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Abstract— When agents in a multi-robot team have limited
knowledge about their relative performance, their teammates,
or the environment, robots must observe individual perfor-
mance variations and adapt accordingly. We propose robot
reputation to assess the historical performance of agents and
make future adaptations in a persistent coverage task. We
consider a heterogeneous multi-robot team, where robots are
equipped with different capabilities to serve discrete events in
an environment. We utilize a heterogeneous coverage control
approach to partition the space according to robot capabilities
and the estimated probability density, such that the robot is
responsible for serving the events in its assigned region. As the
team serves events, we assign each robot a reputation, which is
then used to adjust the size of a robot’s region, thus adjusting
the amount of space a robot is responsible for serving. Our
simulations show that using reputation to weigh the size of the
Voronoi cells outperforms the case where we neglect reputation.

I. INTRODUCTION

To make heterogeneous multi-robot teams more robust in
deployment, we cannot assume the agents all have equal
performance in sensing, actuation, or communication. Sup-
pose we deploy a multi-robot team to visit specific points in
an environment and take various measurements or collect
samples. It is very possible a ground robot tasked with
collecting samples is slowed by mud, or the camera of a
drone becomes faulty. Conversely, some robots may perform
better than expected, either with variations in design or wear
over time. Accounting for these individual variations will
improve the overall team performance.

In this paper, we address the problem of observing and
adapting to these performance variations by assigning each
robot a reputation, which agents can use to modify their
tasks or behavior. Specifically, we consider a heterogeneous
multi-robot team in which each agent is equipped with one or
more capabilities. The team is tasked with meeting discrete
events in the environment, with each event requiring one or
more of the robot capabilities, by traveling to those events.
We utilize a weighted heterogeneous Voronoi-based coverage
control approach to assign regions of the environment to each
robot, such that each robot is responsible for serving events
in their assigned cells. The probability of event occurrences
is estimated over time, and the assigned robot regions adapt
accordingly. As robots serve events, they are assigned a
reputation based on their ability to serve events, and their

Mela Coffey and Alyssa Pierson are with the Department of Me-
chanical Engineering at Boston University, Boston, MA 02115, USA.
mcoffey@bu.edu, pierson@bu.edu

This work supported in part by NSF CAREER Award 2235622 and a
Boston University startup grant. Their support is gratefully acknowledged.

(a) Robots serving events (b) Event history and generators

Fig. 1. Our simulations present 5 robots (white discs), each equipped
with up to 3 capabilities (green circle, blue square, or red triangle), and
tasked with serving scattered events requiring those capabilities. (a) shows
the circle, square, and triangle events in the space that need to be served,
and the black lines indicate the planned robot paths to serve these events. (b)
shows the same instance as (a). The black dots are the generators that make
up the weighted Voronoi cells. The green, blue, and red ×’s are current
and past events used to estimate the density function corresponding to the
circle, square, and triangle capabilities, respectively. The contours in both
(a) and (b) indicate the estimated probability that an event will occur given
those current and past events.

cells are weighted according to their reputation. Intuitively,
a robot that has a reputation of performing better than its
neighbors will increase its cell size to cover more area and
compensate for lack of performance in its neighbors. Our
simulations show that modifying cell size based on relative
robot reputation allows robots to serve more events than an
approach that does not consider reputation.

The contributions of this paper are as follows:
1) A framework for a multi-robot team to meet discrete,

heterogeneous events that assigns each robot a repu-
tation as robots serve demand, which is then used to
create weighted Voronoi partitions;

2) Proof of convergence of the Voronoi generators to
critical points of the weighted locational cost;

3) A Kernel Density Estimation (KDE) to continually
update the density function as events appear; and

4) Simulations to show that our approach outperforms that
which neglects robot reputation.

Related Work

Many studies have explored adaptation to changes in the
team or the environment in multi-robot coverage. Prior works
invoke weighted Voronoi partitions to accommodate sensing
radius [1], power efficiency [2], and overall sensing health
[3] by adapting the size of each robot cell accordingly. The
author’s prior work [4] uses adaptive weights to account
for relative sensing and actuation performance. The authors
of [5] compute equitable partitions so that each robot has



roughly the same amount of “work” to cover before deploy-
ing robots to sweep the space.

