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Abstract— Recent research has seen the advancement of
drone depot models as a promising way to allocate drones
for large-scale task completion. Applications of these drone
depot models include data collection, environmental monitoring,
package delivery, and more. This paper focuses on sharing
agents between static depots for task allocation based on
expected demand. We model the problem as a Binary Nonlinear
Program, then derive an iterative neighborhood search based
on solving a series of Binary Linear Programs to drive towards
the optimal configuration of agents for each depot. We show
that our method is more tractable than a Branch and Bound
approach for this model as problem complexity grows. We also
show through simulations that with near optimal allocation
between local depots, the overall system performance will
outperform greedy and non-sharing approaches.

I. INTRODUCTION

Recent robotics advancements enables drones for applica-
tions including deliveries, environmental monitoring, event
servicing, and more. Often, these drones are combined with
depots where drones can recharge, resupply, update new
information to a larger network, and more. These depots are
often statically placed over the long term, and thus must be
sufficiently staffed with drones to deal with varying amounts
of tasks over time. As such, sharing drones between depots
emerges as a potential solution to increase system efficiency
without increasing the total number of drones.

We seek to implement a task assignment planner for multi-
agent multi-depot problems with inspiration from coverage
control. Multi-Robot Task Allocation (MRTA) is an exten-
sively researched field [1]–[4] with many models and frame-
works for assigning agents to a variety of tasks. However,
task assignment planners for these systems often focus on
linear models, with a deterministic number of tasks to be
fulfilled. Coverage control algorithms allow coverage of an
expected demand over an area with a team of adaptive
agents, where each agent is the generator of its environment
partition. We assume the drone depots for recharging and
communication uplinks are at fixed locations within an
environment, which means they may not be at a locationally-
optimal configuration to varying demand. The challenge is
to assign drones to depots to best service the events in the
environment. The main contributions of this paper are:

1) A Nonlinear Binary Program for decentralized sharing
of heterogeneous drones between depots;

2) An iterative neighborhood search method which finds
an agent assignment solution for depots, based on
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Fig. 1: Simulated Scenario for discrete event satisfaction. Green squares
represent static depots with the number of heterogeneous drones assigned
to them. Each depot covers the area within their black borders. Drones
are represented as blue circles, and are shared between depots to service
discrete events. Events are represented as red stars and can be fulfilled by
drones. Lighter areas in the environment represent more probable locations
for discrete events to appear. We see that better allocation of drones using
our BLP method results in less outstanding events over time.

satisfying a necessary condition of optimality;
3) Simulations showing that sharing agents between de-

pots using our search method results in better task ful-
fillment compared to non-sharing and greedy methods.

Related Work

Multi-agent systems with depots has been well researched
in recent years, due to its adaptability to real world applica-
tions. [5] coordinates recharging agents at charging stations
while exploring an environment. [6] maintains connectivity
between agents and a base station during exploration. [7],
[8] provide a field example of using mobile vans to cycle
drones during long term missions. [9], [10] offer overviews
for utilizing drone deliveries for biological material trans-
portation. [11], [12] both plan paths using a combination
of mobile ground vehicles which can recharge mobile aerial
vehicles to service tasks. We refer the reader to [13] for
further examples which use multi-agent multi-depot models.

Task assignment planners are commonly used to assign
agents to a set of tasks based on agent utility, agent con-
straints, task constraints, and more [1], [2], [14]. These
planners often reduce the assignment problem to a cen-
tralized linear model, formulate task satisfaction using an
Integer Linear Program [6], [10], [15] or a Mixed Integer
Linear Program [16] in cases with more complex constraints.



These problems can be solved using optimal methods [4]
such as Branch and Bound, or through heuristics such as
neighborhood search [16]. These formulations are the basis
of our search method, which fulfills a necessary condition
of optimality. Other methods of task assignment include
coalition formation [17], which partitions agents into groups
to maximize overall system utility by increasing task per-
formance. Common approaches include distributed auction-
based methods [18], hedonic games [19], or other game-
theoretic models.

