f�0 (x)dx: (A.5)

This implies

C(K1)� C(K2) =
Z K2

K1

(x�K1)f�0 (x)dx+ (K2 �K1)
Z KU

K2

f�0 (x)dx+ (K2 �K1)
Z 1

KU
f�0 (x)dx;

or, equivalently,Z 1

KU
f�0 (x)dx =

C(K1)� C(K2)�
RK2

K1
(x�K1)f�0 (x)dx� (K2 �K1)

R KU
K2

f�0 (x)dx

(K2 �K1)
:

Because the right hand side depends on f�0 (x) only through x 2 [KL;KU ] and f�0 (x) = f�1 (x) for
any x 2 [KL;KU ], we have Z 1

KU
f�0 (x)dx =

Z 1

KU
f�1 (x)dx (A.6)

Furthermore, by the �rst equality in (A.5),Z 1

KU
xf�0 (x)dx = C(K2) +K2

Z 1

K2

f�0 (x)dx�
Z KU

K2

xf�0 (x)dx:

The right hand side of this equation yields the same value when f�0 (x) is replaced by f
�
1 (x) because

f�0 (x) = f
�
1 (x) for x 2 [KL;KU ] and (A.6) holds, This impliesZ 1

KU
xf�0 (x)dx =

Z 1

KU
xf�0 (x)dx. (A.7)

A-2



Combining (A.6) and (A.7), we obtain the integral restriction for the right tail of the density. The
left tail can be studied in the same way, by considering two put options with strike prices K3 and
K4 satisfying Kp;L � K3 < K4 � Kp;U . We omit the details.

The proof for �(b) ) (a)�is straightforward. For any K satisfying Kc;L � K � Kc;U , by (1),

C(K) =

Z 1

K
(x�K)f�0 (x)dx =

Z KU

K
(x�K)f�0 (x)dx+

Z 1

KU
xf�0 (x)dx�KU

Z 1

KU
f�0 (x)dx:

The right hand side returns the same value when f�0 (x) is replaced by f
�
1 (x) because of the conditions

in (b). Therefore, f�0 (x) and f
�
1 (x) yield the same call option prices for Kc;L � K � Kc;U . Similarly,

by considering put options with Kp;L � K � Kp;U , we can prove that f�0 (x) and f�1 (x) yield the
same put option prices for Kc;L � K � Kc;U when the conditions in (b) hold. �

Lemma A.1 Under Assumptions 1-3, we have

sup
z2R

����Z 1

�1
S
�
e
p
��x � e

p
��z
�+
f(x)dx�

Z c2 logn

�c1 logn
S
�
e
p
��x � e

p
��z
�+
f(x)dx

���� = Op
�
n�1

�
;

sup
z�B logn

����Z 1

�1
S
�
e
p
��z � e

p
��x
�+
f(x)dx�

Z c2 logn

�c1 logn
S
�
e
p
��z � e

p
��x
�+
f(x)dx

���� = Op
�
n�1

�
;

where S is the spot price of the underlying asset at time t, and c1; c2, and B can be any �nite
positive constants independent of n.

Proof of Lemma A.1. Without loss of generality, let c1 = c2 = 1. Setting c1 and c2 to generic
positive values does not a¤ect the upper bounds that we present below.

For the �rst equation in the Lemma, we haveZ 1

�1
S
�
e
p
��x � e

p
��z
�+
f(x)dx�

Z logn

� logn
S
�
e
p
��x � e

p
��z
�+
f(x)dx

=

Z � logn

�1
S
�
e
p
��x � e

p
��z
�+
f(x)dx+

Z 1

logn
S
�
e
p
��x � e

p
��z
�+
f(x)dx: (A.8)

The �rst term on the right hand side is positive and is bounded from above by
R � logn
�1 Se

p
��xf(x)dx

uniformly over z 2 R. For su¢ ciently large n, this upper bound satis�esZ � logn

�1
Se

p
��xf(x)dx � CSe�

p
�� logn

Z � logn

�1
e�ajxj

�

dx

= CSe�
p
�� logn

Z 1

logn
e�ax

�
dx

� CS

Z 1

logn
e�ax

�
dx (A.9)

� CS

a� (log n)��1

Z 1

logn
a�x��1e�ax

�
dx

=
CS

a� (log n)��1
e�a(logn)

�

= Op(n
�1)
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where C is �nite and Op(n�1) follows because, due to � > 1, we have a (log n)
� > log n for large n.

