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Abstract— This paper proposes a heterogeneous teaming
solution to the problem of target discovery and monitoring
in unknown, non-convex environments. The team consists of
two types of agents: agile agents with sensors capable of
mapping their surroundings and slower agents that are capable
of monitoring or servicing discovered targets. We propose
an exploration algorithm that utilizes the IRIS algorithm to
generate a graph decomposition from collision free ellipses
contained within the environment. This graph is passed to
the monitoring agents who execute polynomial complexity
assignment and touring algorithms to generate high quality
path plans which service all discovered targets. Our algorithmic
structure allows the team to solve the problems of exploration,
target discovery, assignment, and monitoring within unknown,
non-convex environments efficiently using limited information.
The performance of our proposed method is verified through
batch simulations and complexity analysis.

I. INTRODUCTION

Heterogeneous teams of autonomous agents are capable of
coordinating their abilities to accomplish complex mission
objectives. As robots continue to expand their real world
applications, scenarios of different robots collaborating on
tasks will continue to become more frequent. However,
designing control frameworks that are capable of harnessing
these different capabilities in synergistic ways remains very
challenging. Overcoming this obstacle is a long standing
area of research in robotics that is currently burgeoning in
the state-of-the-art [1], [2], [3], [4]. These heterogeneous
teams have an incredibly wide array of applications, from
firefighting and search and rescue to wildlife monitoring
and delivery routing [5], [6], [7], [8], [9]. Many current
methods for solving these heterogeneous teaming problems
rely on large-scale, offline optimizations [4], [7] or complete
environmental knowledge [10], [11] to generate plans for
the team. While these produce optimal results, they require a
large amount of a priori information that is unavailable in real
world applications. Other methods simplify the problem by
reducing team heterogeneity to a measure on performance,
ability, or similar metric and generating control policies
based on these [12], [13]. These are capable of producing
robust closed-loop policies that perform well in coordinating
agent behaviors according to their abilities but are not suited
for applications where agents have unique objectives.

In this paper, we propose a heterogeneous teaming for-
mulation for the problem of exploration and monitoring that
enables a team to traverse unknown environments, construct
safe graph decompositions online, and use these decom-
positions for high-level coordination. In this regard, our
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Fig. 1: Depiction of the exploration and monitoring problem
being solved. Our exploring agent (blue triangle) travels
through the environment to generate the ellipsoid graph and
discover targets. Our monitoring agents (pink squares) plan
trajectories that visit all discovered targets (orange stars), and
service them (green stars).

team consists of two distinct agent types: agile agents with
advanced environmental sensing that carry out exploration
and graph generation, and slower agents equipped with
the required capabilities to service tasks discovered within
the environment. This type of team formulation has many
potential real world applications, such as in firefighting or
search and rescue where agile UAVs can map out a disaster
site while identifying remaining fires or survivors, which can
then be put out or assisted by more capable UGVs. Through
this collaboration, we enable a team to efficiently accomplish
complex objectives in completely unknown environments
with lightweight, online computations. The key contributions
of this work are as follows:

1) A heterogeneous team structure for discovery and
monitoring of targets in unknown environments;

2) An IRIS-inspired exploration algorithm that generates
an ellipsoidal decomposition and corresponding graph
online for high-level team coordination; and

3) A polynomial complexity algorithm that optimally
assigns targets to monitors and generates bounded
approximations of the associated optimal TSP tours.

The remainder of this paper is organized as follows:
Section II presents related work. Section III formalizes
the problem formulation. Sections IV and V describe our
algorithmic solutions. Section VI analyzes our simulation
results. Finally, Section VII states our conclusions.



II. RELATED WORK

Our work in this paper builds on a wide array of founda-
tional and contemporary robotics research. At its core, this
paper presents a take on heterogeneous teaming for the prob-
lems of exploration and monitoring. Here, heterogeneous
teaming refers to the joint collaboration of robots with dif-
ferent capabilities on a singular team objective. Exploration
refers to the problem of traversing unknown environments
in search of environmental obstacles and objectives. Finally,
monitoring refers to the problem of travelling between key
locations within the environment to provide services or take
measurements.