Coverage control planners allow agents to equitably cover
an environment weighted by an underlying field. Many meth-
ods for utilizing coverage controllers with heterogeneous
agents have been researched, which inspires our approach.
Learning methods such as [20] and [21] allow for complex
agent decision making, while more classical approaches such
as [22] allow for faster, distributed coverage with large scale
teams. Methods combining the two approaches such as [23]
allow heterogeneous agents to learn based on past perfor-
mance and react in a distributed fashion. We draw inspiration
from multi-robot coverage control in our decentralized algo-
rithm design, as it provides a framework to model locational
cost of expected tasks over our environment.

II. PROBLEM FORMULATION

In this section, we formulate the model for long term
task completion for each depot based on their locational cost
in the environment and the utility of their assigned agents.
We then represent the assignment of agents to these depots
as a Nonlinear Binary Program, where agents contribute to
completing tasks based on their own unique utility.

A. Locational Cost for Single Depot Coverage

We start by considering a convex environment Q ⊆ R2,
with points q ∈ Q. Discrete events will appear in the
environment, which must be serviced by drones from depots.
We assume there are H static depots within Q at positions
p = {p1, . . . , pH}, ph ∈ Q. Each depot dispatches drones to
serve events within a region based on their Voronoi partition,

Vh = {q ∈ Q | ∥q − ph∥ ≤ ∥q − pk∥},

where k ̸= h. We represent the probability of a serviceable
event occurring at some location with density function ϕ(q),
and the expected demand of a single depot as its locational
cost [22],

dh =

∫
Vh

∥q − ph∥ϕ(q)dq. (1)

We choose this cost based on the assumption that drones
return to their depot after they service an event. Thus, we
assume the distance of an event from a depot is linearly
proportional to the difficulty in servicing the event.

B. Depot Cost

We now must relate the expected demand of a depot to its
ability to satisfy this demand. We assume there are N drones
which are assigned to the depots Dh, h = {1, . . . ,H}. Each
drone is assigned a heterogeneous utility value ai ∈ R, ai >

0, i = {1, . . . , N}. We define utility as how efficient an agent
is at servicing tasks, and assume depots can share drones to
each other, where the travel time between depots is negligible
compared to time spent servicing tasks. We also assume that
agents can independently service tasks in parallel. We define
Ah as the set of Mh drones assigned to depot Dh, and define
A = {A1, . . . ,AH} as the set of assignments of drones to
all depots. We also define Ah = [a1, . . . , aM ]⊤ as a vector
of the utility of drones within Ah, and Ah =

∑|Ah|
m=1 am as

the total utility of drones assigned to Dh.
We define the depot’s locational cost based on the utility

of all assigned drones at that depot. Each drone’s individual
utility is determined by their speed. Note since drones
satisfy task independently, we can combine their utility when
assigned to a depot (i.e., two drones with utilities of 1 are
equivalent to one drone with a utility of 2). We wish to
distribute utility to depots based on their expected demand,
such that no specific depot is overwhelmed with tasks (see
Figure 1b). The new cost at a depot Dh is defined

Jh =
dh

ch +Ah
, (2)

where ch is some fixed utility of the depot, i.e. a drone that
cannot be reassigned. We assume ch ≥ 0, ch+Ah > 0,∀h =
{1, . . . ,H}. These constraints mean a depot should always
have some ability to service tasks. The intuition behind (2) is
that depots with more demand must be given proportionally
more utility to lower cost. The system cost across all depots
is written

J =

H∑
h=1

dh
ch +Ah

. (3)

Our goal is to find the optimal set of assignments of drones
to all depots A∗ = {A∗

1, . . . ,A∗
H} which minimizes (3).

To do so, we formulate the problem as a Nonlinear Binary
Program, detailed in the next section.