The second term on the right hand side of (A.8) is bounded from above by CS
R1
logn e

�ax�+
p
��xdx

uniformly over z 2 R for large n because of Assumption 3(i). This upper bound satis�es

CS

Z 1

logn
e�ax

�+
p
��xdx = CS

Z 1

logn
e�ax

�=2e(�ax
�=2+

p
��x)dx = CS

Z 1

logn
e�ax

�=2dx �Op(1);

where the second equality holds because, due to � > 1, we have �ax�=2 +
p
��x < 0 for any

x > log n for large n. By (A.9), CS
R1
logn e

�ax�=2dx = Op(n�1). Therefore, (A.8) is Op(n�1):
For the second equation in the Lemma, we haveZ 1

�1
S
�
e
p
��z � e

p
��x
�+
f(x)dx�

Z logn

� logn
S
�
e
p
��z � e

p
��x
�+
f(x)dx

=

Z � logn

�1
S
�
e
p
��z � e

p
��x
�+
f(x)dx+

Z 1

logn
S
�
e
p
��z � e

p
��x
�+
f(x)dx: (A.10)

The �rst term on the right hand side of (A.10) is bounded from above by Se
p
��z
R � logn
�1 f(x)dx

uniformly over z � B log n. For large n, this upper bound satis�es

sup
z�B logn

Se
p
��z

Z � logn

�1
f(x)dx � sup

z�B logn
SCe

p
��z

Z 1

logn
exp (�ax�) dx

� SC

Z 1

logn
exp

�
�ax� +

p
��B log n

�
dx (A.11)

� SC

Z 1

logn
exp (�ax�=2) dx = Op(n�1);

where the �rst inequality holds because of Assumption 3(i), the second holds because z � B log n,
the third because �ax�=2 +

p
��Bx < 0 for su¢ ciently large n, and the equality holds because of

(A.9). The second term on the right hand side of (A.10) is equal to
R B logn
logn S(e

p
��z�e

p
��x)+f(x)dx

because z � B log n. It satis�es

sup
z�B logn

Z B logn

logn
S
�
e
p
��z � e

p
��x
�+
f(x)dx � Se

p
��B logn

Z B logn

logn
f(x)dx

� Se
p
��B logn

Z 1

logn
f(x)dx = Op(n

�1);

where the equality holds because of (A.11). The Lemma follows from this result and (A.11). �

Lemma A.2 Under Assumptions 1-5, we have

sup
z2R

1X
j=J+1

�����j Z c2 logn

�c1 logn
S
�
e
p
��x � e

p
��z
�+
hj(x)dx

���� = Op
�
n�1

�
;

sup
z�B logn

1X
j=J+1

�����j Z c2 logn

�c1 logn
S
�
e
p
��z � e

p
��x
�+
hj(x)dx

���� = Op
�
n�1

�
;

where S is the spot price of the underlying asset at time t, and c1; c2, and B can be any �nite
positive constants independent of n.
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Proof of Lemma A.2. Without loss of generality, let c1 = c2 = 1. Let C be a �nite constant that
can be di¤erent between cases. The �rst equation in the Lemma satis�es, for su¢ ciently large n,

1X
j=J+1

�����j Z logn

� logn
S
�
e
p
��x � e

p
��z
�+
hj(x)dx

���� �
1X

j=J+1

���j�� Z logn

� logn
S
�
e
p
��x � e

p
��z
�+
jhj(x)j dx

�
1X

j=J+1

���j�� Z logn

� logn
Se

p
��x jhj(x)j dx

� SC
1X

j=J+1

���j�� �Z logn

� logn
e
p
��xdx

�

� SCp
��

1X
j=J+1

e
p
�� logn�pjr ;

where the second inequality follows from the monotonicity of the function
�
e
p
��x � e

p
��z
�+

with

respect to z, the third follows because hj(x) is bounded, and the last follows from Assumption 3
(ii). Because Jr= log n ! 1, we have pjr=2 >

p
�� log n for su¢ ciently large n, implying the last

term in the preceding display satis�es

SC

1X
j=J+1

e
p
�� logn�pjr � SC

1X
j=J+1

exp (�pjr=2) (A.12)

= Op(exp (�pJr=4))

= Op(
1

n
exp(�p

4
Jr + log n))

= Op(
1

n
);

where the �rst equality holds because
P1
j=J+1 exp (�pjr=4) <1.

The second equation in the Lemma satis�es, for su¢ ciently large n,

1X
j=J+1

�����j Z logn

� logn
S
�
e
p
��z � e

p
��x
�+
hj(x)dx

����
�

1X
j=J+1

���j�� Z logn

� logn
Se

p
��z jhj(x)j dx

� S

1X
j=J+1

���j�� ����Z logn

� logn
e2
p
��zdx

����1=2 ����Z logn

� logn
hj(x)

2dx

����1=2 :
The last expression in the display satis�es supz�B logn j

R logn
� logn e

2
p
��zdxj1=2 � e

p
��B logn log n andR logn

� logn hj(x)
2dx < 1 because hj(x) (j = 0; 1; :::) are orthonormal. Therefore, this expression is

bounded from above by S
P1
j=J+1 e

p
��B logn�pjr log n. This upper bound is Op(n�1) by the same

argument as in (A.12) and the assumption Jr= log n!1. �
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Lemma A.3 Under Assumptions 1-5, for any x 2 R, we have

h (x)0
 

nX
i=1

xix
0
i +Q�

!�1 nX
i=1

xi"i = Op

 s
J

max(�; n�min)

!
;

where h (x) = (h0(x); :::; hJ(x))
0, Q� is given by (21) or (22) and �min is the smallest eigenvalue of

n�1
Pn
i=1 xix

0
i. In addition, the right hand side of the above expression is Op(J=

p
max(�; n�min))

uniformly over x 2 R:

Proof of Lemma A.3. The right hand side expression in the Lemma has mean zero. Its variance,
conditional on (x1; :::; xn) for any x 2 R, is equal to

h (x)0
 

nX
i=1

xix
0
i +Q�

!�1 nX
i=1

�2ixix
0
i

! 
nX
i=1

xix
0
i +Q�

!�1
h (x)

� max
1�j�n

�2j

8<:h (x)0
 

nX
i=1

xix
0
i +Q�

!�1 nX
i=1

xix
0
i

! 
nX
i=1

xix
0
i +Q�

!�1
h (x)

9=; :
Below, we show that this conditional variance is Op(J=max(�; n�min)). The Lemma follows from
this result and the Chebyshev inequality.