Heterogeneous Teaming: As robot manufacturers continue
to proliferate specialized systems to industrial and com-
mercial applications, the ability to coordinate mixed fleets
will only become more important. Research on this problem
is currently very active as mixed fleets can improve team
performance through the coordination of specialized agents
[2], [6], [7]. Some common applications for heterogeneous
teaming include multistage exploration and recharging, aris-
ing from power limitations in aerial systems [11], [14]. Other
metrics for heterogeneity use robot performance [12], [13]
or the distinct goods and services that can be offered by
each robot [10], [15], [16]. Research further in this topic
goes as far as optimizing the choice of available robots for
mixed fleet applications [17], [18]. In this work, we consider
heterogeneity in a similar sense to [4], [5], [19], [20], where
our team consists of robots with different tasks that, when
combined, complete a singular team objective.

Exploration and Environmental Decomposition: Travers-
ing unknown environments poses many difficulties to au-
tonomous systems and planning [21]. Environmental de-
composition provides a method to overcome many of these
difficulties. In this setting, agents explore an environment
and map the free space to a smaller graph representation
containing simple rules in description, graph adjacency,
and edge weights [22], [23]. Environmental decomposition
has seen active development from the earliest of robotics
applications [24], [25], [26], [27], [28], [29] and continues
to stand on the forefront of robotics research. In this paper,
we explore the IRIS decomposition method proposed in [30].
Decompositions generated by the IRIS algorithm are quick to
compute and any planning performed on the decomposition
is guaranteed to be collision free. Further they have been
shown to perform well in conjunction with complicated
dynamic constraints [31].

Target Assignment and Monitoring: Autonomous target
assignment is a foundational problem in the field of robotics.
Drawing heavily from identical problems in other fields [8],
[32], [33], [34], [35], it is often critical that autonomous
systems be capable of determining where their capabilities
are best suited when acting in a team. Simple assignment
algorithms are often utilized due to their high efficiency
and satisfactory assignment results [36], though advanced
assignment behaviors can be difficult to encode in these
algorithms [3]. Modern target assignment problems often
exploit heuristics [9], [15] or well understood problem
structures [37], [38] to dramatically improve performance.

In this work, we frame target assignment as a minimum
cost maximum flow problem [39], [40]. In doing so, we
can optimally distribute targets to monitoring agents and
express advanced assignment behaviors by modifying the
flow network, represented as a graph.

III. PROBLEM FORMULATION

Our goal is to service a set of targets contained within
an unknown, non-convex environment using a heterogeneous
team of autonomous agents. To accomplish the team objec-
tive, we split the problem into two subtasks: exploration and
monitoring — corresponding to the two agent types in our
team. For the agile exploring agents, we seek to explore
the environment, locate all targets in need of service, and
generate a lightweight, collision free graph decomposition
of the free space for planning by the monitors. For the
monitoring agents, we seek to assign discovered targets
to available monitors and generate feasible TSP tours of
assigned targets on the graph decomposition reported by the
explorers. We make five key assumptions:

1) Our heterogeneous team consists of two distinct types
of agents with global communications;

2) Exploring agents are capable of fully sensing and
localizing within their surrounding environment and
can discover any target within line of sight;

3) Monitoring agents can service any discovered target
but are only capable of localizing on the graph gener-
ated by the explorers;

4) Inter-robot collisions are avoided via low level control;
5) The environment is bounded and obstacles are de-

scribed as combinations of convex polygons.
Given these assumptions, consider a bounded environment

Q ⊂ R2 containing a set of convex obstacles O ⊂ Q. Within
this environment are a set of random target positions, given
by T = [t1, t2, ..., tn]|ti ∈ Q\O. We denote pm(t), pe(t) ∈
Q\O as the positions of our monitors and explorers, respec-
tively. All agents are assumed to have integrator dynamics
ṗm(t), ṗe(t) = u, where the desired control input u is
bounded by some |u| ≤ umax,m ≤ umax,e.

Then our exploring agents are tasked with generating a
graph G(V, E , Td), where V are the graph vertices, E are the
graph edges, and Td ⊂ T are the discovered targets. Ideally,
explorers generate G such that Td = T and Q\(O ∪ V) is
minimized, while also maintaining O ∩ V = ∅. Intuitively,
these rules mean an ideal graph decomposition contains all
targets within the environment, maximizes coverage over the
free space, and contains no collisions with obstacles.

Our monitoring agents are tasked with optimally assigning
the targets in Td to themselves and generating a sequence
S ∈ V ∪ Td, such that Td ⊂ S . Intuitively, all targets that
have been discovered by our exploring agents need to be
assigned to a monitor, and the generated sequence must exist
completely within the vertices of the graph and discovered
target positions while also ensuring that all discovered targets
are serviced eventually.

