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1 Introduction

The quantile regression framework introduced by Koenker and Bassett (1978) provides a versa-

tile tool to document response heterogeneity. In practice, it is often desirable to consider a range

of quantiles to obtain a complete picture of the stochastic relationships between variables. This

motivated the study of conditional quantile processes, for which Koenker and Portnoy (1987) is

a seminal contribution. Subsequent studies on quantile processes include Koenker and Machado

(1999), Koenker and Xiao (2002), and Angrist et al. (2006). The methods offered can be used

to study a wide range of issues, including testing for alternative model specifications, stochastic

dominance, and treatment effect significance and heterogeneity.

The literature on quantile processes in nonparametric or semiparametric settings has re-

mained sparse. Among the few contributions, Guerre and Sabbah (2012) provided a Bahadur

representation for a local polynomial estimator in a nonparametric setting which holds uni-

formly with respect to the covariate value and the quantile index. Qu and Yoon (2015) studied

the estimation of conditional quantile processes in a nonparametric setting based on local linear

regressions whose results can be used to construct uniform confidence bands for the conditional

quantile process at some covariate value. Belloni et al. (2019) modeled the conditional quan-

tile function as a series of increasing dimensions and provided useful inferential procedures for

conditional quantile processes and linear functionals, including average partial derivatives.

This paper provides estimation and inference methods about conditional quantile processes

for models featuring both nonparametric and linear components. We consider a conditional

quantile function for some outcome variable Y given by Q(τ |x, z) = g(x, τ)+z′β(τ) for τ ∈ T ⊂

(0, 1), where τ is the conditional quantile level of Y , x and z are d and q dimensional covariates,

g(x, τ) is a nonparametric function of x and τ , and the value of β(τ) is quantile dependent.

The partially linear structure overcomes the curse of dimensionality caused by z, generalizing

fully parametric and nonparametric specifications at the cost of additional assumptions. Our

analysis spans two models: a Local Partially Linear (LPL) model which assumes that the above

specification holds in a local neighborhood of a fixed design point, x = x0, and a Global Partially
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Linear (GPL) model, where the same specification holds over the entire data support. These two

models are complementary. The first requires weaker assumptions and is simpler to estimate.

The second imposes stronger conditions but allows to pool information from different parts of

the sample for estimation, producing more effi cient estimates when the conditions are satisfied.

By considering both models, our results encompass a much wider range of applications.

We provide four sets of theoretical results. 1) We present procedures to estimate Q(τ |x, z)

over τ ∈ T using local regressions, building on Lee (2003) and Neocleous and Portnoy (2008).

We establish a uniform Bahadur representation in the covariate value and the quantile index

for the GPL model building on Qu and Yoon (2015). 2) We offer two methods to construct

a uniform confidence band for Q(τ |x, z) over T for given x and z: a) resampling as in Parzen

et al. (1994), which does not require estimating any nuisance parameter other than the bias;

b) simulation of the asymptotic distribution, which requires estimating nuisance parameters

but is computationally more effi cient. 3) We develop a method for robust bias correction. In

particular, we estimate the bias of our estimator by local quadratic regressions and provide a

distributional theory that accounts for the estimation uncertainty. This part is motivated by

Calonico et al. (2014), though here the object of interest is a continuous process, not a finite

dimensional parameter, adding complexities. The resulting robust method generalizes that of

Qu and Yoon (2019) from the nonparametric to the semiparametric setting. 4) Related to our

empirical investigation, we consider an extended LPL model allowing for interactions between

x an z for a one-dimensional x, with the conditional quantile function given by Q(τ |x, z) =

g(x, τ)+z′β(τ)+xz′γ(τ) over τ ∈ T . Our estimation and inference results cover this extension.

We study the effects of UI benefits extensions on subsequent re-employment wage changes

(as well as the unemployment duration and the re-employment wage) using the dataset of Nekoei

and Weber (2017). This topic was studied using quasi-experimental designs and administrative

data, with mixed evidence, the majority finding zero or negative effects; e.g., Card et al. (2007),

Lalive (2007), Van Ours and Vodopivec (2008), and Schmieder et al. (2016). An exception is

Nekoei andWeber (2017) who documented a positive wage effect using a regression discontinuity

(RD) design, showing that the benefits extension caused 0.5 percent higher wages on average,
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a magnitude small in economic terms even though statistically significant. Our main interest

is whether the effects are heterogeneous such that for some subgroups or quantiles, they are

much more economically important than what the average effect suggests. In order to pursue

this, we introduce an approach with two distinctive features: we estimate quantile treatment

effects (QTE) rather than the average treatment effect (ATE); we allow for covariates in the RD

design. This enables us to examine the effects on various parts of the conditional distribution

for a given subgroup, as well as on different subgroups defined by covariates. Note that after

including covariates, we obtain conditional, instead of unconditional, treatment effects.

In this setting, Y is the outcome variable (e.g., the unemployment duration or re-employment

wage change), x is the running variable, here the age of the worker, x0 is the cutoff for addi-

tional UI benefits (40 years old), and z are covariates (e.g., gender, occupation, education,

pre-unemployment wage, and work experience). For unemployment duration, we find that

the effect of UI benefits is statistically and economically significant in the right tail of the

distribution. Also, the wage effect is positive and significant only in the left tail of the wage

change distribution. Under a rank invariance assumption, this implies that individuals who

benefited the most are those who would have experienced substantial wage cuts if there were

no benefit extension. Furthermore, the wage effects are positive and statistically significant for

white-collar workers, female workers, those with a college education, and those with more work

experience, but not for blue-collar male workers and those without higher education or with lit-

tle work experience. As the latter groups combine to form the largest subgroup in the dataset,

this can explain the mixed results obtained previously, in particular why the average effect

found in Nekoei and Weber (2017) is small. Hence, while UI benefits reduce the within-group

inequality for some subgroups by covariates, they can be viewed as regressive and enhancing

between-group inequality, although they also help to bridge the gender gap.

The paper is structured as follows. Section 2 introduces the LPL and GPL models, high-

lighting the UI benefits application. Section 3 provides a comprehensive analysis of the LPL

model, presenting a two-step estimator, its asymptotic properties, the optimal bandwidth, and

two methods to construct uniform confidence bands over quantiles with robust bias correction.
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Section 4 presents analogous results for the GPL model. Section 5 shows how to test hypotheses

related to equality of distributions, dominance, and homogeneity over a continuum of quan-

tiles. Section 6 contains the results of the UI benefits application, while Section 7 offers brief

concluding remarks. An online supplement provides all proofs, details on uniform confidence

bands for RD designs with covariates, simulation results of the finite sample properties (related

to the selected bandwidth, the bias and variance of the estimator, and the confidence band),

and sensitivity analyses related to the empirical application. Readers interested in the applied

perspective can first read Sections 2 and 6 and then get an overview of Sections 3-5.

The following notation is used. ‖·‖ denotes the Euclidean norm. 1(·) is the indicator func-

tion. 1d and 0d are d-dimensional vectors of ones and zeros. ⊗ is the Kronecker product. The

symbols “⇒”and “ p→”denote weak convergence under the Skorohod topology and convergence

in probability, and Op(·) and op(·) is the usual notation for the orders of stochastic magnitude.

2 Models

Let Y denote the outcome variable and X (d × 1) and Z (q × 1) two sets of covariates. The

conditional quantile function of Y , at X = x and Z = z, is assumed to be given by:

Q(τ |x, z) = g(x, τ) + z′β(τ) for any τ ∈ T , (1)

where τ is a quantile level and T =[λ1, λ2] for some 0 < λ1 ≤ λ2 < 1. The choice of T is flexible;

e.g., to study the lower part of the conditional distribution, T = [ε, 0.5] with ε a small positive

number is a natural choice. Note that g(X, τ) is a smooth nonparametric function of X and τ ,

and the effect of Z on Q(τ |X,Z), measured by β(τ), is quantile-dependent. The components

of (Y,X) have continuous distributions, while those of Z can be discrete or continuous.

In practice, the partially linear structure may hold in a local neighborhood of a design point

or over the entire (global) data support. Our analysis covers both cases by providing results for

Local Partially Linear (LPL) Model: assuming (1) holds over B(x0), (2)

Global Partially Linear (GPL) Model: assuming (1) holds over Sx,
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where x0 is a fixed value (e.g., the cutoff under an RD design), B(x0) is a local neighborhood

of x0 with a nonzero interior, and Sx is the support of X. The LPL model requires weaker

assumptions and is simpler to estimate. However, the GPL model enables a researcher to use

information from the full sample to estimate the model, producing more effi cient estimates under

stronger conditions. Our results encompass broad applications because of this complementarity.

We also consider an extension of the LPL model which allows for interactions betweenX and

Z when X is one dimensional (the multidimensional case is similar, with only added notational

complexities), with the conditional quantile function given by

Q(τ |x, z) = g(x, τ) + z′β(τ) + xz′γ(τ) for any τ ∈ T . (3)

In this extension, the slope of Q(τ |x, z) in x varies with z, providing an additional channel for

heterogeneity. A similar extension for the GPL model is left for future work.

Engle et al. (1986) and Robinson (1988) were among the first to study the partially linear

model in the conditional mean setting. Lee (2003) studied this model for a single conditional

quantile focusing on the estimation of β(τ); related studies include Wang et al. (2009), Cai

and Xiao (2012), Song et al. (2012), Fan and Liu (2016), and Sherwood and Wang (2016), all

restricted to a single quantile. Our goal is to conduct inference on Q(τ |x, z) for all quantiles in

the set T for given x and z. Our analysis is general and allows a treatment of the following issues

under (2) and (3): a) Uniform confidence band over quantiles: for given p ∈ (0, 1) and

(x, z), obtain functions Lp(τ |x, z) and Up(τ |x, z) of τ such that asymptotically Pr{Q(τ |x, z) ∈

[Lp(τ |x, z), Up(τ |x, z)] for all τ ∈ T } ≥ p; b) Testing equality of distributions: for given

(x1, z) and (x2, z), testingH0 : Q(τ |x1, z)−Q(τ |x2, z) = 0 for all τ ∈ T , againstH1 : Q(τ |x1, z)−

Q(τ |x2, z) 6= 0 for some unknown τ ∈ T ; c) Testing for homogeneity: H0 : Q(τ |x1, z) −

Q(τ |x2, z) is constant over T , against H1 : Q(τ |x1, z)−Q(τ |x2, z) 6= Q(s|x1, z)−Q(s|x2, z) for

some unknown τ , s ∈ T ; d) Testing conditional stochastic dominance: H0 : Q(τ |x2, z)−

Q(τ |x1, z) ≥ 0 over T , against H1 : Q(τ |x2, z)−Q(τ |x1, z) < 0 for some unknown τ ∈ T .

When Q(τ |x, z) is parametric, i.e., without g(x, τ), the methods of Koenker and Machado

(1999), Koenker and Xiao (2002), and Chernozhukov and Fernández-Val (2005) are suffi cient
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for these issues. When Q(τ |x, z) is nonparametric, i.e., without z′β(τ), the methods of Belloni

et al. (2019), based on series approximation, and Qu and Yoon (2015), based on local regres-

sions are appropriate. The methods covered in this paper increases the level of generality by

allowing mixtures of both cases, thereby considerably increasing the scope for useful empirical

applications. We now relate the LPL model to our empirical application.

UI benefits RD application. Our empirical analysis uses Nekoei andWeber’s (2017) dataset.

The main feature of the data is that in Austria, workers who were employed for three or more

years in the past five years are eligible for 30 weeks of UI benefits. But starting in 1989, workers

aged 40 years or above could claim an additional nine-week benefit extension if they worked for

at least six of the last ten years. Hence, the eligibility for the benefits extension jumps from

zero to 100% as the claimant reaches 40 years at the time of the claim. This discontinuity leads

to a sharp RD design. Of interest is whether the effects are heterogeneous such that for some

subgroups or quantiles, they are much more economically important than what the average

effect suggests. This question is the focus of our empirical study.

The specifications in relation to (2) are as follows. The outcome variable is either a) the

unemployment duration: the number of days between two consecutive jobs; b) the wage change:

the log difference between the daily wages of the pre- and post-unemployment jobs; c) the

reemployment wage: the log wage level at the post-unemployment job. The running variable

x is the age of the individual and the discontinuity point x0 is 40 years. The covariates z can

be discrete; e.g., male/female, white collar/blue collar workers, college graduates/high school

or below, or continuous, e.g., the pre-unemployment wage. The magnitude of the UI benefits

extension is the same for all individuals: zero when younger than 40 years and nine weeks when

older. Hence, it is not part of x or z. Define B−(x0) = [x0 − δ, x0) and B+(x0) = [x0, x0 + δ]

with δ a small positive constant, then the model we use for the RD design is as in (3), given by

Q(τ |x, z) = g1(x, τ) + z′β1(τ) + xz′γ1(τ) over τ ∈ T for any x ∈ B−(x0),

Q(τ |x, z) = g2(x, τ) + z′β2(τ) + xz′γ2(τ) over τ ∈ T for any x ∈ B+(x0).

In this application, the nonparametric component involves the running variable x. This is
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natural given the identification strategy of RD designs, as explained in Card et al. (2007, Section

4). In other applications, the issues being addressed can often guide which variables should enter

the model nonparametrically. For example, Schmalensee and Stoker (1999) analyzed household

demand for gasoline using a partially linear model, focusing on whether the income elasticity

falls at high income and whether it depends on the household head’s age. In their model,

naturally, x includes income and age, and z includes demographic control variables. Hausman

and Newey (1995) calculated the consumer surplus from demand curve estimators, where the

demand is a function of price and income. In their model, x includes income and price, while

z includes region and time dummy variables. Overall, we suggest that a researcher begin by

modeling the variables of interest nonparametrically and the control variables linearly, and then

make adjustments as needed, for example, by moving variables between the nonparametric and

parametric parts or allowing for interactions between them, as in (3).

Calonico et al. (2019) studied the ATE under RD designs allowing for covariates. Besides

providing methods for estimation and inference, they identified conditions under which including

covariates increases the estimation effi ciency. Our goals and framework are very different: we

aim to uncover treatment heterogeneity using a quantile regression framework, allowing for

interactions between the treatment indicator, the running variable, and covariates. Our focus is

on detecting treatment heterogeneity with respect to quantiles and covariates, not on improving

estimation effi ciency. Our model delivers conditional treatment effects, not unconditional effects

as in Calonico et al. (2019). We will further discuss these two models after introducing the

estimation method in Subsection 3.1. �

3 Estimation and inference for the LPL model

We first address the issue of estimation for the LPL model. We then consider the asymp-

totic properties and the optimal bandwidth selection. Finally, we discuss methods for uniform

confidence bands over quantiles.
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3.1 Estimation procedure

Let {xi, zi, yi}ni=1 be a sample of n observations; x can be any value in B(x0), e.g., x = x0. We

propose a two-step procedure based on local linear regressions. Let K(·) be a kernel function

and bn,τ the associated bandwidth, which can vary across quantiles to adapt to data sparsity.

Step 1: Let {τ 1, ..., τm} be an equidistant grid of points over T . For each k ∈ {1, ...,m}, solve

min(a0,a1,b)∈(R,Rd,Rq)
∑n

j=1 ρτk(yj − a0 − (xj − x)′ a1 − z′jb)K((xj − x)/bn,τk), (4)

where ρτk is the check function: ρτk(u) = u(τ k− 1{u < 0}). Denote the estimated values of a0,

a1, and b by α̂0(x, τ k), α̂1(x, τ k), and β̂(τ k), respectively.

Step 2: For any τ ∈ T , apply the following linear interpolations

α̂0(x, τ) = w (τ) α̂0(x, τ k) + (1− w (τ)) α̂0(x, τ k+1), (5)

β̂(τ) = w (τ) β̂(τ k) + (1− w (τ)) β̂(τ k+1),

where w (τ) = (τ k+1 − τ)/(τ k+1 − τ k) if τ ∈ [τ k, τ k+1]. The final estimate is

Q̂(τ |x, z) = α̂0(x, τ) + z′β̂(τ) for any τ ∈ T . (6)

Step 1 involves m local linear quantile regressions. Step 2 produces a continuous function

over T from the resulting m points. As shown later, if m is suffi ciently large, the limiting

distribution of Q̂(τ |x, z) is the same as when all quantiles in T are used in Step 1. Therefore,

no effi ciency is lost asymptotically. We use equally spaced points in increments of 0.05 for

both our simulations and empirical applications. After Step 2, we apply a rearrangement to

Q̂(τ |x, z) as in Chernozhukov et al. (2010) to ensure monotonicity. This operation has no

first-order effect on the distribution of Q̂(τ |x, z) if (nbdn,τ )
1/2(Q̂(τ |x, z) − Q(τ |x, z)) converges

weakly to a continuous Gaussian process, which is verified in the appendix.

Under (3), the estimation procedure is the same as above, except that (4) is replaced by

min(a0,a1,b,γ)∈(R,Rd,Rq ,Rq)
∑n

j=1 ρτk(yj−a0− (xj − x)′ a1−z′jb− (xi−x)z′iγ)K((xj−x)/bn,τk). (7)

The final estimate is computed in the same way as in (6).
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UI benefits RD application (cont’d) In our UI benefits application, the estimation solves

the following two minimization problems separately:

min
α+0 ,α

+
1 ,β

+,γ+

n∑
i=1

ρτ
(
yi − α+

0 − α+
1 (xi − x0)− z′iβ+ − (xi − x0)z′iγ

+
)
diK ((xi − x0)/bn,τ ) , (8)

min
α−0 ,α

−
1 ,β
−,γ−

n∑
i=1

ρτ
(
yi − α−0 − α−1 (xi − x0)− z′iβ− − (xi − x0)z′iγ

−) (1− di)K ((xi − x0)/bn,τ ) ,

where x0 denotes the cutoff, xi is the running variable, di = 1(xi ≥ x0) is the treatment

indicator, and zi is a set of covariates. Because z′iβ
+ + (xi− x0)z′iγ

+ = z′i(β
+− x0γ

+) + xiz
′
iγ

+,

(8) is consistent with (3). If zi is a dummy variable, e.g., one for female workers, then the QTEs

for men and women are given by α+
0 (τ)− α−0 (τ) and α+

0 (τ)− α−0 (τ) + β+(τ)− β−(τ). If zi is a

continuous variable, then, the QTE at x = x0 for z = z0 is given by α+
0 (τ)−α−0 (τ)+z′0(β+(τ)−

β−(τ)). The interactive term (xi − x0)z′i makes ∂Q(τ |x, z)/∂x vary with z. If zi is a binary

variable, then this slope is equal to α+
1 and α

+
1 + γ+ for zi = 0 and zi = 1, respectively. More

details on estimation and inference for the RD design are available in Supplement Section S.3.

We emphasize that for quantile RD applications, it is essential to allow the coeffi cients

of zi to change at the cutoff, i.e., β
− 6= β+. Otherwise, the model is incapable of detecting

any heterogeneity with respect to covariates by construction. Also, the resulting value of

α+
0 (τ)−α−0 (τ) is typically inconsistent for both the unconditional and the conditional QTE when

heterogeneity is present. Since the latter issue is of crucial importance, we illustrate it using a

simple simulation exercise, with the DGP given byQ(τ |xi, zi) = (5τ 2+8zi)1(xi ≥ 0)+2.5Φ−1(τ),

where xi ∼Uniform(-10,10), zi ∼Bernoulli(0.5) independent of xi, and Φ(.) is the standard

normal CDF. By design, the distribution of zi is continuous at x0 = 0. Under this DGP, the

two groups defined by z = 0 and z = 1 have distinct QTEs that differ by a constant of 8 at

all quantiles. The resulting QTE for the entire population (i.e., the unconditional QTE) is an

increasing function of τ , equal to 1.29, 5.79, and 10.11 at τ = 0.1, 0.5, 0.9. We set the sample

size to 100, 000 so that the standard errors are small. The results are based on 500 replications

using the Epanechnikov kernel with the bandwidth set to 10.

We estimate three models, E1-E3. E1 is a benchmark model without any covariate, i.e.,

we drop the terms involving zi from the two equations in (8). E2 allows for covariates but
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forces their coeffi cients not to change at the cutoff, i.e., we solve (8), while restricting β+ =

β− and γ+ = γ−. E3 is a general model without any restriction, i.e., we estimate the two

equations in (8) separately. Table 1 presents the results, where the first three columns give the

true values, and the last three the estimates. We observe the following: (i) E1 estimates the

unconditional QTE accurately; (ii) E2 fails to estimate the unconditional QTE consistently, nor

does it consistently estimate the conditional QTE; and (iii) E3 estimates the QTEs for the two

groups accurately. Hence, the effects of including covariates on estimating quantile effects are

substantially different from the conditional mean case. For the latter, Calonico et al. (2019)

showed that a local polynomial regression such as E2 consistently estimates the ATE even if

the effects are heterogeneous, as long as the distribution of zi given xi is continuous at the

cutoff. This difference is important not only for RD designs, but also for difference-in-difference

estimators more broadly, an issue that merits further investigation.

Based on the above simulation finding, we draw the following conclusions. If the goal is

to estimate unconditional QTEs, then a model without covariates is preferable. The resulting

model delivers nonparametric identification without the need to assume the functional form of

the conditional quantile. However, if the goal is to detect heterogeneity between groups, then

some covariates will have to be considered one way or another. In such a situation, our proposed

model (3), or equivalently (8), can play a useful role. This model is in fact suffi ciently flexible

because the linear part can include nonlinear transformations of variables and those from the

linear and nonparametric parts can interact with each other. We implement both models in

our empirical application. �

3.2 Asymptotic properties and the optimal bandwidth

We study the properties of (nbdn,τ )
1/2(Q̂(τ |x, z)−Q(τ |x, z)) under (1) and then under (3). Let

fX(·) be the marginal density of X and fY |X,Z (Q(τ |X,Z)|X,Z) the conditional density of Y

evaluated at its τth percentile, abbreviated as f(·) and f (τ |X,Z), respectively. Define

u = [u1, u2, ..., ud]
′ ∈ Rd and ū = [1, u′]′.

Assumption 1: {xi, zi, yi}ni=1 is an i.i.d. sample of n observations whose population conditional
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quantile satisfies (1) (or (3) when stated so) over B(x0).

Assumption 2: X and Z have compact supports, denoted by Sx and Sz, respectively.

Assumption 3: f(τ |x, z) is finite and positive with |∂f(τ |x, z)/∂τ | < C <∞ over B(x0)×Sz

for all τ ∈ T .

Assumption 4: Q(τ |x, z) and ∂Q(τ |x, z)/∂xj are Lipschitz continuous with respect to x and

τ and ∂2Q(τ |x, z)/∂xj∂xk are finite for j, k ∈ {1, ..., d} over T × B(x0)× Sz.

Assumption 5: K(·) is compactly supported, bounded, and satisfies K(·) ≥ 0,
∫
K(u)du = 1,∫

uK(u)du = 0, ||
∫
ūū′K(u)du|| <∞, ||∂K(u)/∂u|| ≤ C, and |K(u)−K(v)| ≤ C ‖u− v‖ for

some finite C and any u and v in the support of K(·).

Assumption 6: bn,τ = c(τ)bn, where bn = O(n−1/(4+d)), (nbdn)1/2/ log2 n→∞ as n→∞, and

c(τ) is Lipschitz continuous with c(0.5) = 1 and 0 < c ≤ c(τ) ≤ c̄ <∞ for τ ∈ T .

Assumptions 1-3 rule out time series applications but are otherwise practically unrestrictive.

The compactness of Sx is needed for studying boundary points. The condition |∂f(τ |x, z)/∂τ | <

C holds if the conditional density is strictly positive with finite first order derivatives with

respect to y. Assumption 4 imposes smoothness requirements on Q(τ |x, z) with respect to x

and τ . Assumption 5 is standard. Assumption 6 allows the usual MSE-optimal bandwidth

rate, where the Lipschitz condition on c(τ) is satisfied by the optimal bandwidth derived later,

and c(0.5) = 1 is a normalization, used when formulating limiting distributions (e.g., Theorem

1). Let Wj(x, bn,τ ) denote the vector of regressors in the local linear regression in (4), i.e.,

Wj(x, bn,τ ) = [1, (x′j − x′)/bn,τ , z′j]′. (9)

Assumption 7: Mn(x, τ) ≡ (nbdn,τ )
−1
∑n

j=1 f (τ |xj, zj)Wj(x, bn,τ )Wj(x, bn,τ )
′K ((xj − x)/bn,τ )

is finite with smallest eigenvalue bounded away from 0 uniformly over B(x0)×T in probability.

The matrix Mn(x, τ) plays the role of (minus) the Hessian in a standard MLE setting. The

asymptotic properties of (6) depend on whether x is close to the boundary of B(x0). If x is

a fixed point in the interior of B(x0), then x is an interior point for all large n. Otherwise,

following Ruppert and Wand (1994), we model x as

x = x∂ + bnc for some fixed c ∈ supp (K) and x∂ on the boundary of B(x0), (10)
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and define the following domain for integration: Dx,bn,τ = {u ∈ Rd: (x + bn,τu) ∈ B(x0)} ∩

supp (K). The next two results provide asymptotic approximations under (1) for interior and

boundary cases, respectively. Let u0
j(τ) = yj − g(xj, τ)− z′jβ(τ), i.e., the true quantile residual.

Theorem 1 Under Assumptions 1-7 and m/(nbdn)1/4 →∞, if x is an interior point, then

(nbdn,τ )
1/2(Q̂(τ |x, z)−Q(τ |x, z)− b2

n,τBl(x, z, τ)) = D1,l (x, z, τ) + op (1)⇒ G1,l(x, z, τ)

over τ ∈ T , where Bl(x, z, τ) = (1/2)[1, z′]Ml(x, τ)−1Jl(x, τ) tr{(∂2g(x, τ)/∂x∂x′)
∫
uu′K(u)du},

D1,l (x, z, τ) = [1, z′]Ml(x, τ)−1(nbdn,τ )
−1/2

∑n
j=1{τ − 1(u0

j(τ) ≤ 0)}[1, z′j]′K ((xj − x)/bn,τ ), and

G1,l(x, z, ·) is a zero-mean continuous Gaussian process satisfying E[G1,l(x, z, r)G1,l(x, z, s)] =

[1, z′]Ml(x, r)
−1Hl(x)Ml(x, s)

−1[1, z′]′(r∧s−rs)(c(r)c(s))−d/2
∫
K(u/c (r))K(u/c (s))du for r, s ∈

T , with Jl(x, τ) = E (f(X)f (τ |X,Z) [1, Z ′]′|X = x), Hl(x) = E (f(X)[1, Z ′][1, Z ′]′|X = x),

and Ml(x, τ) = E (f(X)f (τ |X,Z) [1, Z ′][1, Z ′]′|X = x) .

Corollary 1 Under Assumptions 1-7 and m/(nbdn)1/4 →∞, if x is a boundary point, then

(nbdn,τ )
1/2(Q̂(τ |x, z)−Q(τ |x, z)− b2

n,τBb(x, z, τ)) = D1,b (x, z, τ) + op (1)

over T , where Bb(x, z, τ) = (1/2) [1, 0′d, z
′]Mb(x, τ)−1

∫
Dx,bn,τ

Φ(x, u)u′[∂2g(x, τ)/∂x∂x′]uK (u) du

and D1,b (x, z, τ) = [1, 0′d, z
′]Mb(x, τ)−1(nbdn,τ )

−1/2
∑n

i=1{τ − 1(u0
i (τ) ≤ 0)}Wi(x, bn,τ )K((xi −

x)/bn,τ ), with Mb(x, τ) = E(f(X)f (τ |X,Z)
∫
Dx,bn,τ

[ū′, Z ′]′[ū′, Z ′]K(u)du|X = x), Wi(x, bn,τ )

as in (9), and Φ(x, u) = E (f(X)f (τ |X,Z) [ū′, Z ′]′|X = x).

We now turn to the interactive model (3). If x is an interior point, Theorem 1 continues to

hold without any modification due to the orthogonality between z′i(xi−x)/bn,τ and (1, z′i) with

respect to K((xi− x)/bn,τ ). If x is a boundary point, the interaction terms affect both the bias

and the variance of the distribution, as shown in the following Corollary.

Corollary 2 Under the conditions in Corollary 1, with Assumption 1 satisfied for (3) and d=1:

(nbn,τ )
1/2(Q̂(τ |x, z)−Q(τ |x, z)− b2

n,τBv(x, z, τ)) = D1,v (x, z, τ) + op (1)
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over T , where Bv(x, z, τ) = (1/2)
[
1, z′, 0′1+q

]
Mv(x, τ)−1Lv(x, τ)∂2g(x, τ)/∂x2 andD1,v (x, z, τ) =[

1, z′, 0′1+q

]
Mv(x, τ)−1(nbn,τ )

−1/2
∑n

i=1{τ−1(u0
i (τ) ≤ 0)}([1, (xj−x)/bn,τ ]

′⊗[1, z′j]
′)K ((xi − x)/bn,τ )

with Mv(x, τ) = (
∫
Dx,bn,τ

ūū′K(u)du)⊗Ml(x, τ), Lv(x, τ) = (
∫
Dx,bn,τ

ūu2K(u)du)⊗Jl(x, τ), and

Ml(x, τ) and Jl(x, τ) as in Theorem 1.

In the Supplement, we report the distributions of β̂(τ)−β(τ), which can be used to conduct

inference on the linear part of the model; see Remarks 1-3 following the proofs of Theorem 1 and

Corollaries 1-2. In the above results, the leading terms D1,l (x, z, τ), D1,b (x, z, τ), D1,v (x, z, τ)

are conditionally pivotal because {τ − 1(u0
i (τ) ≤ 0)}ni=1 are independent of X and Z. This

feature is essential for constructing uniform confidence bands for Q(τ |x, z) over T . These

results also allow us to derive the bandwidth that minimizes the asymptotic MSE of Q̂(τ |x, z)

for any τ ∈ T . Theorem 2 presents the optimal bandwidth for an interior point, generalizing

Qu and Yoon (2015, Corollary 1) from nonparametric models to partially linear models.

Theorem 2 Under the conditions of Theorem 1 and |tr (∂2g(x, τ)/∂x∂x′)| > 0, the bandwidth

that minimizes the asymptotic MSE of Q̂(τ |x, z) for an interior point for any τ ∈ T is given by

b∗n,τ =

(
τ(1−τ)[1,z′]Ml(x,τ)−1Hl(x)Ml(x,τ)−1[1,z′]′d

∫
K(u)2du

{[1,z′]Ml(x,τ)−1Jl(x,τ) tr((∂2g(x,τ)/∂x∂x′)
∫
uu′K(u)du)}2

)1/(d+4)

n−1/(d+4) .

In the boundary point case, the optimal bandwidth depends on the shape of B(x0) and

the location of x. Nevertheless, it is possible to obtain an analytical expression when x is one

dimensional and it is exactly on the boundary (i.e., c = 0 in (10)), as in the RD design. Without

loss of generality, suppose Dx,bn,τ = [0, ∞). The next result pertains to the model (3).

Corollary 3 Under the conditions of Corollary 2 and ∂2g(x, τ)/∂x2 6= 0, if Dx,bn = [0, ∞),

the bandwidth that minimizes the asymptotic MSE of Q̂(τ |x, z) for any τ ∈ T is

b∗n,τ =
(
τ(1−τ)[1,z′,0′1+q ]Mv(x,τ)−1Hv(x)Mv(x,τ)−1[1,z′,0′1+q ]

′ ∫ K(u)2du

{[1,z′,0′1+q ]Mv(x,τ)−1Lv(x,τ)(∂2g(x,τ)/∂x∂x′)}2

)1/5

n−1/5 ,

where Hv(x) = (
∫∞

0
ūū′K(u)du) ⊗ E (f(X)([1, Z ′]′[1, Z ′])|X = x), and Mv(x, τ) and Lv(x, τ)

are as in Corollary 2 with Dx,bn,τ replaced by [0, ∞).
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3.3 Uniform confidence bands over quantiles

We consider two approaches to construct confidence bands for Q(τ |x, z) over T for fixed

(x, z). In each case, we estimate the bias of Q̂(τ |x, z) and construct a robust confidence

band that incorporates the resulting estimation uncertainty, i.e., we implement robust bias

correction. The formulae for computing the bands are valid for both interior and boundary

points. We proceed under (1) and consider (3) (i.e., the RD design) in the Supplement. Define

σn,τ = (nbdn,τ )
−1/2[EG1,l (x, z, τ)2]1/2, with G1,l (x, z, τ) as in Theorem 1. Lemma 1 presents an

infeasible (i.e., assuming Bl(x, z, τ) and σn,τ are known) confidence band as the basis for further

developments.