Denote the eigenvalue decomposition of n�1
Pn
i=1 xix

0
i by V �V

0, where � = diag(�1; :::; �J+1)
with �1 � ::: � �J+1. If Q� is given by (21), the expression in the curly brackets of the preceding
display is equal to

h (x)0 V
h
(n� + �)�1 (n�) (n� + �)�1

i
V 0h (x) (A.13)

= jjh (x)0 V jj2
�
h (x)0 V

jjh (x)0 V jj
(n� + �)�1 (n�) (n� + �)�1

V 0h (x)

jjh (x)0 V jj

�
The expression in the brackets is bounded by the maximum eigenvalue of (n� + �)�1 (n�) (n� + �)�1,
which is less than or equal to

max
1�j�J+1

n�j

(n�j + �)
2 � max

�
1

4�
;

1

n�min

�
;

where the inequality holds because the function x=(x + �)2 for x > 0 is maximized at x = �.
From this result and jjh (x)0 V jj = Op(J

1=2) uniformly over x 2 R, it follows that (A.13) is
Op(J=max(4�; n�min)) = Op(J=max(�; n�min)) for any x 2 R.

If Q� is given by (22), then, instead of (A.13), we have

h (x)0 V
h
(n� +D�)

�1 (n�) (n� +D�)
�1
i
V 0h (x)

= jjh (x)0 V jj2
�
h (x)0 V

jjh (x)0 V jj
(n� +D�)

�1 (n�) (n� +D�)
�1 V 0h (x)

jjh (x)0 V jj

�
;

where D� = diag [max f�� n�1; 0g ;max f�� n�2; 0g ; :::;max f�� n�J+1; 0g]. The expression in
the brackets is bounded from above by the maximum eigenvalue of (n� +D�)

�1 (n�) (n� +D�)
�1,

which is less than or equal to

max
1�j�J+1

n�j

(n�j +max f�� n�j ; 0g)2
(A.14)
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Let j� denote the largest j that satis�es n�j � �. Then, the preceding display can be rewritten as

max
n

1
n�1

::: 1
n�j�

n�j�+1
�2

:::
n�J+1
�2

o
:

If j > j�, then
n�j
�2

� n�j�+1
�2

� 1

�
:

If j � j�, then
1

n�j
� 1

�
: (A.15)

Therefore, (A.14) is bounded from above by 1=max(�; n�min). From this result and jjh (x)0 V jj =
Op(J

1=2) uniformly over x 2 R, it follows that (A.13) is Op(J=max(�; n�min)) for any x 2 R.
To establish the order of h (x)0 (

Pn
i=1 xix

0
i +Q�)

�1Pn
i=1 xi"i uniformly over x 2 R, we apply

the Cauchy�Schwarz inequality:h (x)0
 

nX
i=1

xix
0
i +Q�

!�1 nX
i=1

xi"i


2

� kh (x)k2

 

nX
i=1

xix
0
i +Q�

!�1 nX
i=1

xi"i


2

= kh (x)k2 tr

8<:
 

nX
i=1

xix
0
i +Q�

!�1 nX
i=1

xi"i

! 
nX
i=1

x0i"i

! 
nX
i=1

xix
0
i +Q�

!�19=; :
Because the Hermite functions are uniformly bounded on the real line, kh (x)k2 = Op (J) uniformly
over x 2 R . The second term on the right hand side can be studied using the Markov inequality.
In particular, it is nonnegative and its mean is bounded by (J + 1) times the maximum eigenvalue
of (
Pn
i=1 xix

0
i +Q�)

�1(
Pn
i=1 �

2
ixix

0
i)(
Pn
i=1 xix

0
i +Q�)

�1. This eigenvalue can be studied using the
same argument as between (A.13) and (A.15), and it is Op(1=max(�; n�min)). These results imply
that h (x)0 (

Pn
i=1 xix

0
i +Q�)

�1Pn
i=1 xi"i is Op(J=

p
max(�; n�min)) uniformly over x 2 R. �

Proof of Theorem 1. Let �̂
�
denote the estimate of � from STEP 2 of the proposed estimation

procedure, but with � = �1. To shorten the notation, de�ne h (x) = (h0(x); :::; hJ(x))0 and let

gi(x) = S
�
e
p
��x � e

p
��zi

�+
if n � nc and gi(x) = S

�
e
p
��zi � e

p
��x
�+

if n > nc:
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Consider the following decomposition:

h (x)0 �̂
� � f (x)