C. Nonlinear Binary Program Formulation

We define a Nonlinear Binary Program (NLBP) to find the
best assignment of drones to depots. We define the binary
decision variables zih ∈ {0, 1},∀i = {1, . . . , N},∀h =
{1, . . . ,H}. If zih = 1, then drone ai is assigned to depot
Dh. We also assume that each drone cannot be assigned to
multiple depots, thus we obtain the constraint

∑H
h=1 zih =

1, ∀i = {1, . . . , N}. We seek to minimize (3) through the
assignment of agents. Thus, we formulate the assignment of
agents with their specific utilities as part of the NLBP

argmin
Z

H∑
h=1

dh
ch +A⊤Zeh

, (4)

s.t. ch +A⊤Zeh > 0, ∀h = {1, . . . ,H}

zih ∈ {0, 1},
H∑

h=1

zih = 1,

∀i = {1, . . . , N}, ∀h = {1, . . . ,H}



where A = [a1, ..., aN ]⊤, Z denotes a matrix of zih with
dimension N ×H such that Zih = zih, and eh denotes the
standard basis vector. The objective function is a formulation
of (3). The term A⊤Zeh returns Ah, the total utility assigned
to a depot. The resulting solution Z∗ optimally assigns all
N drones to the H depots, and can be converted to A∗.

III. ITERATIVE NEIGHBORHOOD SEARCH USING BLPS

In this section, we present our method of reallocating
drones between depots using a decentralized online planner.
This method provides a faster near optimal alternative to
utilizing a Branch and Bound (B&B) algorithm to solve (4).
We first show a necessary condition of optimality which
our algorithm fulfills by iteratively solving a series of sub-
problems. We then show these sub-problems can be solved
optimally using Binary Linear Programs (BLPs) to obtain
fast, near optimal sharing solutions.

A. Necessary Condition for Optimal Drone Assignment

While directly solving (4) using a B&B algorithm guar-
antees an optimal solution, in practice the large solution
space and poor bounding given by the objective function
makes this method intractable for most non-trivial problems.
Figure 2 shows that B&B solution times quickly increase
as problem complexity grows. We instead propose using an
iterative neighborhood search to reduce runtime. We base our
search on the following necessary condition of A∗.

Proposition 1. If A = A∗, then ∄ any alternative
drone assignments between any 2 depots Ak,Aj , ∀k =
{1, . . . ,H},∀j = {1, . . . ,H}, k ̸= j which lowers the local
cost J(Ak,Aj) from (3) of the two depots.

Proof. Assume A′ = A∗ except assignments A′
k,A′

j , such
that local cost J(A′

k,A′
j) < J(A∗

k,A∗
j ). Depot costs are

independent, and by definition J(A∗) ≤ J(A′) for all alter-
nate assignments A′. By contradiction, this new assignment
cannot exist without having a lower global cost than A∗.

Proposition 1 returns a necessary condition of optimality
for A∗, it has no drone swaps between any two depots which
lowers their local cost. Finding an assignment which fulfills
this necessary condition can be computed much faster than
finding the optimal assignment for complex problems. In
practice, these assignments are still optimal or near optimal.

Now consider swapping discrete utility drones between
two depots. We could formulate this sub-problem as in
(4). By swapping with every combination of two depots,
and repeating until the necessary condition is fulfilled, we
would converge to a final arrangement near the optimal drone
assignment. However, solving this as a NLBP via B&B can
still be very slow as the number of drones increases. Instead,
we can format this two depot problem as a BLP. This allows
the usage of faster Integer Linear Program (ILP) solvers.

B. Convexity of the relaxed two depot assignment problem

To fulfill the necessary condition from Proposition 1, we
must be able to quickly find optimal drone assignments
between two depots. We wish to characterize the relaxed

two depot objective function as convex. Doing so will help
us reformulate the problem as a BLP.

Consider the continuous two depot utility swapping case
between depots Dk and Dj , where both depots have initial
drone assignments Ak and Aj . We define the continuous
sharing problem between these depots as

argmin
x

dk
Ck − x

+
dj

Cj + x
, (5)

s.t. Ck − x > 0, Cj + x > 0, (6)

where x ∈ R is a continuous variable representing utility
given from Dk to Dj , Ck = ck+Ak, and Cj = cj+Aj . This
formulation more directly shows that one depot is sharing to
another and ensures that depots can always service demand,
though it assumes depots can also share their fixed utilities.

We note that by (1), dh ≥ 0,∀h = {1, . . . ,H}. If dk =
dj = 0, assignment does not matter, and if one depot demand
is 0, the correct assignment is to send all drones to the other
depot. Thus, we assume dh > 0,∀h = {1, . . . ,H} for the
remainder of the paper.

