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Abstract— This paper presents a method to reduce computa-
tions for stochastic dynamic games with game-theoretic belief
space planning through partially propagating beliefs. Complex
interactions in scenarios such as surveillance, herding, and
racing can be modeled using game-theoretic frameworks in
the belief space. Stochastic dynamic games can be solved to
a local Nash Equilibrium using a game-theoretic belief space
variant of an iterative Linear Quadratic Gaussian (iLQG).
However, the scalability of this method suffers due to the large
dimensionality of beliefs which the iLQG must propagate. We
examine the utility of partial belief space propagation, which
allows polynomial runtime to decrease. We validate our findings
through simulations and hardware implementation.

I. INTRODUCTION

Multiagent system trajectory planning under uncertainty
is an extensively researched field. Recent work focuses on
planners which can take the interactivity between agents and
quality of information into account when planning trajecto-
ries. Such planners have application in surveillance, pursuer-
evader games, and driving scenarios. One recent approach
combines game-theoretic decision making with belief space
planning [1]. The interactivity between agents can be mod-
eled by game-theoretic planning. Meanwhile, belief space
planning allows for the quality of information to be estimated
along a planned trajectory, allowing for the ability to gain
and leverage information in addition to fulfilling other tasks.
Combining these two methods can be done by formulating
the problem as a game-theoretic Partially Observable Markov
Decision Process (POMDP). Then, a game theoretic variant
of an iterative Linear Quadratic Gaussian (iLQG) can be used
to find a local Nash Equilibrium between all agents.

However, this method propagates a large quantity of
beliefs for a predicted trajectory. In the full belief space, these
beliefs quadratically increase as the number of agents linearly
increase. This makes scaling the iLQG intractable for larger
numbers of agents. Yet, many scenarios may not require full
belief propagation in order to complete tasks. For example,
consider two agents which can localize themselves strongly
with a static beacon but not with each other. In such a case,
not propagating the cross covariance between the positions of
both agents would decrease computation times with minimal
performance degradation. Ideally, an agent would propagate
only the most important beliefs for a predicted trajectory. We
seek to extend prior work in [1] to allow for this partial belief
space planning in order to obtain faster computation times
with minimal performance decrease. Figure 1 illustrates an
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Fig. 1. An example of agents completing an informative circle swap
with identical initial conditions using various belief space planning methods
(from top to bottom, propagation of full belief, nonzero belief, states plus
positional uncertainty belief, and only states belief). The graphics on the left
show the beliefs propagated with the planner in terms of a vector of states
and matrix of uncertainty for the states. The right shows the trajectories
agents take to reach their goal. The partial belief space planners can localize
their agents before proceeding to the goal similar to the full belief space
planner. Unlike a standard iLQG (bottom), these partial belief space planners
attempt to gain and leverage information to their benefit.

example of how these beliefs can be reduced with minimal
performance degradation.

The main contributions of this paper are:

1) A proposal of the partial belief space planning frame-
work and its benefits;

2) Insights into selecting which beliefs require propaga-
tion and potential adverse effects when done incor-
rectly;

3) Simulation and hardware results showing the method
can allow for real time speeds compared to full belief
space planning.

Background and Related Work

Game-theoretic planners [2]–[4] are useful for modeling
problems where the objectives of individual agents are at
odds. The interactivity between agents is commonly seen in
applications such as driving and racing [5]–[7]. One common
implementation is to find the Nash Equilibrium between
all agents. This can be done using Best Iterated Response
[8], iterative quadratic approximations [9], and solving the
necessary conditions [7]. The belief space variant iLQG



presented in [1] solves the Nash Equilibrium’s necessary
condition through a static quadratic game at each timestep.

Belief Space Planning [10] represents a robot’s uncertain-
ties using distributions of the robot’s state estimate. These
distributions are called beliefs, and computing policies over
the space of beliefs can be described by a POMDP [11].
POMDPs allow for modeling real world processes under
uncertainty, though solving a POMDP to global optimality is
undecidable [12]. Optimization based approaches [13] [14]
including iterative Linear Quadratic Gaussian(iLQG) [15]
scale linearly in the planning horizon l, making it attractive
for real world applications.