IV. EXPLORATION AND GRAPH GENERATION

In Section III we described the overarching problem
setting for the entire team. Here, we introduce an algorithmic
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Fig. 2: (a) Depicts a simple environment containing monitors,
pink squares, and targets, orange stars. Resulting graphs for
algorithms 2 and 3 are depicted in (b) and (c), respectively.

solution to the exploring agents’ subtask. Our goal is to gen-
erate a decomposition of the environment, computed online
during exploration, that is represented with a graph and can
be used for collision free path planning. We build upon the
author’s prior work on Free-Space Ellipsoid Graphs [31],
which aided in planning across multi-robot teams in non-
convex environments. In this work, we aim to use the IRIS
algorithm to generate a decomposition online, as opposed
to previous methods which rely on offline sampling. While
random sampling generally ensures coverage, it requires full
environmental knowledge and often leads to overlapping and
redundant vertices. As described in [30], the IRIS algorithm
operates by identifying a collision free convex hull around a
given seed point and inflating the maximum volume ellipsoid
within the hull. The results of this process are returned in
the form of linear constraints such that:

[Aq ≤ b | q ∈ Q] ∩ O = ∅, (1)

where matrix A and vector b define a set of hyperplanes
separating the convex hull from all obstacles within the
environment; as well as an ellipse, defined as:

Cq̃ + d | ∥q̃∥ ≤ 1, (2)

such that matrix C and vector d define a dilation and
translation of the unit ball to generate the maximal volume
ellipse contained within the convex hull defined by [A, b].

By running the IRIS algorithm from multiple different
seed points, we can quickly construct a graph from the
ellipsoidal representation by defining the ellipses as vertices
in the graph, with edges determined by any intersections
between them. Further, we can include targets in this graph
by connecting them to the ellipses associated with the convex
hulls in which they are contained. An example of this

decomposition is depicted in Figure 2. Given a connected
ellipsoid graph

G(Vi = [A, b, C, d], [Vi ∩ Vj ], Td),

Propositions 1 and 2 show that there exists a collision free
trajectory to any Td within G.

Proposition 1. There exists a collision free trajectory from
any point within a convex hull to the corresponding ellipse.

Proof. Convex hulls generated by the IRIS algorithms are
collision free, given by (1). Further, any point q̄ that satisfies:

C−1(q̄ − d) ≤ 1, (3)

also satisfies:
Aq̄ ≤ b, (4)

as generated ellipses are fully contained within their convex
hulls. Therefore, any path from ellipse to convex hull is
contained within the convex hull and must be collision
free.

Corollary 1. Any target discovered within a convex hull
can be reached with a collision free trajectory from the
corresponding ellipse.

Proof. Discovered targets are marked at points within gen-
erated convex hulls. Following Proposition 1, a path to any
discovered target is fully contained within the convex hull
and is therefore collision free.

Proposition 2. There exists a collision free trajectory be-
tween any point in an ellipse to at least one point in an
adjacent ellipse.

Proof. Consider any two adjacent ellipses, given by [C1, d1]
and [C2, d2]. There exists some q̄ such that:

C−1
1 (q̄ − d1) = C−1

2 (q̄ − d2) for q̄ ∈ Q, (5)

which implies A1q̄ ≤ b1. Since the convex hull [A1, b1]
that generates [C1, d1] is collision free, there must exist a
collision free straight line that travels from any point in
[C1, d1] to point q̄ in [C2, d2].

Corollary 2. There exists a collision free trajectory from
any point within a convex hull to at least one point in an
adjacent ellipse.

Proof. Following Proposition 2, at least one point in an
adjacent ellipse must also be in the current ellipse. The
current ellipse is fully contained within the current convex
hull. By Proposition 1, there must exist a path to a point in
an adjacent ellipse that is fully contained within the convex
hull and therefore collision free.

These volumes are useful tools for the exploration and
mapping of environments because the convex hull allows
agents to flag potential frontiers for exploration and any plan-
ning performed on the ellipse representation is guaranteed
to be safe. Further, from the standpoint of scalability and
communications, the generated ellipses are fully described
through C and d which are consistent in size, regardless
of their orientation within the environment. To use these



Algorithm 1 Exploration and Graph Generation

Input: Explorer Position: pe(t), Stack: S, Graph: G
Init: Stack S ← pe(t)
while S is not empty do

Set waypoint w to top of S
if Explorer at waypoint: pe(t) = w then

Remove top element from stack S
Run IRIS: A, b, C, d← inflate(w) ▷ [30]
if C, d already exist in V then