Proposition 2. If dk, dj > 0, the objective function of (5) is
strictly convex within the constraints (6) with a minimum at

x∗ =

√
djCk −

√
dkCj√

dk +
√
dj

. (7)

Proof. We can easily find the first and second derivative of
the objective function of (5) with respect to x as

dJkj
dx

=
dk

(Ck − x)2
− dj

(Cj + x)2
(8)

d2Jkj
dx2

=
2dk

(Ck − x)3
+

2dj
(Cj + x)3

, (9)

and can see that the constraints (6) force the second deriva-
tive to be positive when dk, dj > 0. The cost goes to infinity
as we approach the bounds (6). Setting (8) to 0 and solving
within (6) gives one feasible minimum at x∗.

C. Converting the two depot sharing problem to a BLP

Analyzing (5), we see that for a depot to lower another
depots’ cost by sharing utility, it must make its own cost
increase. Thus, we would like to define the region of sharing
where the overall cost between the two depots decreases.
To do so, we define the level set bounds of the original
assignments Ak, Aj as

Jl =
dk

Ck − xl
+

dj
Cj + xl

=
dk
Ck

+
dj
Cj

, (10)

where xl is the level set bounds. We note that since the
objective function is strictly convex per Proposition 2, the
level set is also strictly convex. Thus, we know that any
value x within our level set bounds xl must be less than the
cost of the level set bound. We can derive xl from (10) as

xl
1 = 0, xl

2 = Ck − Cj +
CkCj(dj − dk)

Cjdk + Ckdj
, (11)



and note that if xl
2 ≤ 0, we can rearrange which depot shares

utility such that xl
2 ≥ 0.

Since we know the level set bounds xl and that the
objective function is strictly convex, then any x between
these values will lower the cost. We create a BLP to lower
the cost by considering swaps between the two depots as

argmax
z

[
A⊤

k −A⊤
j

]
z (12)

s.t.
[
A⊤

k −A⊤
j

]
z ≤ xl

2, zm ∈ {0, 1}, ∀m = {1, . . . ,M}

where xl
2 ≥ 0, M represents the number of drones

assigned to Dk and Dj , and z is a M × 1 vector of binary
decision variables, where 1 indicates a swap from the drone’s
initial depot to the other depot. If a solution z results in
xl
1 <

[
A⊤

k −A⊤
j

]
z < xl

2, then there exists a swap of
drones whose change in utility lowers the overall depot cost.
Thus, the two depot sharing case can be reduced to a BLP.

However, maximizing towards the level set bound in
(12) means this formulation might fail or only marginally
decrease the cost per swap, rather than finding the optimal
drone assignment between the two depots. To find the
optimal assignment, we exploit the convexity of (5) and the
optimal utility sharing value (7) by instead solving two BLPs,

argmin
z

[
A⊤

k −A⊤
j

]
z , (13)

s.t.
[
A⊤

k − A⊤
j

]
z ≥ x∗, zm ∈ {0, 1}, ∀m = {1, . . . ,M}

argmax
z

[
A⊤

k −A⊤
j

]
z , (14)

s.t.
[
A⊤

k −A⊤
j

]
z ≤ x∗, zm ∈ {0, 1}, ∀m = {1, . . . ,M}

Proposition 3. At least one of the two results from (13) and
(14) is the optimal two depot swap solution for Dk and Dj .

Proof. We define x+ and x− from (13), (14) as the closest
utility values to x∗ of all possible solutions which are greater
and less than x∗, respectively. Since dk, dj > 0, the 1-D cost
function from (5) is strictly convex per Proposition 2. Thus,
J(x−) < J(x < x−) and J(x+) < J(x > x+). Either
J(x−) = J(x+), J(x−) < J(x+), or J(x+) < J(x−). In
all cases, the solution with lower cost dominates all other
solutions and is optimal. If neither solution has a lower cost
than J(0) or is infeasible, then there does not exist any cost
lowering swaps between the two depots.