Lemma 1 Under the conditions in Theorem 1, an asymptotic p-percent uniform confidence

band for Q(τ |x, z) over T is given by [Q̂(τ |x, z)−Bl(x, z, τ)b2
n,τ−σn,τCp, Q̂(τ |x, z)−Bl(x, z, τ)b2

n,τ+

σn,τCp], where Cp is the p-th percentile of supτ∈T |G1,l (x, z, τ) /
√
EG1,l (x, z, τ)2|.

3.3.1 Confidence band using the asymptotic approximation

To estimate the bias, first run a local quadratic regression for each τ k ∈ {τ 1, ..., τm} by solving

min
(a0,a1,a2,b)

∑n
j=1 ρτk(yj − a0 − (xj − x)′ a1 − q (xj − x)′ a2 − z′jb)K((xj − x)/rn,τ ), (11)

where q (xj − x) is a d(d + 1)/2 vector of quadratic terms to capture the estimation bias,

with (xi,1 − x)2,..., (xi,d − x)2 as its first d elements, followed by (xi,j − x) (xi,l − x) with (j, l)

arranged in lexicographical order. Let α̂2(x, τ k) denote the estimate of a2. Next, apply inter-

polation to compute α̂2(x, τ) using α̂2(x, τ k) as in (5). Finally, compute the bias as

B̂l(x, z, τ) = [1, 0′d, z
′]{
∑n

j=1 f̂ (τ |x, zj)Wj(x, bn,τ )Wj(x, bn,τ )
′K((xj − x)/bn,τ )}−1 (12)

×{
∑n

j=1 f̂ (τ |x, zj)Wj(x, bn,τ )K((xj − x)/bn,τ )q ((xj − x)/bn,τ )
′}α̂2(x, τ),

with Wj(x, bn,τ ) as in (9), and

f̂ (τ |x, z) = 2δn,τ/[Q̂ (τ + δn,τ |x, z)− Q̂ (τ − δn,τ |x, z)], (13)

where δn,τ is a bandwidth parameter.
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We study the properties of (nbdn,τ )
1/2(Q̂(τ |x, z)− B̂l(x, z, τ)b2

n,τ −Q(τ |x, z)), addressing the

estimation uncertainty in Q̂(τ |x, z) and B̂l(x, z, τ) simultaneously. Some additional assumptions

are needed because the estimation involves the local quadratic regression (11). Let W̃j(x, rn,τ )

denote the normalized regressors in this regression:

W̃j(x, rn,τ ) = [1, (xj − x)′/rn,τ , q(xj − x)′/r2
n,τ , z

′
j]
′.

Assumption 8: ∂3Q(τ |x, z)/∂xj∂xk∂xl are finite and ∂2Q(τ |x, z)/∂xj∂xk are Lipschitz con-

tinuous in x and τ over T × B(x0)× Sz for j, k, l ∈ {1, ..., d}.

Assumption 9: M̃n(x, τ) ≡ (nrdn,τ )
−1
∑n

j=1 f (τ |xj, zj) W̃j(x, bn,τ )W̃j(x, bn,τ )
′K ((xj − x)/bn,τ )

is finite with smallest eigenvalue bounded away from 0 uniformly over B(x0)×T in probability.

Assumption 10: In (11), rn,τ = c̃(τ)rn, where rn = O(n−1/(6+d)), rn ≥ c1b for some finite c1,

c̃(τ) is Lipschitz continuous with c̃(0.5) = 1, and 0 < c ≤ c̃(τ) ≤ c̄ < ∞ for any τ ∈ T . Also,

δn,τ → 0 and δn,τ (nbdn,τ )
1/2 →∞ for τ ∈ T .

Assumptions 8 and 9 strengthen Assumptions 4 and 7, respectively. Assumption 10 allows

the MSE-optimal bandwidth rate for local quadratic regressions and implies that (13) is a

uniformly consistent estimate of f (τ |x, z) over T . In our implementation, we set rn,τ = bn,τ .

Lemma 2 characterizes the bias corrected estimator Q̂(τ |x, z)− B̂l(x, z, τ)b2
n,τ .

Lemma 2 If the conditions in Theorem 1 and Assumptions 8-10 hold, then (nbdn,τ )
1/2(Q̂(τ |x, z)−

B̂l(x, z, τ)b2
n,τ − Q(τ |x, z)) = D1,l (x, z, τ) −D2,l (x, z, τ) + op (1) over T , where D1,l (x, z, τ) is

as in Theorem 1 and D2,l (x, z, τ) = (bd+4
n,τ /r

d+4
n,τ )1/2[1, z′]Γ(x, τ)(nrdn,τ )

−1/2
∑n

i=1{τ − 1(u0
i (τ) ≤

0)}W̃i(rn,τ , x)K((xj − x)/rn,τ ), with Γ(x, τ) = Ml(x, τ)−1Jl(x, τ)[0′d+1, 1
′
d(d+1)/2, 0

′
q]Mq(x, τ)−1,

and Mq(x, τ) = E(f(X)f (τ |X,Z)
∫

[ū′, q(u)′, Z ′]′[ū′, q(u)′, Z ′]K(u)du|X = x).

The terms D1,l (x, z, τ) and D2,l (x, z, τ) capture the estimation uncertainty of Q̂(τ |x, z)

and B̂l(x, z, τ), respectively. If rn,τ is small (i.e., rn,τ/bn = κ(τ) with 0 < κ(τ) < ∞),

then D2,l (x, z, τ) has a first-order effect on the resulting distribution. If rn,τ is large (i.e.,

rn,τ/bn →∞), then D2,l (x, z, τ) is dominated by D1,l (x, z, τ), in which case it provides a finite

sample refinement. Note that D1,l (x, z, τ) and D2,l (x, z, τ) depend on {1(u0
i (τ) ≤ 0)}ni=1 and,
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conditional on {xi, zi}ni=1, their distributions are pivotal. Hence, their joint distribution can be

simulated by drawing i.i.d.U(0, 1) random variables ui (i = 1, ..., n), keeping {xi, zi}ni=1 fixed,

and replacing u0
i (τ) by ui − τ . For D1,l (x, z, τ), this involves computing

[1, 0′d, z
′]{(nbdn,τ )−1

∑n
j=1 f̂ (τ |x, zj)Wj(x, bn,τ )Wj(x, bn,τ )

′K((xj − x)/bn,τ )}−1 (14)

×(nbdn,τ )
−1/2

∑n
i=1 (τ − 1(ui − τ ≤ 0))Wi(x, bn,τ )K ((xi − x)/bn,τ ) ,

and for D2,l (x, z, τ), computing

(bd+4
n,τ /r

d+4
n,τ )1/2[1, 0′d, z

′]{(nbdn,τ )−1
∑n

j=1 f̂ (τ |x, zj)Wj(x, bn,τ )Wj(x, bn,τ )
′K((xj − x)/bn,τ )}−1

×{(nbdn,τ )−1
∑n

j=1 f̂ (τ |x, zj)Wj(x, bn,τ )K((xj − x)/bn,τ )q((xj − x)/bn,τ )
′} (15)

×[0′d+1, 1
′
d(d+1)/2, 0

′
q]{(nrdn,τ )−1

∑n
j=1 f̂ (τ |x, zj) W̃j(x, rn,τ )W̃j(x, rn,τ )

′K((xj − x)/rn,τ )}−1

×(nrdn,τ )
−1/2

∑n
i=1 (τ − 1 (ui − τ ≤ 0)) W̃i(x, rn,τ )K((xi − x)/rn,τ ).

This leads to the following procedure to construct a robust confidence band for Q(τ |x, z):

PROC-A: Step 1. Simulate (14) and (15) N times, keeping {xi, zi}ni=1 fixed, and save the

values as G(j)
1 (τ) and G(j)

2 (τ) (j = 1, ..., N). Compute ŝ(τ)2 = N−1
∑N

i=1(G
(j)
1 (τ)−G(j)

2 (τ))2.

Step 2. Compute supτ∈T |(G
(j)
1 (τ) − G(j)

2 (τ))/ŝ(τ)| for j = 1, ..., N , with Ĉp denoting the p-th

percentile of this distribution. Step 3. Compute σ̂n,τ = (nbdn,τ )
−1/2ŝ(τ) and B̂l(x, z, τ) in (12),

and obtain the band as

[Q̂(τ |x, z)− B̂l(x, z, τ)b2
n,τ − σ̂n,τ Ĉp, Q̂(τ |x, z)− B̂l(x, z, τ)b2

n,τ + σ̂n,τ Ĉp] for τ ∈ T . (16)

The following result implies that (16) is asymptotically valid when rn,τ/bn = κ(τ) with

0 < κ(τ) <∞ and when rn,τ/bn →∞ as n→∞.

Theorem 3 Under the conditions of Theorem 1 and Assumptions 8-10: if rn,τ/bn = κ(τ) <∞,

then (nbdn,τ )
1/2(Q̂(τ |x, z)−B̂l(x, z, τ)b2

n,τ−Q(τ |x, z))⇒ G1,l (x, z, τ)−(c(τ)/κ (τ))2+d/2G2,l (x, z, τ);

if rn,τ/bn → ∞, then (nbdn,τ )
1/2(Q̂(τ |x, z) − B̂l(x, z, τ)b2

n,τ − Q(τ |x, z)) ⇒ G1,l (x, z, τ), where

G1,l(x, z, τ) is as in Theorem 1, G2,l(x, z, τ) is a zero-mean continuous Gaussian process, with

E(G1,l (x, z, t)G2,l (x, z, s)) = (r ∧ s− rs)[1, z′]Ml(x, t)
−1Cq(x, t, s)Γ(x, s)′[1, z′]′,

E(G2,l (x, z, t)G2,l (x, z, s)) = (t ∧ s− ts)[1, z′]Γ(x, t)Hq(x, t, s)Γ(x, s)′[1, z′]′,
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Cq(x, t, s) = (c (t)κ (s))−d/2
∫
E(f(X)[1, Z ′]′ν(u, Z, s)′|X = x)K(u/c (t))K(u/κ (s))du, ν(u, Z, t) =

(1, u′/κ (t) , q(u)′/κ (t)2 , Z ′)′, andHq(x, t, s) = (κ (t)κ (s))−d/2
∫
E(f(X)ν(u, Z, t)ν(u, Z, s)′|X =

x)K(u/κ (t))K(u/κ (s))du. Furthermore, PROC-A is weakly consistent in both cases.

In a conditional mean setting, Calonico et al. (2018, 2020a, 2020b) showed that robust

bias correction leads to confidence intervals with smaller coverage errors compared to some

alternative methods to deal with the bias, and derived optimal bandwidths that minimize the

coverage error. For future work, it would be of interest to extend their results to the conditional

quantile setting and examine the coverage properties of the uniform confidence band in PROC-A

under various bandwidth selection rules.

3.3.2 Confidence band using resampling

We generalize the resampling method of Parzen et al. (1994), developed for a finite-dimensional

parameter vector, to conduct inference about conditional quantile processes. Parzen et al.

(1994) showed that because the subgradient (i.e., first-order) condition for the quantile regres-

sion estimator defines a pivotal statistic, one can resample Bernoulli random variables and

construct new estimates of the quantile regression coeffi cients to produce a confidence interval.

We use the same idea, but incorporate modifications to address the estimation bias and the

fact that our inference is about a continuous process rather than a finite-dimensional vector.

PROC-R: Step 1. Obtain estimates of Q(τ |x, z) and Bl(x, z, τ) as follows. For each k ∈

{1, ...,m}, compute α̂∗0(x, τ k), α̂
∗
1(x, τ k), and β̂

∗
(τ k) by solving∑n

j=1{τ k − 1(yj − α̂∗0(x, τ k)− (xj − x)′ α̂∗1(x, τ k)− z′jβ̂
∗
(τ k) ≤ 0)} (17)

×Wj(x, bn,τk)K((xj − x)/bn,τk)

= −
∑n

j=1 {τ k − 1(uj − τ k ≤ 0)}Wj(x, bn,τk)K((xj − x)/bn,τk),

and â∗0(x, τ k), â∗1(x, τ k), â∗2(x, τ k), and b̂∗(τ k) by solving∑n
j=1{τ k − 1(yj − â∗0(x, τ k)− (xj − x)′ â∗1(x, τ k)− q (xj − x)′ â∗2(x, τ k)− z′j b̂∗(τ k) ≤ 0)}

× W̃j(x, rn,τk)K((xj − x)/rn,τk)

= −
∑n

j=1 {τ k − 1(uj − τ k ≤ 0)} W̃j(x, rn,τk)K((xj − x)/rn,τk),
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where uj are i.i.d.U(0, 1). Use (α̂∗0(x, τ k), β̂
∗
(x, τ k)) and â∗2(x, τ k) to compute Q̂∗(τ |x, z) and

B̂∗l (x, z, τ) as in (5)-(6) and (12), respectively. Repeat this N times to obtain Q̂∗(j)(τ |x, z)

and B̂∗(j)l (x, z, τ) (j = 1, ..., N) and construct σ̂∗(τ)2 = N−1
∑N

j=1[(Q̂∗(j)(τ |x, z)− Q̂(τ |x, z))−

b2
n,τ (B̂

∗(j)
l (x, z, τ) − B̂l(x, z, τ))]2. Step 2. Compute the supremum supτ∈T |[(Q̂∗(j)(τ |x, z) −

Q̂(τ |x, z)) − b2
n,τ (B̂

∗(j)
l (x, z, τ) − B̂l(x, z, τ))]/σ̂∗(τ)| for j = 1, ..., N , with C∗p denoting the p-

th percentile of this distribution. Step 3. Construct the confidence band as [Q̂(τ |x, z) −

B̂l(x, z, τ)b2
n,τ−σ̂∗(τ)C∗p , Q̂(τ |x, z)−B̂l(x, z, τ)b2

n,τ+σ̂∗(τ)C∗p ]. The next result shows its validity.

Theorem 4 Under the conditions of Theorem 1 and Assumptions 8-10: (nbdn,τ )
1/2(Q̂∗(τ |x, z)−

Q̂(τ |x, z) − b2
n,τ (B̂

∗
l (x, z, τ) − B̂l(x, z, τ))) = D∗1,l(x, z, τ) − D∗2,l(x, z, τ) + op (1) over T , where

D∗1,l(x, z, τ) and D∗2,l(x, z, τ) equal D1,l(x, z, τ) and D2,l(x, z, τ), with u0
j(τ) replaced by uj − τ .

Furthermore, PROC-R is weakly consistent when rn,τ/bn = κ(τ) <∞ and when rn,τ/bn →∞.

UI benefits RD application (cont’d) Supplement Section S3 provides details on how to

construct robust confidence bands for QTEs under RD designs. Recently, Chiang and Sasaki

(2019) studied QTEs under regression kink (RK) designs, though not allowing for heterogeneity

with respect to covariates. We conjecture that our estimation and inference methods can be

extended to cover RK designs with covariates, by focusing on the running variable’s slope

coeffi cient instead of the intercept. Chiang et al. (2019) considered inference on QTEs under

fuzzy RD designs and related problems. Their approach is suitable when the QTE is defined

indirectly through two potential outcome distributions. In contrast, when the QTE is obtained

directly from quantile regressions, our proposed methods are appropriate as we have shown. �

4 Estimation and inference for the GPL model

This section is structured as Section 3 for results pertaining to the GPL model.

4.1 Estimation procedure

The estimation procedure consists of three steps. Different from the LPL case, the linear

component is now estimated using the full sample.
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Step 1: For k ∈ {1, ...,m} and i ∈ {1, ..., n}, solve

min(a0,a1,a2,b)

∑n
j=1,j 6=i ρτk(yj − a0 − (xj − xi)′ a1 − q (xj − xi)′ a2 − z′jb)K((xj − xi)/hn); (18)

or, solve

min(a0,a1,b)

∑n
j=1,j 6=i ρτk(yj − a0 − (xj − xi)′ a1 − z′jb)K((xj − xi)/hn). (19)

Compute β̂(τ k) = n−1
∑n

i=1 β̃(xi, τ k), where β̃(xi, τ k) is the estimate of b in each case.

Step 2: For k ∈ {1, ...,m}, solve

min(a0,a1)

∑n
j=1 ρτk(yj − z

′
jβ̂(τ k)− a0 − (xj − x)′ a1)K((xj − x)/bn,τk). (20)

Let α̂0(x, τ k) and α̂1(x, τ k) be the estimates of a0 and a1, respectively.

Step 3: Apply linear interpolation to compute α̂0(x, τ) = w (τ) α̂0(x, τ k)+(1− w (τ)) α̂0(x, τ k+1)

and β̂(τ) = w (τ) β̂(τ k) + (1− w (τ)) β̂(τ k+1) with w (τ) = (τ k+1 − τ)/(τ k+1 − τ k) for τ ∈

[τ k, τ k+1]. The final estimate is Q̂(τ |x, z) = α̂0(x, τ) + z′β̂(τ) for any τ ∈ T .

Step 1 provides an estimate for the linear component of the model using the entire sample.

The user can choose between local linear and quadratic regressions. Between them, the local

linear option requires weaker assumptions on the smoothness of g(x, τ) in x; however, the

bandwidth condition on hn (specified later) is more restrictive. The averaging operation to

obtain β̂(τ k) follows Lee (2003). Step 2 returns an estimate for the nonparametric component

using information local to x conditional on β̂(τ k). Finally, Step 3 produces a continuous function

over T from m gird points, as in the LPL model case.

Step 1 requires estimating mn quantile regressions. When the sample size is large, e.g., n >

50, 000, the computation becomes impractical on a typical personal computer. However, because

the regressions are mutually independent, parallel computation is possible. To investigate this,

we consider a data generating process with two-dimensional vectors X and Z (i.e., the same

as Model 1 in the simulation section of the Supplement). We divide the resulting operations

between 560 2.4Ghz cores using an R package Rmpi. We find that the computing time is 0.18,

4.1, and 18.2 minutes for n = 10,000, 50,000, and 100,000, respectively. It takes approximately

27.7 hours for a million observations. Therefore, with the help of a cluster, the estimation is
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feasible even for large sample sizes. We make the R code for this parallel computation exercise

available to facilitate empirical implementations.

4.2 Asymptotic properties and the optimal bandwidth

We first study Step 1. Let α0(x, τ) + (xi − x)′ α1(x, τ) + q (xi − x)′ α2(x, τ) be the second-order

Taylor approximation of g(xi, τ) at x, where q (xi − x) is defined below (11). For the local

quadratic regression case, let φ̃(x, τ) equal the normalized difference between the estimates

solving (18) and their values appearing in the above Taylor approximation:

φ̃(x, τ) =
√
nhdn


α̃0(x, τ)− α0(x, τ)

hn(α̃1(x, τ)− α1(x, τ))

h2
n(α̃2(x, τ)− α2(x, τ))

β̃(x, τ)− β(τ)

 . (21)

For the local linear regression case in (19), define φ̃(x, τ) as in (21), but dropping h2
n(α̃2(x, τ)−

α2(x, τ)) from the expression.

Lemma 3 For the local linear case, if Assumptions 1-5 and 7 hold with B(x0) replaced by Sx,

then supτ∈T supx∈Sx ||φ̃(x, τ) − Mn(x, τ)−1S0 (x, τ) || = Op(h
2
n(nhdn)1/2) + Op((nh

d
n)−1/4 log n),

where S0 (x, τ) = (nhdn)−1/2
∑n

j=1{τ − 1(u0
j(τ) ≤ 0)}Wj(x, hn)K((xj − x)/hn). For the local

quadratic regression case, if Assumptions 1-5 and 7-9 hold with B(x0) replaced by Sx, then

supτ∈T supx∈Sx ||φ̃(x, τ) − M̃n(x, τ)−1S̃0 (x, τ) || = Op(h
3
n(nhdn)1/2) + Op((nh

d
n)−1/4 log n), where

S̃0 (x, τ) = (nhdn)−1/2
∑n

j=1{τ − 1(u0
j(τ) ≤ 0)}W̃j(x, hn)K((xj − x)/hn).

This is the first uniform Bahadur representation over T and Sx for a conditional quantile

estimator in a semiparametric setting. The term Op(h
r
n(nhdn)1/2) (r = 2, 3) is due to the

difference between Q(τ |xj, zj) and its local approximation, and therefore can be viewed as a

bias term, while the term Op((nh
d
n)−1/4 log n) represents the variance, which involves (nhdn)−1/4

instead of (nhdn)−1/2 because 1(s ≤ 0) is not differentiable at zero. Our result relates to the

following literature that provides Bahadur representations under various schemes: Chaudhuri

(1991, Theorem 3.3) for a local polynomial estimator in a nonparametric setting, pointwise in
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x and τ ; Chaudhuri et al. (1997, Lemma 4.1) and Lee (2003, Lemma 1) for nonparametric and

partially linear models, respectively, uniform only in x; Qu and Yoon (2015) in a nonparametric

setting, uniform in τ ; Guerre and Sabbah (2012) for a nonparametric model, uniform in both

dimensions. The next result pertains to β̂(τ).

Lemma 4 Under the conditions of Lemma 3: β̂(τ)−β(τ) = Op

(
n−1/2 + (nhdn)−3/4 log n+ hrn

)
uniformly over T , where r = 2, 3 in the local linear and quadratic regression cases, respectively.

The term of order n−1/2 has no first-order effect on the distribution of Q̂(τ |x, z). The

remaining two terms have no effect if the following bandwidth condition is satisfied.

Assumption 11: As n → ∞: (i) in the local quadratic regression case, hn ≥ bn; (ii) in the

local linear regression case, (nbdn)1/2(nhdn)−3/4 log n→ 0 and (nbdn)1/2h2
n → 0.

Theorem 5 If Assumptions 1-7 and 11 (and also Assumptions 8-9 if local quadratic regressions

are used in Step 1) hold with B(x0) replaced by Sx and m/(nbdn)1/4 →∞ as n→∞, then for any

x in the interior of Sx and z ∈ Sz: (nbdn,τ )
1/2(Q̂(τ |x, z)−Q(τ |x, z)−b2

n,τB(x, τ))⇒ G1 (x, τ) over

T , where G1 (x, ·) is a zero-mean continuous Gaussian process with E(G1(x, r)G1(x, s)) = {(r∧

s − rs)
∫
K(u/c(r))K(u/c(s))du}/{f(x)E[f(r|X,Z)|X = x]E[f(s|X,Z)|X = x](c(r)c(s))d/2}

and B(x, τ) = (1/2) tr{(∂2g(x, τ)/∂x∂x′)
∫
uu′K(u)du}.

The bias term B(x, τ) depends on the second-order derivative of g(x, τ) since g(x, τ) is

estimated using local linear regressions; see Steps 2 and 3 of the estimation procedure. The

estimation of β(τ) does not affect the limiting distribution. This feature leads to a simple

formula for the MSE-optimal bandwidth for an interior point, presented below.

Corollary 4 Under the conditions of Theorem 5 and |tr (∂2g(x, τ)/∂x∂x′)| > 0, for any τ ∈ T ,

the bandwidth that minimizes the asymptotic MSE of Q̂(τ |x, z) for an interior point is given by

b∗n,τ =
(

τ(1−τ)d
∫
K(u)2du

f(x){E[f(τ |X,Z)|X=x] tr((∂2g(x,τ)/∂x∂x′)
∫
uu′K(u)du)}2

)1/(4+d)

n−1/(4+d). (22)

Although Theorem 5 and Corollary 4 assume an interior point, the formulae to compute the

uniform bands in the next subsection are valid for both interior and boundary point cases.
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We now summarize how we select the bandwidths hn and bn,τ in Steps 1 and 2 of the

estimation procedure. First, we obtain a bandwidth for the regression (18) or (19) at τ = 0.5

using leave-one-out cross-validation, denoted by hcv; set hn = hcv. This bandwidth is not

particular to the value of x, and it is the same across quantiles. We use this bandwidth to

carry out Step 1. Next, for Step 2, we construct the MSE-optimal bandwidth at the median

by applying hcv to compute the relevant quantities in Corollary 4, and denote the resulting

bandwidth by b∗n,0.5. We then construct an approximation to the MSE-optimal bandwidth

using the formula in Yu and Jones (1998): (b∗n,τ/b
∗
n,0.5)4+d = 2τ (1− τ) /[πφ(Φ−1(τ))2] for

τ ∈ T , where φ and Φ are the standard normal density and cumulative distribution functions.

Finally, we set bn,τ = b∗n,τ and use this bandwidth to carry out the estimation in Step 2. This

bandwidth is particular to the value of x, and it differs between quantiles.

4.3 Uniform confidence bands over quantiles

The procedures below are similar to those in the LPL case. Some modifications are needed

because the linear component of the model is now estimated using the full sample.

4.3.1 Confidence band using the asymptotic approximation

To estimate the bias B(x, τ), for each τ k ∈ {τ 1, ..., τm}, solve

min
(a0,a1,a2)

∑n
j=1 ρτk(yj − z

′
jβ̂(τ k)− a0 − (xj − x)′ a1 − q (xj − x)′ a2)K((xj − x)/rn,τ ), (23)

where β̂(τ k) is fixed at its original value obtained from (18) and rn,τ can be set to bn,τ . After

applying linear interpolation, compute

B̂(x, τ) = [1, 0′d] [
∑n

j=1 K((xj − x)/bn,τ )W̄j(x, bn,τ )W̄j(x, bn,τ )
′]−1 (24)

×{
∑n

j=1 W̄j(x, bn,τ )K((xj − x)/bn,τ )q ((xj − x)/bn,τ )
′}α̂2(x, τ),

where α̂2(x, τ) is the value of a2 solving (23) and W̄j(x, bn,τ ) = [1, (xj − x)′/bn,τ ]
′. The distrib-

ution of (nbdn,τ )
1/2(Q̂(τ |x, z)− B̂(x, τ)b2

n,τ −Q(τ |x, z)) can be estimated by simulating

[1, 0′d] [(nbdn,τ )
−1
∑n

j=1 f̂ (τ |x, zj)K((xj − x)/bn,τ )W̄j(x, bn,τ )W̄j(x, bn,τ )
′]−1 (25)

×(nbdn,τ )
−1/2

∑n
i=1 (τ − 1(ui − τ ≤ 0))W̄i(x, bn,τ )K ((xi − x)/bn,τ ) ,
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and

(bd+4
n,τ /r

d+4
n,τ )1/2 [1, 0′d] [(nbdn,τ )

−1
∑n

j=1K((xj − x)/bn,τ )W̄j(x, bn,τ )W̄j(x, bn,τ )
′]−1 (26)

×{(nbdn,τ )−1
∑n

j=1 W̄j(x, bn,τ )K((xj − x)/bn,τ )q((xj − x)/bn,τ )
′}

×e′3((nrdn,τ )
−1
∑n

j=1 f̂ (τ |x, zj)K((xj − x)/rn,τ )W̆j(x, rn,τ )W̆j(x, rn,τ )
′)−1

×(nrdn,τ )
−1/2

∑n
i=1 {τ − 1 (ui − τ ≤ 0)} W̆i(x, rn,τ )K((xi − x)/rn,τ ),

where e′3 selects the last d(d+1)/2 elements of a vector, and W̆j(x, rn,τ ) = [1, (xj−x)′/rn,τ , q(xj−

x)′/r2
n,τ ]
′. The confidence band for Q(τ |x, z) over T is thus as follows:

PROC-AG: Step 1. Simulate (25) and (26) N times, keeping {xi, zi}ni=1 fixed, and save the

values as G(j)
1 (τ) and G(j)

2 (τ) (j = 1, ..., N). Let ŝ(τ)2 = N−1
∑N

i=1(G
(j)
1 (τ)−G(j)

2 (τ))2. Step 2.

Compute supτ∈T |(G
(j)
1 (τ)−G(j)

2 (τ))/ŝ(τ)| for j = 1, ..., N , and let Ĉp denote its p-th percentile.

Step 3. Compute σ̂n,τ = (nbdn,τ )
−1/2ŝ(τ) and (12), and obtain the band as

[Q̂(τ |x, z)− B̂(x, τ)b2
n,τ − σ̂n,τ Ĉp, Q̂(τ |x, z)− B̂(x, τ)b2

n,τ + σ̂n,τ Ĉp] for τ ∈ T .

4.3.2 Confidence band using resampling

As with the LPL model, the resampling procedure consists of three steps.

PROC-RG: Step 1. For each k ∈ {1, ...,m}, compute α̂∗0(x, τ k) and α̂
∗
1(x, τ k) by solving

(nbdn,τk)
−1/2

∑n
j=1{τ k − 1(yj − z′jβ̂(τ k)− α̂∗0(x, τ k)− (xj − x)′ α̂∗1(x, τ k) ≤ 0)}

×W̄j(x, bn,τk)K((xj − x)/bn,τk)

= −(nbdn,τk)
−1/2

∑n
j=1 {τ k − 1(uj − τ k ≤ 0)} W̄j(x, bn,τk)K((xj − x)/bn,τk),

and compute â∗0(x, τ k), â∗1(x, τ k) and â∗2(x, τ k) by solving

∑n
j=1{τ k − 1(yj − z′jβ̂(τ k)− â∗0(x, τ k)− (xj − x)′ â∗1(x, τ k)− q (xj − x)′ â∗2(x, τ k) ≤ 0)}

× W̆j(x, rn,τk)K((xj − x)/rn,τk)

= −
∑n

j=1 {τ k − 1(uj − τ k ≤ 0)} W̆j(x, rn,τk)K((xj − x)/rn,τk),

where uj are i.i.d.U(0, 1). Apply linear interpolation and then compute B̂∗(x, τ) using (24)

with α̂2(x, τ) replaced by â∗2(x, τ k). Repeat this N times and save the estimates as B̂∗(j)(x, τ)
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(j = 1, ..., N). Let σ̂∗(x, τ)2 = N−1
∑N

j=1[(α̂
∗(j)
0 (x, τ)− α̂0(x, τ))− b2

n,τ (B̂
∗(j)(x, τ)− B̂(x, τ))]2.

Step 2. Compute supτ∈T |[(α̂
∗(j)
0 (x, τ) − α̂0(x, τ)) − b2

n,τ (B̂
∗(j)(x, τ) − B̂(x, τ))]/σ̂∗(x, τ)| for

j = 1, ..., N , and let C∗p denote the p-th percentile of this distribution. Step 3. Compute the

confidence band as [Q̂(τ |x, z)− B̂(x, τ)b2
n,τ − σ̂∗(x, τ)C∗p , Q̂(τ |x, z)− B̂(x, τ)b2

n,τ + σ̂∗(x, τ)C∗p ].

The two confidence bands are asymptotically valid. Because the proofs are essentially

the same as those of Theorems 3 and 4, they are omitted. Although we focused on uniform

confidence bands over quantiles, we conjecture that our PROC-AG can be modified to produce

robust bias-corrected bands that are uniform in covariates for any given quantile. Essentially,

we still simulate (25) and (26), but afterward, we compute the supremum with respect to x

instead of τ . We defer the formal asymptotic analysis for future work, noting that the results

in Chernozhukov et al. (2014) and Cattaneo et al. (2020) are potentially useful.

5 Testing a continuum of quantiles

We focus on the LPL model. The results apply to the GPL model with straightforward modifi-

cations because of the results in Section 4. Let (x1, z) and (x2, z) denote two values of (X,Z).

Let ŵ(τ) ≥ 0 be a user-chosen weight function, satisfying ŵ(τ)
p→ w(τ) uniformly over T ,

where w(τ) is a Lipschitz continuous function over T . Define δ(τ) = Q(τ |x1, z) − Q(τ |x2, z),

δ̂(τ) = Q̂(τ |x1, z)−Q̂(τ |x2, z), andW (τ) = (nbdn,τ )
1/2ŵ(τ)(δ̂(τ)−b2

n,τ (B̂l(x1, z, τ)−B̂l(x2, z, τ)),

where B̂l(x1, z, τ) is given by (12). The hypotheses of equality of distributions, homogeneity,

and stochastic dominance (discussed in Section 2) can be tested using the following statistics,

respectively:

WS (T ) = supτ∈T |W (τ)| ,

WH (T ) = supτ∈T

∣∣∣∣W (τ)−
√
nbdn,τ ŵ(τ)∫

s∈T
√
nbdn,sŵ(s)ds

∫
τ∈T W (τ)dτ

∣∣∣∣ ,
WA (T ) = supτ∈T |1 (W (τ) ≤ 0)W (τ)| .