=

8<:h (x)0 �̂� � h (x)0 � + h (x)0
 

nX
i=1

xix
0
i +Q�

!�1
Q��

9=;
+[h (x)0 � � f (x)]� h (x)0

 
nX
i=1

xix
0
i +Q�

!�1
Q��

= h (x)0
 

nX
i=1

xix
0
i +Q�

!�1 nX
i=1

xi"i � h (x)0
 

nX
i=1

xix
0
i +Q�

!�1
Q��

+h (x)0
 

nX
i=1

xix
0
i +Q�

!�1 nX
i=1

xi

�Z � logn

�1
gi(x)f(x)dx+

Z 1

logn
gi(x)f(x)dx

�
(I)

+h (x)0
 

nX
i=1

xix
0
i +Q�

!�1 nX
i=1

xi

0@ 1X
j=J+1

�j

Z logn

� logn
gi(x)hj(x)dx

1A (II)

�
1X

s=J+1

hs(x)�s (III)

The terms (I)-(III) represent the biases induced by truncating the Hermite series, applying the
regularization with Q�, and replacing the integral

R1
�1 by

R logn
� logn.

We examine (I)-(III) separately. Let �min denote the smallest eigenvalue of n�1
Pn
i=1 xix

0
i. By

the Cauchy-Schwarz inequality and Lemmas A.1 and A.3, (I) is bounded from above by8<:h (x)0
 

nX
i=1

xix
0
i +Q�

!�1 nX
i=1

xix
0
i

! 
nX
i=1

xix
0
i +Q�

!�1
h (x)

9=;
1=2

�
(

nX
i=1

�Z � logn

�1
gi(x)f(x)dx+

Z 1

logn
gi(x)f(x)dx

�2)1=2

= Op

 s
J

max(�; n�min)

1p
n

!
= op

 s
J

max(�; n�min)

!
.

Similarly, (II) is bounded from above by8<:h (x)0
 

nX
i=1

xix
0
i +Q�

!�1 nX
i=1

xix
0
i

! 
nX
i=1

xix
0
i +Q�

!�1
h (x)

9=;
1=2

�

0@ nX
i=1

0@ 1X
j=J+1

�j

Z logn

� logn
gi(x)hj(x)dx

1A21A :
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By Lemmas A.2 and A.3, this is op(
p
J=max(�; n�min)). Term (III) satis�es, for large n,�����

1X
s=J+1

hs(x)�s

����� � C

1X
s=J+1

j�sj � C
1X

j=J+1

exp(�pjr) � C exp(�pJr=2)
 1X
s=J+1

exp(�pjr=2)
!

= O (exp(�pJr=2)) = O(1=n);

where the �rst inequality holds because the Hermite functions are bounded for all j and x 2 R, the
second holds because of Assumption 3(ii), the �rst equality holds because

P1
s=J+1 exp(�pjr=2) <

1, and the last inequality holds because pjr=2 > log n for su¢ ciently large n. These results for
(I)-(III) hold uniformly over x 2 R.

Combining these results, we have

h (x)0 �̂
� � f (x) (A.16)

= h (x)0
 

nX
i=1

xix
0
i +Q�

!�1 nX
i=1

xi"i � h (x)0
 

nX
i=1

xix
0
i +Q�

!�1
Q��

+op

 s
J

max(�; n�min)

!

uniformly over x 2 R. We study the two leading terms on the right hand side separately. By
Lemma A.3, the �rst term satis�es

h (x)0
 

nX
i=1

xix
0
i +Q�

!�1 nX
i=1

xi"i = Op

 s
J

max(�; n�min)

!
(A.17)

for any x 2 R, and it is Op
�
J
p
max(�; n�min)

�
uniformly over x 2 R. The second term satis�esh (x)0

 
nX
i=1

xix
0
i +Q�

!�1
Q��

 (A.18)

=

h (x)0
 

nX
i=1

xix
0
i +Q�

!�1
Q�

 
n�1

nX
i=1

xix
0
i

!1=4 
n�1

nX
i=1

xix
0
i

!�1=4
�


�

h (x)0
 

nX
i=1

xix
0
i +Q�

!�1
Q�

 
n�1

nX
i=1

xix
0
i

!1=4

 
n�1

nX
i=1

xix
0
i

!�1=4
�


=

n
h (x)0 V (n� +D�)

�1D��
1=2D� (n� +D�)

�1 V 0h (x)
o1=2 

 
n�1

nX
i=1

xix
0
i

!�1=4
�

 ;
where D� = �I if Q� is given by (21) and is equal to (23) if Q� is given by (22). In both cases,
the expression in the above curly brackets can be rewritten as

1

n

(
h (x)0 V

�
� +

1

n
D�

��1
D��

1=2D�

�
� +

1

n
D�

��1
V 0h (x)

)1=2
;

A-9



which is equal to

1

n
jjh (x)0 V jj

(
h (x)0 V

jjh (x)0 V jj

�
� +

1

n
D�

��1
D��

1=2D�

�
� +

1

n
D�

��1 V 0h (x)

jjh (x)0 V jj

)1=2

� 1

n
jjh (x)0 V jj


�
� +

1

n
D�

��1
D��

1=2D�

�
� +

1

n
D�

��1
1=2

: (A.19)

If D� = �I, the second norm on the right hand side of (A.19) is bounded from above by

max
1�j�J+1

�
1=2
j �2�

�j +
1
n�
�2 :

To determine this value, we consider the following function of x � 0 :

G(x) =
x�4�

x+ 1
n�
�4 .