Other works address the problem of balancing expected
and desired behavior. In [6], robots lose their calibration and
ability to function as anticipated, and they must adapt to
those individual differences. In [7], robots adapt to individual
performance changes in task allocation by tracking the
“quality” of a robot performing a task. The authors of [8]
consider a heterogeneous robot team where robots assist one
another in completing tasks that the other cannot.

Some studies consider the situation in which robot infor-
mation is unknown. In [9], robot performance is unknown,
and the proposed algorithm assigns specialization to agents
by differentiating between simulated and actual costs of the
agent. In [10], the capability of each robot is originally
unknown in a task allocation problem, and each agent
calculates its capability based on the tasks it completes, then
broadcasts this information to its neighbors. While many
task allocation problems focus on centralized or auction-
based solutions [11], [12] and work under uncertainty [13]
and communication constraints [14], our Voronoi tessellation
determines the task assignment.

While prior work considers performance variations, a
main contribution of this paper is the introduction of rep-
utation. Unlike the author’s prior work assessing instanta-
neous variations in sensing or actuation performance [4],
we calculate reputation by observing historical actions of
agents. Intuitively, reputation decreases when robots fail to
meet assigned tasks, and increases when they complete all
objectives. We use reputation as a tool to improve overall
performance and serve more events. By observing and track-
ing each individual robot’s reputation, we can further get a
sense of heterogeneity in the team, and adjust to reputation
differences online to achieve an improved performance.

The remainder of this paper is organized as follows:
Section II formulates the problem and provides necessary
technical background. Section III details our definition of
reputation and outlines our control policy. In Section IV,
we describe our density estimation methods. We provide our
overall algorithm in Section V and present simulations in
Section VI. Finally, we state our conclusions in Section VII.

II. PROBLEM FORMULATION AND BACKGROUND

We instantiate our problem within a Voronoi-based cover-
age control framework, which promotes equitable coverage
of an evolving demand, while generating new events for
robots to serve. Voronoi-based coverage control allows us
to assign regions of Q to each robot based on the demand
Dj , the robot capabilities, and the robot performance. It also
allows us to naturally adapt to changes in the environment,
in this case, changes in event appearance probability. Each
robot moves within its own cell(s), following a route (tour)1

to serve the events that appear within its own cell(s), while
Voronoi generators maintain the partitions. This section

1Note the generation of robot tours is not a main contribution of this
paper. We use a traveling salesman problem (TSP) in our simulations to
generate tours between events.

provides a brief introduction to the heterogeneous coverage
problem, including generating and maintaining robot cells.

We consider a heterogeneous team of n robots, i ∈
{1, · · · , n}. Each robot has at least one of m capabilities,
j ∈ {1, · · · ,m}, and we denote the set of capabilities of
robot i by Ci. We consider a convex environment Q ∈ R2,
with points in Q denoted q, q ∈ Q. The positions of the
robots are denoted x = {x1, · · · , xn}, xi ∈ Q. The robots
are tasked with serving discrete events (demand) in Q, which
require service from one of the m capabilities. We denote
the set of events requiring capability j by Dj , Dj ⊂ Q.

Traditional Voronoi-based coverage control [15] deploys
a homogeneous team of robots to cover an environment
given some static density function ϕ(q) : R2 → R us-
ing Lloyd’s algorithm [16]. To account for heterogeneity
within the team, specifically the various capabilities of the
robots, we invoke a heterogeneous extension of traditional
Voronoi-based coverage control, introduced in [17], [18].
We provide this technical background here, which we build
upon in Section III. We define one Voronoi partition for
each capability j, and assign robot i to partition j if robot
i has capability j. Thus, we have m Voronoi partitions.
Formally, we define the set of robots assigned to partition
j as Pj = {i | j ∈ Ci}. Then, we define the Voronoi cell
of robot i in partition j by V j

i = {q ∈ Q | ∥q − gi∥ ≤
∥q − gk∥,∀k ∈ Pj ,∀k ̸= i}, where gi is the generator [19]
associated with robot i2. The probability that an event at
point q will require capability j is represented by the density
function ϕj(q). Then each robot i can compute its mass and
centroid associated with partition j by M j

i =
∫
V j
i
ϕj(q)dq

and Cj
i = 1

Mj
i

∫
V j
i
qϕj(q)dq, respectively. The robots use

Lloyd’s algorithm to minimize the locational cost function of
the generators:H(g) =