The tests have built-in bias corrections. Let D1,l (x, z, τ) and D2,l (x, z, τ) be as defined in

Lemma 2 and D3,l(τ) = w(τ){[D1,l (x1, z, τ)−D2,l (x1, z, τ)]− [D1,l (x2, z, τ)−D2,l (x2, z, τ)]}.
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Corollary 5 Under the conditions in Theorem 1 and Assumptions 8-10: 1) if δ(τ) = 0 for

all τ ∈ T , WS (T ) − supτ∈T |D3(τ)| = op (1); 2) if δ(τ) = δ for all τ ∈ T and some δ ∈ R,

WH (T ) − supτ∈T |D3(τ) − {(nbdn,τ )1/2w(τ)/
∫
s∈T (nbdn,s)

1/2w(s)ds}
∫
τ∈TD3(τ)dτ | = op (1); 3) if

δ(τ) = 0 for all τ ∈ T , WA (T )− supτ∈T |1 (D3(τ) ≤ 0)D3(τ)| = op (1).

Corollary 5 accounts for the effects of the bias correction, where D1,l (xj, z, τ)−D2,l (xj, z, τ)

(j = 1, 2) can be simulated using (14) and (15) after replacing x by x1 and x2, respectively.

6 The economic impact of UI benefits

We revisit the analysis of Nekoei and Weber (2017) who used Austrian administrative data.

We study treatment heterogeneity using our semiparametric quantile process framework. The

final sample in Nekoei and Weber (2017) includes individuals aged 30-50 who were laid off after

August 1, 1989 and qualified for the work experience criteria, i.e., worked for 3 or 6 years in

the last 5 or 10 years, respectively. The number of observations is 1,738,787 after excluding

individuals who did not find a job within two years or by the end of the sample period to

avoid right-censoring; see their Table 1 for more information. We use the same sample. The

outcome variables considered are: a) unemployment duration, the number of days between two

consecutive jobs; b) wage change, the log difference between the daily wages of the pre- and

post-unemployment jobs; c) re-employment wage, the log wage level at the post-unemployment

job. The running variable is the age of claimants, measured in days, and the discontinuity is

at 40 years. The dataset contains a rich set of covariates, including gender, occupation, work

experience, marital status, education, industry, firm size, and pre-unemployment wage; see their

Table B3. We consider a subset of these variables.

The model and bandwidth selection. Our analysis is based on solving the estimation

problems in (8). We first estimate the bandwidth at the median, and then relate it to band-

widths at other quantiles using (S.66). Table 2 displays the selected bandwidths obtained by

the cross-validation method (denoted as hcv, with an upper bound of 10) and the MSE opti-

mal bandwidth (denoted as hopt). The main results use the cross-validation bandwidth hcv.
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Although hcv sometimes hits the upper bound, this is of no concern because as shown in the

Supplement (Figures B.13-B.21) the results are robust to alternative bandwidth values. Below,

we first study QTEs without covariates, and then with covariates. The quantile range is set

to [0.1, 0.9]. We report 90% robust uniform confidence bands (i.e., with bias correction) here,

and those without bias correction in the Supplement (see Figures B.4—B.12). The results are

robust.

QTE without covariates. The estimates and uniform confidence bands are reported in Fig-

ure 1. In Panel (a), the outcome variable is the unemployment duration. The estimated effect

is mostly small and insignificant, except in the right tail, for which it is large and significant. In

particular, the estimated effects at τ = 0.1, 0.5, 0.9 are 0.05, -0.13, and 14.24 days, respectively,

with the corresponding confidence intervals being (−0.45, 0.56), (−1.08, 0.80), and (7.67, 20.81).

Under a rank invariance assumption, this shape of the QTE implies that the short-term unem-

ployed do not change their job search behavior in response to the UI benefits extension, while

the long-term unemployed spend considerably longer time to find and accept the next job. This

finding is consistent with Qu and Yoon (2019), who used data from Card et al. (2007) and

found that the QTE for the unemployment duration is increasing in τ .

In Panel (b), the outcome variable is the wage change. The effect is strong, but only in the

left tail. The size of the effect is 1.53 percent at τ = 0.1 with confidence interval (0.39, 2.67).

It becomes small and insignificant as we move away from the low quantiles. To put the values

in perspective, we can compare them to the average 0.5 percent increase in Nekoei and Weber

(2017). The size of the effect in the left tail is more than three times the average effect, while the

median effect is considerably smaller. Hence, the wage effect is clearly heterogeneous. Under

a rank invariance assumption, this implies that individuals who benefited the most are those

who would have experienced substantial wage cuts if there were no benefit extension. Given

that these are the individuals the UI system intends to help, the result here provides strong

favorable evidence that the UI benefits extension is an effective policy.

In Panel (c), the outcome variable is the log reemployment wage. The shape of the QTE is

similar to that in Panel (b), although it is estimated less precisely. The effect is 1.35 percent at
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τ = 0.1 with confidence interval (−0.35, 3.05), and becomes 0.38 and 0.44 percents at τ = 0.5

and 0.9 with intervals (−0.28, 1.04) and (−0.41, 1.31), respectively. Workers in the left tail of

the reemployment wage distribution are those who would accept low-paying positions in their

new jobs. Therefore, under rank invariance, the individuals who get the strongest positive

effects are those who would have got low-paying jobs if there were no benefit extension. Again,

this can be viewed as favorable evidence supporting the positive effects of UI benefits.

QTE with covariates. When the covariates are discrete, estimating (8) using the full sample

is equivalent to estimation by subgroups. Hence, the results pinpoint the subgroups for which

the policy has a large impact. Consider QTEs by occupation. We estimate (8) with zi being

a dummy variable for white collar workers. Figure 2 shows that strong effects are present only

for white collar workers. In particular, from Panel (a), benefits extensions significantly affect

their unemployment durations, while for blue collar workers, we see no response. For the wage

change between jobs, Panel (b), a strong effect is again present for white collar workers, now

in the left tail of the distribution. At τ = 0.1, the effects are 4.22 percentage points for white

collar works and only 0.47 for blue collar workers. Hence, under rank invariance, individuals

who benefited strongly from the benefits extension are the white collar workers who would have

experienced large wage cuts if there were no extension. Panel (c) pertains to the reemployment

wage. As in Panel (b), the effects are larger for white collar workers, being 3.15 percentage

points at τ = 0.1 as opposed to 1.01 for blue collar workers, a substantial economic difference.

Figure 3 shows QTEs by gender subgroups. Interestingly, the effects are stronger for female

than male workers for all three outcome variables. Figure 4 breaks down the sample in four

groups by both occupation and gender. The effects are significant for two groups: white collar

male and female workers, and somewhat positive but insignificant for blue collar female workers.

For blue collar male workers, there is no effect using any of the three outcome variables, despite

the precise estimates. This pattern explains why Nekoei and Weber (2017) found a small

average wage effect. As shown in Table 3, blue collar male workers constitute the majority

(64%) of the sample. Since the benefit extension does not affect the behavior of the largest

group, the average effect has to be small. Our results offer a different picture, namely that the
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benefits extension does have sizable effects on important subgroups, which is important from a

policy perspective.

Figures 5 displays the QTEs by education for college graduates versus high school or below.

The effects on the wage change and reemployment wage are both concentrated on college

graduates. For this group, the effect on the wage change is 20.5 percentage points at τ = 0.1,

40 times bigger than the average effect (0.5 percent) documented in Nekoei and Weber (2017).

This again explains why the average wage effect has to be small, since college graduates only

account for 1.5 percent of the sample, again highlighting the importance of heterogeneity.

Next, we consider some continuous covariates. The results using the pre-unemployment

wage as a continuous covariate are reported in Figure 6. In each panel, the four subfigures

correspond to QTEs at the 0.1, 0.5, 0.7, and 0.9 quantiles of the pre-unemployment wage

distribution. The wage effects are stronger for those with higher pre-unemployment wages.

This result is consistent with the findings in Figure 2, where the effects were stronger for white

collar workers, who tend to earn higher wages.

Nekoei andWeber’s sample contains additional individual and firm-level characteristics, such

as work experience (before job separation), tenure (in the pre-unemployment job), and firm size

(of the pre-unemployment job). For these variables, indicators for deciles are available. We treat

them as continuous variables and estimate QTEs at their 1st, 5th, 7th, and 9th deciles. Due to

space constraint, we summarize the main findings below and report the corresponding figures

in the Supplement. When using work experience as the covariate (Figure B.1), the duration

and wage effects are stronger for those who had more work experience. The impact on the wage

change is 2.86 percentage points at the 9th decile of work experience (τ = 0.1); in contrast, it is

merely -0.02 percentage points, effectively zero, at the 1st decile of work experience. When the

tenure variable is the covariate (Figure B.2), the results are consistent with the previous case,

showing that the duration and wage effects are stronger with a longer tenure. The effect on

the wage change is 2.03 percentage points at the 9th decile of tenure (τ = 0.1), while it is only

0.74 percentage points, being statistically insignificant, at the 1st decile. Therefore, both past

work experience (in any firm) and tenure (in one firm) yield heterogeneity in wage effects. At
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the same time, because the former is associated with a larger variation in the estimated wage

effects, the overall work experience appears to interact more with the treatment than tenure

at a particular firm. Finally, for the firm size case (Figure B.3), unlike the previous cases, the

treatment effects are now largely homogenous across covariate values. The maximum effect

on the wage change is around 1.3 percentage points at all four deciles. This evidence, though

limited, suggests that individual characteristics matter more in driving the treatment effect

heterogeneity than firm characteristics.

Robustness analyses. Figures B.4-B.12 in the Supplement show that the results are robust to

bias correction. The cross validation method used so far tends to select large bandwidth values

allowing more precise estimation at the cost of a possible non-trivial bias when not accounted

for. To examine the effect of a smaller bandwidth, we obtain results using the MSE-optimal

bandwidth values in Table 2. The point estimates (Supplement Figures B.13-B.21) are close to

those in Figures 1-6 and B.1-B.3, with the uniform bands being slightly wider. The conclusions

are unaffected.

Summary of findings. We examined the heterogeneous duration and wage effects of extra

UI benefits. Interestingly, strong and significant effects are found in the tails; the right one

for the unemployment duration and the left for the wage change. The wage effect is stronger

for those who would have experienced large wage cuts and for those who would have accepted

low-paying jobs, if there were no benefit extension. These are the group of individuals the UI

system intends to help. Hence, from a policy perspective, our results show clear economic gains

from the UI benefits. Using the framework of the sharp RD design with covariates, we obtain

the QTEs by subgroups. The positive wage effects mainly accrue to white-collar workers, female

workers, highly educated workers, and those with more work experience or longer tenure. For

male blue-collar workers, less educated workers, and those with little work experience, the UI

payments fail to have any meaningful impact. Overall, the quantile treatment effect is useful to

reveal this heterogeneity and identify groups with strong effects, while the average treatment

effect may obscure rich details hidden in data.

Discussion. We documented that the UI benefit extension affected some workers to change
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their job search decision and that some workers experienced positive wage changes. For some

subgroups, a more generous UI benefit improves the quality of post-unemployment jobs. Those

who benefit the most are in the tails. They are workers with a higher level of pre-employment

wage, the more educated, those with more working experience, and also female workers for

reasons that would merit further investigations. Given our results, while UI benefits reduce the

within-group inequality for some subgroups, they can be viewed as regressive and enhancing

between-group inequality (even though they are obviously not targeted as such), although they

also help to bridge the gender gap.

7 Conclusion

This paper developed methods to study conditional quantile processes in partially linear mod-

els. The framework is flexible about the stochastic relationship between some variables while

controlling for a number of confounding factors. Two inference procedures were provided that

are suitable under different assumptions for moderate or large sample sizes. The methods can

be used to test hypotheses related to equality of distributions, homogeneity, and conditional

stochastic dominance. The framework adopted is very general and encompasses much previous

work in the related literature. A special case of our methodology allowed us to investigate the

issue of assessing the impact of UI benefits within a sharp RD design. We find strong significant

effects in the tail of the outcome distribution. Under rank invariance, this implies that indi-

viduals who benefited the most are those who would have experienced substantial wage cuts if

there were no benefit extension. Since our setup allows for discrete covariates, we also find that

the effects are positive and statistically significant for white collar and female workers, those

with a college education, and those with substantial work experience, but not for blue-collar

male workers and those without higher education or with little work experience.
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Table 1: Means and Standard Deviations of QTE estimates

True Effects Estimated Effects

Unconditional z = 0 z = 1 E1 E2 E3 (z = 0) E3 (z = 1)

τ = 0.1 1.29 0.05 8.05 1.29 4.09 0.05 8.05

(0.08) (0.11) (0.08) (0.09)

τ = 0.5 5.79 1.25 9.25 5.79 5.49 1.24 9.25

(0.08) (0.07) (0.09) (0.09)

τ = 0.9 10.11 4.05 12.05 10.10 8.09 4.04 12.05

(0.11) (0.10) (0.12) (0.11)

The DGP is Q(τ |xi, zi) = (5τ 2+8zi)1(xi ≥ 0)+2.5Φ−1(τ), where xi ∼Uniform(-10,10),

zi ∼Bernoulli(0.5) independent of xi, and Φ(.) is the standard normal CDF. The first

three columns report the true values, and the last three the estimates. The estimated

values (with standard errors in parentheses) are averages over 500 replications, using

the Epanechnikov kernel with the bandwidth set to 10. E1: the benchmark model

without covariates; E2: with covariates but forcing their coefficients to be the same on

both sides of the cutoff; E3: an unrestricted model with covariates.



Table 2: Selected Bandwidths for the Empirical Application

Outcome variable Duration Wage
change

Reemployment
wage

hcv hopt hcv hopt hcv hopt

Without covariates

10.0 8.0 10.0 5.6 7.0 4.6

With covariates

Occupation 10.0 8.6 10.0 8.0 6.0 5.4

Gender 7.0 7.6 10.0 7.9 6.0 6.0

Occupation & gender 5.0 5.8 10.0 7.8 6.0 5.4

Education 10.0 8.0 9.0 6.5 6.0 7.0

Previous wage 10.0 7.9 10.0 6.0 7.0 5.2

Work experience 10.0 8.2 10.0 8.8 6.0 5.3

Tenure 10.0 8.8 10.0 7.8 7.0 5.5

Firm size 10.0 9.7 10.0 6.0 7.0 4.6

Selected bandwidth values at the median. hcv and hopt denote the cross-

validated and MSE optimal bandwidth, respectively. For hopt, the average

bandwidth over covariate values is reported. For example, when the outcome

variable is unemployment duration and the covariate is a binary variable for

occupation, the value reported represents the average of the optimal band-

widths for blue collar and white collar workers (7.5 and 9.7). To compute

hopt, a pilot bandwidth is needed to compute the nuisance parameters, and the

corresponding hcv is used for this purpose.



Table 3: Composition of the Sample

Male Female

White Collar 0.104 0.133

Blue Collar 0.642 0.121

Compulsory
Apprenticeship

and middle school High school College

0.469 0.480 0.036 0.015

The entries are the proportions of each subgroups within the full sample. The left panel is

a breakdown of the sample into four subgroups by occupation and gender. The right panel

is a breakdown of the sample into groups by education.



Figure 1: Full Sample Estimates and Confidence Bands for Different Outcome Variables
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Bias corrected QTE and robust 90% uniform confidence bands. They are estimated from

equation (8) without any covariates, using the bandwidth hcv as stated in Table 2.



Figure 2: Blue Collar vs. White Collar Workers
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Bias corrected QTE and robust 90% uniform confidence bands, estimated from equation

(8) with the covariate being a white collar dummy, using the hcv bandwidth in Table 2.



Figure 3: Male vs. Female Workers
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Bias corrected QTE and robust 90% uniform confidence bands, estimated using equation

(8) with the covariate being a female dummy, using the hcv bandwidth in Table 2.



Figure 4: Groups by Occupation and Gender
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Figure 4: Groups by Occupation and Gender, continued

(c) Reemployment wage.
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The figures present bias corrected QTE and robust 90% uniform confidence bands for four

groups defined by occupation and gender: (i) blue collar male, (ii) blue collar female, (iii)

white collar male, and (iv) white collar female workers. For each outcome variable, the

bandwidth hcv used is as stated in Table 2.



Figure 5: Groups by Education
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The figures present bias corrected QTE and robust 90% uniform confidence bands for two

groups defined by education: college graduates vs. high school graduates and below. The

bandwidth hcv used is as stated in Table 2.



Figure 6: Groups by Pre-unemployment Wage
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(b) Wage change.
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Figure 6: Groups by Pre-unemployment Wage, continued

(c) Reemployment wage.
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The figures present bias corrected QTE and robust 90% uniform confidence bands for

four groups defined by levels of pre-unemployment wage: (i) the previous wage is 10%,

(ii) 50%, (iii) 70%, and (iv) 90% in the pre-unemployment wage distribution. For each

outcome variable, the bandwidth hcv used is as stated in Table 2.



Inference on Conditional Quantile Processes in Partially Linear Models with
Applications to the Impact of Unemployment Benefits
by Zhongjun Qu, Jungmo Yoon and Pierre Perron

Supplementary Material
(Not for publication)

This Supplement is structured as follows. Section S.1 includes the proofs of the results in

the paper, while Section S.2 provides some auxiliary lemmas needed in Section S.1. Section

S.3 explains how to obtain a uniform confidence band for the quantile treatment effect (QTE)

under the regression discontinuity (RD) setting with covariates. Section S.4 presents simulation

results related to the bandwidth selection, the bias and variance of the estimator, and the

uniform confidence bands, covering both local partially linear (LPL) and global partially linear

(GPL) models. Section S.5 includes some sensitivity analyses for the empirical application.

Additional tables and figures for the simulations and applications are included at the end.

S.1 Proofs of the results

We first introduce some notation for local linear and quadratic quantile regressions. For the

local quadratic regression, let

α0(x, τ) + (xi − x)′ α1(x, τ) + q (xi − x)′ α2(x, τ)

be the second-order Taylor approximation to g(τ |x, z). The resulting approximation error is

ej (x, τ) = α0(x, τ) + (xj − x)′ α1(x, τ) + q (xj − x)′ α2(x, τ)− g(xj, τ).

Let u0
j(τ) be the true quantile residual: u0

j(τ) = yj − g(xj, τ)− z′jβ(τ). Let P (u0
j(τ) ≤ s|xj, zj)

stand for the cumulative distribution function of Y conditional onX = xj and Z = zj, evaluated

at g(xj, τ) + z′jβ(τ) + s. We use the same notation for the local linear regression, except that

in this case, the Taylor approximation error is

ej (x, τ) = α0(x, τ) + (xj − x)′ α1(x, τ)− g(xj, τ).

S.1.1 Proofs of the results in Section 3

Proof of Theorem 1. The proof is similar to that of Qu and Yoon (2015, Theorem 2). Define
Wl,j(x, bn,τ ) = (1, z′j, (xj − x)′/bn,τ )

′. Consider the subgradient evaluated at x and z, multiplied

by (nbdn,τ )
−1/2:

(nbdn,τ )
−1/2

∑n
j=1{τ − 1(u0

j(τ) ≤ ej(x, τ) + (nbdn,τ )
−1/2Wl,j(bn,τ , x)′φ̂ (x, τ)} (S.1)

×Wl,j(x, bn,τ )K((xj − x)/bn,τ ),
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where

φ̂(x, τ) =
√
nbdn,τ


α̂0(x, τ)− α0(x, τ)

β̂(τ)− β(τ)

bn,τ (α̂1(x, τ)− α1(x, τ))

 ,

with α̂0(x, τ), β̂(τ) and α̂1(x, τ) solving (4). Adding and subtracting terms, (S.1) can be

expressed as

{S̄(x, τ , φ̂ (x, τ))− S̄0 (x, τ)}+ S̄0 (x, τ) (S.2)

+(nbdn,τ )
−1/2

∑n
j=1{τ − P (u0

j(τ) ≤ ej(x, τ) + (nbdn,τ )
−1/2Wl,j(bn,τ , x)′φ̂ (x, τ) |xj, zj)}

×Wl,j(bn,τ , x)K((xj − x)/bn,τ ),

where

S̄ (x, τ , φ) = (nbdn,τ )
−1/2

∑n
j=1

{
P (u0

j(τ) ≤ (nbdn,τ )
−1/2Wl,j(bn,τ , x)′φ+ ej(x, τ)|xj, zj)

−1(u0
j(τ) ≤ (nbdn,τ )

−1/2Wl,j(bn,τ , x)′φ+ ej(x, τ))
}
Wl,j(bn,τ , x)K((xj − x)/bn,τ ),

and S̄0 (x, τ) equals S̄ (x, τ , φ) after setting φ = 0 and ej(x, τ) = 0. For S̄ (x, τ , φ), we apply the

argument in Qu and Yoon (2015, Lemma B.5), which implies S̄(x, τ , φ̂ (x, τ))−S̄0 (x, τ) = op (1),

uniformly over T . For the second term in (S.2), we analyze it using a second order Taylor

expansion, obtaining the representation:

−(nbdn,τ )
−1/2

∑n
j=1 f (τ |xj, zj) ej (x, τ)Wl,j(bn,τ , x)K((xj − x)/bn,τ )

−((nbdn,τ )
−1
∑n

j=1 f (τ |xj, zj)Wl,j(bn,τ , x)Wl,j(bn,τ , x)′K((xj − x)/bn,τ ))φ̂ (x, τ)

−(1/2)(nbdn,τ )
−1/2

∑n
j=1 f

′ (ỹj|xj, zj) ej (x, τ)2Wl,j(bn,τ , x)K((xj − x)/bn,τ )

−(1/2)(nbdn,τ )
−1/2((nbdn,τ )

−1
∑n

j=1 f
′ (ỹj|xj, zj) [Wl,j(bn,τ , x)′φ̂ (x, τ)]2Wl,j(bn,τ , x)K((xj − x)/bn,τ )),

where ỹi is a value betweenQ(τ |xj, zj) andQ(τ |xj, zj)+ej(x, τ)+(nbdn,τ )
−1/2Wl,j(bn,τ , x)′φ̂ (x, τ).

The third and fourth terms above are op (1) uniformly over T . Collecting the remaining terms
and noting that (S.1) is op (1), we have

S̄0 (x, τ)− (nbdn,τ )
−1/2

∑n
j=1 f (τ |xj, zj) ej (x, τ)Wl,j(bn,τ , x)K((xj − x)/bn,τ )

−(nbdn,τ )
−1
∑n

j=1 f (τ |xj, zj)Wl,j(bn,τ , x)Wl,j(bn,τ , x)′K((xj − x)/bn,τ )

× (nbdn,τ )
1/2


α̂0(x, τ)− α0(x, τ)

β̂l(τ)− β(τ)

bn,τ (α̂1(x, τ)− α1(x, τ))

 = op (1) .
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This implies, by Assumption 7, that

(nbdn,τ )
1/2


α̂0(x, τ)− α0(x, τ)

β̂l(τ)− β(τ)

bn,τ (α̂1(x, τ)− α1(x, τ))

 (S.3)

= {(nbdn,τ )−1
∑n

j=1 f (τ |x, zj)Wl,j(x, bn,τ )Wl,j(x, bn,τ )
′K((xj − x)/bn,τ )}−1

×{(nbdn,τ )−1/2
∑n

j=1(τ − 1(u0
j(τ) ≤ 0))Wl,j(x, bn,τ )K((xj − x)/bn,τ )

−(nbdn,τ )
−1/2

∑n
j=1 f (τ |x, zj) ej (x, τ)Wl,j(x, bn,τ )K((xj − x)/bn,τ )}+ op (1) .

The expression in the first curly brackets converges in probability to

E

f(X)f (τ |X,Z)


1 Z ′ 0

Z ZZ ′ 0

0 0
∫
uu′K(u)du


∣∣∣∣∣∣∣∣∣X = x

 .

Because of the block-diagonality, we have

(nbdn,τ )
1/2

 α̂0,l(x, τ)− α0,l(x, τ)

β̂l(τ)− β(τ)

 (S.4)

= Ml(x, τ)−1{(nbdn,τ )−1/2
∑n

j=1(τ − 1(u0
j(τ) ≤ 0))[1, z′j]

′K((xj − x)/bn,τ )}
−Ml(x, τ)−1{(nbdn,τ )−1/2

∑n
j=1 f (τ |x, zj) ej (x, τ) [1, z′j]

′K((xj − x)/bn,τ )}+ op (1) ,

which implies

(nbdn,τ )
1/2[1, z′]

 α̂0,l(x, τ)− α0,l(x, τ)

β̂l(τ)− β(τ)


= [1, z′]Ml(x, τ)−1{(nbdn,τ )−1/2

∑n
j=1(τ − 1(u0

j(τ) ≤ 0))[1, z′j]
′K((xj − x)/bn,τ )}

−[1, z′]Ml(x, τ)−1{(nbdn,τ )−1/2
∑n

j=1 f (τ |x, zj) ej (x, τ) [1, z′j]
′K((xj − x)/bn,τ )}+ op (1) .

The first term on the right hand side is D1,l (x, z, τ). The second term satisfies

−(nbdn,τ )
−1/2

∑n
j=1 f (τ |x, zj) ej (x, τ) [1, z′j]

′K((xj − x)/bn,τ )

=
1

2
b2
n,τ (nb

d
n,τ )

−1/2

n∑
j=1

f (τ |x, zj)
(
xj − x
bn,τ

)′
∂2g(x, τ)

∂x∂x′

(
xj − x
bn,τ

) 1

zj

K (xj − x
bn,τ

)

=
1

2
(nbd+4

n,τ )1/2

 1

nbdn,τ

n∑
j=1

f (τ |x, zj)

 1

zj

(xj − x
bn,τ

)′
∂2g(x, τ)

∂x∂x′

(
xj − x
bn,τ

)
K

(
xj − x
bn,τ

)
=

1

2
(nbd+4

n,τ )1/2

{
Jl(x, τ) tr

(
∂2g(x, τ)

∂x∂x′

∫
uu′K(u)du

)
+ op (1)

}
.
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The above two expressions imply

(nbdn,τ )
1/2(Q̂(τ |x, z)−Q(τ |x, z)− b2

n,τBl(x, z, τ)) = D1,l (x, z, τ) + op (1) (S.5)

uniformly over T . The leading term on the right hand side, D1,l (x, z, τ), can be analyzed using

the argument in Qu and Yoon (2015, Lemma B3). It follows that this term is stochastically

equicontinuous, and its limiting covariance function is as specified in the Theorem. Hence, it

follows that (nbdn,τ )
1/2(Q̂(τ |x, z)−Q(τ |x, z)− b2

n,τBl(x, z, τ)) converges to the Gaussian process

defined in Theorem 1. The effect of the linear interpolation can be analyzed in the same way

as in Qu and Yoon (2015, pp.15-16); we therefore omit the details. This completes the proof.

Remark 1 A slight modification of the above proof yields the limiting distribution of β̂l(τ) −
β(τ) for β̂l(τ) defined in (5). Specifically, from (S.4), we obtain

(nbdn,τ )
1/2(β̂l(τ)− β(τ))

= [0q, Iq]Ml(x, τ)−1{(nbdn,τ )−1/2
∑n

j=1(τ − 1(u0
j(τ) ≤ 0))[1, z′j]

′K((xj − x)/bn,τ )}
−[0q, Iq]Ml(x, τ)−1{(nbdn,τ )−1/2

∑n
j=1 f (τ |x, zj) ej (x, τ) [1, z′j]

′K((xj − x)/bn,τ )}+ op (1) ,

where 0q is a q-vector of zeros and Iq is the q-dimensional identity matrix. The first term on

the right hand side equals D1,l (x, z, τ) in Theorem 1 after replacing [1, z′] by [0q, Iq]; we denote

it by Dβ,l (x, z, τ). The second term equals

(nbd+4
n,τ )1/2

{
1

2
[0q, Iq]Ml(x, τ)−1Jl(x, τ) tr

(
∂2g(x, τ)

∂x∂x′

∫
uu′K(u)du

)}
+ op(nb

d+4
n,τ )1/2,

where the expression in the curly brackets equals Bl(x, z, τ) in Theorem 1 after replacing [1, z′]

by [0q, Iq]; we denote it by Bβ (x, z, τ). These two results imply

(nbdn,τ )
1/2
(
β̂l(τ)− β(τ)−Bβ (x, z, τ)

)
= Dβ,l (x, z, τ) + op (1) .

Finally, Dβ,l (x, z, τ) converges to a vector of mean-zero continuous Gaussian processes, denoted

by Gβ,l(x, z, r), with E[Gβ,l(x, z, r)Gβ,l(x, z, r)
′] = [0q, Iq]Ml(x, r)

−1Hl(x)Ml(x, s)
−1[0q, Iq]

′(r ∧
s− rs)(c(r)c(s))−d/2

∫
K(u/c (r))K(u/c (s))du for r, s ∈ T .

Proof of Corollary 1. The equation (S.3) holds when x is a boundary point, which can be
rewritten as

(nbdn,τ )
1/2


α̂0(x, τ)− α0(x, τ)

bn,τ (α̂1(x, τ)− α1(x, τ))

β̂l(τ)− β(τ)

 (S.6)

= {(nbdn,τ )−1
∑n

j=1 f (τ |x, zj)Wj(x, bn,τ )Wj(x, bn,τ )
′K((xj − x)/bn,τ )}−1

×{(nbdn,τ )−1/2
∑n

j=1(τ − 1(u0
j(τ) ≤ 0))Wj(x, bn,τ )K((xj − x)/bn,τ )

− (nbdn,τ )
−1/2

∑n
j=1 f (τ |x, zj) ej (x, τ)Wj(x, bn,τ )K((xj − x)/bn,τ )}+ op (1) ,
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where the op (1) is uniform over T and Wj(x, bn,τ ) = [1, (x′j − x′)/bn,τ , z′j]′. For the right hand
side terms, we have

(nbdn,τ )
−1
∑n

j=1 f (τ |x, zj)Wj(x, bn,τ )Wj(x, bn,τ )
′K((xj − x)/bn,τ )

p→Mb(x, τ)

and

−(nbdn,τ )
−1/2

∑n
j=1 f (τ |x, zj) ej (x, τ)Wj(x, bn,τ )K((xj − x)/bn,τ )

= (1/2)(nbd+4
n,τ )1/2

∫
Dx,bn,τ

Φ(x, u)u′[∂2g(x, τ)/∂x∂x′]uK (u) du+ op (1) .

Combining the above two expressions with (S.6) completes the proof.

Remark 2 A slight modification of the above proof yields the limiting distribution of β̂l(τ) −
β(τ) for β̂l(τ) defined in (5). Specifically, let 0q×(d+1) and Iq be a q× (d+1) matrix of zeros and

the q-dimensional identity matrix, respectively. Multiplying (S.6) by [0q×(d+1), Iq], we obtain

(nbdn,τ )
1/2
(
β̂l(τ)− β(τ)

)

= (nbdn,τ )
1/2[0q×(d+1), Iq]


α̂0(x, τ)− α0(x, τ)

bn,τ (α̂1(x, τ)− α1(x, τ))

β̂l(τ)− β(τ)


= [0q×(d+1), Iq]{(nbdn,τ )−1

∑n
j=1 f (τ |x, zj)Wj(x, bn,τ )Wj(x, bn,τ )

′K((xj − x)/bn,τ )}−1

×{(nbdn,τ )−1/2
∑n

j=1(τ − 1(u0
j(τ) ≤ 0))Wj(x, bn,τ )K((xj − x)/bn,τ )

− (nbdn,τ )
−1/2

∑n
j=1 f (τ |x, zj) ej (x, τ)Wj(x, bn,τ )K((xj − x)/bn,τ )}+ op (1)

= [0q×(d+1), Iq]Mb(x, τ)−1(nbdn,τ )
−1/2

∑n
j=1(τ − 1(u0

j(τ) ≤ 0))Wj(x, bn,τ )K((xj − x)/bn,τ )

−[0q×(d+1), Iq]Mb(x, τ)−1(nbdn,τ )
−1/2

∑n
j=1 f (τ |x, zj) ej (x, τ)Wj(x, bn,τ )K((xj − x)/bn,τ )

+op (1) .