Its �rst-order condition respect to x is given by

�4
�
x+ 1

n�
�4 � 4x �x+ 1

n�
�3�

x+ 1
n�
�8 = �4

�
x+

1

n
�

�3 �
n � 3x�
x+ 1

n�
�5 = 0:

Therefore, G(x) achieves its global maximum at x = �=(3n), which implies

max
1�j�J+1

�
1=2
j �2�

�j +
1
n�
�2 � �2

�
�
3n

�1=2�
�
3n +

1
n�
�2 = �2

�
�
3n

�1=2�
4�
3n

�2 � �2
�n
�

�3=2
:

As a result, (A.19) is bounded from above by

1

n
(J + 1)1=2

�
�2
�n
�

�3=2�1=2
=

���
n

�1=2
(J + 1)

�1=2
=
��
n

�1=4
(J + 1)1=2

uniformly over x 2 R. If D� is equal to (23), the second norm on the right hand side of (A.19) is
bounded from above by

max
1�j�J+1

n2�
1=2
j max

�
�
n � �j ; 0

	2�
�j +max

�
�
n � �j ; 0

	�2 :
Let j� denote largest j that satis�es n�j � �. Then, this maximum is equal to

max

�
0 ::: 0

n2�
1=2
j�+1(

�
n
��j�+1)

2

(�n )
2 :::

n2�
1=2
J+1(

�
n
��J+1)

2

(�n )
2

�
:

To determine this value, we consider the following function of 0 � x � �=n:

G(x) = x
��
n
� x
�4
:
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The �rst-order condition with respect to x implies���
n
� x
�4
� 4x

��
n
� x
�3�

=
��
n
� x
�3
(
�

n
� 5x) = 0:

This shows that G(x) is an increasing function over [0; �=(5n)] and a decreasing function over
[�=(5n); �=n]. Setting �j = �=(5n), we have

n2�
1=2
j

�
�
n � �j

�2�
�
n

�2 =
n2
�
�
5n

�1=2 �4�
5n

�2�
�
n

�2 � n3=2�1=2:

This upper bound is the same as in the D� = �I case. Therefore, (A.19) is always bounded by
(�=n)1=4 (J + 1)1=2 uniformly over x 2 R. Consequently, the expression (A.18) is

Op

���
n

�1=4
J1=2+�

�
(A.20)

uniformly over x 2 R.
From (A.16), (A.17), and (A.20), it follows that

h (x)0 �̂
� � f (x) = Op

 s
J

max(�; n�min)
+
��
n

�1=4
J1=2+�

!
:

for any x 2 R. Furthermore, the left hand side is Op(J=max(�; n�min)+(�=n)1=4 J1=2+�) uniformly
over x 2 R, which implies Pr(infx2R h (x)0 �̂

� � �)! 1 for any � < 0 independent of n. Therefore,
the constraint infx2R h (x)

0 �̂
� � � is not binding asymptotically, and

h (x)0 �̂ � f (x) = Op

 s
J

max(�; n�min)
+
��
n

�1=4
J1=2+�

!

= Op

 r
J

�
+
��
n

�1=4
J1=2+�

!
for any x 2 R: �

Online Appendix B

Discussion of Assumption 2. We evaluate this assumption�s empirical relevance using some
inequalities derived by Bassett (1997). The main idea is that the approximate slope of the option
curve implies bounds on the underlying cumulative distribution F (z). De�ne

F̂ (z(i)) = e
r�

�
C(z(i+1))� C(z(i))
K(i+1) �K(i)

�
+ 1 = er�

�
P (z(i+1))� P (z(i))
K(i+1) �K(i)

�
(A.21)

for i 2 f1; :::; n � 1g, where C(z(i)) satis�es (5), z(i) and K(i) satisfy (4), and the second equality
can be veri�ed by applying (5) and (6). Let F̂ (z(0)) = 0 and F̂ (z(n)) = 1. Then, by Bassett (1997),
the following inequality holds for i = 1; :::; n: F̂ (z(i�1)) � F (z(i)) � F̂ (z(i)). This inequality implies

F (z(1)) � F̂ (z(1)); F (z(n)) � F̂ (z(n�1)); (A.22)
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and
0 � F (z(i))� F (z(i�1)) � F̂ (z(i))� F̂ (z(i�2)) (A.23)

for i = 2; :::; n�1. By (A.22), Assumption 2(ii) is empirically relevant if F̂ (z(1)) � 0 and F̂ (z(n�1)) �
1. By (A.23), Assumption 2(i) is empirically relevant if F̂ (z(i)) � F̂ (z(i�2)) � 0 for i = 2; :::; n. In
the actual data, the option prices C(z(i)) and P (z(i)) contain noises due to market frictions, which
implies that F̂ (z(i)) (i = 1; :::; n � 1) can only be computed approximately. Nevertheless, as seen
below, their values are still informative about the empirical relevance of Assumption 2.