The iLQG from [1] can be abstracted as an iterative
gradient descent towards an optimal policy. Following this
abstraction, we seek to reduce our computations by fixing
the number of beliefs we consider in our descent. We
thus take inspiration from the concept of block coordinate
descent [16]–[18], which minimizes an objective along some
variables while fixing the remainder. While our method does
not iterate between different blocks of partial beliefs to reach
a minimum policy, we consider it a first step towards faster
computation times with minimal performance decreases.

The remainder of this paper is organized as follows:
Section II summarizes POMDP formulation and belief dy-
namics. Section III introduces the partial belief space and
how its implementation impacts the iLQG algorithm in [1].
Section IV discusses the performance benefits of using the
partial belief space versus full belief space during planning.
Section V shows the utility of partial belief space planning
empirically through simulation and experimental results.

II. PROBLEM FORMULATION

In this section, we formulate the stochastic system in the
belief space as a POMDP. We then approximate the general
Bayesian Filter update as an Extended Kalman filter (EKF)
to propagate Gaussian beliefs through belief dynamics.

We follow the same assumptions in [1] of common knowl-
edge and first order beliefs. Common knowledge means
agents have models for cost, dynamics, and observations of
other agents. First order beliefs means all agents share the
same beliefs about each other, i.e. an agent i’s belief about
agent j and agent j’s belief about itself are the same. In
our simulations and experiments, we run separate planners
for each agent with separate measurements and actuations
corrupted by independent noise. This violates the first order
beliefs assumption, yet our planner performs well since the
difference in beliefs between agents is not drastic.

A. POMDP Formulation

We follow notation from [1], [13] and define POMDPs in
a general form. The expected return of each individual agent
is determined by the action value function Qi

Qi(b0,u) = E

[
cil(bl) +

l−1∑
k=0

cik(bk,uk)

]
, (1)

where u is the control trajectory of all agents subject to
uncertainty on observed measurements z over the horizon

l, cik and cil are the cost at time k and terminal cost of agent
i, and b is the belief about the state x of the system. We note
that belief in this context refers to the agent’s estimated state
and uncertainty about its state. There are N distinct action
value functions, one for each agent i ∈ {1, ..., N}. We seek
to solve the stochastic optimal control problem [1]

πi =argmin
ui

Qi(b0,u) ∀i ∈ {1, ..., N}, (2)

s.t. bk+1 = β(bk,uk, zk+1).

where b0 is the initial belief, β is the stochastic belief
dynamics of bk, and πi is the optimal policy of agent i.
A general solution to (2) can be defined recursively by the
Bellman equation [1]:

Qi
k(bk,uk) = cik(bk,uk) + E

zk+1

[
V i
k+1(β(bk,uk, zk+1, ))

]
,

V i
k (bk) = min

ui
k

Qi
k(bk,uk), V i

l = cil(bl),

πi
k(bk) = argmin

ui
k

Qi
k(bk,uk), (3)

where V i
k (bk) is the value function and πi

k(bk) is the optimal
policy at time step k.

B. Belief Dynamics

Here, we summarize belief dynamics first presented in [1],
which then allows us to present our approach to partially-
propogated beliefs. This section provides a primer on belief
dynamics. As in prior work, we define our beliefs with
Gaussian distributions that are approximated through an
EKF. We then use a quadratic approximation of the value
function about a nominal trajectory through the belief space,
and the iLQG iteratively computes a local Nash equilibrium
over all agents in the belief space using a Bellman backwards
recursion [1]. We assume nonlinear stochastic dynamics and
observation models for any single agent ai as xik+1 =
f(xk,uk,mk),mk ∼ N (0, I), and zik = h(xk,nk),nk ∼
N (0, I), where mk and nk denote process and measurement
noise whose distributions can be arbitrarily transformed
inside the equations. We formulate the joint process and
measurement functions of all agents i, i = {1, ..., N}
independently as [1]

f(xk,uk,mk) = [f1(x1k,u
1
k,m

1
k)

⊤, . . . ,

fN (xNk ,uNk ,mN
k )⊤]⊤, (4)

h(xk,nk) = [h1(x1k,n
1
k)

⊤, . . . , hN (xNk ,nNk )⊤]⊤,

though we note that our algorithm applies to the general case
of dynamics and measurement functions. We define bk =
(x̂⊤k ,Σk) as the Gaussian belief, where mean state x̂⊤k and
variance Σk describes the stochastic state xk ∼ N (x̂⊤k , Σk).