The first term on the right hand side equals D1,b (x, z, τ) in Corollary 1 with [1, 0′d, z
′] replaced

by [0q×(d+1), Iq]; we denote it by Dβ,b (x, z, τ). The second term on the right hand side equals

(nbd+4
n,τ )1/2

{
1

2
[0q×(d+1), Iq]Mb(x, τ)−1

∫
Dx,bn,τ

Φ(x, u)u′[∂2g(x, τ)/∂x∂x′]uK (u) du

}
+op(nb

d+4
n,τ )1/2,

where the expression in the curly brackets equals Bb(x, z, τ) in Corollary 1 with [1, 0′d, z
′] replaced

by [0q×(d+1), Iq]; we denote it by with Bβ(x, z, τ). These two results imply

(nbdn,τ )
1/2
(
β̂l(τ)− β(τ)−Bβ (x, z, τ)

)
= Dβ,b (x, z, τ) + op (1) .

S-5



Proof of Corollary 2. Define

Wv,j(x, bn,τ ) =


1

zj

(xj − x)/bn,τ

zj · (xj − x)/bn,τ

 =

 1

(xj − x)/bn,τ

⊗
 1

zj

 .

Recall that d = dim(x) = 1. As in the proof of Corollary 1, the following holds:

(nbn,τ )
1/2


α̂0(x, τ)− α0(x, τ)

β̂l(τ)− β(τ)

bn,τ (α̂1(x, τ)− α1(x, τ))

bn,τ (γ̂(x, τ)− γ(x, τ))

 (S.7)

= {(nbn,τ )−1
∑n

j=1 f (τ |x, zj)Wv,j(x, bn,τ )Wv,j(x, bn,τ )
′K((xj − x)/bn,τ )}−1

×{(nbn,τ )−1/2
∑n

j=1(τ − 1(u0
j(τ) ≤ 0))Wv,j(x, bn,τ )K((xj − x)/bn,τ )

−(nbn,τ )
−1/2

∑n
j=1 f (τ |x, zj) ej (x, τ)Wv,j(x, bn,τ )K((xj − x)/bn,τ )}+ op (1) .

Further, the right hand side terms satisfy

(nbn,τ )
−1
∑n

j=1 f (τ |x, zj)Wv,j(x, bn,τ )Wv,j(x, bn,τ )
′K((xj − x)/bn,τ )

p→Mv(x, τ)

and

−(nbn,τ )
−1/2

∑n
j=1 f (τ |x, zj) ej (x, τ)Wv,j(x, bn,τ )K((xj − x)/bn,τ )}

=
1

2
(nb5

n,τ )
1/2

{
1

nbn,τ

n∑
j=1

f (τ |x, zj)
∂2g(x, τ)

∂x2

(
xj − x
bn,τ

)2

Wv,j(x, bn,τ )K

(
xj − x
bn,τ

)}

=
1

2
(nb5

n,τ )
1/2

{
Lv(x, τ)

∂2g(x, τ)

∂x2
+ op (1)

}
.

The result follows from the above two expressions. This completes the proof.

Remark 3 A slight modification of the above proof yields the limiting distribution of β̂l(τ) −
β(τ). Specifically, let 0q, Iq, and 0q×(q+1) be a q-vector of zeros, the q-dimensional identity

matrix, and a q× (q+ 1) matrix of zeros, respectively. Multiplying (S.7) by [0q, Iq, 0q×(q+1)], we
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obtain

(nbn,τ )
1/2
(
β̂l(τ)− β(τ)

)
= [0q, Iq, 0q×(q+1)]{(nbn,τ )−1

∑n
j=1 f (τ |x, zj)Wv,j(x, bn,τ )Wv,j(x, bn,τ )

′K((xj − x)/bn,τ )}−1

×{(nbn,τ )−1/2
∑n

j=1(τ − 1(u0
j(τ) ≤ 0))Wv,j(x, bn,τ )K((xj − x)/bn,τ )

−(nbn,τ )
−1/2

∑n
j=1 f (τ |x, zj) ej (x, τ)Wv,j(x, bn,τ )K((xj − x)/bn,τ )}+ op (1)

= [0q, Iq, 0q×(q+1)]Mv(x, τ)−1(nbn,τ )
−1/2

∑n
j=1(τ − 1(u0

j(τ) ≤ 0))Wv,j(x, bn,τ )K((xj − x)/bn,τ )

−[0q, Iq, 0q×(q+1)]Mv(x, τ)−1(nbn,τ )
−1/2

∑n
j=1 f (τ |x, zj) ej (x, τ)Wv,j(x, bn,τ )K((xj − x)/bn,τ )

+op (1) .

The first term on the right hand side equalsD1,v (x, z, τ) in Corollary 2 after replacing [1, z′, 0′1+q, ]

by [0q, Iq, 0q×(q+1)]; we denote it by Dβ,v (x, z, τ). The second term on the right hand side equals

(nb5
n,τ )

1/2

{
1

2
[0q, Iq, 0q×(q+1)]Mv(x, τ)−1Lv(x, τ)

∂2g(x, τ)

∂x2

}
+ op(nb

5
n,τ )

1/2,

where the expression in the curly brackets equals Bv(x, z, τ) in Corollary 2 after replacing

[1, z′, 0′1+q, ] by [0q, Iq, 0q×(q+1)]; we denote it by with Bβ(x, z, τ). These two results imply

(nbn,τ )
1/2
(
β̂l(τ)− β(τ)−Bβ (x, z, τ)

)
= Dβ,v (x, z, τ) + op (1) .

Proof of Theorem 2. The MSE of Q̂(τ |x, z) at an interior point x is

(1/4)

{
[1, z′]Ml(x, τ)−1Jl(x, τ) tr(∂2g(x, τ)/∂x∂x′

∫
uu′K(u)du)

}2

b4
n,τ

+
1

nbdn,τ
[1, z′]Ml(x, τ)−1Hl(x)Ml(x, τ)−1[1, z′]′τ (1− τ)

∫
K (u)2 du+ op(nb

d
n,τ ).

The first order condition with respect to bn,τ based on the two leading terms is{
[1, z′]Ml(x, τ)−1Jl(x, τ) tr(∂2g(x, τ)/∂x∂x′

∫
uu′K(u)du)

}2

− d

nbd+4
n,τ

[1, z′]Ml(x, τ)−1Hl(x)Ml(x, τ)−1[1, z′]′τ (1− τ)

∫
K (u)2 du = 0.

Rearranging terms, we obtain the expression in the Corollary. This bandwidth is Lipschitz con-

tinuous since the following expressions have bounded first derivatives with respect to τ over T :
([1, z′]Ml(x, τ)−1Jl(x, τ))−2/(4+d), (τ (1− τ))1/(4+d), ([1, z′]Ml(x, τ)−1Hl(x)Ml(x, τ)−1[1, z′]′)1/(4+d),

and tr(∂2g(x, τ)/∂x∂x′
∫
uu′K(u)du)−2/(4+d).

Proof of Corollary 3. The MSE of Q̂(τ |x, z) at x is

(1/4)
{[

1, z′, 0′1+q

]
Mv(x, τ)−1Lv(x, τ)∂2g(x, τ)/∂x2

}2
b4
n,τ

+
1

nbn,τ

[
1, z′, 0′1+q

]
Mv(x, τ)−1Hv(x)Mv(x, τ)−1

[
1, z′, 0′1+q

]′
τ (1− τ)

∫ ∞
0

K (u)2 du+ op(nb
d
n,τ ),
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where

Hv(x) = (

∫ ∞
0

ūū′K(u)du)⊗ E (f(X)([1, Z ′]′[1, Z ′])|X = x) ,

Mv(x, τ) = (

∫ ∞
0

ūū′K(u)du)⊗ E (f(X)f (τ |X,Z) ([1, Z ′]′[1, Z ′])|X = x) ,

Lv(x, τ) = (

∫ ∞
0

ūu2K(u)du)⊗ E (f(X)f (τ |X,Z) [1, Z ′]′|X = x) .

The first order condition with respect to bn,τ based on the two leading terms is{[
1, z′, 0′1+q

]
Mv(x, τ)−1Lv(x, τ)∂2g(x, τ)/∂x2

}2

− 1

nb5
n,τ

[
1, z′, 0′1+q

]
Mv(x, τ)−1Hv(x)Mv(x, τ)−1

[
1, z′, 0′1+q

]′
τ (1− τ)

∫
K (u)2 du

= 0.

Rearranging the terms, we obtain the expression in the Corollary.

Proof of Lemma 1. The proof follows from standard arguments. Denote the band in the

corollary by Bp, which satisfies, for any Cp > 0,

P (Q(τ |x, z) /∈ Bp for some τ ∈ T )

= P (σ−1
n,τ |Q̂(τ |x, z)−Bl(x, z, τ)b2

n,τ −Q(τ |x, z)| > Cp for some τ ∈ T )

= P (supτ∈T σ
−1
n,τ |Q̂(τ |x, z)−Bl(x, z, τ)b2

n,τ −Q(τ |x, z)| > Cp). (S.8)

Because

σ−1
n,τ (Q̂(τ |x, z)−Q(τ |x, z)− b2

n,τBl(x, z, τ))⇒ G1,l (x, z, τ) /(EG1,l (x, z, τ)2)1/2,

setting Cp to the p-th quantile of supτ∈T ||G1,l (x, z, τ) /(EG1,l (x, z, τ)2)1/2|| delivers the desired
coverage probability asymptotically.

Proof of Lemma 2. It suffi ces to study (nbd+4
n,τ )1/2(B̂l(x, z, τ) − Bl(x, z, τ)). The proof is

similar to that of Theorem 1, the main difference being that a local quadratic regression is

used. Define

φ̂(x, τ) =
√
nrdn,τ


α̂0(x, τ)− α0(x, τ)

rn,τ (α̂1(x, τ)− α1(x, τ))

r2
n,τ (α̂2(x, τ)− α2(x, τ))

β̂(τ)− β(τ)

 ,

where α̂0(x, τ), α̂1(x, τ), α̂2(x, τ), and β̂(x, τ) are the estimates from (11). Recall W̃j(x, rn,τ ) =

[1, (xj−x)′/rn,τ , q(xj−x)′/r2
n,τ , z

′]′. The proof is based on considering the subgradient evaluated

at x and z, multiplied by (nrdn,τ )
−1/2:

(nrdn,τ )
−1/2

∑n
j=1{τ−1(u0

j(τ) ≤ ej(x, τ)+(nrdn,τ )
−1/2W̃j(rn,τ , x)′φ̂ (x, τ))}W̃j(rn,τ , x)K((xj−x)/rn,τ ).
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Adding and subtracting terms, the above equation can be rewritten as

{S̃(x, τ , φ̂ (x, τ))− S̃0 (x, τ)}+ S̃0 (x, τ) (S.9)

+(nbdn,τ )
−1/2

∑n
j=1{τ − P (u0

j(τ) ≤ ej(x, τ) + (nrdn,τ )
−1/2W̃j(rn,τ , x)′φ̂ (x, τ) |xj, zj)}

× W̃j(rn,τ , x)K((xj − x)/rn,τ ),

where

S̃ (x, τ , φ) = (nrdn,τ )
−1/2

∑n
j=1

{
P (u0

j(τ) ≤ ej(x, τ) + (nrdn,τ )
−1/2W̃j(rn,τ , x)′φ|xj, zj)

−1(u0
j(τ) ≤ ej(x, τ) + (nrdn,τ )

−1/2W̃j(rn,τ , x)′φ)
}
W̃j(rn,τ , x)K((xj − x)/bn),

and S̃0 (x, τ) equals S̃ (x, τ , φ) with φ = 0 and ej(x, τ) = 0. Using the same argument as in the

proof of Theorem 1, we can rewrite (S.9) as

−(nrdn,τ )
−1/2

∑n
j=1 f (τ |xj, zj) ej (x, τ) W̃j(rn,τ , x)K((xj − x)/rn,τ ) (S.10)

−(nrdn,τ )
−1{
∑n

j=1 f (τ |xj, zj) W̃j(rn,τ , x)W̃j(rn,τ , x)′K((xj − x)/rn,τ )}(nrdn,τ )1/2φ̂(x, τ)

+S̃0 (x, τ) + op (1) .

Because (nrdn,τ )
−1/2

∑n
j=1 f (τ |xj, zj) ej (x, τ) W̃j(rn,τ , x)K((xj − x)/rn,τ ) = Op((nr

d
n,τ )

1/2r3
n,τ ),

(nrdn,τ )
−1
∑n

j=1 f (τ |xj, zj) W̃j(rn,τ , x)W̃j(rn,τ , x)′K((xj − x)/rn,τ ) converges in probability to

E(f(X)f (τ |X,Z)
∫

[1, u′, q(u)′, Z ′]′[1, u′, q(u)′, Z ′]K(u)du|X = x), and (S.9) is op(1), we ob-

tain

(nbd+4
n,τ )1/2 (α̂2(x, τ)− α2(x, τ))

= (bd+4
n,τ /r

d+4
n,τ )1/2[0′d+1, 1

′
d(d+1)/2, 0

′
q]Mq(x, τ)−1

×(nrdn,τ )
−1/2

∑n
i=1

{
τ − 1

(
u0
i (τ) ≤ 0

)}
W̃i(rn,τ , x)K((xi − x)/rn,τ )

+(bd+4
n,τ /r

d+4
n,τ )1/2[0′d+1, 1

′
d(d+1)/2, 0

′
q]Mq(x, τ)−1

{
op (1) +Op

(
(nrdn,τ )

1/2r3
n,τ

)}
.

Because c1bn ≤ rn = O(n−1/(6+d)) , the second term on the right hand side is of lower order

than (nbd+4
n,τ /nr

d+4
n,τ )1/2 unless (nrdn,τ )

1/2r3
n,τ is positive in the limit (i.e., when rn,τ is of the same

rate as the MSE-optimal bandwidth in a local quadratic regression). But in the latter case, we

have bn,τ/rn,τ → 0, so the order of the whole term is still op (1). Therefore,

(nbd+4
n,τ )1/2 (α̂2(x, τ)− α2(x, τ))

= (bd+4
n,τ /r

d+4
n,τ )1/2[0′d+1, 1

′
d(d+1)/2, 0

′
q]Mq(x, τ)−1

×(nrdn,τ )
−1/2

∑n
i=1

{
τ − 1

(
u0
i (τ) ≤ 0

)}
W̃i(rn,τ , x)K((xi − x)/rn,τ ) + op (1) .
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Consequently,

(nbd+4
n,τ )1/2(B̂l(x, z, τ)−Bl(x, z, τ))

= [1, z′]{(nbdn,τ )−1
∑n

j=1 f̂(τ |xj, zj)[1, z′j]′[1, z′j]K((xj − x)/bn,τ )}−1

×{(nbdn,τ )−1
∑n

j=1[1, z′j]
′K((xj − x)/bn,τ )q ((xj − x)/bn,τ )

′}
×(nbd+4

n,τ )1/2 (α̂2(x, τ)− α2(x, τ)) + op (1)

= [1, z′]{(nbdn,τ )−1
∑n

j=1 f̂(τ |xj, zj)[1, z′j]′[1, z′j]K((xj − x)/bn,τ )}−1

×{(nbdn,τ )−1
∑n

j=1[1, z′j]
′K((xj − x)/bn,τ )q ((xj − x)/bn,τ )

′}
×(bd+4

n,τ /r
d+4
n,τ )1/2[0′d+1, 1

′
d(d+1)/2, 0

′
q]Mq(x, τ)−1

×(nrdn,τ )
−1/2

∑n
i=1

{
τ − 1

(
u0
i (τ) ≤ 0

)}
W̃i(rn,τ , x)K((xi − x)/rn,τ ) + op (1)

= (bd+4
n,τ /r

d+4
n,τ )1/2[1, z′]Ml(x, τ)−1Jl(x, τ)[0′d+1, 1

′
d(d+1)/2, 0

′
q]Mq(x, τ)−1

×(nrdn,τ )
−1/2

∑n
i=1

{
τ − 1

(
u0
i (τ) ≤ 0

)}
W̃i(rn,τ , x)K((xi − x)/rn,τ ) + op (1) .

This completes the proof.

Proof of Theorem 3. We only consider the case rn,τ/bn = κ(τ) with 0 < κ(τ) < ∞ over

T ; the other case follows immediately from Lemma 2. First, for fixed τ , D1,l(x, z, τ) and

D2,l(x, z, τ) converge to normal random variables with zero means. Second, for any t 6= s, it is

simple to verify that the covariance of D1,l(x, z, t) and D2,l(x, z, s) and that of D2,l(x, z, t) and

D2,l(x, z, s) satisfy the expressions given in the Theorem. Third, the stochastic equicontinuity of

D2,l(x, z, ·) follows from Qu and Yoon (2015, Lemma B.3). Therefore, D1,l(x, z, ·)−D2,l(x, z, ·)
converges weakly to a Gaussian process with the covariance kernel stated in the Theorem. The

effect of the linear interpolation can be analyzed in the same way as in Qu and Yoon (2015, pp.

15-16). Finally, the weak consistency of the procedure can be proved using the usual argument

for bootstrap consistency in Politis and Romano (1994). Qu and Yoon (2019, pp. S13-S17

of the online supplement) applied this argument to prove the weak consistency of a similar

procedure in an RD setting without covariates. Because the steps involved are essentially the

same, we omit the details. This completes the proof.

Proof of Theorem 4. We first study (nbdn,τ )
1/2(Q̂∗(τ |x, z)− Q̂(τ |x, z)) and then

(nbdn,τ )
1/2b2

n,τ (B̂
∗
l (x, z, τ)− B̂l(x, z, τ)).

The argument used is similar to that of Koenker (2005, p.109).

Let a0(x, τ), a1(x, τ), and b(τ) be any value such that the norm of

(nbdn,τ )
1/2


a0(x, τ)− α0(x, τ)

bn,τ (a1(x, τ)− α1(x, τ))

b(τ)− β(τ)


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does not exceed log n. Such values form a compact set, with (α̂∗0(x, τ), α̂∗1(x, τ), β̂
∗
(τ)) and

(α̂0(x, τ), α̂1(x, τ), β̂(τ)) being in this set with probability approaching one. By Qu and Yoon

(2015, Lemma B.5), the following expression is op (1) uniformly over this set and T :

(nbdn,τ )
−1/2

∑n
j=1 P (yj − z′jb(τ)− a0(x, τ)− (xj − x)′ a1(x, τ) ≤ 0|xj, zj) (S.11)

×Wj(bn,τ , x)K ((xj − x)/bn,τ )

−(nbdn,τ )
−1/2

∑n
j=1 1(yj − z′jb(τ)− a0(x, τ)− (xj − x)′ a1(x, τ) ≤ 0)

×Wj(bn,τ , x)K ((xj − x)/bn,τ )

−(nbdn,τ )
−1/2

∑n
j=1(τ − 1

(
u0
j(τ) ≤ 0

)
)Wj(bn,τ , x)K ((xj − x)/bn,τ ) .

Evaluating this expression at (α̂∗0(x, τ), α̂∗1(x, τ), β̂
∗
(τ)) and (α̂0(x, τ), α̂1(x, τ), β̂(τ)) and taking

the difference, we obtain

(nbdn,τ )
−1/2

∑n
j=1 P (yj − z′jβ̂

∗
(τ)− α̂∗0(x, τ)− (xj − x)′ α̂∗1(x, τ) ≤ 0|xj, zj)

×Wj(bn,τ , x)K ((xj − x)/bn,τ )

−(nbdn,τ )
−1/2

∑n
j=1 1(yj − z′jβ̂

∗
(τ)− α̂∗0(x, τ)− (xj − x)′ α̂∗1(x, τ) ≤ 0)

×Wj(bn,τ , x)K ((xj − x)/bn,τ )

−(nbdn,τ )
−1/2

∑n
j=1 P (yj − z′jβ̂(τ)− α̂0(x, τ)− (xj − x)′ α̂1(x, τ) ≤ 0|xj, zj)
×Wj(bn,τ , x)K ((xj − x)/bn,τ )

+(nbdn,τ )
−1/2

∑n
j=1 1(yj − z′jβ̂(τ)− α̂0(x, τ)− (xj − x)′ α̂1(x, τ) ≤ 0)

×Wj(bn,τ , x)K ((xj − x)/bn,τ ) .

Because (α̂∗0(x, τ), α̂∗1(x, τ), β̂
∗
(τ)) satisfies (17) and (α̂0(x, τ), α̂1(x, τ), β̂(τ)) solves (4), the dis-

play equals

(nbdn,τ )
−1/2

∑n
j=1 P (yj − z′jβ̂

∗
(τ)− α̂∗0(x, τ)− (xj − x)′ α̂∗1(x, τ) ≤ 0|xj, zj)

×Wj(bn,τ , x)K ((xj − x)/bn,τ )

−(nbdn,τ )
−1/2

∑n
j=1(τ − 1(uj − τ ≤ 0))Wj(bn,τ , x)K ((xj − x)/bn,τ )

−(nbdn,τ )
−1/2

∑n
j=1 P (yj − z′jβ̂(τ)− α̂0(x, τ)− (xj − x)′ α̂1(x, τ) ≤ 0|xj, zj)

×Wj(bn,τ , x)K ((xj − x)/bn,τ ) + op (1) .

S-11



Expanding the first and third terms around the true parameter value using a first order Taylor

expansion, we write this equation as(
nbdn,τ

)−1∑n
j=1 f(τ |xj, zj)Wj(bn,τ , x)Wj(bn,τ , x)′K ((xj − x)/bn,τ )

×
√
nbdn,τ


α̂∗0(x, τ)− α̂0(x, τ)

bn,τ (α̂
∗
1(x, τ)− α̂1(x, τ))

β̂
∗
(τ)− β̂(τ)


−
(
nbdn,τ

)−1/2∑n
j=1(τ − 1(ui − τ ≤ 0))Wj(bn,τ , x)K ((xj − x)/bn,τ ) + op (1) .

Therefore, (
nbdn,τ

)−1/2
(Q̂∗(τ |x, z)− Q̂(τ |x, z))

=
(
nbdn,τ

)−1/2
[1, 0′d, z

′]


α̂∗0(x, τ)− α̂0(x, τ)

bn,τ (α̂
∗
1(x, τ)− α̂1(x, τ))

β̂
∗
(τ)− β̂(τ)


= [1, z]′

{(
nbdn,τ

)−1∑n
j=1 f(τ |xj, zj)[1, z′j]′[1, z′j]K((xj − x)/bn,τ )

}−1

×
(
nbdn,τ

)−1/2∑n
j=1 {τ − 1(uj − τ ≤ 0)} [1, z′j]

′K((xj − x)/bn,τ ) + op (1)

= D∗1,l(x, z, τ) + op (1) ,

where D∗1,l(x, z, τ) is the same as D1,l(x, z, τ), except that u0
j(τ) is replaced by uj − τ .

For (nbdn,τ )
1/2b2

n,τ (B̂
∗
l (x, z, τ) − B̂l(x, z, τ)), we apply the same arguments as above, except

that we consider a local quadratic regression instead of a local linear regression:

(nrdn,τ )
−1
∑n

j=1 f(τ |xj, zj)W̃j(rn,τ , x)W̃j(rn,τ , x)′K((xj − x)/rn,τ )

×(nrdn,τ )
1/2


â∗0(x, τ)− α̂0(x, τ)

rn,τ (â
∗
1(x, τ)− α̂1(x, τ))

r2
n,τ (â

∗
2(x, τ)− α̂2(x, τ))

b̂∗(τ)− β̂(τ)


−(nrdn,τk)

−1/2
∑n

j=1 {τ − 1(uj − τ ≤ 0)} W̃j(rn,τ , x)K((xj − x)/rn,τ ) = op (1) .
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Therefore,

(nrdn,τ )
1/2


â∗0(x, τ)− α̂0(x, τ)

rn,τ (â
∗
1(x, τ)− α̂1(x, τ))

r2
n,τ (â

∗
2(x, τ)− α̂2(x, τ))

b̂∗(τ)− β̂(τ)


= {(nrdn,τ )−1

∑n
j=1 f(τ |xj, zj)W̃j(rn,τ , x)W̃j(rn,τ , x)′K((xj − x)/rn,τ )}−1

×(nrdn,τ )
−1/2

∑n
j=1 {τ − 1(uj − τ ≤ 0)} W̃j(rn,τ , x)K((xj − x)/rn,τ ) + op (1) ,

which implies

(nbd+4
n,τ )1/2 (â∗2(x, τ)− α̂2(x, τ))

= (bd+4
n,τ /r

d+4
n,τ )1/2[0′d+1, 1

′
d(d+1)/2, 0

′
q]Mq(x, τ)−1

×(nrdn,τ )
−1/2

∑n
i=1 {τ − 1(ui − τ ≤ 0)} W̃i(rn,τ , x)K((xj − x)/rn,τ ) + op (1) .

Consequently,

(nbd+4
n,τ )1/2(B̂∗l (x, z, τ)− B̂l(x, z, τ))

= (bd+4
n,τ /r

d+4
n,τ )1/2[1, z′]Ml(x, τ)−1Jl(x, τ)[0′d+1, 1

′
d(d+1)/2, 0

′
q]Mq(x, τ)−1

×(nrdn,τ )
−1/2

∑n
i=1 {τ − 1 (ui − τ ≤ 0)} W̃i(rn,τ , x)K((xj − x)/rn,τ ) + op (1)

= D∗2,l(x, z, τ) + op (1) ,

where D∗2,l(x, z, τ) is the same as D2,l(x, z, τ), except that u0
j(τ) is replaced by uj − τ .

In summary, we have

(nbdn,τ )
1/2((α̂∗0(x, τ)− α̂0(x, τ))− b2

n,τ (B̂
∗(x, τ)− B̂(x, τ))) (S.12)

= D∗1,l(x, z, τ)−D∗2,l(x, z, τ) + op (1) ,

while

(nbdn,τ )
1/2(Q̂l(τ |x, z)− B̂l(x, z, τ)b2

n,τ −Q(τ |x, z))
= D1,l (x, z, τ)−D2,l (x, z, τ) + op (1) ,

where the only difference between D∗1,l(x, z, τ) − D∗2,l(x, z, τ) and D1,l(x, z, τ) − D2,l(x, z, τ) is

that u0
j(τ) is replaced by uj − τ . Finally, the weak consistency of the procedure follows from

the usual argument for bootstrap consistency, as in Politis and Romano (1994); see also Qu

and Yoon (2019, pp. S13-S17 of the online supplement), who applied this argument in an RD

setting without covariates. Essentially, this argument shows that D∗1,l(x, z, τ) − D∗2,l(x, z, τ)

converges weakly to the limit of D1,l (x, z, τ) − D2,l (x, z, τ) in probability. Because the steps

involved are essentially the same as in those in Qu and Yoon (2019), we omit the details. This

completes the proof.
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S.1.2 Proofs of the results in Section 4

We introduce some notation for the GPL model. Recall that the first order Taylor approxima-

tion to g(x, τ) equals α0(x, τ)+(xi − x)′ α1(x, τ). Let a0 ∈ R, a1 ∈ Rd, and b ∈ Rq denote some
generic parameter values. Define

φ(x, τ) = (nhdn)1/2


a0 − α0(x, τ)

hn (a1 − α1(x, τ))

b− β(τ)

 . (S.13)

Also, define

V (x, τ , φ) =
∑n

j=1 ρτ (u
0
j(τ)− ej (x, τ)− (nhdn)−1/2Wj(hn, x)′φ)K((xj − x)/hn) (S.14)

−
∑n

j=1 ρτ (u
0
j(τ)− ej(x, τ))K((xj − x)/hn),

where u0
j(τ) is the true quantile residual and ej (x, τ) is the Taylor approximation error. Let

S (x, τ , φ) be the subgradient of (S.14) recentered to have mean zero, i.e.,

S (x, τ , φ) = (nhdn)−1/2
∑n

j=1

{
P (u0

j(τ) ≤ (nhdn)−1/2Wj(hn, x)′φ+ ej(x, τ)|xj, zj) (S.15)

−1(u0
j(τ) ≤ (nhdn)−1/2Wj(hn, x)′φ+ ej(x, τ))

}
Wj(hn, x)K((xj − x)/hn).

where P (u0
j(τ) ≤ s|xj, zj) stands for the cumulative distribution function of Y conditional on

X = xj and Z = zj, evaluated at g(xj, τ) + z′jβ(τ) + s. Finally, recall

S0 (x, τ) = (nhdn)−1/2
∑n

j=1{τ − 1(u0
j(τ) ≤ 0)}Wj(hn, x)K((xj − x)/hn). (S.16)

Note that S (x, τ , φ) reduces to S0 (x, τ) when φ = 0 and e(x, τ) = 0.

Proof of Lemma 3. In this proof, in order to provide a unified proof for the local linear
and quadratic cases, Wj(hn, x) is defined differently depending on the context. For a local

linear regression, Wj(hn, x) equals [1, (xj − x)′/hn, z
′
j]
′, while for a local quadratic regression,

it equals [1, (xj − x)′/hn, q(xj − x)′/h2
n, z
′
j]
′. In the latter case, φ(x, τ) is redefined by inserting

h2
n (a2 − α2(x, τ)) between hn (a1 − α1(x, τ)) and b− β(τ) in (S.13). By Lemma B.3 in Section

S.2,

Pr(supτ∈T supx∈Sx ||φ̃(x, τ)|| ≤ log n)→ 1. (S.17)

Hence, we can restrict our attention to the set
{
φ(x, τ) : supτ∈T supx∈Sx ‖φ(x, τ)‖ ≤ log n

}
.

Consider

(nhdn)−1/2
∑n

j=1{τ − 1(u0
j(τ) ≤ ej(x, τ) + (nhdn)−1/2Wj(hn, x)′φ (x, τ)} (S.18)

×Wj(hn, x)K((xj − x)/hn).
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Adding and subtracting terms, (S.18) can be written as

{S(x, τ , φ (x, τ))− S0 (x, τ)}+ S0 (x, τ) (S.19)

+ (nhdn)−1/2
∑n

j=1{τ − P (u0
j(τ) ≤ ej(x, τ) + (nhdn)−1/2Wj(hn, x)′φ (x, τ)

∣∣xj, zj)}
×Wj(hn, x)K((xj − x)/hn).

We now evaluate (S.18) and (S.19) at φ (x, τ) = φ̃ (x, τ), in which case (S.18) is Op((nh
d
n)−1/2)

uniformly over T and Sx by Koenker (2005, Theorem 2.1). Using Lemma B.1 and (S.17), the

term in curly brackets in (S.19) is Op((nh
d
n)−1/4 log n) uniformly over T and Sx. Also, because

S0 (x, τ) does not depend on φ̃ (x, τ), we only need to further study the last term in (S.19).

Applying a second-order Taylor expansion to this term and then evaluate it at φ (x, τ) = φ̃ (x, τ),

we obtain

−(nhdn)−1/2
∑n

j=1 f (τ |xj, zj) ej (x, τ)Wj(hn, x)K((xj − x)/hn)

−((nhdn)−1
∑n

j=1 f (τ |xj, zj)K((xj − x)/hn)Wj(hn, x)Wj(hn, x)′)φ̃ (x, τ)

−(1/2)(nhdn)−1/2
∑n

j=1 f
′ (ỹj|xj, zj) ej (x, τ)2Wj(hn, x)K((xj − x)/hn)

−(1/2)(nhdn)−1/2((nhdn)−1
∑n

j=1 f
′ (ỹj|xj, zj) [Wj(hn, x)′φ̃ (x, τ)]2Wj(hn, x)K((xj − x)/hn)),

where ỹi is a value between Q(τ |xj, zj) and Q(τ |xj, zj) + ej(x, τ) + (nhdn)−1/2Wj(hn, x)′φ̃ (x, τ).