We now apply (A.22) and (A.23) to evaluate Assumption 2 for the following �ve options markets:
S&P 500 (SPX), Russell 2000 (RUT), Dow Jones Industrial Average (DJX), Nasdaq-100 (NDX),
and Cboe Volatility (VIX). The transaction date is set as March 1, 2016, and the expiration date
is the end of the �rst quarter. The options with zero open interest are excluded to avoid stale
information. The results, summarized in Table S1, show that F̂ (z(1)) and F̂ (z(n�1)) are close to
0 and 1, respectively. The largest di¤erence is observed in the VIX case, where F̂ (z(1)) = 0:1.
The values of F̂ (z(i)) � F̂ (z(i�2)) tend to be small, although some sizeable values are observed
in the VIX case, where the 75th and 90th percentiles of F̂ (z(i)) � F̂ (z(i�2)) are equal to 0.275
and 0.375, respectively. Overall, Assumption 2 is a mild assumption for the �rst four options
markets, while in the VIX case, it should be viewed as a strong assumption, where we face an
excessively coarse strike grid in some circumstances. Finally, in all �ve cases, the numbers of call
options and put options are comparable, which implies that including put options is important for
improving the estimation e¢ ciency. Although the above analysis is for a particular trading day, it is
straightforward to download additional data (e.g., from Yahoo Finance) to verify that the reported
features are generic. Similar analyses can be applied to evaluate this assumption for other options
markets when applying the proposed method in practice.
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Table S1: Summary Statistics for Some Index Options

Ticker Total Call Put F̂ (z(1)) F̂ (z(n−1)) Quantile of {F̂ (z(i))− F̂ (zi−2)}2≤i≤n
10th 25th 50th 75th 90th

SPX 283 122 161 0 1 -0.010 0.000 0.005 0.030 0.060

VIX 23 15 8 0.100 0.980 0.025 0.050 0.169 0.275 0.375

RUT 176 75 101 0 1 -0.005 0.000 0.010 0.040 0.077

DJX 105 50 55 0 1 0.000 0.000 0.010 0.060 0.148

NDX 72 21 51 0.001 0.956 0.000 0.002 0.019 0.070 0.104

Note. The values are computed using the closing prices on March 1, 2016, obtained from OptionMetrics. The
contracts with zero open interest are excluded. The expiration date is the end of the first quarter: τ = 29 for
VIX, τ = 30 for SPX, RUT, and NDX, and τ = 17 for DJX. The annual risk-free set is set to 3.3%.

Table S2: Mean Integrated Squared Errors

Estimator nc = np = 20

J Qα = 0 Qα = αI Qα = V DαV
′

3 0.0404 0.0405 0.0403

Sieve 4 0.0536 0.0427 0.0499

5 0.0724 0.0551 0.0627

6 0.0961 0.0696 0.0637

Local linear 0.1103

PCA 0.2940

Parametric 0.0562

Note. For the sieve estimator, the three columns display the MISEs over 5000
replication with no regularization (Qα = 0), the standard Tikhonov regularization
(Qα = αI), and the modified Tikhonov of Fuhry and Reichel (Qα = V DαV

′),
respectively. Setting J =ceiling(2(n/ logn)1/5) gives J=4. The parameter α is
determined by 10-fold cross validation. The last three rows of the table corre-
spond to the constrained local linear estimator of Ait-Sahalia and Duarte (2003),
the positive convolution approximation estimator of Bondarenko (2003), and the
four-parameter Gram-Charlier series estimator of Jarrow and Rudd (1982) and
Longstaff (1995).



Table S3: Predictive Mean Regressions for S&P500 Returns
Using a Quantile as the Predictor (with a higher cutoff)

Quantile 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

01/18/2007 - 04/27/2016

Estimate -0.12 -0.36 -0.73 -1.83 0.77 0.61 0.44 0.31 0.22

s.d. 0.14 0.34 0.62 1.36 2.00 0.85 0.50 0.35 0.24

p-value 0.40 0.28 0.23 0.18 0.70 0.47 0.38 0.37 0.36

R-square 0.01 0.02 0.02 0.02 0.00 0.00 0.01 0.01 0.01

06/18/2009 - 04/27/2016

Estimate -0.37 -1.32 -2.51 -5.32 3.46 2.14 1.46 1.03 0.72

s.d. 0.09 0.31 0.55 1.45 1.20 0.58 0.38 0.26 0.18

p-value 1e-4 3e-5 1e-5 3e-4 4e-3 3e-4 1e-4 1e-4 1e-4

R-square 0.07 0.10 0.10 0.06 0.04 0.07 0.08 0.09 0.09

Note. Each column represents a least square regression. For example, the first column
displays the results from a least square regression of the two-month-ahead realized return
on the 10th percentile of the state price density. The standard errors allow for heteroscedas-
ticity and autocorrelation. The estimates that are significant at the 10% level are in bold.