We follow [13] and approximate the Bayesian filter as an
EKF with standard EKF update equations to make the belief
propagation tractable [1],

x̂k+1 = f(x̂k,uk, 0) +Kk(ẑk+1 − h(f(x̂k,uk, 0), 0)),

Σk+1 = Γk+1 −KkHkΓk+1, (5)



with corresponding matrices defined by [1] Γk+1 =
AkΣkA

⊤
k + MkM

⊤
k , Kk = Γk+1H

⊤
k (HkΓk+1H

⊤
k +

NkN
⊤
k )−1, Ak = ∂f

∂x (x̂k,uk, 0), Mk = ∂f
∂m (x̂k,uk, 0), Hk =

∂h
∂x (f(x̂k,uk, 0), 0), Nk = ∂f

∂n (f(x̂k,uk, 0), 0). We define
bk = [x̂⊤k , vec(Σk)

⊤]⊤, where vec(Σk)
⊤ is the matrix Σk

reshaped into vector form, taking symmetry into account. We
denote s = [b⊤,u⊤]⊤ for belief and controls. We formulate
the stochastic belief dynamics [1]

bk+1 = g(bk,uk) +W (bk,uk)ξk, ξk ∼ N (0, I),

g(bk,uk) =

[
f(x̂k,uk, 0)

vec(Γk+1 −KkHkΓk+1)

]
,

W (bk,uk) =

[√
KkHkΓk+1

0

]
,

where ξk is a Gaussian with dimension of state x that
is applied to the stochastic part of bk. ξk represents both
process and measurement noise in the belief transition.

III. PLANNING WITH PARTIALLY-PROPAGATED BELIEFS

While propagating a full belief space allows for trajecto-
ries with complex emergent behaviors, the quadratic increase
in beliefs due to tracking uncertainty between states makes
the method unscalable for larger numbers of agents. We seek
to find similar trajectories while propagating only part of an
agent’s beliefs about itself and other agents. This would allow
for a more scalable approach with real time capabilities. In
order to do so, we focus on only propagating some of the
uncertainty terms in our stochastic belief dynamics.

A. Partial Belief Space

We start by defining our partially propagated and non-
propagated beliefs in the following. We maintain the same
definition of full beliefs b ∈ Rnx1from Section II-B where
n denotes the number of beliefs.

Definition 1 (Partially Propagated Belief Space). The prop-
agated partial beliefs bp ⊆ b such that bp ∈ R(n−m)×1,
where n−m denotes the number of beliefs we propagate.

Definition 2 (Nonpropagated Belief Space). The nonpropa-
gated partial beliefs bnp = b∁p such that bnp ∈ Rm×1.

We only consider propagated beliefs in our belief dynam-
ics, lowering the dimensions of gk and Wk from Section II-
B. This means nonpropagated beliefs are fixed in our belief
dynamics and thus do not change. Next, we discuss how
partially-propagated beliefs modify the prior work on dy-
namic game belief space planning, then discuss performance
with partially propagated beliefs.