BecauseK((xj−x)/hn) is equal to 0 unless xj is in a vanishing neighborhood of x determined by

hn, it suffi ces to consider values close to x. Let δ be a finite constant, such thatK((xj−x)/hn) =

0 whenever ‖xj − x‖ > δhn. Within this δ-neighborhood, ej(x, τ) = O(hrn), where r = 3 in the

local quadratic regression case and r = 2 in the local linear regression case (c.f. the first step in

the estimation procedure). Also, ỹj approaches Q(τ |xj, zj) as n→∞. This implies that there
exists some C < ∞ such that ||f ′ (ỹj|xj, zj) (ej (x, τ)2 /h2r

n )Wj(hn, x)1 (‖xj − x‖ ≤ δhn) || ≤ C

with probability arbitrarily close to 1 in large samples. Applying this result, we have

||(nhdn)−1/2
∑n

j=1 f
′ (ỹj|xj, zj) ej (x, τ)2Wj(hn, x)K((xj − x)/hn)||

= ||(nhdn)−1/2
∑n

j=1 f
′ (ỹj|xj, zj) ej (x, τ)2Wj(hn, x)1 (‖xj − x‖ ≤ δhn)K((xj − x)/hn)||

≤ h2r
n (nhdn)−1/2

∑n
j=1 ||f ′ (ỹj|xj, zj) (ej (x, τ)2 /h2r

n )Wj(hn, x)1 (‖xj − x‖ ≤ δhn)K((xj − x)/hn)||
≤ Ch2r

n (nhdn)1/2((nhdn)−1
∑n

j=1 K((xj − x)/hn))

= Op((nh
d
n)1/2h2r

n ) uniformly over T and Sx. (S.20)

We apply similar arguments to the other second order term in the Taylor expansion:

||(nhdn)−1/2((nhdn)−1
∑n

j=1 f
′ (ỹj|xj, zj) [Wj(hn, x)′φ̃ (x, τ)]2K((xj − x)/hn)Wj(hn, x))||

≤ C(nhdn)−1/2 log2 n((nhdn)−1
∑n

j=1 K((xj − x)/hn))

= Op((nh
d
n)−1/2 log2 n) = op((nh

d
n)−1/4 log n) uniformly over T and Sx,
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where the log2 n term arises because of (S.17).

The above results jointly imply

φ̃ (x, τ) = ((nhdn)−1
∑n

j=1 f (τ |xj, zj)Wj(hn, x)Wj(hn, x)′K((xj − x)/hn))−1

{S0 (x, τ)− (nhdn)−1/2
∑n

j=1 f (τ |xj, zj) ej (x, τ)Wj(hn, x)K((xj − x)/hn)

+Op((nh
d
n)−1/4 log n+ (nhdn)1/2h2r

n )}. (S.21)

Further, (nhdn)−1/2
∑n

j=1 f (τ |xj, zj) ej (x, τ)Wj(hn, x)K ((xj − x)/hn) = Op

(
(nhdn)1/2hrn

)
by the

same argument as for (S.20). Applying this result to (S.21), we obtain

φ̃ (x, τ) = ((nhdn)−1
∑n

j=1 f (τ |xj, zj)Wj(hn, x)Wj(hn, x)′K((xj − x)/hn))−1S0 (x, τ)

+Op((nh
d
n)−1/4 log n+ (nhdn)1/2hrn).

This completes the proof.

Proof of Lemma 4. In this proof, to provide a unified proof for the local linear and quadratic
cases, Wj(hn, x) is defined differently depending on the context. For a local linear regression, it

equals [1, (xj−x)′/hn, z
′]′, while for a local quadratic regression, it equals [1, (xj−x)′/hn, q(xj−

x)′/h2
n, z
′]′. Let Mn(x, τ) equal (nhdn)−1

∑n
j=1 f (τ |xj, zj)Wj(x, hn)Wj(x, hn)′K ((xj − x)/hn) in

both cases. By Lemma 3,

β̂(τ)− β(τ) = n−1(nhdn)−1/2
∑n

i=1 e
′
4Mn(xi, τ)−1S0 (xi, τ) +Op((nh

d
n)−3/4 log n+ hrn),

where e′4 selects the last q elements of a vector, and S0 (xi, τ) is given by (S.16), with the i-th

observation excluded from the summation. To prove the Lemma, it suffi ces to show

n−1/2(nhdn)−1/2
∑n

i=1Mn(xi, τ)−1S0 (xi, τ) = Op (1) uniformly over T . (S.22)

For any fixed τ , the left hand side of (S.22) converges to a multivariate normal random

vector, see Lee (2003). It remains to verify that it is tight as a process of τ over T . Applying
the definition of S0 (xi, τ), the left hand side of (S.22) is

n−1/2(nhdn)−1/2
∑n

i=1Mn(xi, τ)−1[(nhdn)−1/2
∑n

j=1,j 6=i{τ − 1(u0
j(τ) ≤ 0)}Wj(hn, xi)K((xj − xi)/hn)]

= n−1/2
∑n

j=1{(nhdn)−1
∑n

i=1 Mn(xi, τ)−1Wj(hn, xi)K((xj − xi)/hn)}{τ − 1(u0
j(τ) ≤ 0)}+ op (1) ,

(S.23)

where the op (1) term arises because terms with j = i are now included in the summation. We

write the leading term of (S.23) as

U(τ) ≡ n−1/2
∑n

j=1 Tj(τ){τ − 1(u0
j(τ) ≤ 0)} (S.24)

with

Tj(τ) = (nhdn)−1
∑n

i=1Mn(xi, τ)−1Wj(hn, xi)K((xj − xi)/hn). (S.25)
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Below, we shall show that for any ε > 0 and η > 0, there exists a δ > 0 such that

P ( sup
τ ′′,τ ′∈T ,|τ ′′−τ ′|≤δ

||U (τ ′′)− U (τ ′) || > ε) < η.

Note that for any δ, T contains 1/δ intervals of length δ. Therefore, this inequality holds if for

any ε > 0 and η > 0, there exists a δ > 0, such that (Billingsley 1968, eq. (8.12))

P (supτ∈[τ1,δ+τ1]∩T ‖U (τ)− U (τ 1)‖ > ε) < δη (S.26)

for any τ 1 ∈ T when n is suffi ciently large.
We prove (S.26) using a chaining argument. Let 0 < κ < 1/2 be a constant. Partition

the interval T into small intervals of size cn−1/2−κ, where c > 1, a finite constant. Denote

the number of intervals by b̄n, which is O(n1/2+κ). For any δ, among these b̄n intervals, bn =

O(δn1/2+κ) of them provide a cover for [τ 1, δ + τ 1]. For simplicity, assume these bn intervals

start at τ 1. Let τ j denote the lower limit of the j-th interval. Then, by the triangle inequality:

supτ∈[τ1,δ+τ1]∩T ‖U (τ)− U (τ 1)‖
≤ sup1≤j≤bn ‖U (τ j)− U (τ 1)‖+ sup1≤j≤bn supτ∈[τ j ,τ j+1] ‖U (τ)− U (τ j)‖ . (S.27)

This inequality reduces the overall variation of ‖U (τ)− U (τ 1)‖ into within- and between-
interval variations.

Consider the first term on the right hand side of (S.27). To derive a bound, we can use

Billingsley (1968, Theorem 12.2), which states that if there exists β ≥ 0, α > 1, and ul ≥ 0

(l = 1, ..., bn) such that E(‖U (τ j)− U (τ i)‖β) ≤ (
∑

i<l≤j ul)
α for any 0 ≤ i ≤ j ≤ bn, then

P
(
sup1≤j≤bn ‖U (τ j)− U (τ 1)‖ > ε

)
≤ ε−αCβ,α (u1 + ...+ ubn)α. Setting β = 2α > 2, Lemma

B.4 in Section S.2 shows that E ‖U (τ j)− U (τ i)‖β ≤ C̄(τ j − τ i)α for 0 ≤ i ≤ j ≤ bn, where C̄

is a finite constant. Therefore, applying Billingsley (1968, Theorem 12.2), we obtain

P (sup1≤j≤bn ‖U (τ j)− U (τ 1)‖ > ε/5) ≤ (Cβ,α/(ε/5)α)C̄(τ bn − τ 1)α = δ(Cβ,α/(ε/5)α)C̄δα−1.

For any ε and η, there exists a δ̄ such that (Cβ,α/(ε/5)α)C̄δ̄
α−1

= η. Hence, for any δ ≤ δ̄,

P (sup1≤j≤bn ‖U (τ j)− U (τ 1)‖ > ε/5) ≤ δη. (S.28)

Now, consider the second term on the right hand side of (S.27). Because we need an upper

bound for it, we now compute the two supremums over the b̄n intervals covering T rather than
the bn intervals covering just [τ 1, δ + τ 1]. That is, we consider sup1≤j≤b̄n supτ∈[τ j ,τ j+1] ||U (τ) −
U (τ j) ||, where τ j now stands for the lower limit of the j-th interval; note that this expression
is independent of δ. Further,

U (τ)− U (τ j) = n−1/2
∑n

i=1 (Ti(τ)− Ti(τ j))
{
τ − 1

(
u0
i (τ) ≤ 0

)}
(S.29)

+n−1/2
∑n

i=1 Ti(τ j)
{
τ − 1

(
u0
i (τ) ≤ 0

)
−
(
τ j − 1

(
u0
i (τ j) ≤ 0

))}
≡ (a) + (b).
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We study the terms (a) and (b) separately. The supremum of the term (a) is bounded by

n−1/2 sup1≤j≤b̄n supτ∈[τ j ,τ j+1]

∑n
i=1 ||Ti(τ)− Ti(τ j)||. For Ti(τ) (see (S.25)), only the conditional

density function depends on τ . Because the latter is Lipschitz continuous with respect to τ and

the eigenvalues of Mn(x, τ) are strictly positive, it follows that the above supremum is of order

Op(n
1/2n−1/2−κ) = Op (n−κ). This implies that for any δ > 0, ε > 0 and η > 0, we have for

suffi ciently large n:

P (sup1≤j≤b̄n supτ∈[τ j ,τ j+1] ||(a)|| > ε/5) ≤ δη. (S.30)

Now consider the term (b) in (S.29). Let q̄ be the dimension of Ti(τ j), and let Ti,k(τ j) de-

note its k-th component. Then, Ti(τ j) =
∑q̄

k=1 T
+
i (τ j, k) −

∑q̄
k=1 T

−
i (τ j, k), with T+

i (τ j, k) =

(0, ...Ti,k(τ j), ..., 0) 1(Ti,k(τ j) ≥ 0), and T−i (τ j, k) = (0, ...− Ti,k(τ j), ..., 0) 1(Ti,k(τ j) < 0). The

term (b) can thus be represented as

n−1/2
∑q̄

k=1

∑n
i=1 T

+
i (τ j, k)

{
τ − 1

(
u0
i (τ) ≤ 0

)
−
(
τ j − 1

(
u0
i (τ j) ≤ 0

))}
−n−1/2

∑q̄
k=1

∑n
i=1 T

−
i (τ j, k)

{
τ − 1

(
u0
i (τ) ≤ 0

)
−
(
τ j − 1

(
u0
i (τ j) ≤ 0

))}
.

This decomposition follows Bai (1996, p. 612). The weights T+
i (τ j, k) and T−i (τ j, k) are non-

negative and allows applying a monotonicity argument. Because the 2q̄ summations can be

studied in the same way, we consider only that with weight T+
i (τ j, k). For any τ ∈ [τ j, τ j+1],

we have

n−1/2
∑n

i=1 T
+
i (τ j, k)

{
τ − 1

(
u0
i (τ) ≤ 0

)
−
(
τ j − 1

(
u0
i (τ j) ≤ 0

))}
≤ n−1/2

∑n
i=1 T

+
i (τ j, k)

{
τ j+1 − 1

(
u0
i (τ j) ≤ 0

)
−
(
τ j − 1

(
u0
i (τ j) ≤ 0

))}
≤ cn−1−κ∑n

i=1 T
+
i (τ j, k)

and

n−1/2
∑n

i=1 T
+
i (τ j, k)

{
τ − 1

(
u0
i (τ) ≤ 0

)
−
(
τ j − 1

(
u0
i (τ j) ≤ 0

))}
≥ n−1/2

∑n
i=1 T

+
i (τ j, k)

{
τ j − 1

(
u0
i (τ j+1) ≤ 0

)
−
(
τ j − 1

(
u0
i (τ j) ≤ 0

))}
= n−1/2

∑n
i=1 T

+
i (τ j, k)ξi (τ j, τ j+1)

+n−1/2
∑n

i=1 T
+
i (τ j, k)

{
P
(
u0
i (τ j) ≤ 0|xj, zj

)
− P

(
u0
i (τ j+1) ≤ 0|xj, zj

)}
,

where

ξi (τ j, τ j+1) = 1
(
u0
i (τ j) ≤ 0

)
−1
(
u0
i (τ j+1) ≤ 0

)
−P

(
u0
i (τ j) ≤ 0|xj, zj

)
+P

(
u0
i (τ j+1) ≤ 0|xj, zj

)
.

Combining the above two set of inequalities, we obtain

n−1/2 sup1≤j≤b̄n supτ∈[τ j ,τ j+1] ||
∑n

i=1 T
+
i (τ j, k)

{
τ − 1

(
u0
i (τ) ≤ 0

)
−
(
τ j − 1

(
u0
i (τ j) ≤ 0

))}
||

(S.31)

≤ n−1/2 sup1≤j≤b̄n ||
∑n

i=1 T
+
i (τ j, k)ξi (τ j, τ j+1) || (S.32)

+ n−1/2 sup1≤j≤b̄n ||
∑n

i=1 T
+
i (τ j, k)

{
P
(
u0
i (τ j+1) ≤ 0|xj, zj

)
− P

(
u0
i (τ j) ≤ 0|xj, zj

)}
|| (S.33)

+ cn−1−κ sup1≤j≤b̄n
∑n

i=1 T
+
i (τ j, k). (S.34)
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The term (S.32) satisfies, for any ε > 0,

P (n−1/2 sup1≤j≤b̄n ||
∑n

i=1 T
+
i (τ j, k)ξi (τ j, τ j+1) || > (ε/(5q̄)))

≤ b̄n max1≤j≤b̄n P (||n−1/2
∑n

i=1 T
+
i (τ j, k)ξi (τ j, τ j+1) || > (ε/(5q̄))).

Because only the k-th element of T+
i (τ j, k) is non-zero, we can treat T+

i (τ j, k) as if it were a

scalar. Then, for any γ > 1, the preceding display is bounded from above by

b̄n max1≤j≤b̄n(ε/(5q̄))−2γE(||n−1/2
∑n

i=1 T
+
i (τ j, k)ξi (τ j, τ j+1) ||2γ).

Applying Rosenthal’s inequality, the above display is further bounded by

Cb̄nn
−γ(ε/(5q̄))−2γ max1≤j≤b̄n{(

∑n
i=1E

∥∥T+
i (τ j, k)ξi (τ j, τ j+1)

∥∥2
)γ+

∑n
i=1E

∥∥T+
i (τ j, k)ξi (τ j, τ j+1)

∥∥2γ}.

Because E(ξi (τ j, τ j+1)2γ |xi, zi) ≤ E(ξi (τ j, τ j+1)2 |xi, zi) ≤ C (τ j+1 − τ j) and E
∥∥T+

i (τ j, k)
∥∥2γ

is finite, the above display is of order Cb̄nn−γ(ε/(5q̄))−2γ{n(1/2−κ)γ +n(1/2−κ)}, which converges
to zero choosing a large γ. The term (S.33) is op (1) by the mean value theorem, while (S.34) is

op (1) by a uniform law of large numbers. The above results for (S.32)-(S.34) are all independent

of δ. They imply that for any ε > 0, η > 0 and δ > 0, the following inequality holds for

suffi ciently large n:

P (sup1≤j≤b̄n supτ∈[τ j ,τ j+1] ||(b)|| > (3ε/5)) ≤ δη. (S.35)

The inequality (S.26) follows by combining (S.28), (S.30) and (S.35). This completes the proof.

Proof of Theorem 5. The proof is similar to that of Qu and Yoon (2015, Theorem 2) and

takes two steps. The first shows that (nbdn,τ )
1/2
(
α̂0(x, τ)− g(x, τ)−B(x, τ)b2

n,τ

)
, with α̂0(x, τ)

obtained solving the minimization problem in Step 2, converges weakly to the desired limit over

T . The second step shows that the linearly interpolated estimator based on m estimated points

converges weakly to the same limit.

Consider the subgradient evaluated at x and z, normalized by (nbdn,τ )
−1/2:

(nbdn,τ )
−1/2

∑n
j=1{τ − 1(u0

j(τ) ≤ ej(x, τ) + (nbdn,τ )
−1/2Wj(bn,τ , x)′φ̂ (x, τ))} (S.36)

× W̄j(x, bn,τ )K((xj − x)/bn,τ ),

where

φ̂(x, τ) =
√
nbdn,τ


α̂0(x, τ)− α0(x, τ)

bn,τ (α̂1(x, τ)− α1(x, τ))

β̂(τ)− β(τ)

 ,

and

Wj(bn,τ , x) =


1

(xj − x)/bn,τ

zj

 , W̄j(x, bn,τ ) =

 1

(xj − x)/bn,τ

 .
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As in the proof of Lemma 3, (S.36) can be expressed as

{S̄(x, τ , φ̂ (x, τ))− S̄0 (x, τ)}+ S̄0 (x, τ) (S.37)

+(nbdn,τ )
−1/2

∑n
j=1{τ − P (u0

j(τ) ≤ ej(x, τ) + (nbdn,τ )
−1/2Wj(bn,τ , x)′φ̂ (x, τ) |xj, zj)}

× W̄j(bn,τ , x)K((xj − x)/bn,τ ),

where

S̄ (x, τ , φ) = (nbdn,τ )
−1/2

∑n
j=1

{
P (u0

j(τ) ≤ (nbdn,τ )
−1/2Wj(bn,τ , x)′φ+ ej(x, τ)|xj, zj)

−1(u0
j(τ) ≤ (nbdn,τ )

−1/2Wj(bn,τ , x)′φ+ ej(x, τ))
}
W̄j(bn,τ , x)K((xj − x)/bn,τ ),

and S̄0 (x, τ) is equal to S̄ (x, τ , φ) setting φ = 0 and ej(x, τ) = 0. Here, we only need to

prove a result pointwise with respect to x. Hence, we can apply Qu and Yoon (2015, Lemma

B.5), which implies S̄(x, τ , φ̂ (x, τ))− S̄0 (x, τ) = op (1), uniformly over T . As in Lemma 3, the
second term in (S.37) can be analyzed using a second order Taylor expansion, leading to the

representation:

−(nbdn,τ )
−1/2

∑n
j=1 f (τ |xj, zj) ej (x, τ) W̄j(bn,τ , x)K((xj − x)/bn,τ ) (S.38)

−((nbdn,τ )
−1
∑n

j=1 f (τ |xj, zj) W̄j(bn,τ , x)Wj(bn,τ , x)′K((xj − x)/bn,τ ))φ̂ (x, τ)

−(1/2)(nbdn,τ )
−1/2

∑n
j=1 f

′ (ỹj|xj, zj) ej (x, τ)2 W̄j(bn,τ , x)K((xj − x)/bn,τ )

−(1/2)(nbdn,τ )
−1/2((nbdn,τ )

−1
∑n

j=1 f
′ (ỹj|xj, zj) [Wj(bn,τ , x)′φ̂ (x, τ)]2W̄j(bn,τ , x)K((xj − x)/bn,τ )),

where ỹi lies between Q(τ |xj, zj) and Q(τ |xj, zj) + ej(x, τ) + (nbdn,τ )
−1/2Wj(bn,τ , x)′φ̂ (x, τ). For

the third term, because the kernel function has a compact support, K((xj − x)/bn,τ ) equals 0

unless xj is in a local neighborhood of x determined by bn, i.e., unless

‖(xj − x)/bn‖ ≤ δ (S.39)

for some δ <∞. Within this δ-neighborhood, ej(x, τ) = O(b2
n,τ ) because ej(x, τ) is the approx-

imation error of the local linear approximation to the true conditional quantile function; also,

f ′ (ỹj|xj, zj) is finite because we assume the density has finite derivatives. Consequently, there
exists some C < ∞, such that ||f ′ (ỹj|xj, zj) ej (x, τ)2 W̄j(bn,τ , x)|| ≤ Cb4

n,τ for all observations

within this neighborhood. Applying this result to the the third term in (S.38), we have

(nbdn,τ )
−1/2

∥∥∥∑n
j=1 f

′ (ỹj|xj, zj) ej (x, τ)2 W̄j(bn,τ , x)K((xj − x)/bn,τ )
∥∥∥

≤ Cb4
n,τ (nb

d
n,τ )

−1/2
∑n

j=1K((xj − x)/bn,τ )

= Cb2
n,τ (nb

d+4
n,τ )1/2

{
(nbdn,τ )

−1
∑n

j=1K((xj − x)/bn,τ )
}

= op (1) , uniformly over T ,
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where the second equality holds because nbd+4
n,τ = O(1) and

(nbdn,τ )
−1
∑n

j=1 K((xj − x)/bn,τ ) = Op(1) (S.40)

by a uniform law of large numbers.

The result in (S.40) follows from Assumptions 1-6 and the uniform law of large numbers in

Theorem 2.1 of Newey (1991). We now present detailed proof for this claim. By the Theorem,

the left hand side of (S.40) convergence in probability to f(x) = Op(1) uniformly over T if: (i)
Dn(τ) ≡ (nbdn)−1

∑n
j=1K((xj−x)/bn,τ )

p→ c(τ)df(x) for each τ ∈ T ; and (ii)Dn(τ) is stochastic

equicontinuous over T . Condition (i) is a standard result in the kernel density estimation
literature, and it holds under our stated assumptions. To verify (ii), we only need to show, for

any ε > 0 and η > 0, there exists an r > 0, such that P
(
sups∈B(τ ,r) |Dn(τ)−Dn(s)| > η

)
< ε

for any τ ∈ T and large n, where B(τ , r) = {s ∈ T : |s− τ | ≤ r}. We have

|Dn(τ)−Dn(s)| = (nbdn)−1
∑n

j=1 |K((xj − x)/bn,τ )−K((xj − x)/bn,s)| × 1 (‖(xj − x)/bn‖ ≤ δ)

≤ C(nbdn)−1
∑n

j=1 ‖(xj − x)/bn,τ − (xj − x)/bn,s‖ × 1 (‖(xj − x)/bn‖ ≤ δ)

≤ Cδ(nbdn)−1 |1/c(τ)− 1/c(s)|
∑n

j=1 1 (‖(xj − x)/bn‖ ≤ δ)

≤ C2rδ(nbdn)−1
∑n

j=1 1 (‖(xj − x)/bn‖ ≤ δ) ,

where the equality uses (S.39), the first inequality follows from Assumption 5, the second from

Assumption 6 and ‖(xj − x)/bn‖ ≤ δ, and the last inequality holds because c(·) is finite and Lip-
schitz continuous by Assumption 6 and thus |1/c(τ)− 1/c(s)| ≤ C |s− τ | ≤ Cr. Consequently,

P (sups∈B(τ ,r) |Dn(τ)−Dn(s)| > η) ≤ P (C2rδ(nbdn)−1
∑n

j=1 1 (‖(xj − x)/bn‖ ≤ δ) > η). The

right hand side is bounded from above by (C2rδ/η)(nbdn)−1
∑n

j=1 P (‖(xj − x)/bn‖ ≤ δ) by the

Markov inequality. Also, P (‖(xj − x)/bn‖ ≤ δ) ≤ C (bnδ)
d because f(x) is finite. These imply

P (sups∈B(τ ,r) |Dn(τ)−Dn(s)| > η) ≤ (C3δd+1/η)r, which is less than ε if r ≤ εη/(C3δd+1).

Therefore, the stochastic equicontinuity holds, and we have proved (S.40).

The fourth term in (S.38) can be studied in the same way, and it is op (1) uniformly over

T . The second term can be written as

−(nbdn,τ )
−1
∑n

j=1 f (τ |xj, zj) W̄j(bn,τ , x)z′jK((xj − x)/bn,τ )(nb
d
n,τ )

1/2(β̂ (τ)− β (τ))

−(nbdn,τ )
−1
∑n

j=1 f (τ |xj, zj) W̄j(bn,τ , x)W̄j(bn,τ , x)′K((xj − x)/bn,τ )

× (nbdn,τ )
1/2

 α̂0(x, τ)− α0(x, τ)

bn,τ (α̂1(x, τ)− α1(x, τ))

 .

Because (nbdn,τ )
1/2(β̂ (τ) − β (τ)) = op (1), the first line in the display converges in probability
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to 0. Collecting the remaining terms and noticing that (S.36) is op (1), we obtain

S̄0 (x, τ)− (nbdn,τ )
−1/2

∑n
j=1 f (τ |xj, zj) ej (x, τ) W̄j(bn,τ , x)K((xj − x)/bn,τ ) (S.41)

−(nbdn,τ )
−1
∑n

j=1 f (τ |xj, zj) W̄j(bn,τ , x)W̄j(bn,τ , x)′K((xj − x)/bn,τ )

× (nbdn,τ )
1/2

 α̂0(x, τ)− α0(x, τ)

bn,τ (α̂1(x, τ)− α1(x, τ))

 = op (1) .

To further study the right hand side of (S.41), note that we have

(nbdn,τ )
−1
∑n

j=1 f (τ |xj, zj) W̄j(bn,τ , x)W̄j(bn,τ , x)′K((xj − x)/bn,τ )

p→ f(x)E (f (τ |X,Z)|X = x)

 1 0

0
∫
uu′K(u)du


and

(nbdn,τ )
−1/2

∑n
j=1 f (τ |xj, zj) ej (x, τ) W̄j(bn,τ , x)K((xj − x)/bn,τ )

= (1/2)(nbd+4
n,τ )1/2f(x)E (f (τ |X,Z) |X = x)

∫
{u′(∂2g(x, τ)/∂x∂x′)u

 1

u

K(u)du}+ op (1) .

Applying these two results to the display (S.41), we obtain

(nbdn,τ )
1/2
(
α̂0(x, τ)− g(x, τ)−B(x, τ)b2

n,τ

)
(S.42)

=

(
nbdn,τ

)−1/2∑n
i=1 (τ − 1(u0

i (τ) ≤ 0))K((xj − x)/bn,τ )

f (x)E (f (τ |X,Z)|X = x)
+ op (1) ,

where the order holds uniformly over T .
The leading term on the right hand side of (S.42) does not depend on β̂(τ). Qu and

Yoon (2015, Lemma B3) implies that this term is stochastically equicontinuous and, hence,

with (S.5), it follows that (nbdn,τ )
1/2
(
α̂0(x, τ)− g(x, τ)−B(x, τ)b2

n,τ

)
converges to the Gaussian

process defined in Theorem 5. The effect of the linear interpolation can be analyzed in the

same way as in Qu and Yoon (2015, pp.15-16); we therefore omit the details.

Proof of Corollary 4. The proof is standard and included for completeness. The MSE at an
interior point x is

(1/4) tr

(
∂2g(x, τ)

∂x∂x′

∫
uu′K(u)du

)2

b4
n,τ +

τ (1− τ)
∫
K (u)2 du

nbdn,τf (x) [E (f(τ |X,Z)|X = x)]2
+ op(nb

d
n,τ ).

Computing the derivatives of the first two terms leads to the desired result. The Lipschitz conti-

nuity requirement is satisfied because the expressionsE [f (τ |X,Z)|x)]−2/(4+d), (τ (1− τ))1/(4+d),

and tr(
∫
uu′K(u)du∂2g(x, τ)/∂x∂x′)−2/(4+d) all have bounded first derivatives over T .
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S.2 Auxiliary Lemmas

The lemma below establishes an asymptotic equivalence between S (x, τ , φ) and S0 (x, τ) defined

by (S.15) and (S.16). It is used to establish the convergence rate of the estimator in the first

step of the estimation procedure and the Bahadur representation.

Lemma B.1 Under the conditions of Lemma 3:

supx∈Sx supτ∈T sup‖φ‖≤logn ‖S (x, τ , φ)− S0 (x, τ)‖ = Op((nh
d
n)−1/4 log n). (S.43)

Proof. The proof is long. We divide it into three steps. In Step 1, we apply a chaining

argument to obtain an upper bound for the left hand side of (S.43) using three terms. In Step

2, we use the structure of S (x, τ , φ) to obtain further bounds. In Step 3, we apply Bernstein’s

inequality. We focus on the local quadratic regression, commenting on the differences between

the local linear and quadratic specifications. In order to have a unified notation for both

cases, we let Wj(hn, x) be different quantities depending on the context. For a local linear

regression, Wj(hn, x) equals [1, (xj−x)′/hn, z
′
j]
′, while for a local quadratic regression, it equals

[1, (xj − x)′/hn, q(xj − x)′/h2
n, z
′
j]
′. We let C be a finite constant that can differ throughout.

Step 1. Apply a chaining argument. Because the support of x, Sx, is compact, it can be
partitioned into Lx cubes with Lx = C

(
(nhdn)3/4h−2

n

)d
, such that the side length of each

is at most
(
nhdn

)−3/4
h2
n. Similarly, the set Φ = {φ : ‖φ‖ ≤ log n} can be partitioned into

Lφ = C((nhdn)1/4 log n)dim(φ) cubes with side length not exceeding (nhdn)−1/4. Finally, T can be
partitioned into Lτ = C(nhdn)3/4 intervals whose length does not exceed (nhdn)−3/4. Define

N = LφLτLx = C3h−2d
n (log n)dim(φ)(nhdn)(dim(φ)+3d+3)/4,

θ = (x′, τ , φ′)′ and Θ = Sx × T × Φ. Let θ ∈ Is indicate that θ falls into the s-th cube,

s ∈ {1, ..., N} and let θs be the smallest value of θ in the s-th cube, including the values on the
boundaries.

Apply the above partition to (S.43) so that:

supx∈Sx supτ∈T sup‖φ‖≤logn ‖S (x, τ , φ)− S0 (x, τ)‖
≤ max1≤s≤N supθ∈Θ∩Is ‖S (x, τ , φ)− S0 (x, τ)− S (xs, τ s, φs) + S0 (xs, τ s)‖

+ max1≤s≤N ‖S (xs, τ s, φs)− S0 (xs, τ s)‖
≤ max1≤s≤N supθ∈Θ∩Is ‖S (x, τ , φ)− S (xs, τ s, φs)‖ (S.44)

+ max1≤s≤N supθ∈Θ∩Is ‖S0 (x, τ)− S0 (xs, τ s)‖ (S.45)

+ max1≤s≤N ‖S (xs, τ s, φs)− S0 (xs, τ s)‖ . (S.46)

Step 2. Obtain upper and lower bounds. This step focuses on term (S.44). The goal is to derive

bounds for S (x, τ , φ) − S (xs, τ s, φs) that depend on θs but not θ. Because (S.44) reduces to
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(S.45) when φ = 0 and e(x, τ) = 0, a separate analysis for (S.45) is unnecessary. This step does

not consider term (S.46).

By the definition of S (x, τ , φ), we have

S (x, τ , φ) = (nhdn)−1/2
∑n

j=1{P (u0
j(τ) ≤ (nhdn)−1/2Wj(hn, x)′φ+ ej(x, τ)|xj,zj) (S.47)

− 1(u0
j(τ) ≤ (nhdn)−1/2Wj(hn, x)′φ+ ej(x, τ))}

× {Wj(hn, x)K(xj − x)/hn)−Wj(hn, xs)K(xj − xs)/hn)}
+ (nhdn)−1/2

∑n
j=1{P (u0

j(τ) ≤ (nhdn)−1/2Wj(hn, x)′φ+ ej(x, τ)|xj,zj)
− 1(u0

j(τ) ≤ (nhdn)−1/2Wj(hn, x)′φ+ ej(x, τ))}Wj(hn, xs)K((xj − xs)/hn).

The norm of the first summation on the right hand side is bounded from above by

2(nhdn)−1/2
∑n

j=1 ‖Wj(hn, x)K((xj − x)/hn)−Wj(hn, xs)K((xj − xs)/hn)‖
≤ 2(nhdn)−1/2

∑n
j=1 ‖Wj(hn, x)−Wj(hn, xs)‖K((xj − x)/hn) (A)

+2(nhdn)−1/2
∑n

j=1 ‖Wj(hn, xs)‖ ‖K((xj − x)/hn)−K((xj − xs)/hn)‖ . (B)

Suppose θ ∈ Θ ∩ Is. From the definition of Wj(hn, x)

(A) ≤ 2C(nhdn)1/2(‖xs − x‖ /hn){(nhdn)−1
∑n

j=1 K((xj − xs)/hn)},

with the term in curly brackets being Op(1) uniformly in x (c.f. Theorem 2 in Masry, 1996). Be-

cause ‖xs − x‖ ≤
(
nhdn

)−3/4
h2
n, as implied by the size of the cubes, we have 2C(nhdn)1/2h−1

n ‖xs − x‖ =

O
(
(nhdn)1/2(nhdn)−3/4hn

)
= o

(
(nhdn)−1/4

)
. Therefore,

(A) = op((nh
d
n)−1/4).