D. Full Algorithm and Dominant Runtime Analysis

Algorithm 1 shows a non-parallelized version of the iter-
ative search algorithm. Drone assignments are heuristically
initialized to depots. Then, the algorithm begins iterating and
checks every combination of two depots to see if a drone
swap can be made using the BLPs from (13) and (14). If
any two depots have a drone swap, that swap is made before
continuing. This repeats until there is an iteration where no
swaps are found between any two depots. When this occurs,
the necessary condition for optimality from Proposition 1 is

reached and the current drone assignments are returned. We
leave the order of depot pair selections for future work.

The time complexity per iteration for this method becomes
O(H2f(D,A)), where H is the number of depots being
considered and f(D,A) is the runtime for the ILP solver for
a two depot swap with their assigned drones, which is usually
pseudo-polynomial. This runtime can be reduced through
parallelization to O(Hf(D,A)) by comparing different de-
pot swaps at once. Each iteration guarantees cost reduction or
convergence to a final solution, and can be stopped anytime.

Algorithm 1 Neighborhood Search for Drone Sharing
Input: Depot demands dh, depot utilities ch, drone utilities
ai , ∀h = {1, . . . ,H}, ∀i = {1, . . . ,M}
Output: Predicted Drone Assignments Z

1: Z ← initialDroneAssignment(dh,ch,ai)
2: flagSearch ← True
3: while flagSearch do ▷ Prop 1 Condition Unsatisfied
4: flagSearch ← False
5: for k from 1 to H − 1 do
6: for j from k + 1 to H do
7: Ak,Aj ← getDepotDrones(k,j,Z,ai)
8: Z,flagSwapped ←

BLPswap(dk,dj ,ck,cj ,Ak,Aj ,Z) (13),(14)
9: flagSearch ← flagSearch ∨ flagSwapped

10: end for
11: end for
12: end while

IV. SIMULATIONS

In this section, we rebalance agents through depots to
show the effectiveness of sharing. We start by showing
the BLP swap method’s performance and runtime versus
a typical Branch and Bound algorithm. We then show that
local rebalancing across a network of depots allows for faster
task satisfaction, and that the BLP swap method outperforms
greedy sharing. We utilize Matlab’s intlinprog() solver, which
allows for fast solving of ILPs using Branch and Bound
combined with a variety of heuristics. All simulations were
run on an Intel Core i7-13700KF at 3.4 GHz.

A. Comparison to Branch and Bound for local sharing

We seek to compare our BLP results to optimal so-
lutions of (4). Theoretically, solving (4) for the optimal
drone assignment could be guaranteed using a Branch and
Bound (B&B) approach. However, this approach becomes
intractable as the problem space grows due to poor bounding
of the given objective function. To create a comparison of
online performance between B&B and the BLP method, we
initialize both planners with the same starting assignments
and run them on the same trials until the planners converge,
or until a cutoff time of one minute. If the cutoff time is
reached, we take the best-known solution. To create our
random trials, we create an ego depot which has control of N
drones with H neighboring depots. We choose the demand
and utility of all depots with uniform randomness. Then, our
source depot randomly splits its utility among its drones,
keeping a small ϵ of utility for numerical stability.



BLP ≤ B&B % 3 drones 6 drones 9 drones 12 drones
3 depots 99.3 97.1 92.0 83.0
6 depots 99.5 93.3 88.6 88.8
9 depots 98.9 93.5 90.9 89.5
12 depots 99.2 94.5 93.0 95.2

TABLE I: Percentage comparison of final assignment cost for drone
assignments between BLP method and B&B for N = 1000 randomized
trials with cutoff time of 1 minute and various depot and drone numbers.

B&B Converge % 3 drones 6 drones 9 drones 12 drones
3 depots 100 100 97.0 79.6
6 depots 100 95.8 79.2 43.0
9 depots 100 74.5 49.5 33.0
12 depots 100 48.1 29.4 16.9

BLP Optimal % 3 drones 6 drones 9 drones 12 drones
3 depots 99.3 97.1 91.8 79.2
6 depots 99.5 93.2 86.2 76.9
9 depots 98.9 93.0 84.1 72.3
12 depots 99.2 91.8 81.9 77.0

TABLE II: Optimality Statistics for N=1000 randomized sharing problems
with various depot and drone numbers. Row 1 denotes percentage of
problems where B&B finds the optimal solution. Row 2 only considers
the subset of test cases with known optimal solutions from B&B. It denotes
the percentage of matching BLP solutions for those test cases.