B. Modified Dynamic Game Belief Space Planning

We briefly introduce the iLQG from [1] and discuss
differences when using the partial belief space. We define
sp = [b⊤p ,u

⊤]⊤, which represents the propagated beliefs
and control input. We formulate the iLQG with a quadratic
approximation and use the Bellman equations to obtain

backwards pass equations from [1]. We start by defining the
action value functions from [1] in the partial belief space

Qi
k = cik + V i

k+1 +
1

2

nx∑
j=1

W
(j),⊤
k V i

bpbp,k+1W
(j)
k , (6)

Qi
sp,k = cisp,k + g⊤sp,kV

i
bp,k+1

+

nx∑
j=1

W
(j),⊤
sp,k

V i
bpbp,k+1W

(j)
k , (7)

Qi
spsp,k = cispsp,k + g⊤sp,kV

i
bpbp,k+1gsp,k (8)

+

nx∑
j=1

W
(j),⊤
sp,k

V i
bpbp,k+1W

(j)
sp,k

, (9)

where the subscripts bp, sp, bpbp, and spsp denote gradients
and Hessians, except for gk and Wk where they denote
Jacobians. In the partial belief space, the partial derivatives
are only taken with respect to bp and sp. This creates
smaller matrices which match dimensions with the partial
belief dynamics gk and Wk. Dropping the k for notation
convenience, we recover partial derivatives from (6), (7), (9)

Qi
sp =


Qi

bp

Qi
u1

...
Qi

uN

Qi
spsp =


Qi

bpbp
Qi

bpu1 . . . Qi
bpuN

Qi
u1bp

Qi
u1u1 . . . Qi

u1uN

...
...

. . .
...

Qi
uNbp

Qi
uNu1 . . . Qi

uNuN

 ,

(10)

Q̂uu =


Q1

u1u

Q2
u2u
...

QN
uNu

 , Q̂ubp
=


Q1

u1bp

Q2
u2bp

...
QN

uNbp

 , Q̂u =


Q1

u1

Q2
u2

...
QN

uN

 ,

(11)
and define our linear feedback policy from [1] to be

πk = ūk + jk +Kkδbp,k, (12)

where ū is the nominal input of the agent, jk = −Q̂−1
uu Q̂u

is the feedforward term, Kk = −Q̂−1
uu Q̂ubp is the feedback

term, and δbp,k is the difference between the predicted and
current partial belief at timestep k. In the full belief space,
this linear feedback policy is proven to return a local Nash
Equilibrium control trajectory for all agents [1]. In addition,
deviations of any agent from the predicted beliefs will change
the policy, allowing for more robust trajectory control of
the ego agent. We note that the linear feedback policy for
partial belief space only accounts for differences in the
partially propagated beliefs. This means that non-propagated
beliefs are not taken into account in the updated linear
feedback policy. We use quadratic approximations from [1]
to formulate the backwards equations. The value functions



V i are now partially propagated backwards as

V i
k = Qi +Qi,⊤

u jk +
1

2
j⊤k Qi

uujk, (13)

V i
bp,k = Qi

bp
+K⊤

k Qi
uujk +K⊤

k Qi
u +Qi,⊤

ubp
jk, (14)

V i
bpbp,k = Qi

bpbp
+K⊤

k Qi
uuKk +K⊤

k Qi
ubp

+Qi,⊤
ubp

Kk,

(15)

V i
l = cil(b̄p,l), V i

bp,l =
∂cil(bp)

∂bp

∣∣∣∣
bp=b̄p,l

,

V i
bpbp,l =

∂2cil(bp)

∂b2p

∣∣∣∣
bp=b̄p,l

. (16)

C. Policy Regularization

We implement a Levenberg-Marquardt style regularization
[19] similar to [1] and [20] in order to ensure convergence
to a policy in two parts: control and belief regularization.

Q̃i
uu = Q̂i

uu + µuI, (17)

Qi
spsp,k = cispsp,k + g⊤sp,k(V

i
bpbp,k+1 + µbI)gsp,k

+

nx∑
j=1

W
(j),⊤
sp,k

(V i
bpbp,k+1 + µbI)W

(j)
sp,k

, (18)

where µu and µb are positive scalar values. This adds a
quadratic cost to the current control sequence and previous
belief trajectory, causing new sequences to deviate less as
µu and µb increase, respectively.