BecauseWj(hn, x) is bounded for all x, (B) ≤ 2C(nhdn)−1/2
∑n

j=1 ‖K((xj − x)/hn)−K((xj − xs)/hn)‖.
BecauseK(·) has a compact support, there exists 1 < δ <∞ such thatK(u) = 0 when ‖u‖ > δ.

Thus,

(B) ≤ 2C(nhdn)−1/2
∑n

j=1 ||K((xj − x)/hn)−K((xj − xs)/hn)|| (S.48)

× 1 (min{‖xj − x‖ , ‖xj − xs‖} ≤ δhn)

≤ 2C2(nhdn)1/2||(x− xs)/hn||{(nhdn)−1
∑n

j=1 1 (‖xj − xs‖ ≤ 2δhn)},

where the second inequality follows because ‖xs − x‖ ≤
(
nhdn

)−3/4
h2
n < hn and ||K((xj −

x)/hn)−K((xj − xs)/hn)|| ≤ C||(x− xs)/hn||. Therefore,

(B) = op((nh
d
n)−1/4).
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Combining the results for (A) and (B), we have, whenever θ ∈ Θ ∩ Is,

S (x, τ , φ)− S (xs, τ s, φs) (S.49)

= (nhdn)−1/2
∑n

j=1

{
P (u0

j(τ) ≤ (nhdn)−1/2Wj(hn, x)′φ+ ej(x, τ)
∣∣xj,zj)

− 1(u0
j(τ) ≤ (nhdn)−1/2Wj(hn, x)′φ+ ej(x, τ))

− P (u0
j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)

′φs + ej(xs, τ s)
∣∣xj,zj)

+ 1(u0
j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)

′φs + ej(xs, τ s))
}
Wj(hn, xs)K((xj − xs)/hn)

+op((nh
d
n)−1/4).

We study the leading term in (S.49). Let Wj,k(hn, x) be the k-th element of Wj(hn, x).

Define

W+
j (hn, x, k) = (0, ...Wj,k(hn, x), ..., 0) 1(Wj,k(hn, x) ≥ 0),

W−
j (hn, x, k) = (0, ...−Wj,k(hn, x), ..., 0) 1(Wj,k(hn, x) < 0).

Then, following Bai (1996), Wj(hn, x) can be expressed as

Wj(hn, x) =

dim(Wj(hn,x))∑
k=1

W+
j (hn, x, k)−

dim(Wj(hn,x))∑
k=1

W−
j (hn, x, k).

Because these 2dim(Wj(hn, x)) terms can treated the same way, it is suffi cient to provide details

for the term:

(nhdn)−1/2
∑n

j=1

{
P (u0

j(τ) ≤ (nhdn)−1/2Wj(hn, x)′φ+ ej(x, τ)|xj,zj) (S.50)

− 1(u0
j(τ) ≤ (nhdn)−1/2Wj(hn, x)′φ+ ej(x, τ))

− P (u0
j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)

′φs + ej(xs, τ s)|xj,zj)
+1(u0

j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)
′φs + ej(xs, τ s))

}
W+
j (hn, xs, k)K((xj − xs)/hn).

For (S.50), because τ s ≤ τ ≤ τ s+1, its first two components satisfy

P (u0
j(τ) ≤ (nhdn)−1/2Wj(hn, x)′φ+ ej(x, τ)|xj,zj) (S.51)

−1(u0
j(τ) ≤ (nhdn)−1/2Wj(hn, x)′φ+ ej(x, τ))

≤ P (u0
j(τ s+1) ≤ (nhdn)−1/2Wj(hn, x)′φ+ ej(x, τ))|xj,zj)

−1(u0
j(τ s) ≤ (nhdn)−1/2Wj(hn, x)′φ+ ej(x, τ)).

Also, since

‖Wj(hn, x)′φ−Wj(hn, x)′φs‖ ≤ ‖φ− φs‖ ‖Wj(hn, x)‖ ≤ (nhdn)−1/4 ‖Wj(hn, x)‖ ≤ C(nhdn)−1/4,
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we have Wj(hn, x)′φs −C(nhdn)−1/4 ≤ Wj(hn, x)′φ ≤ Wj(hn, x)′φs +C(nhdn)−1/4. Consequently,

(S.51) is further bounded from above by

P (u0
j(τ s+1) ≤ (nhdn)−1/2Wj(hn, x)φs + C(nhdn)−3/4 + ej(x, τ)|xj,zj) (S.52)

−1(u0
j(τ s) ≤ (nhdn)−1/2Wj(hn, x)φs − C(nhdn)−3/4 + ej(x, τ)).

Because ‖Wj(hn, x)−Wj(hn, xs)‖ ≤ C ‖x− xs‖ /hn, we have

‖Wj(hn, x)φs −Wj(hn, xs)φs‖ = ‖(Wj(hn, x)−W (hn, xs))φs‖
≤ C(‖x− xs‖ /hn) ‖φs‖
≤ Ch−1

n (nhdn)−3/4h2
n log n ≤ C(nhdn)−3/4.

As a result, (S.52) is further bounded from above by

P
(
u0
j(τ s+1) ≤ (nhdn)−1/2Wj(hn, xs)φs + 2C(nhdn)−3/4 + ej(x, τ)|xj,zj

)
(S.53)

−
(
1(u0

j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)φs − 2C(nhdn)−3/4 + ej(x, τ)
)
.

It remains to relate ej(x, τ) to ej(xs, τ s). Recall that

ej (x, τ) = g(x, τ)+(∂g(x, τ)/∂x′) (xj − x)+(1/2) (xj − x)′ (∂2g(x, τ)/∂x∂x′) (xj − x)−g(xj, τ).

Applying this definition:

ej(x, τ)− ej(xs, τ s)
= g(x, τ)− g(xs, τ s) + (∂g(x, τ)/∂x′) (xj − x)− (∂g(xs, τ s)/∂x

′) (xj − xs)
+(1/2) (xj − x)′ (∂2g(x, τ)/∂x∂x′) (xj − x)− (1/2) (xj − xs)′ (∂2g(xs, τ s)/∂x∂x

′) (xj − xs) .

By the Lipschitz continuity, the three differences are all bounded by C(nhdn)−3/4/3. Therefore,

(S.53), and consequently (S.51), have the following upper bound

P (u0
j(τ s+1) ≤ (nhdn)−1/2Wj(hn, xs)φs + ej(xs, τ s) + 3C(nhdn)−3/4|xj,zj) (S.54)

− 1(u0
j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)φs + ej(xs, τ s)− 3C(nhdn)−3/4)

Applying the same argument, we can find a lower bound for (S.51), given by

P (u0
j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)φs + ej(xs, τ s)− 3C(nhdn)−3/4|xj,zj) (S.55)

− 1(u0
j(τ s+1) ≤ (nhdn)−1/2Wj(hn, xs)φs + ej(xs, τ s) + 3C(nhdn)−3/4).

Combining (S.54), (S.55) and the non-negativity ofW+
j (hn, xs, k), an upper bound for (S.50)

is

UB(xs, τ s, τ s+1, φs)

= (nhdn)−1/2
∑n

j=1

{
P (u0

j(τ s+1) ≤ (nhdn)−1/2Wj(hn, xs)φs + ej(xs, τ s) + 3C(nhdn)−3/4|xj,zj))
− 1(u0

j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)φs + ej(xs, τ s)− 3C(nhdn)−3/4)

− P (u0
j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)

′φs + ej(xs, τ s)
∣∣xj,zj)

+ 1(u0
j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)

′φs + ej(xs, τ s))
}
W+
j (hn, xs, k)K((xj − xs)/hn),

S-26



and a lower bound for (S.50) given by

LB(xs, τ s, τ s+1, φs)

= (nhdn)−1/2
∑n

j=1

{
P (u0

j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)φs + ej(xs, τ s)− 3C(nhdn)−3/4|xj,zj)
− 1(u0

j(τ s+1) ≤ (nhdn)−1/2Wj(hn, xs)φs + ej(xs, τ s) + 3C(nhdn)−3/4)

− P (u0
j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)

′φs + ej(xs, τ s)|xj,zj)
+1(u0

j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)
′φs + ej(xs, τ s))

}
W+
j (hn, xs, k)K((xj − xs)/hn).

From the results above, it follows that term (S.44) is bounded by

C max1≤s≤N ‖UB(xs, τ s, τ s+1, φs)‖+C max1≤s≤N ‖LB(xs, τ s, τ s+1, φs)‖+op((nhdn)−1/4). (S.56)

By letting φ = 0 and e(x, τ) = 0 in UB(xs, τ s, τ s+1, φs) and LB(xs, τ s, τ s+1, φs), we obtain

bounds for (S.45). This implies that the order of (S.45) does not exceed that of (S.44).

Step 3. Apply Bernstein’s inequality. We further analyze UB(xs, τ s, τ s+1, φs) and LB(xs, τ s, τ s+1, φs)

in (S.56), as well as (S.46).

Adding and subtracting terms,

UB(xs, τ s, τ s+1, φs)

= (nhdn)−1/2
∑n

j=1

{
P (u0

j(τ s+1) ≤ (nhdn)−1/2Wj(hn, xs)φs + ej(xs, τ s) + 3C(nhdn)−3/4|xj,zj)
− P (u0

j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)φs + ej(xs, τ s)− 3C(nhdn)−3/4|xj, zj)
}

×W+
j (hn, xs, k)K((xj − xs)/hn) (D)

+(nhdn)−1/2
∑n

j=1

{
P (u0

j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)φs + ej(xs, τ s)− 3C(nhdn)−3/4|xj,zj)
− 1(u0

j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)φs + ej(xs, τ s)− 3C(nhdn)−3/4)
}

×W+
j (hn, xs, k)K((xj − xs)/hn) (E)

−(nhdn)−1/2

n∑
j=1

{
P (u0

j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)
′φs + ej(xs, τ s)|xj,zj)

− 1(u0
j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)

′φs + ej(xs, τ s))
}

×W+
j (hn, xs, k)K((xj − xs)/hn) (F )

+op
(
(nhdn)−1/4

)
,

where the three summations are denoted by (D), (E) and (F ), respectively. For (D):

‖(D)‖ = (nhdn)−1/2
∑n

j=1

{
P (u0

j(τ s+1) ≤ (nhdn)−1/2Wj(hn, xs)φs + ej(xs, τ s) + 3C(nhdn)−3/4|xj,zj)
− P (u0

j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)φs + ej(xs, τ s) + 3C(nhdn)−3/4|xj,zj)
+ P (u0

j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)φs + ej(xs, τ s) + 3C(nhdn)−3/4|xj,zj)
− P (u0

j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)φs + ej(xs, τ s)− 3C(nhdn)−3/4|xj,zj)
}

×W+
j (hn, xs, k)K((xj − xs)/hn).

S-27



By the Lipschitz continuity of Q (τ |x, z) with respect to τ , the preceding display is bounded
from above by C(nhdn)−1/4((nhdn)−1

∑n
j=1W

+
j (hn, xs, k)K((xj − xs)/hn)). Applying the same

argument as for (S.48), it is then of order Op

(
(nhdn)−1/4

)
, uniformly over s ∈ {1, ..., N} because

the values xs are not stochastic.

Terms (E) and (F ) need to be analyzed jointly. Define

ξj (xs, τ s) = P (u0
j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)φs + ej(xs, τ s)− 3C(nhdn)−3/4|xj,zj)

−1(u0
j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)φs + ej(xs, τ s)− 3C(nhdn)−3/4)

−P (u0
j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)

′φs + ej(xs, τ s)|xj,zj)
+1(u0

j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)
′
sφs + ej(xs, τ s)).

Then, for any finite constant M > 0,

P (max1≤s≤N ‖(E) + (F )‖ ≥M(nhdn)−1/4 log n)

= P (max1≤s≤N ||(nhdn)−1/2
∑n

j=1 ξj (xs, τ s)W
+
j (hn, xs, k)K((xj − xs)/hn)|| ≥M(nhdn)−1/4 log n)

≤ N max1≤s≤N P (||(nhdn)−1/2
∑n

j=1 ξj (xs, τ s)W
+
j (hn, xs, k)K((xj − xs)/hn)|| ≥M(nhdn)−1/4 log n).

Because the summands are zero-mean, bounded and mutually independent, Bernstein’s inequal-

ity is applicable, so that:

P
(∥∥∥(nhdn)−1/2

∑n
j=1 ξj (xs, τ s)W

+
j (hn, xs, k)K ((xj − xs)/hn)

∥∥∥ ≥M(nhdn)−1/4 log n
)

(S.57)

≤ 2 exp

(
−

n
(

1
n
M(nhdn)1/4 log n

)2

2n−1
∑n

j=1E
(
ξj (xs, τ s)W

+
j (hn, xs, k)K ((xj − xs)/hn)

)2
+ 2C 1

3n
M(nhdn)1/4 log n

)

= 2 exp

(
− (M log n)2

2(nhdn)−1/2
∑n

j=1E
(
ξj (xs, τ s)W

+
j (hn, xs, k)K ((xj − xs)/hn)

)2
+ 2C 1

3
M(nhdn)−1/4 log n

)
.

The second term in the denominator converges to 0. Note that for any γ ≥ 1,

E
(
E
(
||ξj (xs, τ s) ||2γ|xj, zj

))
≤ E

(
E
(
||ξj (xs, τ s) ||2|xj, zj

))
≤ C2(nhdn)−3/4.

As a result, the first term in the denominator satisfies

2(nhdn)−1/2
∑n

j=1E(ξj (xs, τ s)W
+
j (hn, xs, k)K((xj − xs)/hn))2

= 2(nhdn)−1/2
∑n

j=1E{E[(ξj (xs, τ s)W
+
j (hn, xs, k)K((xj − xs)/hn))2|xj, zj]}

≤ 2C2(nhdn)−5/4
∑n

j=1E[W+
j (hn, xs, k)K((xj − xs)/hn)]2

= 2C2(nhdn)−5/4
∑n

j=1E[W+
j (hn, xs, k)K((xj − xs)/hn)1 (‖xj − xs‖ ≤ δhn)]2

≤ 2(nhdn)−5/4C3
∑n

j=1E (1 (‖xj − xs‖ ≤ δhn)) = O((nhdn)−1/4).

Hence, (S.57) is less than 2 exp (−(M log n)2) in large samples. Because 2 exp (−(M log n)2)N →
0 for any finite M , we have P (max1≤s≤N ||(E) + (F )|| ≥M(nhdn)−1/4 log n)→ 0, hence

max1≤s≤N ‖UB(xs, τ s, τ s+1, φs)‖ = Op((nh
d
n)−1/4 log n).
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Similarly, max1≤s≤N ‖LB(xs, τ s, τ s+1, φs)‖ = Op((nh
d
n)−1/4 log n). Hence,

(S.44) = Op

(
(nhdn)−1/4 log n

)
.

Because the order of (S.45) does not exceed that of (S.44), it follows that

(S.45) = Op

(
(nhdn)−1/4 log n

)
.

Finally, (S.46) can also be bounded using Bernstein’s inequality. Note that

S (xs, τ s, φs)− S0 (xs, τ s)

= (nhdn)−1/2
∑n

j=1

{
P (u0

j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)φs + ej(xs, τ s)|xj,zj)
− 1(u0

j(τ s) ≤ (nhdn)−1/2Wj(hn, xs)φs + ej(xs, τ s))− P (u0
j(τ s) ≤ 0|xj,zj)

+1(u0
j(τ s) ≤ 0)

}
Wj(hn, xs)K((xj − xs)/hn).

Denote the four terms in the curly brackets by ηj (xs, τ s). The approximation error ej(xs, τ s) sat-

isfies ‖ej(xs, τ s)‖ = O(h3
n) =O((nhdn)−1/2) (if a local linear regression is used, then ‖ej(xs, τ s)‖ =

O(h2
n) = O

(
(nhdn)−1/2

)
). Apply Bernstein’s inequality as before, with ηj (xs, τ s) replacing

ξj (xs, τ s):

P
(
‖S (xs, τ s, φs)− S0 (xs, τ s)‖ ≥M(nhdn)−1/4 log n

)
≤ 2 exp

(
−

n
(
n−1M(nhdn)1/4 log n

)2

2n−1
∑n

j=1E
(
ηj (xs, τ s)Wj(hn, xs)K((xj − xs)/hn)

)2
+ (2/3)Cn−1M(nhdn)1/4 log n

)

= 2 exp

(
− (M log n)2

2(nhdn)−1/2
∑n

j=1E(ηj (xs, τ s)Wj(hn, xs)K((xj − xs)/hn))2 + (2/3)CM(nhdn)−1/4 log n

)
.

Because E
(
||ηj (xs, τ s) ||2

)
≤ C(nhdn)−1/2 log n, the first term in the denominator is bounded

above by C log n. Therefore, in large samples, the preceding display is bounded by

2 exp

(
− M2 log n

2C + (2/3)CM(nhdn)−1/4 log n

)
≤ 2 exp (−M log n) ,

by choosing a suffi ciently large M . Because 2 exp (−M log n)N → 0 for a large enough M , we

have

(S.46) = Op

(
(nhdn)−1/4 log n

)
.

The result of the lemma follows from combining the orders for (S.44), (S.45), and (S.46).

Lemma B.2 Under the conditions of Lemma 3, we have

supτ∈T supx∈Sx ||(nh
d
n)−1/2

∑n
j=1{ψτ (u0

j(τ)− ej(x, τ))− ψτ (u0
j(τ))}Wj(hn, x)K((xj − x)/hn)||

= Op(
√

log n),

where ψτ (u) = τ − 1(u < 0), and supτ∈T supx∈Sx ‖S0 (x, τ)‖ = Op(
√

log n).
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Proof. In this proof, in order to have a unified notation for the local linear and quadratic
cases, we let Wj(hn, x) be defined differently depending on the context. For a local linear

regression, Wj(hn, x) equals [1, (xj−x)′/hn, z
′
j]
′, while for a local quadratic regression, it equals

[1, (xj − x)′/hn, q(xj − x)′/h2
n, z
′
j]
′. For the first result, we have

(nhdn)−1/2
∑n

j=1{ψτ (u0
j(τ)− ej(x, τ))− ψτ (u0

j(τ))}Wj(hn, x)K((xj − x)/hn)

= S (x, τ , 0)− S0 (x, τ)

+(nhdn)−1/2
∑n

j=1{P (u0
j(τ) ≤ 0|xj,zj)− P (u0

j(τ) ≤ ej(x, τ)|xj,zj)}Wj(hn, x)K((xj − x)/hn).

By Lemma B.1, the first two terms on the right hand side satisfy

supτ∈T supx∈Sx ‖S (x, τ , 0)− S0 (x, τ)‖ = Op((nhn)−1/4 log n) = Op(
√

log n).

The third term satisfies

||(nhdn)−1/2
∑n

j=1{P (u0
j(τ) ≤ 0|xj,zj)− P (u0

j(τ) ≤ ej(x, τ)|xj,zj)}Wj(hn, x)K((xj − x)/hn)||
= ||(nhdn)−1/2

∑n
j=1 f (ỹj|xj, zj) ej(x, τ)Wj(hn, x)K((xj − x)/hn)||,

where ỹj lies between Q(τ |xj, zj) and Q(τ |xj, zj) + ej(x, τ). Because K((xj − x)/hn) equals 0

unless xj is in a vanishing neighborhood of x, it suffi ces to consider observations in this neigh-

borhood, i.e., those satisfying ‖(xj − x)/hn‖ ≤ δ for some δ <∞. Within this δ-neighborhood,
ej(x, τ) = O(h2

n) = O((nhdn)−1/2) because nh4+d
n = O(1); also, f (ỹj|xj, zj) is finite because we

assume the density is bounded. We therefore have ‖f (ỹj|xj, zj) ej(x, τ)Wj(hn, x)‖ ≤ C(nhdn)−1/2

for some C < ∞ for all observations in this neighborhood. Consequently, the above displayed

expression is bounded by C(nhdn)−1
∑n

j=1K((xj − x)/hn) = Op (1), where the equality follows

by a law of large numbers.

The second result can be proved using the same arguments as in Lemma B.1. Apply the

same partition of T and Sx as in the Lemma B.1. Let N̄ = LτLx and θ̄ = (x′, τ)′. Write θ̄ ∈ Is
if θ̄ falls into the s-th cube, for s ∈

{
1, ..., N̄

}
. Let θ̄s be the smallest value in the s-th cube,

including the values on the boundaries. Then,

supτ∈T supx∈Sx ‖S0 (x, τ)‖
≤ max1≤s≤N̄ supθ̄∈Θ̄∩Is ‖S0 (x, τ)− S0 (xs, τ s)‖+ max1≤s≤N̄ ‖S0 (xs, τ s)‖ .

By Lemma B.1, the first term on the right hand side is Op

(
(nhdn)−1/4 log n

)
= Op(log1/2 n).

The summands in the second term are bounded, so we can apply Bernstein’s inequality:

P
(
‖S0 (xs, τ s)‖ ≥M

√
log n

)
= 2 exp

− M2 log n

2(nhdn)−1
∑n

j=1E
(
τ − 1(u0

j (τ) ≤ 0)Wj(hn, xs)K
(
xj−xs
hn

))2

+ 2
3
CM(nhdn)−1/2

√
log n

 .
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The first term in the denominator is finite. The second converges to zero for any finiteM . There-

fore, choosing a suffi ciently large M , the right hand side can be bounded by 2 exp (−M log n)

such that 2 exp (−M log n) N̄ → 0 since log N̄ = O(log n). This completes the proof.

The next result is needed for Lemma 3. Its proof is similar to Step 1 of the proof of Qu and

Yoon (2015, Theorem 1). The main difference is that their result is pointwise in x for a purely

nonparametric model, while here it is uniform in x for a semiparametric model.

Lemma B.3 Under the conditions of Lemma 3, (21) satisfies

Pr(supτ∈T supx∈Sx ||φ̃(x, τ)|| ≤ log n)→ 1.

Proof. In this proof, in order to have a unified notation for the local linear and quadratic
cases, we let Wj(hn, x) be defined differently depending on the context. For a local linear

regression, Wj(hn, x) equals [1, (xj−x)′/hn, z
′
j]
′, while for a local quadratic regression, it equals

[1, (xj − x)′/hn, q(xj − x)′/h2
n, z
′
j]
′. By construction, φ̃(x, τ) is the minimizer of (S.14). Because

V (x, τ , 0) = 0, we have V (x, τ , φ̃(x, τ)) ≤ 0 for each τ and every n. Therefore, to prove the

result, it suffi ces to show that for any ε > 0, there exist some finite N0 and η > 0 independent

of τ and x, such that

P (infτ∈T infx∈Sx inf‖φ‖≥logn V (x, τ , φ) > η log2 n) > 1− ε, for all n ≥ N0. (S.58)

Further, because V (x, τ , φ) is convex in φ, the inequality

V (x, τ , γφ)− V (x, τ , 0) ≥ γ (V (x, τ , φ)− V (x, τ , 0))

holds for any γ ≥ 1. Therefore, a further suffi cient condition for (S.58) is

P (infτ∈T infx∈Sx inf‖φ‖=logn V (x, τ , φ) > η log2 n) > 1− ε for all n ≥ N0. (S.59)

Below we establish (S.59). Consider the following decomposition of (S.14) due to Knight (1998):

V (x, τ , φ) =W(x, τ , φ) + Z(x, τ , φ), (S.60)

where

W(x, τ , φ) = −(nhdn)−1/2
∑n

j=1 ψτ (u
0
j(τ)− ej(x, τ))K((xj − x)/hn)Wj(hn, x)′φ,

Z(x, τ , φ) =
∑n

j=1 K

(
xj − x
hn

)∫ (nhdn)−1/2Wj(hn,x)′φ

0
{1(u0

j(τ)− ej(x, τ) ≤ s)− 1(u0
j(τ)− ej(x, τ) ≤ 0)}ds,

ψτ (u) = τ − 1(u < 0).

Applying this decomposition, we have

infτ∈T infx∈Sx inf‖φ‖=logn V (x, τ , φ)/ log2 n (S.61)

≥ infτ∈T infx∈Sx inf‖φ‖=lognZ(x, τ , φ)/ log2 n− supτ∈T supx∈Sx sup‖φ‖=logn |W(x, τ , φ)| / log2 n.
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Below we provide bounds for the terms on the right hand side of (S.61).

For the second term:

supτ∈T supx∈Sx sup‖φ‖=logn |W(x, τ , φ)| / log2 n.

≤ (log n)−1 supτ∈T supx∈Sx ||(nh
d
n)−1/2

∑n
j=1{ψτ (u0

j(τ)− ej(x, τ))− ψτ (u0
j(τ))}

×Wj(hn, x)′K((xj − x)/hn)||
+(log n)−1 supτ∈T supx∈Sx ||(nh

d
n)−1/2

∑n
j=1 ψτ (u

0
j(τ))Wj(hn, x)′K((xj − x)/hn)||.

The two terms on the right hand side are both Op

(
(log n)−1/2

)
= op (1) by Lemma B.2. There-

fore,

supτ∈T supx∈Sx sup‖φ‖=logn |W(x, τ , φ, e)| / log2 n = op (1) . (S.62)

We now show that the first term in (S.61) is strictly positive with probability tending to

1. First, note that the integral appearing in Z(x, τ , φ) is always nonnegative and satisfies (see

Lemma A.1 in Oka and Qu, 2011)∫ (nhdn)−1/2Wj(hn,x)′φ

0

{
1(u0

j(τ)− ej(x, τ) ≤ s)− 1(u0
j(τ)− ej(x, τ) ≤ 0)

}
ds

≥ (nhdn)−1/2Wj(hn, x)′φ

2

{
1

(
u0
j(τ)− ej(x, τ) ≤ (nhdn)−1/2Wj(hn, x)′φ

2

)
− 1(u0

j(τ)− ej(x, τ) ≤ 0)

}
.

Applying this inequality to Z(x, τ , φ):

Z(x, τ , φ)/ log2 n

≥ φ′

2(nhdn)1/2 log2 n

∑n
j=1

{
1(u0

j(τ)− ej(x, τ) ≤ (nhdn)−1/2Wj(hn, x)′φ/2)

−1(u0
j(τ)− ej(x, τ) ≤ 0)

}
Wj(hn, x)′K ((xj − x)/hn)

=
φ′

2 log2 n
{S (x, τ , 0)− S(x, τ , φ/2)}

+
φ′

2(nhdn)1/2 log2 n

∑n
j=1

{
P (u0

j(τ)− ej(x, τ) ≤ (nhdn)−1/2Wj(hn, x)φ/2
∣∣xj, zj)

− P (u0
j(τ)− ej(x, τ) ≤ 0

∣∣xj, zj)}Wj(hn, x)K ((xj − x)/hn)

≡ (G) + (H).

Because of Lemma B.1 and ‖φ‖ = log n,

(G) = Op((nh
d
n)−1/4) = op (1) . (S.63)

By the mean value theorem,

(H) = (4 log2 n)−1φ′
(

(nhdn)−1
∑n

j=1 f (ỹj|xj, zj)K((xj − x)/hn)Wj(hn, x)Wj(hn, x)′
)
φ,

S-32



where ỹj lies between Q(τ |xj, zj) + ej(x, τ) and Q(τ |xj, zj) + ej(x, τ) + (nhdn)−1/2Wj(hn, x)′φ/2.

Because K((xj − x)/hn) equals 0 unless xj is in a vanishing neighborhood of x, it suffi ces to

consider those xj satisfying ‖xj − x‖ ≤ δhn with δ some finite constant. At such values, ej(x, τ)

and (nhdn)−1/2Wj(hn, x)′φ/2 both approach 0 because ‖φ‖ = log n. Therefore, ỹj approaches

Q(τ |xj, zj) as n→∞. This implies that, for any ε > 0, f (ỹj|xj, zj) ≥ f (τ |xj, zj)− ε holds for
all xj and zj with probability arbitrarily close to one in large samples. Hence,

(H) ≥ (4 log2 n)−1φ′{(nhdn)−1
∑n

j=1 f (τ |xj, zj)K((xj − x)/hn)Wj(hn, x)Wj(hn, x)′}φ
−ε(4 log2 n)−1φ′{(nhdn)−1

∑n
j=1K((xj − x)/hn)Wj(hn, x)Wj(hn, x)′}φ

with probability arbitrarily close to one in large samples. The term in the first set of curly

brackets has eigenvalues bounded away from 0. Denote its smallest eigenvalue by λmin. The

term in the second curly brackets is finite (say, less than C) in probability. Therefore, uniformly

in τ and x, we have

(H) ≥ (1/4)λmin − (1/4)εC ≥ (1/8)λmin (S.64)

with probability arbitrarily close to one in large samples, where the last inequality holds because

ε can be chosen to be arbitrarily small.

Comparing, (S.64) is strictly positive and dominates (S.62) and (S.63) with probability

converging to 1. This completes the proof.

Lemma B.4 Under the conditions of Lemma 4, there exist γ > 1 and C̄ <∞, such that for any
τ 1, τ 2 ∈ T satisfying |τ 2 − τ 1| ≥ n−1/2−κ with 0 < κ < 1/2, we have E(‖U (τ 2)− U (τ 1)‖2γ) ≤
C̄ |τ 2 − τ 1|γ, with U (τ) defined in (S.24).

Proof. It suffi ces to show (E ‖U (τ 2)− U (τ 1)‖2γ)1/γ ≤ C̄1/γ(τ 2 − τ 1) for τ 2 ≥ τ 1. Let A1i =

{(τ 2 − 1(u0
i (τ 2) ≤ 0))− (τ 1 − 1(u0

i (τ 1) ≤ 0))}Ti(τ 2) andA2i = (τ 1 − 1(u0
i (τ 1) ≤ 0)) (Ti(τ 2)− Ti(τ 1)).

Then, U (τ 2)− U (τ 1) = n−1/2
∑n

i=1 (A1i + A2i). Let q̄ be the dimension of U (τ 1), we have

(E ‖U (τ 2)− U (τ 1)‖2γ)1/γ ≤
∑q̄

k=1{n−γE|
∑n

i=1A1i,k + A2i,k|2γ}1/γ, (S.65)

where A1i,k and A2i,k are the k-th element of A1i and A2i, and using Minkowski’s inequality.

We bound this term using arguments similar to Bai (1996, Lemma A1):

n−γE|
∑n

i=1A1i,k + A2i,k|2γ

≤ Cn−γ(
∑n

i=1E |A1i,k + A2i,k|2)γ + Cn−γ
∑n

i=1E |A1i,k + A2i,k|2γ

≤ 2γCn−γ(
∑n

i=1 EA
2
1i,k + EA2

2i,k)
γ + 2γCn−γ

∑n
i=1E

(
A2

1i,k + A2
2i,k

)γ
≤ 2γCn−γ(

∑n
i=1E ‖A1i‖2 + E ‖A2i‖2)γ + 2γCn−γ

∑n
i=1 E(‖A1i‖2 + ‖A2i‖2)γ

≤ 2γCn−γ(
∑n

i=1E ‖A1i‖2 + E ‖A2i‖2)γ (I)

+2γn−γC
∑n

i=1((E ‖A1i‖2γ)1/γ + (E ‖A2i‖2γ)1/γ)γ (J),
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The first inequality holds using Rosenthal’s inequality for independent random variables (Hall

and Heyde, 1980, p.23), with the constant C depending only on γ; the second holds because

of the triangle inequality; the third because A2
1i,k ≤ ‖A1i‖2 and A2

2i,k ≤ ‖A2i‖2; and the last

follows from Minkowski’s inequality. Further,

E ‖A1i‖2γ = E{E(‖A1i‖2γ |xi, zi)}
= E(E{

(
τ 2 − 1(u0

i (τ 2) ≤ 0)− τ 1 + 1(u0
i (τ 1) ≤ 0)

)2γ |xi, zi} ‖Ti(τ 2)‖2γ)

≤ E(E{
(
τ 2 − 1(u0

i (τ 2) ≤ 0)− τ 1 + 1(u0
i (τ 1) ≤ 0)

)2 |xi, zi} ‖Ti(τ 2)‖2γ) ≤ C (τ 2 − τ 1) ,

where the first inequality follows from |τ 2 − 1(u0
i (τ 2) ≤ 0)− τ 1 + 1(u0

i (τ 1) ≤ 0)| ≤ 1. Mean-

while,

E ‖A2i‖2γ = E
∥∥(τ 1 − 1(u0

i (τ 1) ≤ 0)
)

(Ti(τ 1)− Ti(τ 2))
∥∥2γ

≤ E ‖Ti(τ 1)− Ti(τ 2)‖2γ ≤ C (τ 2 − τ 1)2γ ,

where the second inequality follows from the Lipschitz continuity of Ti(τ) with respect to

τ . The terms E ‖A1i‖2 and E ‖A2i‖2 in (I) can be bounded in the same way, leading to

E ‖A1i‖2 ≤ C (τ 2 − τ 1) and E ‖A2i‖2 ≤ C (τ 2 − τ 1)2. These bounds imply

(I) ≤ 2γC(n−1
∑n

i=1(C (τ 2 − τ 1) + C (τ 2 − τ 1)2))γ ≤M (τ 2 − τ 1)γ

for some constant M , and

(J) ≤ 2γCn−γ
∑n

i=1((C (τ 2 − τ 1))1/γ + (C (τ 2 − τ 1)2γ)1/γ)γ

≤ Mn1−γ (τ 2 − τ 1) = M(n (τ 2 − τ 1))1−γ (τ 2 − τ 1)γ

for some constant M . Because |τ 2 − τ 1| ≥ n−1/2−κ and 0 < κ < 1/2, we have τ 2 − τ 1 > n−1,

which implies n (τ 2 − τ 1) > 1. Hence, M (n (τ 2 − τ 1))1−γ < M because γ > 1. Hence, (J) ≤
M (τ 2 − τ 1)γ.