Move all flags of matched vertex to top of S
else

Add new vertex, [C, d], to G
Compute intersections between [C, d]

and all other ellipses in V
Update E per existence of intersections
Generate convex hull using A, b
Add any t in convex hull to Td

Note: position and vertex index
Check convex hull for collision with O
Flag midpoint of each collision free segment
Add all flags and vertex indices to top of S

else
if w is in current vertex then

Move pe(t) towards w
else

Run Dijkstra from current vertex ▷ [41]
Move pe(t) towards next ellipse intersection

along shortest path to w

results as a tool for exploration, agents need only determine
where to place seed points for the IRIS algorithm such that
the exploration frontier is expanded or previously uncovered
spaces are filled.

Following Algorithm 1, explorers begin by placing a seed
point at their initial position. This is expanded using IRIS
to generate a collision free convex hull around the explorer.
Any targets contained within the computed convex hull are
added to Td. Agents then perform a line search along each
edge of the convex hull to determine where they depart
from nearby obstacles. We use these departures to place new
flags along the convex hull that offer frontiers for further
exploration. Each flag is added to a stack containing their
positions and associated graph vertices. The top entry in
each agent’s stack is then selected as the next waypoint.
Explorers utilize Dijkstra’s algorithm to plan the shortest path
through the graph to the vertex associated with this waypoint
[41]. Upon reaching the waypoint, agents expand a new seed
with IRIS, and the process of placing flags and travelling
towards waypoints repeats until the stack is empty. When
expanding seed points with IRIS, explorers also check the
resulting ellipses with those already contained in the graph.
If a duplicate vertex would be generated, then a loop closure
occurs and the graph adjacency is updated. Further, all entries
in the stack associated with the loop closure are moved to
the top to prevent early backtracking.

This exploration method can be run online using local

Algorithm 2 Monitor Target Assignment

1: Input: Monitor Positions pm(t), Graph G
2: Compute vertex position for each monitor: V(pm(t))
3: Generate virtual vertex vs, with excess flow of |Td|
4: Add edges from vs to each V(pm(t)), with cij = 0
5: Generate virtual vertex vτ , with excess flow of −|Td|
6: Add edges from each Td to vτ , with cij = 0, µij = 1
7: Compute min cost max flow from vs to vτ through G

using Successive Shortest Paths ▷ [39]
8: Follow edges with flow in reverse to return assignments

knowledge of obstacles. Further, by limiting graph expansion
to flagged points on the frontier of exploration, we signif-
icantly reduce the number of vertices required to achieve
the same levels of environmental coverage as sampling
based methods. See our validation in Section VI-A for a
comparison against a uniform sampling approach.

V. MONITORING OF DISCOVERED TARGETS

Section IV discussed the algorithms that enable our explor-
ing agents to satisfy their subtask and generate a graph for
the team to plan on. Here, we describe how our monitoring
agents use this graph to both assign all discovered targets to
nearby monitors and generate TSP tours that visit each one.

A. Target Assignment

As exploring agents discover tasks, we must assign them
to the team of monitoring agents. Given the graph construc-
tion generated by ellipsoidal decomposition, G(V, E , Td), we
formulate the target assignment as a minimum cost maximum
flow problem [39], [40]. We can write this problem as:

min
xij

∑
(i,j)∈E

cijxij , (6)

s.t
∑

j:(i,j)∈E

x(i,j) −
∑

k:(k,i)∈E

x(k,i) = 0∀ i ̸= s, τ, (7)

∑
(s,i)∈E

x(s,i) =
∑

(i,τ)∈E

x(i,τ) = |Td|, (8)

where cij is the cost incurred by travelling along the edge
from vertex i to j and xij is the amount of flow travelling
along the same edge. Constraint (7) ensures conservation of
flow throughout the graph and (8) constrains the problem
to ensure that each target is assigned once. This is possible
by introducing two new vertices to the graph: a source, vs,
connected to each monitor position with csi = 0, and a sink,
vτ , connected to each target with ciτ = 0 and maximum
flow capacity of one. An example of this graph is depicted
in Figure 2b.

To solve the linear program, we use the successive shortest
paths algorithm to compute flow through the network from
source to sink. Following this flow in reverse returns an
optimal assignment of targets to monitoring agents according
to edge weights, cij ∈ E , and guarantees that each target is
assigned to only one monitor. This process is described by
Algorithm 2.