∑n
i=1

∑m
j=1

∫
V j
i
f(∥q−gi∥)ϕj(q)dq,

where g is the set of generator positions, g = {g1, · · · , gn},
gi ∈ Q, and f : R→ R. By letting f(∥q−gi∥) = ∥q−gi∥2,
then the generators follow the dynamics

ġi = κ
∑
j∈Ci

M j
i (C

j
i − gi) (1)

to minimize H(p), where κ is a positive constant.
Recall that we also wish to adjust the size of the robot

cells using weighted Voronoi diagrams, ultimately adjusting
the amount of space a robot i covers. To accomplish this,
we propose the use of weighted Voronoi partitions [19].
When using weighted Voronoi diagrams for coverage control
involving only one Voronoi partition, each robot i is assigned
a weight wi that adjusts the size of its cell. Intuitively,
a larger weight wi results in a larger cell size. Then, the
environment is partitioned by Wi = {q ∈ Q | ∥q−gi∥−wi ≤
∥q − gk∥ − wk,∀k ̸= i}. We can use this partition when
computing the mass and centroid of a cell. We extend this
weighted Voronoi control policy in Section III to account for
the heterogeneous robot capabilities.

2Typically, the robot position serves as the generator for the Voronoi
partition (i.e., gi = xi) as in [18], [20]. In this paper, however, robots move
within their own cell to meet discrete events by generating a tour between
the events, and we utilize generators to maintain the Voronoi configuration.



III. REPUTATION TO IMPROVE PERFORMANCE

In this work, each robot is responsible for serving the
events that appear within their weighted Voronoi cell(s). As
robots serve events, we assign each robot a reputation based
on their ability to meet events. We use this reputation to
adjust the weights of each robot cell, ultimately adjusting the
amount of area a robot covers. In this section, we first define
the robot reputation, then introduce a weighted Voronoi-
based coverage control algorithm for heterogeneous teams.

A. Defining robot reputation

While prior works accommodate instantaneous variations
or differences in physical characteristics, we propose rep-
utation, which one can generally think of as a history of
performance. By tracking reputation, we can more readily
observe variations and heterogeneity, and even differentiate
between types of robots. For example, in a team of drones
and ground robots, we may assume agents with a history of
serving demand significantly faster than others are drones.
Definition 1 formalizes our idea of reputation.

Definition 1 (Reputation). The reputation of robot i associ-
ated with a task j is a history of a robot i’s ability to perform
and/or quality of performing a task j.

Because reputation considers performance history, we first
define the performance of a robot within the scope of serving
demand. Since our robots are tasked with serving demand
requiring various capabilities, we compute the performance
of robot i associated with each of its capabilities j ∈ Ci every
T units of time. In this work, we define the performance pji
of robot i for capability j within a time window Tk as the
ratio of the number of events served by robot i of type j to
the total number of events of type j that appear in the robot
cell. Formally, the performance pji within a time window Tk,
k = 1, · · · ,∞, is given by

pji (Tk) =
nj
i,served(Tk)

nj
i (Tk)

, (2)

where nj
i,served(Tk) is the number of events served by robot

i with capability j within time window Tk, and nj
i (Tk) is

the total number of events that appear in the robot cell V j
i

within time window Tk. Note if no event occurs in cell V j
i

in time window Tk (i.e., nj
i (Tk) = 0), then robot i is not

assigned a performance for that time window.
We then define the reputation memoryMj

i for robot i for
each of its capabilities j as the set of the N most recent
performance metrics. Thus, we can think of the reputation
memoryMj

i as a short-term performance memory, where we
only remember the last N time windows where nj

i (Tk) >
0. Note Mj

i is initially empty. Thus, for early iterations of
deployment, specifically when k < N and/or nj

i (Tk) = 0
for small k, then the length of Mj

i will be less than N .
We define the reputation rji as the average of the reputation

memory Mj
i . More formally, we define the reputation as

rji =
ϵ

|Mj
i |

∑
Mj

i , (3)

where ϵ is a positive constant adjusted to the size of the envi-
ronment Q, and |Mj

i | denotes the length ofMj
i . Intuitively,

as a robot i serves more events requiring capability j, its
reputation associated with capability j will increase.