Figure 2 illustrates the solution times for randomized trials
of 6 depots with varying numbers of drones. As we see in the
figure, the computation time for the B&B algorithm quickly
grows with the number of agents, such that it reaches the
maximum cutoff time for many of the trials. Comparatively,
the BLP method has a more consistent runtime with fast
convergence for more complex problems.

Table I provides the cost performance of our algorithm
against all trials of B&B. We see that in many cases our
BLP solution found a better result due to the B&B failing
to converge before the cutoff time. Table II presents the
percentage of trials for which B&B converges. Recall when
B&B converges, we know this is a globally optimal solution.
The second row of Table II shows the percent of BLP
trials found to be optimal within the trials for which B&B
converged. We include these numbers to illustrate that the
BLP often achieves optimal performance. Anecdotally, we
note that the BLP planner still returns assignments very close
to optimal even when it does not find the optimal solution.

Fig. 2: Box Plot depicting solution times for N=1000 random trials with
6 neighboring depots and varying number of drones. Dotted line depicts
maximum allowable solve time before termination.

Fig. 3: Histogram depicting satisfaction time for events versus Percent
Fulfullment for N = 100 trials with local sharing and static demand.
Depots, demand, and drone utilities were all randomized, with 24 depots
starting with 6 drones each. 10 Discrete tasks were injected every timestep.

B. Local Sharing for multiple depots with static demand

We now implement our approach in simulation as seen
in Figure 1. We run 100 randomized simulations with
each planner, with 24 depots randomly distributed in the
environment. Each depot starts with an equally distributed
number of drones, whose utility is set equal to their normally
distributed speed. Our underlying density field is assumed
to be a Gaussian Mixture Model (GMM), with randomized
positions, covariances, and weights. We assume depots can
share information and drones with neighbors of their Voronoi
partitions. We assume drones can only be shared if they
are present at the depot. Each depot only services events
within their Voronoi Partition. Events are injected into the
environment continuously for the duration of the simulation,
and depots prioritize the oldest events with their highest
utility drones. We compare our BLP planner to a non-sharing
planner and a naive greedy sharing planner. The non-sharing
planner maintains the same drones it is originally assigned
regardless of neighboring demand. The naive greedy planner
computes the optimal continuous utility of the relaxed multi-
depot problem for itself and its neighbors. It shares to
neighbors if it has any surplus drones while keeping its total
utility above its local optimal continuous utility value.

Figures 3 shows the percentage of tasks fulfilled versus
satisfaction time for tasks for a 24 depot, 144 drone scenario
over N = 100 trials. Some fraction of events are always
expected to be unsatisfied, as events are continuously injected
into the environment. Still, we see that using the BLP planner
results in shorter satisfaction times for events compared to
the greedy and non-sharing planner, with around 70% of
satisfied tasks being serviced in 10 or less timesteps. Further,
the BLP planner has less satisfied tasks with large satisfaction
times compared to the other planners. The obvious result
of this faster satisfaction time is that the BLP planner has
less unsatisfied tasks compared to the other methods. These
results show that better sharing between depots results in
lower satisfaction times and thus more tasks serviced.



(a) Static Demand, 5 injected events per
timestep

(b) Static Demand, 10 injected events per
timestep

(c) Slow-moving dynamic demand, 10 in-
jected events per timestep

(d) Fast-moving dynamic demand, 10 in-
jected events per timestep

Fig. 4: Simulation Results for N = 100 randomized trials with 24 depots and varying drone numbers and settings. X-axis denotes total number of drones in
the system, Y-axis denotes final fulfillment percentage with constant event injection. 4a shows static demand with 5 injected events per timestep. 4b shows
static demand with 10 injected events per timestep. 4c and 4d show slow and fast dynamic demands with 10 events injected per timestep, respectively.