Algorithm 3 Monitor Tour Approximation

1: Input: Monitor Positions pm(t), Graph G, Assigned
targets Tm

2: for |Tm| do
3: Run Dijkstra from tm ▷ [41]
4: Store shortest paths from tm to other targets Tm
5: Store shortest path from tm to pm(t)

6: Generate a temporary fully connected graph with V =
Tm ∪ pm(t) and edge weights from the stored shortest
paths’ distances

7: Run Christofides’ Algorithm on temporary graph ▷ [42]
8: Move pm(t) towards next tm by following the stored

path from Dijkstra

B. Target Touring

Once each monitor has received an assignment, defined
as Tm, they must plan a trajectory that visits each target.
This can be accomplished by solving a travelling salesperson
problem between targets. To generate tours that exclude all
unnecessary vertices, we run Dijkstra’s algorithm from each
Tm. We use the shortest distances between each Tm and
pm(t) as edge weights in a temporary, fully connected graph,
Gtemp(Vtemp = [Tm ∪ pm(t)], ctemp), that only contains
vertices for the monitor and assigned target positions. An
example of this temporary graph is depicted in Figure 2c. In
this setting, we can write the problem as:

min
xij

∑
i=1

∑
j ̸=i

cijxij , (9)

s.t xij ∈ 0, 1, (10)∑
i ̸=j

x(i,j) = 1, (11)∑
j ̸=i

x(i,j) = 1, (12)

ui − uj + 1 ≤ |Vtemp|(1− xij) (13)
∀i, j : (1 ≤ i ̸= j ≤ |Vtemp|),

where cij and xij are defined as the cost and flow traveling
along edge (i, j) in Gtemp and ui is the number of edges
travelled before reaching vertex i. Optimally solving the
integer linear program is well known to be NP-Hard and, in
highly complex environments with many targets, potentially
intractable to be performed online. We instead choose to
approximate these tours using Christofides’ algorithm. Since
this algorithm is of O(V3

temp) complexity, we maintain poly-
nomial complexity for all monitoring computations, which
greatly improves efficiency in conjunction with the sparse
graphs generated by the explorers. Further, if x∗ is the true
optimal flow in 9, then:∑

i=1

∑
j ̸=i

cij x̃ij ≤
3

2

∑
i=1

∑
j ̸=i

cijx
∗
ij , (14)

where x̃ is the flow returned by Christofides’ algorithm [42].
To generate the tours, Christofides’ algorithm first computes
a minimum spanning tree (MST) in the graph, then finds a

perfect matching for the subgraph of odd degree vertices in
the MST. Joining the perfect matching and MST, an Euler
tour is generated by visiting each node sequentially, twice.
Finally, shortcutting is used to remove additional edges and
prevent the tour from visiting the same vertex twice, return-
ing an approximate TSP solution with bounded performance
as in 14. Once a feasible TSP solution is computed, the
path to the first node in the tour can be found using the
results from the previously run Dijkstra’s algorithm. Finally,
if a monitoring agent has no assigned targets, we choose to
move the agent towards the nearest discovered target. This
allows idle agents to move towards more active regions of the
environment and assist other monitors in servicing targets.
This process of computing and following TSP tours on Gtemp

is outlined in Algorithm 3.

VI. RESULTS

MATLAB simulations were performed to demonstrate
the efficacy of our proposed team structure. These were
performed in an environment meant to mimic the interior
of a large building, with targets spread throughout its rooms
and hallways. After demonstrating the performance of our
approach, we also provide an analysis on the overall com-
putational complexity of our algorithms.

A. Simulations

We generated a non-convex environment containing 40
rectangular and triangular obstacles, depicted in Figure 3, to
investigate our method’s performance in a setting that could
reflect indoor or cluttered environments. The team comprised
one exploring agent and three monitoring agents, though the
method trivially extends to multiple explorers by maintaining
individual stacks for each agent. In each simulation, agents
are deployed around a random initial position.