As the number of agents increase, using automatic dif-
ferentiation to obtain gs and Ws becomes infeasible due to
memory limitations. As such, we utilize finite differences
for these terms. This can result in slight errors propagated
through our policy, causing the regularization from (17), (18)
to sometimes converge near the nominal policy. To ensure
convergence to the nominal policy and thus a minimum, we
implement a conditional line search similar to [13]

πk = ūk + αjk +Kkδbp,k, (19)

where α = 1 when unregularized. When a new proposed
trajectory matches the previous proposed trajectory within
some percent tolerance, α is decreased. When a new policy
is accepted, α is reset to 1. This ensures linear convergence
to a policy. Per [20], our control and belief regularization
quadratically converge when far from a minimum. Then
per [13], the conditional line search linearly converges if
regularization is detected to be ineffective near the minimum.

IV. PERFORMANCE OF PARTIALLY PROPAGATED BELIEFS

The prior section outlined partial belief space planning for
stochastic dynamic games. In this section, we explain how
the partial belief space can be leveraged to improve runtime
performance in the iLQG from [1] while proposing that
under certain conditions, it is possible to maintain consistent
performance as compared to the full belief space planning.

A. Partial Belief Planner versus Full Belief Planner

We seek to compare the partial belief space iLQG to the
full belief space iLQG. We show that the partial belief space
planner can return equivalent trajectories to the full belief
space planner when non-propagated values are unchanging.

Proposition 1. If bp contains all beliefs which change, then
the partial belief space planner yields the same predicted
trajectories as the iLQG planner in [1].

Proof. Without loss of generality, b = [b⊤p ,b
⊤
np]

⊤. If bp
contains all changing values, then bnp is unchanging. Triv-
ially, if all beliefs changed, then bp = b and the algorithm
is identical to [1]. Now consider if there exist some beliefs
that do not change, such that bnp is non-empty. Then, the
Jacobians and Hessians of bnp are 0. Since the iLQG utilizes
the Jacobians and Hessians of each belief in the backwards
pass to derive a policy through multiplication and addition,
these values do not influence the linear feedback policy. It
can be shown the resulting policy is the same from equations
in Section III-B.

Remark 1. By only propagating bp, the dimensionality of
the backward pass equations is reduced. In the case where
bnp is unchanging, this results in equal performance to the
full belief space planner with improved runtime.

Thus, using the partial belief propagation means assuming
all nonpropagating beliefs are constant. Constant uncertainty
values exist in many multiagent systems, such as the special
case where all agents have independent process and measure-
ment equations as in (4). Such systems will have covariance
values of 0 for the states of any two different agents.

B. Partial Belief Space Planning iLQG implementation

Our modified algorithm to solve for the Nash Equilibrium
is very similar to the algorithm presented in [1], except that
we compute these terms over the partially propagated belief
space. For space constraints, we omit this algorithm and
refer the reader to [1]. We utilize CasADi [21] to formulate
b, then only select the elements bp for propagation in our
belief dynamics. CasADi allows for automatic differentiation
and compute graph/static C code generation, allowing us to
easily compute individual elements. The belief dynamics can
thus take bp,k and bnp as inputs, and return bp,k+1 as an
output. bp is propagated through the forward passes of the
algorithm, and the backward pass equations use gradients,
Jacobians, and Hessians with reduced dimensions. The it-
erations between backwards and forwards passes continues
until convergence to a policy. As such, an agent can predict a
trajectory in the partial belief space and actuate, then update
its full state and uncertainty through a Bayesian Filter.

C. Dominant Runtime Analysis

While the dominant runtime complexity of partial belief
space planning is bounded to that of the full belief space
planner as O(lN7ni,6

x ) [1], we examine the case where each
agent has independent dynamics and measurement equations
to show the potential benefits. We define N as the number



TABLE I
AVERAGED PERFORMANCE FOR 4 AGENT INFO CIRCLE SWAP: FULL VS. PARTIAL BELIEF SPACE PLANNING

Mean ±1σ for N = 50 Trials Full Beliefs Propagated Nonzero Uncertainty
Beliefs Propagated

Positional Uncertainty
Beliefs Propagated

No Uncertainty Beliefs
Propagated

Iteration Time (s) .1854± .0032 .0572± .0016 .0309± .0044 .0233± .0002
Distance traveled to Goal (m) 10.1615± 1.1126 10.1525± .9127 10.5166± 1.3228 11.5317± 1.6441
Minimum Distance to Center (m) 1.2485± .6916 1.2759± .6168 1.4135± .6518 1.7867± .6623
Time to Goal(s) 4.4295± .6715 4.4295± .5767 4.4224± .6782 4.5065± .7567