Therefore, each term inside curly brackets in (S.65) is bounded by 2M (τ 2 − τ 1)γ. Conse-

quently, (S.65) is bounded by (q̄+ 1) (2M)1/γ (τ 2 − τ 1). Letting C̄ = (q̄+ 1) (2M)1/γ completes

the proof.

S.3 QTE in RD Designs with Covariates

This section discusses RD designs with covariates, focusing on methods to obtain uniform

confidence bands. Let x be the cut-off point and z be the vector of covariates. Recall that x

and z are d × 1 and q × 1 vectors, respectively. We focus on the case where d = 1 since it

is common for RD designs. The dimension of the covariates are as follows. For a subgroup

analysis using one dummy variable, q = 1 and z takes values 0 or 1. Similarly, for a subgroup

S-34



analysis using two dummy variables (i.e., four groups), q = 3 and z = (0, 0, 0), (1, 0, 0), (0, 1, 0)

or (0, 0, 1). With only one continuous covariate, q = 1 and z takes a scalar value.

Confidence band for the QTE without bias correction: We consider this band as a
benchmark. Let Q̂(τ |x+, z) = α̂+

0 (x, τ) + z′β̂
+

(τ) where α̂+
0 (x, τ) and β̂

+
(τ) denote solutions

from the first equation in (8). Define Q̂(τ |x−, z) = α̂−0 (x, τ) + z′β̂
−

(τ) similarly. To present the

limiting distribution of the estimator, define

W̄j(x, bn,τ ) =


1

zj

(xj − x)/bn,τ

zj · (xj − x)/bn,τ



′

and ez =


1

z

0

0q

 ,

where the 0q is a q × 1 vector of zeros, and

µ+
j =

∫ ∞
0

ujK(u)du, µ−j =

∫ 0

−∞
ujK(u)du, for j = 0, 1, 2, 3, 4.

With ⊗ the Kronecker product, let

Mv(x
+, τ) = E

f(X)f (τ |X,Z)

 µ+
0 µ+

1

µ+
1 µ+

2

⊗
 1 Z ′

Z ZZ ′

∣∣∣∣∣∣X = x

 ,
Lv(x

+, τ) = E

f(X)f (τ |X,Z)

 µ+
2

µ+
3

⊗
 1

Z

∣∣∣∣∣∣X = x

 .
Define Mv(x

−, τ) and Lv(x−, τ) similarly for x− (the left limit of x) by replacing µ+
j with µ

−
j .

Corollary 6 Under the conditions in Corollary 1 and Assumptions 8-10, with Assumption 1
satisfied for (3) and d=1, we have, uniformly over T ,

(nbn,τ )
1/2(Q̂(τ |x+, z)− Q̂(τ |x−, z)−

(
Bv(x

+, z, τ)−Bv(x
−, z, τ)

)
b2
n,τ −

(
Q(τ |x+, z)−Q(τ |x+, z)

)
)

= D1,v

(
x+, z, τ

)
−D1,v

(
x−, z, τ

)
+ op (1) ,

where

Bv(x
+, z, τ) = e′zMv(x

+, τ)−1Lv(x
+, τ)

1

2

∂2g(x+, τ)

∂x2
,

Bv(x
−, z, τ) = e′zMv(x

−, τ)−1Lv(x
−, τ)

1

2

∂2g(x−, τ)

∂x2
,

D1

(
x+, z, τ

)
= e′zMv(x

+, τ)−1(nbn,τ )
−1/2

∑n
i=1{τ − 1(u0

i (τ) ≤ 0)}diW̄i(x, bn,τ )K ((xi − x)/bn,τ ) ,

D1

(
x−, z, τ

)
= e′zMv(x

−, τ)−1(nbn,τ )
−1/2

∑n
i=1{τ − 1(u0

i (τ) ≤ 0)}(1− di)W̄i(x, bn,τ )K ((xi − x)/bn,τ ) .
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To construct a uniform confidence band, we need to simulate D1,v (x+, z, τ)−D1,v (x−, z, τ).

This can be done by drawing samples from each term separately. That is, for D1,v (x+, z, τ),

we generate independent copies of

e′z[(nbn,τ )
−1
∑n

j=1 dj f̂
(
τ |x+, zj

)
W̄j(x, bn,τ )W̄j(x, bn,τ )

′K((xj − x)/bn,τ )]
−1

×(nbn,τ )
−1/2

∑n
i=1 (τ − 1(ui − τ ≤ 0))diW̄i(x, bn,τ )K((xi − x)/bn,τ ),

and for D1,v (x−, z, τ), we generate independent copies of

e′z[(nbn,τ )
−1
∑n

j=1(1− dj)f̂
(
τ |x−, zj

)
W̄j(x, bn,τ )W̄j(x, bn,τ )

′K((xj − x)/bn,τ )]
−1

×(nbn,τ )
−1/2

∑n
i=1 (τ − 1(ui − τ ≤ 0))(1− di)W̄i(x, bn,τ )K((xi − x)/bn,τ ).

Confidence band for the QTE with robust bias correction: Define

W̃j(x, rn,τ ) =



1

zj

(xj − x)/rn,τ

zj · (xj − x)/rn,τ

q(xj − x)/r2
n,τ

zj · q(xj − x)/r2
n,τ


and e3 =



0

0q

0

0q

1

z


.

In addition, define

M̃v(x
+, τ) = E

f(X)f (τ |X,Z)


µ+

0 µ+
1 µ+

2

µ+
1 µ+

2 µ+
3

µ+
2 µ+

3 µ+
4

⊗
 1 Z ′

Z ZZ ′


∣∣∣∣∣∣∣∣∣X = x

 ,
and M̃v(x

−, τ) similarly by replacing µ+
j with µ

−
j .

To obtain the uniform confidence band, the biases can be computed by

B̂v(x
+, z, τ) = e′z[(nbn,τ )

−1
∑n

j=1 dj f̂
(
τ |x+, zj

)
W̄j(x, bn,τ )W̄j(x, bn,τ )

′K((xj − x)/bn,τ )]
−1

×{(nbn,τ )−1
∑n

j=1 dj f̂
(
τ |x+, zj

)
W̄j(x, bn,τ )((xj − x)/bn,τ )

2K((xj − x)/bn,τ )}γ̂2(x+, z, τ)

and

B̂v(x
−, z, τ) = e′z[(nbn,τ )

−1
∑n

j=1(1− dj)f̂
(
τ |x−, zj

)
W̄j(x, bn,τ )W̄j(x, bn,τ )

′K((xj − x)/bn,τ )]
−1

×{(nbn,τ )−1
∑n

j=1(1− dj)f̂
(
τ |x−, zj

)
W̄j(x, bn,τ )((xj − x)/bn,τ )

2K((xj − x)/bn,τ )}γ̂2(x−, z, τ).

Here, γ̂2(x+, z, τ) and γ̂2(x−, z, τ) are obtained from two one-sided local quadratic quantile

regressions that use the elements of [1, z′j, xj − x, z′j(xj − x), (xj − x)2, z′j(xj − x)2] for the

independent variables.

The following result characterizes the distribution of the bias corrected estimator.

S-36



Corollary 7 Suppose the conditions in Corollary 7 hold. Then, uniformly over T ,

(nbn,τ )
1/2
(
Q̂(τ |x+, z)− Q̂(τ |x−, z)− (B̂v(x

+, z, τ)− B̂v(x
−, z, τ))b2

n,τ −
(
Q(τ |x+, z)−Q(τ |x+, z)

))
= D1,v

(
x+, z, τ

)
−D1,v

(
x−, z, τ

)
−
(
D2,v

(
x+, z, τ

)
−D2,v

(
x−, z, τ

))
+ op (1) .

where D1,v (x+, z, τ) and D1,v (x−, z, τ) are as in Corollary 6, and

D2,v

(
x+, z, τ

)
= {(b5

n,τ/r
5
n,τ )

1/2e′zMv(x
+, τ)−1Lv(x

+, τ)}e′3M̃v(x
+, τ)−1

×(nrn,τ )
−1/2

∑n
j=1{τ − 1(u0

j(τ) ≤ 0)}djW̃j(x, rn,τ )K ((xj − x)/rn,τ ) ,

D2,v

(
x−, z, τ

)
= {(b5

n,τ/r
5
n,τ )

1/2e′zMv(x
−, τ)−1Ll,v(x

−, τ)}e′3M̃v(x
−, τ)−1

×(nrn,τ )
−1/2

∑n
j=1{τ − 1(u0

j(τ) ≤ 0)}(1− dj)W̃j(x, rn,τ )K ((xj − x)/rn,τ ) .

The simulation of D1,v (x+, z, τ) − D1,v (x−, z, τ) is the same as in the no bias correction

case. For D2,v (x+, z, τ), we generate independent copies of

(b5
n,τ/r

5
n,τ )

1/2e′z[(nbn,τ )
−1
∑n

j=1 dj f̂
(
τ |x+, zj

)
W̄j(x, bn,τ )W̄j(x, bn,τ )

′K((xj − x)/bn,τ )]
−1

×{(nbn,τ )−1
∑n

j=1 dj f̂
(
τ |x+, zj

)
W̄j(x, bn,τ )((xj − x)/bn,τ )

2K((xj − x)/bn,τ )}

×e′3
{

(nrn,τ )
−1
∑n

j=1 dj f̂
(
τ |x+, zj

)
W̃j(x, rn,τ )W̃j(x, rn,τ )

′K((xj − x)/rn,τ )
}−1

×(nrn,τ )
−1/2

∑n
j=1 {τ − 1 (uj − τ ≤ 0)} djW̃j(x, rn,τ )K((xj − x)/rn,τ ).

For D2,v (x−, z, τ), we generate independent copies of

(b5
n,τ/r

5
n,τ )

1/2e′z[(nbn,τ )
−1
∑n

j=1(1− dj)f̂
(
τ |x−, zj

)
W̄j(x, bn,τ )W̄j(x, bn,τ )

′K((xj − x)/bn,τ )]
−1

×{(nbn,τ )−1
∑n

j=1(1− dj)f̂
(
τ |x−, zj

)
W̄j(x, bn,τ )((xj − x)/bn,τ )

2K((xj − x)/bn,τ )}

×e′3
{

(nrn,τ )
−1
∑n

j=1(1− dj)f̂
(
τ |x−, zj

)
W̃j(x, rn,τ )W̃j(x, rn,τ )

′K((xj − x)/rn,τ )
}−1

×(nrn,τ )
−1/2

∑n
j=1 {τ − 1 (uj − τ ≤ 0)} (1− dj)W̃j(x, rn,τ )K((xj − x)/rn,τ ).

In summary, we have the following procedure to construct a robust confidence band forQ(τ |x+, z)−
Q(τ |x−, z):
PROC-A-RD: First, simulate (D1,v (x+, z, τ)−D1,v (x−, z, τ)) and (D2,v (x+, z, τ)−D2,v (x−, z, τ))

as explained above for N times, keeping {xi, zi}ni=1 fixed, and save the values as G
(j)
1 (τ) and

G
(j)
2 (τ) (j = 1, ..., N). Compute ŝ(τ)2 = N−1

∑N
i=1(G

(j)
1 (τ) − G

(j)
2 (τ))2. Next, compute

supτ∈T |(G
(j)
1 (τ) − G

(j)
2 (τ))/ŝ(τ)| for j = 1, ..., N , with Ĉp denoting the p-th percentile of

this distribution. Finally, compute σ̂n,τ = (nbdn,τ )
−1/2ŝ(τ) and (12), and obtain the band as

[Q̂(τ |x+, z)− Q̂(τ |x−, z)− (B̂v(x
+, z, τ)− B̂v(x

−, z, τ))b2
n,τ − σ̂n,τ Ĉp, Q̂(τ |x+, z)− Q̂(τ |x−, z)−

(B̂v(x
+, z, τ)− B̂v(x

−, z, τ))b2
n,τ + σ̂n,τ Ĉp] for τ ∈ T .

Similarly, we can obtain a robust confidence band by resampling the subgradient condition;

the details are omitted.
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S.4 Simulations

We examine three issues: (i) the performance of the bandwidth selection rules, (ii) the MSEs

of Q̂(τ |x, z) and the bias-corrected estimator, and (iii) the coverage properties of the uniform
confidence bands. We first report results for the GPL model, followed by the LPL model,

which mimics the RD design with a single x and various numbers of covariates z. The relevant

estimation and inference procedures for them are described in Sections 4 and 3, respectively.

S.4.1 Results for the GPL model

We consider two data generating processes with

Q(τ |x, z) = g(x1, x2, τ) + β1(τ)z1 + β2(τ)z2,

where β1(τ) = τ , β2(τ) = (0.2 + τ)1/2, and the two specifications for g(x1, x2, τ) given by:

Model 1 : g(x1, x2, τ) = (0.5 + 2x1 + sin(2πx1 − 0.5)) + x2Qe1(τ),

Model 2 : g(x1, x2, τ) = log(x1x2) + (1 + exp (−x1Qe1(τ)− x2Qe2(τ)))−1 + x2Qe1(τ).

Model 1 is nonlinear in location only, while Model 2 is a more general nonlinear model. The

covariates x1, x2, z1, z2 are i.i.d. U(0, 1) with Corr(x1, z1) = Corr(x2, z2) = 0.3 and (x1, z1)

independent of (x2, z2). The error terms e1 and e2 are i.i.d. N(0, 1) and U(0, 1), respectively.

For estimation, we consider x = (0.5, 0.5), (0.5, 0.75), and (0.9, 0.9), while z is fixed at (0.5, 0.5).

Between the three values for x, (0.9, 0.9) should be viewed as a boundary point because the

resulting bandwidths are greater than 0.1. T is set to [0.2, 0.8], and n = 500, 1000. The kernel

function is the product of univariate Epanechnikov kernels. Local quadratic regressions are

used in the first step of the estimation procedure. All results are based on 1000 replications.

Bandwidth selection. The MSE-optimal bandwidth in Corollary 4 is estimated in three steps
(more details are given below after discussing the results). Step A:Obtain a pilot bandwidth for
the median using leave-one-out cross validation, denoted by hcv. Step B: Construct the MSE-
optimal bandwidth for the median by applying hcv to compute the relevant quantities in Corol-

lary 4. In particular, ∂2g(x, τ)/∂x∂x′ is computed using the output from the local quadratic

regressions. The numerator and denominator of [E(f(0.5|X,Z)|X = x)f (x)]2 /f (x) are es-

timated by [(nhdcv)
−1
∑n

j=1 f̂ (0.5|x, zj)K ((xj − x)/hcv)]
2 and (nhdcv)

−1
∑n

j=1K ((xj − x)/hcv),

respectively. Denote the resulting MSE-optimal bandwidth for the median by hopt. Step C:
Construct an approximation to the MSE-optimal bandwidth using h∗n,0.5 = hopt and the formula

in Yu and Jones (1998):

(h∗n,τ/h
∗
n,0.5)4+d = 2τ (1− τ) /[πφ(Φ−1(τ))2] for τ ∈ T , (S.66)

where φ and Φ are the standard normal density and cumulative distribution functions.
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Table B1 reports summary statistics for the selected bandwidths. The procedures per-

form well in capturing the curvatures of Q(τ |x, z). The selected bandwidth for Model 2

tends to be larger than that for Model 1 (compared at the same evaluation point), consis-

tent with the curvature of Model 1 being generally higher than for Model 2 when measured

by tr (∂2Q(τ |x, z)/∂x∂x′)2. This feature is also observed within each model. For example, in

Model 1, the curvatures at (0.5, 0.5) and (0.5, 0.75) are the same and the bandwidths selected

are comparable; while in Model 2, the curvature at (0.5, 0.5) is higher than at (0.5, 0.75), and

the selected bandwidths at the latter point are larger. Finally, the cross validation method

tends to produce larger bandwidths than obtained from Corollary 4, which is expected since

hcv is obtained for a local quadratic regression, while hopt is optimal for a local linear regression.

Finite sample properties of the estimators. We examine the bias and RMSE of Q̂(τ |x, z)
and Q̂(τ |x, z) − B̂(x, τ)b2

n,τ and their sensitivity to the bandwidth used. We consider two

bandwidth options for Step 1 of the estimation procedure: 1) hn = hcv, 2) hn = hopt. When

reporting results, we label them Bandwidth Option 1 and Bandwidth Option 2, respectively.

In each case, we use bn,τ in Step 2, obtained by letting bn,0.5 = hopt and by relating bn,τ to

bn,0.5 using (S.66). For bias correction, we use rn,τ = bn,τ throughout. Table B2 reports

the bias and RMSE of Q̂(τ |x, z) and Q̂(τ |x, z) − b2
n,τ B̂(x, τ) for n = 500. The estimator

Q̂(τ |x, z) is often substantially biased, while its RMSE is comparable to or lower than that of
Q̂(τ |x, z) − b2

n,τ B̂(x, τ). Between the two bandwidth options, the bias and RMSE are similar,

which is encouraging since it suggests that the proposed estimator is robust to the bandwidth

values. A larger bandwidth, mostly hcv, sometimes produces a smaller RMSE, however the

difference is small and of no practical importance. The results with n = 1000 are similar and

thus omitted.

The uniform confidence bands. We now examine two issues: (i) whether the confidence
bands with bias estimation (i.e., the robust bands) show meaningful improvement over several

conventional methods; (ii) and if so, whether it comes at the cost of substantially wider bands.

Because the results are similar, we only report those under Bandwidth Option 1.

Table B3 shows the coverage rates of several uniform bands at nominal levels p = 0.90

and 0.95 for n = 500. We start with the robust bands ‘Asy R’ (based on the asymptotic

approximation) and ‘Res R’(based on resampling) proposed in the paper. The coverage rates

of ‘Asy R’are overall close to the nominal level, although some undercoverage occurs when x

is close to the boundary, mostly due to the small samples size; e.g., when x = (0.9, 0.9) and the

bandwidth is 0.615, only 310 observations are available to estimate the quantile process and

the nuisance parameters. The coverage rates of ‘Res R’are higher than ‘Asy R’. Some slight

overcoverage occurs when x = (0.9, 0.9). The other three confidence bands considered perform

less well. ‘Asy’and ‘Res’estimate the bias but do not account for estimation uncertainty; they

exhibit significant undercoverage in all cases. ‘Asy 2’and ‘Res 2’are conventional bands that
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ignore the bias and show undercoverage in most cases. ‘Asy M’is a modified band proposed

in Qu and Yoon (2015). It allows the bias to affect the confidence bands, but in an ad-hoc

manner. ‘Res M’applies the same idea to the resampling-based band. These two bands have

adequate coverage rates in Model 2 but less so in Model 1. In Table B4, the length of the

robust bands is compared to that of conventional ones. The length of the former is greater by

a factor of 22% to 81%, and the difference is larger when a conventional band is shorter and

vice versa. Overall, the robust bands can be informative while having reliable coverage.

Table B5 displays the coverage rates of the uniform bands for n = 1000. The performance of

the robust bands improves relative to n = 500. The resampling-based bands continue to have

higher coverage rates than when using the asymptotic approximation. The conventional bands

remain inadequate. Table B6 shows that the lengths of the robust and conventional bands differ

by a factor of 19% to 81%. Between the two robust bands, the resampling-based band is still

wider, though the difference is smaller than when n = 500.

S.4.1.1 Additional details on bandwidth selection

This subsection presents additional details for estimating the MSE-optimal bandwidth in Corol-

lary 4.

Details on Step A: Obtain a pilot bandwidth for the median using cross-validation as fol-
lows: (i) for a given candidate bandwidth, estimate the conditional median at (xi, zi) by a local

quadratic regression leaving out (yi, xi, zi). The goodness of fit is measured by the difference be-

tween yi and the estimated conditional median; (ii) repeat the estimation and compute the mean

absolute deviation over 50% of the observations closest to x; (iii) the cross-validation bandwidth

minimizes this mean absolute deviation, denoted by hcv. The cross validation method requires a

set of candidate bandwidth values. Given that the covariates x1 and x2 in Models 1 and 2 have

support [0, 1], we consider an evenly spaced grid over [0.25, 1.0]. We find that values smaller

than 0.25 are problematic because the resulting number of observations within the bandwidth

can be too small. Note that when the bandwidth is equal to 1.0, the entire sample is used in

the estimation.

Details on Step B: In Step B, the MSE-optimal bandwidth for the median is computed using
the expression in Corollary 4:

h∗n,0.5 =

(
0.5 (1− 0.5) d

∫
K (u)2 du

f (x) {E[f(0.5|X,Z)|X = x] tr((∂2g(x, 0.5)/∂x∂x′)
∫
uu′K(u)du)}2

)1/(4+d)

n−1/(4+d).

(S.67)

To estimate the quantities in this expression, note that

E[f(0.5|X,Z)|X = x]2f (x) = [E[f (0.5|X,Z)|X = x] f (x)]2 /f (x) .
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We estimate the numerator and the denominator by [(nhdcv)
−1
∑n

j=1 f̂ (0.5|x, zj)K((xj−x)/hcv)]
2

and (nhdcv)
−1
∑n

j=1K((xj −x)/hcv), respectively. To estimate f (0.5|x, zj), we use the following
conditional density estimator (see Koenker, 2005 for more details)

f̂ (τ |x, zj) = 2δn,τ/[Q̂ (τ + δn,τ |x, zj)− Q̂ (τ − δn,τ |x, zj)], (S.68)

where δn,τ is another bandwidth parameter selected using Bofinger’s (1975) rule, based on min-

imizing the mean squared error of the density estimator. Using Gaussian plug-in, we obtain the

following bandwidth widely used in practice δn,τ = n−1/5[4.5φ4(Φ−1(τ))/(2Φ−1(τ))2 + 1)2]1/5.

The R function bandwidth.rq() in the quantreg package conveniently implements this. Be-

cause the denominator in (S.68) can be zero in some cases, we follow Koenker (2005) to compute

f̂ (τ |x, zj) = max{0, 2δn,τ/[Q̂ (τ + δn,τ |x, zj)− Q̂ (τ − δn,τ |x, zj)− ε]},

where ε is a small number. In our simulations and applications, we set ε = 0.01. Finally,

∂2g(x, 0.5)/∂x∂x′ is estimated from the local quadratic regression used in Step A with band-

width hcv. The quantity
∫
uu′K(u)du is computed numerically.

Details on Step C: To compute the optimal bandwidth in Corollary 4, the main challenge is
in estimating ∂2g(x, τ)/∂x∂x′, especially for τ near the tails of the distribution. We apply an

approximation introduced by Yu and Jones (1998), also implemented in Qu and Yoon (2015),

assuming that ∂2g(x, τ)/∂x∂x′ is constant over T . Then, the optimal bandwidth at τ and the
median are related to each other via

(h∗n,τ/h
∗
n,0.5)4+d = 4τ (1− τ) (E[f(0.5|X,Z)|X = x]/E[f(τ |X,Z)|X = x])2,

which, as shown by Yu and Jones (1998), if the underlying conditional distribution is Gaussian,

simplifies to

(h∗n,τ/h
∗
n,0.5)4+d = [2τ (1− τ) /(πφ(Φ−1(τ))2)], (S.69)

where φ and Φ are the density and the CDF of a N(0, 1) random variables. This procedure

delivers a sequence of bandwidths that are Lipschitz continuous with respect to τ .

S.4.2 Results for the LPL model

We consider a model that mimics the RD design with a single x and various numbers of

covariates z. The aim is to explore the performance under four scenarios: (i) when the evaluation

point is on the boundary, (ii) when the object of interest is the QTE in the RD design, (iii)

when the estimator for the LPL model is used, and (iv) when the dimension of zi increases.

Because the DGP is partially linear over the entire data support, we also report the results

corresponding to estimating the GPL model for comparison purposes.
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Let the conditional quantile function be given by Q(τ |x, z) = g(x, τ) +
∑q

j=1 βj(τ)zj and

consider

Model 3 : g(x, τ) = 0.5 + x+ x2 + sin(πx− 1) + (x+ 1.25)Qe(τ).

The covariate x is drawn from a U(−1, 1) distribution. For the linear part, the covariates

z1, . . . , zq are independently drawn from U(0, 1) distributions; βj(τ) = 0.8 when j is odd and

−0.2 when j is even. There is no correlation between x and zj and e ∼ N(0, 1). The value

x = 0 is used as a cutoff point to generate a sharp RD design. The observations on the left

(right) side of x = 0 are used to estimate Q(τ |0−, z) (Q(τ |0+, z)), and the QTE at x = 0 is

defined as Q(τ |0+, z)−Q(τ |0−, z). In addition to this boundary point, we consider two interior
points x = −0.5 and −0.3. The evaluation point for z is fixed at zj = 0.6 for all j = 1, . . . , q.

The quantile range is T = [0.2, 0.8]. The sample size n denotes the number of observations on

the left of x = 0. We report results with n = 1000, based on 500 simulations. The bandwidth

option 1 (see the previous subsection for its definition) is used throughout the analysis.

The selected bandwidths are reported in Table B.7. As before, the cross-validation band-

width hcv tends to be bigger than the MSE-optimal bandwidth hopt, and the selected value tends

to get larger as the evaluation point moves toward the boundary. As the number of covariates

z increases, the bandwidth tends to get slightly bigger.

The bias and root mean squared errors of the conditional quantile process estimators are

reported in Table B.8. Between the estimators with and without bias correction, the former has

substantially smaller bias, while the relative RMSE depends on the value of x. For an interior

point, x = −0.5 or −0.3, the RMSE decreases with the bias correction; for the boundary point,

x = 0.0−, the RMSE increases. Between the two estimation procedures (i.e., the procedure in
Section 3 for the LPL model and that in Section 4 for GPL model), their biases are similar,

while the RMSE of the latter is smaller. The size of the RMSE improvement is modest, and

the difference in the q = 6 case is more noticeable.

The coverage rates of the uniform confidence bands are reported in Table B.9. Consider

the q = 2 case first. The coverage rates of the robust band ‘Asy R’are overall close to the

nominal level, except when estimating the QTE at x = 0, for which it has under-coverage.

The resampling based robust band ‘Res R’also shows adequate coverage overall, except that

it shows over-coverage when x = 0− and when estimating the QTE. When q increases to 6,

the size distortion increases, with the maximum size distortion reaching 0.068 for ‘Asy R’and

0.072 for ‘Res R’, both occurring when estimating the QTE using the estimation procedure

in Section 3. To investigate whether this distortion is a small sample problem, we repeat the

analysis by doubling the sample size (the table is omitted to save space). We find that the

coverage rate in the above two worst cases improves and the coverage rates change from 0.832

to 0.898 for ‘Asy R’and from 0.972 to 0.943 for ‘Res R’. The converge rates in the remaining

cases are either similar or improved. Finally, the non-robust bands, ‘Asy’, ‘Res’, ‘Asy 2’, and
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‘Res 2’ are inadequate as documented in Section S.4.1: they have severe under-coverage in

almost all cases. The robust bands, ‘Asy M’and ‘Res M’, perform better than them, but still

show under-coverage in some cases, for example, at x = −0.3.

The lengths of the robust and non-robust bands are compared in Table B.10 (for q = 2)

and B.11 (for q = 6). The robust band ‘Asy R’is wider than its non-robust counterpart ‘Asy’

by 27% to 48%, while ‘Res R’is wider than ‘Res’by 19% to 49%. When using the estimation

procedure for the GPL model in Section 4, the lengths of the bands are not or little affected

by the number of covariates z, while under the estimation procedure in Section 3, the bands

become noticeably wider as q increases from 2 to 6. Overall, the findings support the conclusion

that robust bands have reliable coverage properties and they can be informative in applications.

S.5 Robustness check

This section explores whether the QTE estimates and their uniform bands in our application

are robust to robust correction and alternative bandwidth values.

Figures B.4-B.12 report the point estimates and uniform confidence bands without bias

correction using the cross validation bandwidth in Table 2. The results are robust.

The cross validation method used so far tends to select large bandwidth values allowing

more precise estimation at the cost of a possible non-trivial bias when not accounted for. To

examine the effect of a smaller bandwidth, in Figures B.13-B.21 we report results using the

MSE-optimal bandwidth values (hopt) in Table 2.

Figure B.13 shows results without covariates; the full sample bias corrected QTE estimates

and their robust 90% uniform confidence bands. In Panel (a), the outcome variable is the un-

employment duration. The estimated effects at quantile levels τ = 0.1, 0.5, 0.9 are 0.00, −0.11,

and 14.91 days, respectively, with the corresponding uniform bands (−0.57, 0.57), (−1.18, 0.97),

(7.60, 22.23). The point estimates and confidence bands are very close to those reported in Fig-

ure 1. Consistent with findings there, the estimated effect is small and insignificant mostly, but

it is large and significant in the right tail.

In Panel (b), the outcome variable is the wage change. The size of the effect is 1.44 percent

at τ = 0.1 with uniform band (0.00, 2.88). The point estimate is close to that in Figure 1, while

the uniform band is somewhat wider. The increase in variability is due to the difference in

bandwidth values; a smaller bandwidth hopt = 5.6 here as opposed to hcv = 10.0 in the previous

analysis. As discussed before, the effect is strong at the left tail but small and insignificant at

other parts of the distribution.

In Panel (c), the outcome variable is the log reemployment wage. The shape of the QTE for

the reemployment wage is again close to that of Panel (b). The size of the effect is 1.91 percent

at τ = 0.1 with uniform band (−0.09, 3.90), with the same implication as in the main text.
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Figure B.14—B.21 show corresponding results while including covariates in estimation. They

are comparable to Figures 2-6 and B.1-B.3. The point estimates and uniform confidence bands

without bias correction while using the bandwidth hopt are also close to those in Figures B.4—

B.12. They are not reported here to avoid repetition.
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Table B.1: Summary Statistics for the Selected Bandwidths

n=500 n=1000

hcv hopt hcv hopt

Model 1

x = (0.50, 0.50) 0.422 0.288 0.394 0.259

(0.083) (0.059) (0.067) (0.040)

x = (0.50, 0.75) 0.469 0.335 0.429 0.287

(0.115) (0.078) (0.084) (0.060)

x = (0.90, 0.90) 0.508 0.615 0.445 0.561

(0.170) (0.222) (0.119) (0.215)

Model 2

x = (0.50, 0.50) 0.529 0.315 0.469 0.276

(0.165) (0.083) (0.118) (0.074)

x = (0.50, 0.75) 0.649 0.428 0.563 0.366

(0.219) (0.107) (0.181) (0.100)

x = (0.90, 0.90) 0.693 0.647 0.637 0.616

(0.236) (0.196) (0.225) (0.194)

Averages and standard deviations (in parentheses) of the selected bandwidths
based on 1000 simulations. hcv is the cross validation bandwidth and hopt is
the MSE optimal bandwidth, both at the median.