Table S4: Predictive Quantile Regressions for S&P500 Returns
(with a higher cutoff)

Quantile 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

01/18/2007 - 04/27/2016

Estimate 0.25 0.26 -0.52 -1.69 2.18 2.21 1.62 1.01 0.77

s.d. 0.07 0.62 1.09 1.64 1.81 0.52 0.28 0.16 0.21

p-value 2e-4 0.67 0.63 0.30 0.22 2e-5 7e-9 2e-10 2e-4

06/18/2009 - 04/27/2016

Estimate -0.31 -0.64 -1.81 -5.05 3.69 2.62 2.14 1.65 1.28

s.d. 0.29 0.61 1.06 2.03 1.91 0.68 0.58 0.34 0.26

p-value 0.28 0.30 0.09 0.01 0.06 1e-4 2e-4 1e-6 1e-6
Note. Each column represents a quantile regression. For example, the first column displays the
results from a 10th percentile quantile regression of the two-month-ahead realized return on
the 10th percentile of the state price density. The standard errors allow for heteroscedasticity
and autocorrelation. The estimates that are significant at the 10% level are in bold.



Table S5: Predictive Mean Regressions for S&P500 Returns
Using a Quantile as the Predictor (60 days ahead)

Quantile 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

01/18/2007 - 04/27/2016

Estimate -0.08 -0.13 -0.26 -0.64 -1.12 0.02 0.06 0.07 0.06

s.d. 0.18 0.44 0.81 1.66 4.08 1.53 0.84 0.56 0.39

p-value 0.67 0.77 0.75 0.69 0.78 0.98 0.95 0.89 0.88

R-square 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

06/18/2009 - 04/27/2016

Estimate -0.57 -1.66 -3.12 -6.57 6.04 3.69 2.43 1.68 1.18

s.d. 0.21 0.45 0.79 1.56 1.94 1.17 0.73 0.50 0.35

p-value 7e-3 4e-4 1e-4 5e-5 2e-3 2e-3 1e-3 1e-3 1e-3

R-square 0.12 0.18 0.17 0.12 0.06 0.13 0.16 0.17 0.17

Note. Each column represents a least square regression. For example, the first column
displays the results from a least square regression of the two-month-ahead realized return
on the 10th percentile of the state price density. The standard errors allow for heteroscedas-
ticity and autocorrelation. The estimates that are significant at the 10% level are in bold.

Table S6: Predictive Quantile Regressions for S&P500 Returns
(60 days ahead)

Quantile 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

01/18/2007 - 04/27/2016

Estimate 0.03 0.21 -0.06 0.26 0.82 2.55 1.61 1.17 1.01

s.d. 0.22 0.86 1.15 1.56 3.22 1.72 0.77 0.38 0.17

p-value 0.89 0.96 0.96 0.87 0.80 0.14 0.04 2e-3 1e-9

06/18/2009 - 04/27/2016

Estimate -0.22 -1.29 -1.85 -3.88 5.34 3.39 3.18 2.35 1.31

s.d. 0.23 1.04 1.36 2.74 1.91 1.32 0.87 0.43 0.20

p-value 0.34 0.22 0.17 0.12 5e-3 1e-2 3e-4 4e-8 7e-11
Note. Each column represents a quantile regression. For example, the first column displays the
results from a 10th percentile quantile regression of the two-month-ahead realized return on
the 10th percentile of the state price density. The standard errors allow for heteroscedasticity
and autocorrelation. The estimates that are significant at the 10% level are in bold.



Table S7: Predictive Mean Regressions for VIX Using a Quantile as the Predictor

Quantile 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

01/18/2007 - 04/27/2016

Estimate 1.38 1.25 1.16 1.08 1.01 0.94 0.87 0.79 0.66

s.d. 0.23 0.20 0.18 0.17 0.15 0.14 0.12 0.11 0.08

p-value 4e-8 1e-8 4e-9 2e-9 9e-10 3e-10 1e-10 4e-11 4e-12

R-square 48.0 50.2 51.5 52.1 52.6 53.0 53.1 53.2 52.2

06/18/2009 - 04/27/2016

Estimate 1.01 0.94 0.88 0.83 0.78 0.73 0.68 0.61 0.51

s.d. 0.18 0.16 0.14 0.13 0.11 0.10 0.09 0.08 0.07

p-value 4e-7 5e-8 1e-8 4e-9 1e-9 4e-10 1e-10 3e-11 4e-11

R-square 38.8 41.7 43.2 44.0 44.5 45.2 45.7 46.6 46.9

Note. Each column represents a least square regression. For example, the first column displays the
results from a least square regression of the one-month-ahead realized VIX level on the 10th percentile
of the state price density. The standard errors allow for heteroscedasticity and autocorrelation. The
estimates that are significant at the 10% level are in bold.

Table S8: Predictive Quantile Regressions for VIX

Quantile 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

01/18/2007 - 04/27/2016

Estimate 0.89 0.82 0.85 0.83 0.83 0.82 0.89 0.80 0.84

s.d. 0.05 0.05 0.08 0.12 0.15 0.15 0.10 0.26 0.46

p-value 1e-16 1e-16 1e-16 7e-13 5e-8 8e-8 1e-16 2e-3 0.07

06/18/2009 - 04/27/2016

Estimate 0.84 0.78 0.77 0.71 0.73 0.69 0.73 0.75 0.67

s.d. 0.20 0.07 0.06 0.09 0.12 0.18 0.21 0.24 0.15

p-value 2e-5 1e-16 1e-16 1e-15 1e-9 1e-4 6e-4 2e-3 1e-5
Note. Each column represents a quantile regression. For example, the first column displays the
results from a 10th percentile quantile regression of the one-month-ahead realized VIX level on
the 10th percentile of the state price density. The standard errors allow for heteroscedasticity
and autocorrelation. The estimates that are significant at the 10% level are in bold.