Total uacc (m/s2) 6.0300± .9213 5.9643± .7806 6.2206± 1.4474 6.7937± 1.3531
Total uste (rad) 0.7174± .3298 .7545± .3485 .7578± .3485 .8147± .3046

of total agents in the system. We define the joint state
dimension as O(nx) and assume all agent’s contain the
same number of states such that O(nx) = O(Nni

x). We
also assume nx = nu = nz. The full covariance of the
joint state contains n2

x/2 unique elements. The joint belief
b thus contains nx + n2

x/2 elements, or O(n2
x) elements.

The reduced belief state for independent agents contains
N(ni

x+ni,2
x /2) elements, or O(Nni,2

x ) elements. Following
similar analysis to [1], we find a computational bottleneck
when evaluating the action-value function Qi

ss,k in (9). The
term g⊤s,kV

i
bb,k+1gs,k requires a matrix multiplication of

dimension O(Nni,2
x )×O(Nni,2

x ) = O(N3ni,6
x ) complexity.

This operation is completed for all agents, meaning a full
iteration of this algorithm has a dominant runtime complexity
of O(lN4ni,6

x ), where l is the planning horizon. The origi-
nal algorithm’s runtime complexity is O(lN7ni,6

x ), making
partial belief space planning a far more attractive approach.

V. SIMULATIONS AND EXPERIMENTS

In this section, we examine the utility of partial belief
space planning through simulations and experiments. Our
computations are done with Matlab and CasADi [21]. Sim-
ulations were run on an Intel Core i7-13700KF at 3.4 GHz
while experiments were run on an Intel i9-9900K at 3.6GHz.
Agents for all simulations were run from a cold start nominal
input sequence of all zeros while experiments were hot
started with the previous input trajectory to speed up con-
vergence rate. Calculations, measurements, and actuations
for each agent were parallelized and taken separately with
independent Gaussian noise to mimic real life conditions.

We choose to use an informative circle swap for our
comparisons as seen in Figure 2. This game incentivizes
information seeking agents to take riskier trajectories to
localize themselves before proceeding to their goal. When
agents are not information seeking, they take safer trajecto-
ries like the standard iLQG in Figure 1.

A. Simulation Results: Informative Circle Swap

We compare partial belief space planner performance
through a circle swap with an information source placed in
between all agents. We give all agents car-like dynamics
with states xi = [xi, yi, vi, θi], where (x, y) is position,
v is velocity, and θ is orientation. The control inputs
ui = [uiacc,u

i
ste] denote acceleration uiacc and steering

angle uiste. We encode the dynamics of agents as ẋk =[
vk cos θk vk sin θk uacc,k

vk tan uste,k

L

]⊤
, where L is

Fig. 2. An informative circle swap with an information source in the center
solved using partial belief space planning. All agents attempt to localize
within the source rather than take safer trajectories towards their goals.

agent length. The discrete time dynamics are xk+1 = xk +
ẋkτ+M(uk)·mk, where τ is the timestep and M(uk) scales
the process noise multiplicative to the control input. We
encode the agent’s objectives by defining its cost functions

ck(bk,uk) = u⊤k Ruk + βk det(Σxy,k)

+ ccoll(xk) + γk∥dgo∥2,
cl(bl) = βl det(Σxy,l) + γl∥dgo∥2, (20)

where ∥dgo∥ is the Euclidean distance of (x, y) from the
desired position, γl, β, R are tuning parameters, Σxy denotes
the ego agent’s positional uncertainty, and ccoll(x) denotes
an exponential collision barrier as in [1]. We restrict agents
to noisy position measurements, with more precise measur-
ments when near the information source. The observation
model becomes zik = [xi, yi]⊤ + N(xik) · nik. We note that
this system model of dynamics and measurements means the
states of any two agents i and j are independent, and thus
the covariance between their states(i.e. Σxixj ) are always 0.