Table B.2: Root Mean Squared Error and Bias of the Conditional Quantile Estimates, n = 500

Without bias correction With bias correction

RMSE Bias RMSE Bias

Q̂(0.2) Q̂(0.5) Q̂(0.8) Q̂(0.2) Q̂(0.5) Q̂(0.8) Q̂(0.2) Q̂(0.5) Q̂(0.8) Q̂(0.2) Q̂(0.5) Q̂(0.8)

I. Bandwidth Option 1

Model 1

x = (0.50, 0.50) 0.189 0.169 0.174 -0.147 -0.125 -0.138 0.170 0.166 0.169 0.009 0.011 -0.009

x = (0.50, 0.75) 0.244 0.218 0.222 -0.193 -0.164 -0.170 0.210 0.207 0.220 0.008 0.009 -0.006

x = (0.90, 0.90) 0.270 0.234 0.231 0.005 -0.001 -0.008 0.310 0.286 0.301 -0.013 -0.005 0.007

Model 2

x = (0.50, 0.50) 0.164 0.150 0.156 -0.087 -0.082 -0.097 0.198 0.190 0.189 0.046 0.028 0.025

x = (0.50, 0.75) 0.185 0.175 0.180 -0.115 -0.105 -0.126 0.211 0.215 0.203 0.060 0.044 0.029

x = (0.90, 0.90) 0.350 0.328 0.306 0.127 0.078 0.078 0.355 0.358 0.330 0.004 -0.004 -0.021

II. Bandwidth Option 2

Model 1

x = (0.50, 0.50) 0.190 0.170 0.173 -0.147 -0.125 -0.136 0.171 0.167 0.170 0.009 0.012 -0.007

x = (0.50, 0.75) 0.244 0.218 0.222 -0.193 -0.164 -0.170 0.211 0.208 0.220 0.009 0.010 -0.006

x = (0.90, 0.90) 0.269 0.234 0.232 0.003 -0.002 -0.006 0.310 0.286 0.301 -0.016 -0.006 0.007

Model 2

x = (0.50, 0.50) 0.165 0.150 0.158 -0.090 -0.083 -0.098 0.198 0.190 0.193 0.042 0.026 0.022

x = (0.50, 0.75) 0.185 0.175 0.181 -0.115 -0.105 -0.127 0.212 0.215 0.204 0.059 0.042 0.026

x = (0.90, 0.90) 0.349 0.327 0.306 0.129 0.080 0.080 0.354 0.356 0.329 0.006 -0.002 -0.019

Root Mean Squared Errors (RMSE) and Biases (Bias) of conditional quantile estimates, based on 1000 simulations. z = (0.5, 0.5). Under
‘Without bias correction’, Q̂(τ) stands for Q̂(τ |x, z), while under ‘With bias correction’, for Q̂(τ |x, z)− b2n,τ B̂(x, τ).



Table B.3: Coverage Rates of Uniform Confidence Bands, n = 500, Bandwidth Option 1

Asy Asy 2 Asy M Asy R Res Res 2 Res M Res R

I. p = 0.90

Model 1

x = (0.50, 0.50) 0.432 0.478 0.718 0.909 0.584 0.614 0.788 0.951

x = (0.50, 0.75) 0.448 0.472 0.716 0.905 0.613 0.587 0.794 0.932

x = (0.90, 0.90) 0.724 0.850 0.878 0.868 0.801 0.915 0.930 0.936

Model 2

x = (0.50, 0.50) 0.408 0.677 0.831 0.925 0.584 0.789 0.897 0.939

x = (0.50, 0.75) 0.498 0.628 0.866 0.909 0.638 0.718 0.905 0.909

x = (0.90, 0.90) 0.722 0.731 0.851 0.877 0.774 0.779 0.881 0.917

II. p = 0.95

Model 1

x = (0.50, 0.50) 0.535 0.571 0.787 0.948 0.692 0.710 0.852 0.978

x = (0.50, 0.75) 0.553 0.560 0.776 0.946 0.719 0.704 0.865 0.970

x = (0.90, 0.90) 0.792 0.900 0.922 0.914 0.873 0.959 0.968 0.972

Model 2

x = (0.50, 0.50) 0.515 0.770 0.887 0.960 0.703 0.852 0.944 0.973

x = (0.50, 0.75) 0.592 0.714 0.903 0.948 0.738 0.801 0.938 0.954

x = (0.90, 0.90) 0.803 0.800 0.905 0.924 0.861 0.836 0.928 0.962

Coverage probabilities of level-p uniform confidence bands based on 1000 simulations.
The sample size is 500 and the quantile range is T = [0.2, 0.8]. In all specifications,
z = (0.5, 0.5). ‘Asy’ refers to a bias corrected conventional band using the asymptotic
approximation, ‘Asy 2’ refers to the same band ignoring the bias, ‘Asy M’ refers to the
modified band proposed in Qu and Yoon (2015), and ‘Asy R’ refers to the robust band
with bias estimation. ‘Res’ stands for bands based on resampling, with the same labelling
convention applied. The recommended methods are ‘Asy R’ and ‘Res R’.



Table B.4: Length of 90% Uniform Confidence Bands, n = 500, Bandwidth Option 1

Asy Asy M Asy R Res Res M Res R

τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2

Model 1

(0.50, 0.50) 0.460 0.501 0.602 0.665 0.833 0.908 0.548 0.586 0.690 0.750 0.963 1.060

(0.079) (0.111) (0.135) (0.167) (0.148) (0.205) (0.127) (0.155) (0.173) (0.200) (0.228) (0.298)

(0.50, 0.75) 0.566 0.634 0.747 0.845 1.009 1.125 0.668 0.737 0.849 0.947 1.140 1.262

(0.097) (0.127) (0.168) (0.194) (0.197) (0.255) (0.159) (0.184) (0.218) (0.233) (0.291) (0.365)

(0.90, 0.90) 1.091 1.169 1.212 1.297 1.359 1.460 1.241 1.404 1.363 1.533 1.525 1.759

(0.314) (0.479) (0.351) (0.495) (0.363) (0.544) (0.445) (0.586) (0.480) (0.601) (0.463) (0.605)

Model 2

(0.50, 0.50) 0.516 0.545 0.653 0.703 0.939 0.991 0.609 0.648 0.746 0.806 1.087 1.154

(0.096) (0.127) (0.140) (0.188) (0.180) (0.240) (0.150) (0.187) (0.183) (0.227) (0.281) (0.362)

(0.50, 0.75) 0.567 0.617 0.741 0.810 0.963 1.036 0.666 0.725 0.841 0.918 1.042 1.120

(0.099) (0.124) (0.160) (0.178) (0.217) (0.262) (0.163) (0.189) (0.215) (0.226) (0.303) (0.371)

(0.90, 0.90) 1.284 1.315 1.432 1.498 1.625 1.674 1.422 1.476 1.570 1.659 1.777 1.926

(0.338) (0.468) (0.351) (0.464) (0.397) (0.551) (0.498) (0.545) (0.509) (0.537) (0.544) (0.651)

Averages and standard deviations (in parentheses) of the length of 90% uniform bands, based on 1000 simulations.
The method ‘Asy 2’ has the same length as ‘Asy’, so is omitted. The same applies to ‘Res 2’. The notes to Table B.3
apply. The recommended methods are ‘Asy R’ and ‘Res R’.



Table B.5: Coverage Rates of Uniform Confidence Bands, n = 1000, Bandwidth Option 1

Asy Asy 2 Asy M Asy R Res Res 2 Res M Res R

I. p = 0.90

Model 1

x = (0.50, 0.50) 0.438 0.427 0.694 0.895 0.544 0.557 0.755 0.932

x = (0.50, 0.75) 0.418 0.476 0.705 0.917 0.543 0.573 0.755 0.936

x = (0.90, 0.90) 0.742 0.849 0.894 0.887 0.787 0.882 0.916 0.910

Model 2

x = (0.50, 0.50) 0.415 0.735 0.826 0.907 0.552 0.797 0.877 0.927

x = (0.50, 0.75) 0.438 0.668 0.838 0.911 0.554 0.736 0.879 0.916

x = (0.90, 0.90) 0.733 0.725 0.857 0.877 0.756 0.725 0.859 0.891

II. p = 0.95

Model 1

x = (0.50, 0.50) 0.509 0.536 0.744 0.944 0.652 0.666 0.824 0.963

x = (0.50, 0.75) 0.549 0.588 0.771 0.964 0.667 0.675 0.824 0.972

x = (0.90, 0.90) 0.827 0.902 0.937 0.933 0.865 0.941 0.964 0.958

Model 2

x = (0.50, 0.50) 0.526 0.801 0.884 0.953 0.667 0.860 0.926 0.964

x = (0.50, 0.75) 0.545 0.765 0.895 0.946 0.677 0.821 0.931 0.946

x = (0.90, 0.90) 0.820 0.777 0.907 0.920 0.846 0.797 0.925 0.939

Coverage probabilities of level-p uniform confidence bands based on 1000 simulations.
The sample size is 1000. See Table B3 for the definitions of the various bands. The
recommended methods are ‘Asy R’ and ‘Res R’.



Table B.6: Length of 90% Uniform Confidence Bands, n = 1000, Bandwidth Option 1

Asy Asy M Asy R Res Res M Res R

τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2

Model 1

(0.50, 0.50) 0.356 0.380 0.475 0.512 0.646 0.691 0.413 0.430 0.533 0.562 0.729 0.762

(0.049) (0.061) (0.099) (0.113) (0.092) (0.116) (0.080) (0.092) (0.122) (0.131) (0.145) (0.167)

(0.50, 0.75) 0.441 0.487 0.580 0.645 0.795 0.879 0.501 0.547 0.640 0.705 0.885 0.957

(0.059) (0.081) (0.113) (0.136) (0.115) (0.155) (0.096) (0.116) (0.141) (0.160) (0.180) (0.213)

(0.90, 0.90) 0.818 0.895 0.918 0.996 0.997 1.094 0.934 1.038 1.034 1.138 1.113 1.251

(0.200) (0.290) (0.224) (0.292) (0.209) (0.310) (0.324) (0.389) (0.346) (0.394) (0.311) (0.379)

Model 2

(0.50, 0.50) 0.411 0.431 0.514 0.545 0.746 0.782 0.473 0.492 0.576 0.607 0.837 0.870

(0.068) (0.080) (0.110) (0.130) (0.127) (0.149) (0.106) (0.117) (0.138) (0.152) (0.192) (0.219)

(0.50, 0.75) 0.436 0.476 0.561 0.610 0.769 0.834 0.501 0.538 0.626 0.672 0.835 0.888

(0.063) (0.079) (0.109) (0.127) (0.138) (0.167) (0.103) (0.118) (0.140) (0.152) (0.205) (0.238)

(0.90, 0.90) 0.928 0.966 1.050 1.107 1.151 1.204 1.012 1.057 1.134 1.198 1.233 1.332

(0.218) (0.299) (0.217) (0.280) (0.228) (0.325) (0.328) (0.377) (0.326) (0.359) (0.342) (0.401)

Averages and standard deviations (in parentheses) of the length of 90% uniform bands, based on 1000 simulations.
The method ‘Asy 2’ has the same length as ‘Asy’, so is omitted. The same applies to ‘Res 2’. The notes to Table B.3
apply. The recommended methods are ‘Asy R’ and ‘Res R’.



Table B.7: Summary Statistics for the selected Bandwidth. Model 3.

hcv hopt

#{z}=2

x = −0.5 0.542 0.269

(0.218) (0.059)

x = −0.3 0.598 0.312

(0.239) (0.083)

x = 0.0− 0.661 0.309

(0.249) (0.086)

#{z}=6

x = −0.5 0.595 0.271

(0.234) (0.038)

x = −0.3 0.666 0.333

(0.236) (0.090)

x = 0.0− 0.713 0.314

(0.241) (0.087)

Averages and standard deviations (in parentheses) of the selected bandwidths
based on 500 simulations. hcv is the cross validation bandwidth and hopt is the
MSE optimal bandwidth, both at the median. The sample size n = 1000. In
the first half of the table, q = 2 where q is the number of covariates z, while
in the second half, q = 6.



Table B.8: Root Mean Squared Error and Bias of the Conditional Quantile Estimates Q̂(τ). Model 3.

Without bias correction With bias correction

RMSE Bias RMSE Bias

Q̂(0.2) Q̂(0.5) Q̂(0.8) Q̂(0.2) Q̂(0.5) Q̂(0.8) Q̂(0.2) Q̂(0.5) Q̂(0.8) Q̂(0.2) Q̂(0.5) Q̂(0.8)

I. #{z} = 2

Procedure One

x = −0.5 0.077 0.073 0.082 0.053 0.049 0.055 0.072 0.067 0.071 -0.002 -0.002 -0.001

x = −0.3 0.126 0.120 0.132 0.103 0.094 0.107 0.087 0.083 0.090 0.004 -0.001 0.006

x = 0.0− 0.219 0.192 0.222 -0.065 -0.051 -0.069 0.274 0.244 0.288 0.000 0.010 0.010

QTE 0.320 0.302 0.336 0.024 0.021 0.036 0.453 0.426 0.481 -0.008 0.002 -0.004

Procedure Two

x = −0.5 0.079 0.074 0.081 0.052 0.048 0.054 0.075 0.070 0.073 -0.002 -0.003 -0.004

x = −0.3 0.128 0.123 0.134 0.103 0.094 0.107 0.090 0.087 0.093 0.003 -0.001 0.004

x = 0.0− 0.224 0.194 0.233 -0.057 -0.053 -0.075 0.280 0.247 0.300 0.008 0.007 0.005

QTE 0.328 0.310 0.347 0.023 0.019 0.027 0.468 0.435 0.499 -0.006 0.004 0.000

II. #{z} = 6

Procedure One

x = −0.5 0.085 0.077 0.084 0.057 0.054 0.059 0.079 0.069 0.072 0.003 0.004 0.003

x = −0.3 0.132 0.125 0.139 0.106 0.101 0.112 0.091 0.080 0.091 -0.002 0.000 0.004

x = 0.0− 0.233 0.212 0.226 -0.073 -0.072 -0.070 0.289 0.273 0.290 0.007 -0.003 0.014

QTE 0.336 0.277 0.284 0.049 0.048 0.045 0.467 0.397 0.418 0.020 0.032 0.024

Procedure Two

x = −0.5 0.091 0.082 0.091 0.055 0.053 0.061 0.087 0.077 0.081 0.003 0.002 0.000

x = −0.3 0.140 0.131 0.147 0.106 0.100 0.112 0.104 0.088 0.102 -0.002 -0.002 0.000

x = 0.0− 0.251 0.222 0.238 -0.056 -0.066 -0.080 0.316 0.290 0.294 0.025 0.000 0.011

QTE 0.351 0.313 0.319 0.045 0.047 0.044 0.493 0.448 0.461 0.015 0.038 0.023

Root Mean Squared Errors (RMSE) and Biases (Bias) of the conditional quantile process estimates. ‘Procedure One’ and ‘Procedure Two’ refer
to the estimation procedures for the GPL and LPL models, respectively. Under ‘Without bias correction’, Q̂(τ) stands for Q̂(τ |x, z). Under
‘With bias correction’, Q̂(τ) stands for Q̂(τ |x, z)− b2n,τ B̂(x, τ) when Procedure One is used in estimation and for Q̂(τ |x, z)− b2n,τ B̂l(x, z, τ) when
Procedure Two is used. #{z} denotes the dimension of covariates z, with z = (0.6, . . . , 0.6).



Table B.9: Coverage Rates of Uniform Confidence Bands. Model 3.

Asy Asy 2 Asy M Asy R Res Res 2 Res M Res R

I. #{z} = 2

Procedure One

x = −0.5 0.594 0.650 0.810 0.906 0.646 0.678 0.816 0.890

x = −0.3 0.604 0.446 0.784 0.906 0.630 0.452 0.780 0.892

x = 0.0− 0.676 0.874 0.906 0.914 0.774 0.904 0.932 0.940

QTE 0.538 0.852 0.886 0.882 0.662 0.886 0.914 0.940

Procedure Two

x = −0.5 0.682 0.726 0.858 0.912 0.750 0.770 0.870 0.912

x = −0.3 0.710 0.492 0.848 0.922 0.748 0.546 0.854 0.912

x = 0.0− 0.704 0.868 0.906 0.924 0.820 0.924 0.940 0.930

QTE 0.544 0.810 0.846 0.844 0.712 0.922 0.942 0.928

II. #{z} = 6

Procedure One

x = −0.5 0.558 0.556 0.754 0.878 0.596 0.572 0.748 0.858

x = −0.3 0.618 0.326 0.788 0.882 0.624 0.334 0.778 0.848

x = 0.0− 0.660 0.816 0.870 0.918 0.742 0.854 0.904 0.930

QTE 0.560 0.826 0.854 0.878 0.668 0.910 0.926 0.940

Procedure Two

x = −0.5 0.720 0.710 0.848 0.886 0.836 0.810 0.904 0.944

x = −0.3 0.740 0.488 0.856 0.910 0.868 0.594 0.936 0.944

x = 0.0− 0.624 0.816 0.858 0.876 0.826 0.934 0.954 0.962

QTE 0.550 0.838 0.862 0.832 0.812 0.974 0.982 0.972

Coverage probabilities of 90% uniform confidence bands based on 500 simulations. ‘Proce-
dure One’ and ‘Procedure Two’ denote the estimation procedures for the GPL and LPL
models, respectively. The sample size is 1000 and the quantile range is T = [0.2, 0.8].
Bandwidth option 1 is used. In the first half of the table, z = (0.6, 0.6), while in the
second half, z = (0.6, . . . , 0.6). See Table B.3 for the definitions of the various bands.
The recommended methods are ‘Asy R’ and ‘Res R’.



Table B.10: Length of 90% Uniform Confidence Bands. Model 3, q = 2.

Asy Asy M Asy R Res Res M Res R

τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2

Procedure One

x = −0.5 0.214 0.240 0.268 0.297 0.309 0.346 0.234 0.267 0.288 0.324 0.328 0.371

(0.019) (0.028) (0.038) (0.043) (0.028) (0.041) (0.040) (0.048) (0.053) (0.062) (0.057) (0.067)

x = −0.3 0.262 0.295 0.358 0.396 0.376 0.421 0.286 0.330 0.381 0.431 0.393 0.446

(0.028) (0.035) (0.046) (0.055) (0.044) (0.055) (0.050) (0.063) (0.066) (0.082) (0.072) (0.089)

x = 0.0− 0.931 1.062 1.056 1.205 1.378 1.569 1.004 1.168 1.130 1.310 1.473 1.721

(0.189) (0.282) (0.228) (0.316) (0.287) (0.418) (0.243) (0.314) (0.275) (0.354) (0.347) (0.455)

QTE 1.302 1.549 1.496 1.779 1.930 2.297 1.454 1.702 1.649 1.932 2.160 2.543

(0.238) (0.325) (0.298) (0.381) (0.360) (0.496) (0.281) (0.360) (0.338) (0.426) (0.405) (0.517)

Procedure Two

x = −0.5 0.240 0.270 0.293 0.327 0.327 0.367 0.266 0.312 0.320 0.369 0.347 0.402

(0.026) (0.037) (0.041) (0.050) (0.031) (0.047) (0.044) (0.058) (0.054) (0.069) (0.055) (0.069)

x = −0.3 0.292 0.331 0.387 0.432 0.397 0.446 0.325 0.383 0.421 0.484 0.418 0.483

(0.035) (0.047) (0.051) (0.062) (0.048) (0.061) (0.056) (0.071) (0.067) (0.085) (0.073) (0.092)

x = 0.0− 0.948 1.092 1.077 1.237 1.374 1.578 1.036 1.218 1.165 1.363 1.443 1.696

(0.199) (0.297) (0.234) (0.326) (0.292) (0.438) (0.225) (0.290) (0.262) (0.323) (0.316) (0.414)

QTE 1.334 1.568 1.529 1.801 1.933 2.261 1.525 1.808 1.721 2.041 2.147 2.536

(0.242) (0.340) (0.298) (0.394) (0.359) (0.493) (0.264) (0.349) (0.320) (0.414) (0.375) (0.494)

Averages and standard deviation (in parentheses) of the length of 90% uniform confidence bands. The number
of covariates z, q = 2, and the sample size n = 1000. The method ‘Asy 2’ has the same length as ‘Asy’,
so is omitted. The same applies to ‘Res 2’. ‘Procedure One’ and ‘Procedure Two’ denote the estimation
procedures for the GPL and LPL models, respectively. See Table B.3 for the definitions of the various bands.
The recommended methods are ‘Asy R’ and ‘Res R’.



Table B.11: Length of 90% Uniform Confidence Bands. Model 3, q = 6.

Asy Asy M Asy R Res Res M Res R

τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2

Procedure One

x = −0.5 0.211 0.233 0.264 0.289 0.305 0.336 0.225 0.256 0.278 0.312 0.315 0.354

(0.019) (0.027) (0.036) (0.042) (0.028) (0.039) (0.036) (0.045) (0.050) (0.059) (0.049) (0.060)

x = −0.3 0.253 0.284 0.354 0.392 0.362 0.405 0.271 0.309 0.372 0.417 0.368 0.410

(0.029) (0.036) (0.044) (0.053) (0.045) (0.057) (0.048) (0.054) (0.064) (0.072) (0.066) (0.080)

x = 0.0− 0.911 1.056 1.047 1.199 1.344 1.559 0.985 1.152 1.121 1.295 1.430 1.690

(0.181) (0.275) (0.235) (0.313) (0.276) (0.415) (0.250) (0.328) (0.304) (0.374) (0.339) (0.460)

QTE 1.282 1.499 1.477 1.712 1.905 2.226 1.438 1.624 1.634 1.837 2.138 2.439

(0.228) (0.318) (0.297) (0.383) (0.353) (0.478) (0.279) (0.332) (0.344) (0.397) (0.383) (0.497)

Procedure Two

x = −0.5 0.281 0.310 0.336 0.366 0.357 0.391 0.323 0.379 0.377 0.435 0.395 0.459

(0.034) (0.047) (0.045) (0.057) (0.038) (0.054) (0.049) (0.063) (0.058) (0.074) (0.057) (0.071)

x = −0.3 0.333 0.375 0.436 0.485 0.421 0.470 0.378 0.456 0.481 0.566 0.457 0.541

(0.045) (0.057) (0.055) (0.070) (0.054) (0.070) (0.065) (0.084) (0.071) (0.089) (0.080) (0.104)

x = 0.0− 0.969 1.094 1.109 1.241 1.353 1.515 1.128 1.352 1.267 1.499 1.518 1.819

(0.204) (0.312) (0.247) (0.350) (0.288) (0.439) (0.224) (0.320) (0.271) (0.361) (0.298) (0.418)

QTE 1.370 1.530 1.578 1.757 1.911 2.117 1.704 2.006 1.912 2.232 2.310 2.724

(0.249) (0.336) (0.317) (0.397) (0.350) (0.477) (0.284) (0.375) (0.359) (0.436) (0.395) (0.510)

Averages and standard deviation (in parentheses) of the length of 90% uniform confidence bands. The number
of covariates z, q = 6, and the sample size n = 1000. The method ‘Asy 2’ has the same length as ‘Asy’,
so is omitted. The same applies to ‘Res 2’. ‘Procedure One’ and ‘Procedure Two’ denote the estimation
procedures for the GPL and LPL models, respectively. See Table B.3 for the definitions of the various bands.
The recommended methods are ‘Asy R’ and ‘Res R’.



Figure B.1: QTE by Work Experience

(a) Unemployment duration.
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(b) Wage change.
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Figure B.1: QTE by Work Experience, continued

(c) Reemployment wage.
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The figures present bias corrected QTEs and their robust 90% uniform con-
fidence bands at four levels of work experience before job separation: (i) the
1st decile of the work experience, (ii) 5th decile, (iii) 7th decile, and (iv) 9th
decile. For each outcome variable, the bandwidth used corresponds to the hcv
bandwidth in Table 2.



Figure B.2: QTE by Tenure

(a) Unemployment duration.
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(b) Wage change.

x

q2
[, 

(i 
+ 

1)
]

Tenure: 1st decile

−1
0

1
2

3
4

x

q2
[, 

(i 
+ 

1)
]

Tenure: 5th decile

x

q2
[, 

(i 
+ 

1)
]

Tenure: 7th decile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−1
0

1
2

3
4

x

q2
[, 

(i 
+ 

1)
]

Tenure: 9th decile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Quantile Index

P
er

ce
nt

ag
e 

po
in

ts



Figure B.2: QTE by Tenure, continued

(c) Reemployment wage.
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The figures present bias corrected QTEs and their robust 90% uniform confi-
dence bands for four tenure levels in pre-unemployment job; (i) the 1st decile
of the tenure level, (ii) 5th decile, (iii) 7th decile, and (iv) 9th decile. For each
outcome variable, the bandwidth used corresponds to the hcv bandwidth in
Table 2.



Figure B.3: QTE by Firm Size

(a) Unemployment duration.
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(b) Wage change.
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Figure B.3: QTE by Firm Size, continued

(c) Reemployment wage.

x

q2
[, 

(i 
+ 

1)
]

Firm size: 1st decile

−1
0

1
2

3
4

x

q2
[, 

(i 
+ 

1)
]

Firm size: 5th decile

x

q2
[, 

(i 
+ 

1)
]

Firm size: 7th decile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−1
0

1
2

3
4

x

q2
[, 

(i 
+ 

1)
]

Firm size: 9th decile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Quantile Index

P
er

ce
nt

ag
e 

po
in

ts

The figures present bias corrected QTEs and their robust 90% uniform con-
fidence bands for four firm sizes in pre-unemployment job: (i) the 1st decile
of the firm size, (ii) 5th decile, (iii) 7th decile, and (iv) 9th decile. For each
outcome variable, the bandwidth used corresponds to the hcv bandwidth in
Table 2.



Figure B.4: Full Sample Estimates and Confidence Bands for Different Outcome Variables

(a) Unemployment duration

0
5

10
15

20

Quantile index

D
ay

s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(b) Wage change.

0.
0

0.
5

1.
0

1.
5

Quantile index

Pe
rc

en
ta

ge
 p

oi
nt

s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(c) Reemployment wage.
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QTE and 90% uniform confidence bands without bias correction. They are
estimated from equation (8) without any covariates, using the hcv bandwidth
stated in Table 2.



Figure B.5: Blue Collar vs White Collar Workers
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QTE and 90% uniform confidence band without bias correction. They are
estimated from equation (8) with a covariate being a white collar dummy,
using the hcv bandwidth stated in Table 2.



Figure B.6: Male vs. Female Workers
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QTE and 90% uniform confidence band without bias correction. They are
estimated from equation (8) with a covariate being a female dummy, using the
hcv bandwidth stated in Table 2.



Figure B.7: Groups by Occupation and Gender

(a) Unemployment duration
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(b) Wage change.
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Figure B.7: Groups by Occupation and Gender, continued

(c) Reemployment wage.
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The results are presented for four groups divided by occupation and gender: (i)
blue collar male, (ii) blue collar female, (iii) white collar male, and (iv) white
collar female workers. The figures present QTE and 90% uniform confidence
bands without bias correction, using the hcv bandwidth stated in Table 2.



Figure B.8: Groups by Education
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The results are presented for two groups by education: college graduates vs.
high school graduates and below. The figures present QTE and 90% uniform
confidence bands without bias correction, using the hcv bandwidth stated
in Table 2.



Figure B.9: Groups by Pre-unemployment Wage
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Figure B.9: Groups by Pre-unemployment Wage, continued

(c) Reemployment wage.
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The results are presented for four groups defined by levels of pre-unemployment
wage; (i) the previous wage is 10%, (ii) 50%, (iii) 70%, and (iv) 90% in the pre-
unemployment wage distribution. The figures present QTE and 90% uniform
confidence bands without bias correction, using the hcv bandwidth stated
in Table 2.



Figure B.10: Groups by Work Experience
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(b) Wage change.
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Figure B.10: Groups by Work Experience, continued

(c) Reemployment wage.
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The results are presented for four groups defined by levels of work experience
before job separation; (i) the work experience is at the 1st decile, (ii) 5th decile,
(iii) 7th decile, and (iv) 9th decile. The figures present QTE and 90% uniform
confidence bands without bias correction, using the hcv bandwidth stated
in Table 2.



Figure B.11: Groups by Tenure
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(b) Wage change.
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Figure B.11: Groups by Tenure, continued

(c) Reemployment wage.
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The results are presented for four groups defined by levels of tenure in pre-
unemployment job; (i) the tenure is at the 1st decile, (ii) 5th decile, (iii)
7th decile, and (iv) 9th decile. The figures present QTE and 90% uniform
confidence bands without bias correction, using the hcv bandwidth stated
in Table 2.



Figure B.12: Groups by Firm Size
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(b) Wage change.
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Figure B.12: Groups by Firm Size, continued

(c) Reemployment wage.
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The results are presented for four groups defined by levels of firm size in pre-
unemployment job; (i) the firm size is at the 1st decile, (ii) 5th decile, (iii)
7th decile, and (iv) 9th decile. The figures present QTE and 90% uniform
confidence bands without bias correction, using the hcv bandwidth stated
in Table 2.



Figure B.13: Full Sample Estimates and Confidence Bands for Different Outcome Variables
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Bias corrected QTE and robust 90% uniform confidence bands. They are esti-
mated from equation (8) without any covariates, using the hopt bandwidth
stated in Table 2.



Figure B.14: Blue Collar vs. White Collar Workers
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Bias corrected QTE and robust 90% uniform confidence bands. They are
estimated from equation (8) with a covariate being a white collar dummy,
using the hopt bandwidth stated in Table 2.



Figure B.15: Male vs. Female Workers
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Bias corrected QTE and robust 90% uniform confidence bands. They are
estimated using equation (8) with a covariate being a female dummy, using
the hopt bandwidth stated in Table 2.



Figure B.16: Groups by Occupation and Gender
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(b) Wage change.
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Figure B.16: Groups by Occupation and Gender, continued

(c) Reemployment wage.

x

q2
[, 

(i 
+ 

1)
]

Blue Collar Men

−2
0

2
4

6
8

10

x

q2
[, 

(i 
+ 

1)
]

Blue Collar Women

x

q2
[, 

(i 
+ 

1)
]

White Collar Men

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−2
0

2
4

6
8

10

x

q2
[, 

(i 
+ 

1)
]

White Collar Women

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Quantile Index

P
er

ce
nt

ag
e 

po
in

ts

The results are presented for four groups divided by occupation and gender: (i)
blue collar male, (ii) blue collar female, (iii) white collar male, and (iv) white
collar female workers. The figures present bias corrected QTE and robust 90%
uniform confidence bands using the hopt bandwidth stated in Table 2.



Figure B.17: Groups by Education
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(c) Reemployment wage.
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The results are presented for two groups by education: college graduates vs.
high school graduates and below. The figures present bias corrected QTE and
robust 90% uniform confidence bands using the hopt bandwidth stated in
Table 2.



Figure B.18: Groups by Pre-unemployment Wage
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(b) Wage change.
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Figure B.18: Groups by Pre-unemployment Wage, continued

(c) Reemployment wage.
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The results are presented for four groups defined by levels of pre-unemployment
wage; (i) the previous wage is 10%, (ii) 50%, (iii) 70%, and (iv) 90% in the
pre-unemployment wage distribution. The figures present bias corrected QTE
and robust 90% uniform confidence bands using the hopt bandwidth stated
in Table 2.



Figure B.19: Groups by Work Experience
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(b) Wage change.
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Figure B.19: Groups by Work Experience, continued

(c) Reemployment wage.
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The results are presented for four groups defined by levels of work experience
before job separation; (i) the work experience is at the 1st decile, (ii) 5th decile,
(iii) 7th decile, and (iv) 9th decile. The figures present bias corrected QTE
and robust 90% uniform confidence bands using the hopt bandwidth stated
in Table 2.



Figure B.20: Groups by Tenure

(a) Unemployment duration.
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(b) Wage change.
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Figure B.20: Groups by Tenure, continued

(c) Reemployment wage.
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The results are presented for four groups defined by levels of tenure in pre-
unemployment job; (i) the tenure is at the 1st decile, (ii) 5th decile, (iii) 7th
decile, and (iv) 9th decile. The figures present bias corrected QTE and robust
90% uniform confidence bands using the hopt bandwidth stated in Table 2.



Figure B.21: Groups by Firm Size

(a) Unemployment duration.
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(b) Wage change.
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Figure B.21: Groups by Firm Size, continued

(c) Reemployment wage.
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The results are presented for four groups defined by levels of firm size in pre-
unemployment job; (i) the firm size is at the 1st decile, (ii) 5th decile, (iii) 7th
decile, and (iv) 9th decile. The figures present bias corrected QTE and robust
90% uniform confidence bands using the hopt bandwidth stated in Table 2.
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