Figure 4a shows the final percent satisfaction for N =
100 trials with varying numbers of drones with 5 events
injected per timestep. Not sharing drones results in much
worse performance, as some depots are overwhelmed with
events. For smaller numbers of drones, more optimal sharing
becomes very important. For example, with 48 drones the
BLP planner outperforms the greedy planner by as much
as 12.6% on average. As drone number increases, more
optimal sharing matters less. This can be seen in Figure
4b, which has 10 events injected per timestep to better
capture fulfillment ability for larger drone numbers. The BLP
planner outperforms the greedy planner by 9.7% with 96
drones, but only by 5.6% with 144 drones. Still, observing
the interquartile ranges in Figures 4a and 4b show that the
BLP method has more consistent task fulfillment in all cases.

C. Local Sharing for multiple depots with dynamic demand

We run a similar simulation as Section IV-B using dynamic
demand, meaning that the underlying spatial distribution of
events changes over time. We change the underlying field
ϕ(q) to be time-varying as ϕ(q, t), and add a randomized
velocity to the Gaussians in our GMM. These Gaussians
move through the environment at their own velocity, only
changing direction when they encounter the border of the
environment. We maintain the same parameters as Section
IV-B for our depots and drones, and run N = 100 trials. We
assume that depots update their demand as the field changes
over time, and therefore continue to share drones as demand
changes. Figures 4c and 4d show our results for fields with
slow and fast speeds in their dynamic demand, respectively.

We see in Figure 4c that our expected demand model can
still be useful for systems with slow dynamic changes in dy-
namics. The BLP planner performs approximately the same,
while the greedy sharing planner performs better than in
the static case. Meanwhile, the non-sharing planner performs
slightly better than in the static case. We attribute this to the
changes in our density field spreading events out between
depots. As a result, there is less concentration of events
in depot partitions, leading to less scenarios where a single
depot is overwhelmed with events. This is further exemplified
in Figure 4d, where the fast changing dynamic field results
in the greedy and non-sharing planner performing better on
average than in the static cases in Figure 4b.

Figure 4d shows the greedy planner outperforms the

BLP planner with fast changing dynamics. We attribute this
to two distinct reasons. First, the fast changing dynamics
means there is significant model mismatch between the
actual demand and expected demand of any depot. Since
the BLP planner only uses the current expected demand
at the timestep it determines its assignments, this leads to
suboptimal sharing choices. Second, the BLP planner is more
sensitive to sharing drones compared to our chosen greedy
planner. Thus, more drones are in transit between depots
instead of servicing events due to the fast demand changes.
The greedy planner only shares when it has a local drone
utility surplus, meaning there is an inherent lag between
sharing drones between depots when demand changes. This
lag gives time for depots to fulfill events which appeared
while the demand was moving through the depot’s partition,
thus increasing the greedy planner’s performance. In contrast,
the BLP planner shares drones when the overall local cost is
lowered. This leads to the BLP planner sharing much more
on average. For example, in the 24 depot, 144 drone scenario
with fast dynamic demand with N = 100 trials, the average
and standard deviation of drone swaps between depots is
1127.1 ± 199.3 and 582.6 ± 125.8 for the BLP planner
and greedy planner, respectively. While these extra swaps
aid in reallocation for slowly-evolving demand, we suspect
that it was detrimental in for rapidly-evolving demand. This
remains an open phenomena to investigate in future work.

V. CONCLUSIONS AND FUTURE WORK

In this work, we introduce a new model for sharing het-
erogeneous drones between static depots for delivery tasks.
We derive an iterative neighborhood search method based
on satisfying a necessary condition of optimality. We show
that using this method for decentralized local rebalancing
allows for better discrete event task fulfillment compared to
non-sharing and greedy methods.

Future work will focus on addressing model mismatch
for dynamic demand. This can be done using both a future
time horizon for expected demand, as well as a corrective
demand to fulfill already existing tasks. Using a corrective
demand is also beneficial for dealing with unknown or error-
prone density fields, as depots can learn the true underlying
field over time. Adapting the model to other more complex
tasks such as information gathering using learning methods
is another interesting research avenue.
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