Coverage and Exploration Performance: To benchmark
our performance, we compare our exploration algorithm to
a uniform sampling method for generating the ellipsoidal
graph, over 100 trials with random initializations. As a
baseline, we generate an ellipsoidal graph with seed points
from uniform sampling, and compare the overall free-space
coverage against the graph resulting from our exploration
algorithm (Algorithm 1). Figure 4 depicts the mean and
variance of coverage, against the total number of ellipses
needed to provide this coverage. As shown in the Figure, both
methods reach similar final environmental coverage, how-
ever, our method requires significantly fewer graph vertices
(ellipsoids). While uniform sampling requires full knowledge
of the environment, our online exploration algorithm grows
as the agent explores and discovers obstacles. While the
ellipsoidal graph only reaches 86% coverage, we find the
convex hulls that generate the ellipses cover up to 99.6%
of the environment. The coverage of these convex hulls
more accurately represents how much of the environment
is reachable from the ellipsoidal graph. We also note that,
without limitations on communication or implementation, it
is possible to construct the graph from the convex hulls
directly to reach near complete coverage of the environment
within the graph.
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Fig. 3: Time series of simulated exploration and monitoring
algorithms in unknown, non-convex environment

Monitoring Performance: Randomized trials were con-
ducted to test the ability of our monitoring team to visit
targets discovered by the exploration team (Algorithms 2 and
3). Across 100 simulations, each containing 50 randomly
generated targets, monitors were able to service 98.4% of
targets. This results in a total of only 79 out of the generated
5000 targets being missed. These results are expected as
polytopic coverage, and therefore the method by which
targets are discovered, is not 100%, however, this perfor-
mance is satisfactory given the randomization and lack of
environmental knowledge given to our team. Further, we
did not control target generation to be accessible, nor did
exploring agents know the true number of targets in the
environment. In the future, we aim to expand our exploration
algorithm to account for all edge cases and provide complete
environmental exploration, which would result in a 100%
target service rate.

B. Complexity Analysis
For the majority of planning, explorers are travelling

between waypoints. The worst case complexity for this oper-
ation is travelling outside the current vertex, using Dijkstra’s
algorithm. This is well known to have a complexity of
O(E + Vlog(V)) with efficient implementation. If explorers
are currently at a waypoint, then the algorithm runs the
IRIS expansion incurring a complexity of O(f(η)O), where
f(η) is a nonlinear term that is determined by the local
geometry and user specified tolerance in the IRIS algorithm.
After IRIS, each operation is of O(1) aside from intersection
calculation, which has complexity of O(V). This means our
exploration algorithm has two primary modes of complexity:

O(E + Vlog(V)) OR O(f(η)O). (15)

Though not strictly polynomial, due to the IRIS algorithm,
one can enforce polynomial complexity by fixing the number
of main iterations on IRIS with small performance penalties.
In practice, due to the efficiency of IRIS and infrequent use
of the algorithm, this is not necessary.
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Fig. 4: Comparison of free-space coverage by our algorithm
to uniformly sampled IRIS. Our approach achieves higher
coverage with fewer ellipses.

While our exploration algorithm does not have strict
polynomial complexity, our monitoring algorithms do. Start-
ing with Algorithm 2, computing the vertex position of a
monitor has complexity O(V). Steps 3-6 are of O(1). Finally,
Successive Shortest Paths is well known to have a complexity
of O(UV(E + Vlog(V))), where U is related to the maxi-
mum capacity of flow in the graph. While not inherently
polynomial, the assignment problem is a special case where
it can be shown that U = 1. Therefore the complexity is
polynomial in: O(V(E + Vlog(V))) [39]. While optimally
solving the travelling salesman problem is NP-hard, our
implementation generates approximately optimal tours in
strict polynomial complexity. Following Algorithm 3, steps
2-5 require running Dijkstra’s algorithm from each assigned
target for a complexity of O(Tm(E +Vlog(V))). Generating
the temporary graph is O(1) and contains one vertex for
each assigned target and the monitor’s current position.
This results in Christofides’ algorithm having complexity of
O(T 3

m) [42]. Therefore, the complexity of generating tours is
given by O(Tm(E+Vlog(V))+T 3

m). This complexity is then
dominated by either target assignment or tour generation,
depending on the size of the graph compared to the number
of assigned targets. Then the overall monitoring complexity
is given by:

O(V(E + Vlog(V)) + Tm(E + Vlog(V)) + T 3
m), (16)

which is strictly polynomial. This, in conjunction with the
reduced graph sizes generated by our exploration algorithm,
results in very fast execution of high level team planning,
which is crucial in some applications.

VII. CONCLUSIONS

In this paper, we proposed a heterogeneous teaming so-
lution to the problem of servicing targets in unknown, non-
convex environments. Dividing our team into explorers and
monitors based on their capabilities, we have demonstrated
that our method efficiently explores and maps these envi-
ronments into a lightweight, safe graph decomposition that
allows the team to swiftly execute high level planning to
accomplish the objective. This method has many potential
applications, from firefighting to delivery services, where
quick planning and safe execution are critical.
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