B. Weighing Voronoi cells based on reputation

We now wish to use the robot reputation to modify the
amount of area a robot covers. Intuitively, as the robot repu-
tation increases, the amount of area it covers should increase,
and as reputation decreases, coverage area should decrease.
We use weighted Voronoi diagrams to adjust the amount of
area a robot covers, and we use the robot reputation (3) to
determine the cell weights. Recall we use generators g to
maintain the Voronoi partitions while robots follow tours
within their cell(s) to serve events. Therefore, we use the
generators to construct the weighted Voronoi partition.

When we have one Voronoi partition, we can simply
use the partitioning Wi introduced in Section II. However,
because we have m partitions, and we wish to account
for each robot i’s performance with capability j, then we
assign one weight wj

i for each robot i corresponding to its
reputation using capability j. We thus partition the space by:

W j
i = {q ∈ Q | ∥q − gi∥ − wj

i ≤ ∥q − gk∥ − wj
k,

∀k ∈ Pj ,∀k ̸= i}.
(4)

We then must modify our control policy to instead utilize
the weighted Voronoi partition. The mass and centroid are
computed from the weighted partition by:

M j
i =

∫
W j

i

ϕj(q)dq, Cj
i =

1

M j
i

∫
W j

i

qϕj(q)dq.

(5)
The generators move according to the control policy (1) to
minimize the locational cost

HW (g) =

n∑
i=1

m∑
j=1

∫
W j

i

1

2

(
∥q − gi∥2 − wj

i

)
ϕj(q)dq (6)

using Lloyd’s algorithm.
Our goal is to adjust the size of a robot’s cell based on

its ability to serve events requiring capability j over the last
N time windows (i.e., its reputation). If a robot serves more
events than its neighbors over the last N time windows, then
its coverage area should increase. Similarly, robots who do
not serve as many events as its neighbors should decrease in
cell size. As such, we want the relative weights to converge
to the relative reputations:

(wj
i − wj

k)→ (rji − rjk),∀i, j, k. (7)

It was shown in the author’s prior work [4, Theorem 1] that
the weightings satisfy (7) under a single partition when the
weights adhere to the adaptation law

ẇj
i =
−ακ
2M j

i

∑
k∈N j

i

[
(wj

i − rjk)− (wj
k − rjk)

]
djik, (8)

where κ is the proportional gain introduced in (1), N j
i is

the set of neighbors of robot i in partition j, djik is the
length of the Voronoi boundary shared by robots i and k



in partition j, and M j
i is given by (5). Note because we

adjust the reputation rji frequently, the weights wj
i may not

have time to converge. Note also the control policy for the
generators is distributed, as the robots need only track the
reputation of themselves and their neighbors.

We now show in Theorem 1 that under the control policy
(1), our algorithm allows generators to converge to critical
points of the weighted locational cost function (6).

Theorem 1. Given n generators following the control policy
(1) in a bounded, convex environment Q partitioned by (4),
the generators converge to critical points of the locational
cost function (6).

Proof. To prove that the generators converge to critical
points of the locational cost, we use LaSalle’s invariance
principle [21]. First, consider the weighted locational cost
(6) as a candidate function to prove convergence. We can
compute the time derivative to be

dHW (g)

dt
=

n∑
i=1

m∑
j=1

∫
W j

i

(q − gi)
Tϕj(q)dqġi

− 1

2

n∑
i=1

m∑
j=1

ẇj
i

∫
W j

i

ϕj(q)dq.