Figure S1: Density tails and Hermite coefficients implied by 
 the Black-Scholes model (the recovery period)
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Note. In (d) and (e), the solid line represents the true values, and the dotted line represents the
fitted values from the regressions. The tails look similar to those in Figure 1 because the density
is for the transformed variable, as explained in the paper. In (f), the circles denote the actual
Hermite coefficients, and the dotted line the fitted regression line.



Figure S2: Density tails and Hermite coefficients implied by 
 the Black-Scholes model (the expansion period)

-5 -4 -3 -2 -1

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

(g) Left tail

1 2 3 4 5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

(h) Right tail

0 2 4 6 8

-4
0

-3
0

-2
0

-1
0

0

(i) log|j|

Note. In (g) and (h), the solid line represents the true values, and the dotted line represents the
fitted values from the regressions. The tails look similar to those in Figure 1 because the density
is for the transformed variable, as explained in the paper. In (i), the circles denote the actual
Hermite coefficients, and the dotted line the fitted regression line.



Figure S3: Density tails and Hermite coefficients implied by 
 the SV model (the crisis period)
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Note. In (a) and (b), the solid line represents the true values, and the dotted line represents the
fitted values from the regressions. In (c), the circles denote the actual Hermite coefficients, and
the dotted line the fitted regression line.



Figure S4: Density tails and Hermite coefficients implied by 
 the SV model (the recovery period)
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Note. In (d) and (e), the solid line represents the true values, and the dotted line represents the
fitted values from the regressions. The tails look similar to those in Figure S3 because the density
is for the transformed variable, as explained in the paper. In (f), the circles denote the actual
Hermite coefficients, and the dotted line the fitted regression line.



Figure S5: Density tails and Hermite coefficients implied by 
 the SV model (the expansion period)
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Note. In (g) and (h), the solid line represents the true values, and the dotted line represents the
fitted values from the regressions. The tails look similar to those in Figure S3 because the density
is for the transformed variable, as explained in the paper. In (i), the circles denote the actual
Hermite coefficients, and the dotted line the fitted regression line.



Figure S6: Density tails and Hermite coefficients implied by 
 the SVJ model (the crisis period)
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Note. In (a) and (b), the solid line represents the true values, and the dotted line represents the
fitted values from the regressions. In (c), the circles denote the actual Hermite coefficients, and
the dotted line the fitted regression line.



Figure S7: Density tails and Hermite coefficients implied by 
 the SVJ model (the recovery period)
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Note. In (d) and (e), the solid line represents the true values, and the dotted line represents the
fitted values from the regressions. The tails look similar to those in Figure S3 because the density
is for the transformed variable, as explained in the paper. In (f), the circles denote the actual
Hermite coefficients, and the dotted line the fitted regression line.



Figure S8: Density tails and Hermite coefficients implied by 
 the SVJ model (the expansion period)
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Note. In (g) and (h), the solid line represents the true values, and the dotted line represents the
fitted values from the regressions. The tails look similar to those in Figure S3 because the density
is for the transformed variable, as explained in the paper. In (i), the circles denote the actual
Hermite coefficients, and the dotted line the fitted regression line.



Figure S9: Density tails and Hermite coefficients implied by 
 the SVCJ model (the recovery period)
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Note. In (d) and (e), the solid line represents the true values, and the dotted line represents the
fitted values from the regressions. The tails look similar to those in Figure S3 because the density
is for the transformed variable, as explained in the paper. In (f), the circles denote the actual
Hermite coefficients, and the dotted line the fitted regression line.



Figure S10: Density tails and Hermite coefficients implied by 
 the SVCJ model (the expansion period)
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Note. In (g) and (h), the solid line represents the true values, and the dotted line represents the
fitted values from the regressions. The tails look similar to those in Figure S3 because the density
is for the transformed variable, as explained in the paper. In (i), the circles denote the actual
Hermite coefficients, and the dotted line the fitted regression line.



Figure S11: Hermite Series approximations with different truncation orders for
 the SVCJ model (the recovery period)
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Note. The solid and dashed lines represent the true density and the approximation, respectively.



Figure S12: Hermite series approximations and the original density for
 the SVCJ model (the recovery period)

400 600 800 1000 1200 1400

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

(a) J=1

400 600 800 1000 1200 1400

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

(b) J=3

400 600 800 1000 1200 1400

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

(c) J=5

Note. The density is for the original variable S. The solid and dashed lines represent the true density
and the approximation, respectively.



Figure S13: The empirical distribution of the Sieve estimator
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Note. Sample size: n=40 with 20 call and put options, respectively. The solid line: the true density;
the dashed line: the median; the two dot-dash lines: the 0.025 and 0.975 quantiles; the shaded area:
the entire set of estimates.



Figure S14: Call and put option prices on the three dates
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Figure S15: The estimated state price densities after 
 excluding some extreme stikes
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Figure S16: The estimated state price densities 
 with J increased by 1
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