We start all agents approximately equal distances from
their goal and place the information source inbetween them.
The resulting behaviors in Figure 2 show agents complete
their tasks while localizing themselves near the information
source. We compare the behavior of agents through 4 differ-
ent controllers: full belief space planning (FBS), partial belief
space planning where only non-zero/changing uncertainties



Fig. 3. Log plot of mean time per iteration for agents in a simulated
informative circle swap. We compare full belief space propagation, partial
belief space planners, and a regular iLQG without uncertainty propagation.
Data points were obtained from the mean iteration times over 50 runs.

are propagated(NUB), partial belief space planning where
only positional uncertainties are propagated(PUB), and a
regular iLQG with no uncertainties propagated. The mean
results of 50 trials for each planner in a 4 agent informative
circle swap are presented in Table I.

The FBS planner performs effectively the same as the
NUB planner, as the partial derivatives of all zero uncertainty
values are 0. The deviations are caused by noise in the
system. However, the NUB planner runs much faster due
to not attempting to propagate the zero beliefs. This could
also be achieved by preallocating uncertainty values as 0,
however this method would not allow changing beliefs to be
fixed. In cases where computation speed is essential, the PUB
planner performs faster while still attempting to localize near
the information source. While it travels a further distance
with more effort and less localization, it does so at ≈ 54%
of the iteration time of the NUB planner. Furthermore, the
PUB planner performs better than the standard iLQG with
no belief space planning by localizing near the center more.
This shows the tradeoff between using a partial belief space
iLQG and the necessity of choosing to propagate important
beliefs that impact the an agent’s performance.

We compare the mean time per iteration for our various
planners and present the results in Figure 3. These results
are consistent with our runtime analysis in Section IV-C and
show polynomial decreases in iteration time using partial
planners. Furthermore, they are bounded by an iLQG without
uncertainty propagation and the full belief space planner.
We also note that the number of iterations to converge was
very similar between all planners throughout the simulation,
meaning the computation time saved per iteration was con-
sistent with the overall computation time saved per timestep.

B. Hardware Experiments: Informative Circle Swap

We ran our partial belief space algorithm on two AgileX
LIMO1 robots, with robot positions known via Optitrack2

motion capture. Received measurements and actuations were

1https://global.agilex.ai/products/limo
2https://optitrack.com/

Fig. 4. Experimental results of a two agent informative circle swap solved
in realtime using partial belief space planning. Our method (middle) allowed
both agents to avoid collisions and localize themselves at the information
source before reaching to their goal. If information gain is ignored (bottom),
agents do not localize as much and therefore make worse decisions when
trying to accurately arrive to their goals.

artificially corrupted with noise. Computations were paral-
lelized on a central computer (8-core, 32GB RAM, Windows
10), which received continuous updates about robot poses
and sent control inputs to each robot at ∼2.2Hz. In the case
where an agent did not converge to an optimal policy in time,
the best current calculated policy was used. We utilized dy-
namics, measurement equations, and cost functions identical
to our simulations with differently tuned parameters.

Our mean iteration time for a 2 agent system with NUB
planning was 0.0228 seconds. We attribute this increase
in iteration time from our simulations to the computer
needing to stream each robots pose continuously in parallel
while computing new policies. As seen in our video, agents
were capable of localizing themselves within the informa-
tion source while avoiding collisions. When agents do not
consider information gain in their cost function, they take
safe routes which do not result in localization. This lack
of localization means they do not reach their final goal as
accurately. We note that using the full belief space would
result in larger iteration times and thus less iterations per
time step before the best attempt policy is picked. In practice,
this can lead to poor policies which are unable to accomplish
tasks and prevent collisions.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduce partial belief space planning
and show its utility through simulations and hardware ex-
periments. Our findings show partial belief space planning
can lead to polynomial runtime improvements, and move the
iLQG planner from [1] further into real time applications.
Future work will focus on varying which beliefs are propa-
gated at each timestep. This would allow for planners which
are capable of reducing computation times online depending
on the beliefs about other agents and the environment.
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