(9)

Letting the generators follow dynamics (1), and given
that −

∫
W j

i
(q − gi)

Tϕj(q)dq = −M j
i (C

j
i − gi)

[22], then the first term in (9) becomes ∂HW

∂g ġ =

−
∑n

i=1

∑m
j=1 κ(M

j
i )

2∥Cj
i − gi∥2, implying that

∂HW

∂g ġ ≤ 0. Then, using the weightings adaptation
law (8), the second term becomes ∂HW

∂w ẇ =∑n
i=1

∑m
j=1

ακ
4

∑
k∈N j

i

[
(wj

i − rki )− (wj
k − rjk)

]
djik.

Since we sum over all neighbors and all robots, the weights
and reputation values cancel in each partition j, and we can
conclude that ∂HW

∂w ẇ = 0. Therefore, dHW (g)
dt ≤ 0.

By LaSalle’s invariance principle, the generators g will
converge to the largest invariant set contained within the set
of all points such that dHW (g)

dt = 0, i.e. the generators will
converge to critical points of HW (g), proving the theorem.

We showed in Theorem 1 that the generators converge to
critical points of the weighted locational cost (6). Note while
it is indeed possible for generators to converge to saddle
points when a robot belongs to more than one partition, in
our simulations, we observe that robots converge to one of
their centroids. Furthermore, when a generator i converges
to a critical point of the locational cost, the corresponding
robot i is set up to optimally cover demand as predicted by
the density function ϕj(q).

IV. ESTIMATING EVENT PROBABILITY

Recall the density function ϕj(q) represents the probability
that an event requiring capability j will appear at any point
q. Rather than assuming robots have knowledge of event
density functions, we estimate the density functions over time
based on current and past events. This allows robots to adapt

to evolving, stochastic demand while optimally positioning
themselves to serve events. In this section, we enable robots
to estimate the density function ϕj(q) as events occur.

Several previous works focus on learning density func-
tions. In [23], each robot estimates the density using ba-
sis functions and local information. In [24] robots use
Mixture of Gaussian Processes to learn the density online
by continuously taking observations. The authors of [25]
enable robots to learn the density through exploration and
sample collection. In [26], robots balance learning the density
function and moving to their centroid. These works all focus
on learning the density through measuring samples, such as
temperature to build a heat map. In our work, robots need not
collect measurements; rather, we learn the density through
discrete events (i.e. whether an event occurs at a point q).
We therefore turn to kernel density estimation (KDE) [27]
to estimate the probability that events will occur in Q.

Similar to keeping a reputation memory of robot perfor-
mance, in our implementation of KDE, we keep a memory
of event occurrences Dj . By tracking only the last nj events,
where nj is the number of elements in Dj , we assume only
“new” events contribute to the overall probability of an event,
and any event happening before the last nj events is outdated.

Given the set of events Dj , we can estimate the density
using KDE. The kernel density estimator creates one kernel
K for each event location µj

l ∈ Dj ⊂ Q, sums over each of
the kernels, and smooths the final resulting sum. Similar to
[24], [25], [26], we assume a 2D Gaussian kernel

K(q, µ;h) =
1

2πh2
exp

[
−∥q − µ∥2

2h2

]
, (10)

where µ is the location of the Gaussian peak center and h is
the bandwidth, also called the window width or smoothing
parameter [27]. Given the set of events requiring capability
j, Dj , we can estimate the density function ϕj by

ϕj,est(q) =
1

njh

nj∑
l=1

K(q, µj
l ;h), (11)

where K is the kernel function (10) that satisfies the condi-
tion

∫
Q
K(q, µ;h)dq = 1.

Finally, we note the estimated density (11) can be com-
puted in a distributed fashion. We assume each robot can
subscribe to the events corresponding to their capabilities
(for example, a user can submit requests through an app,
and the user location and capability request are streamed to
the robots with that capability), then each robot can keep
track of Dj , and estimate the corresponding density ϕj,est.

V. OVERALL ALGORITHM

In this section, we detail our overall algorithm, outlined
in Algorithm 1, for adapting to robot reputation in covering
discrete events. In the following paragraphs, we detail each
section of our algorithm.

1) Deploy to centroids (lines 2-5): We begin our algo-
rithm by first deploying robots using Voronoi-based coverage
control, until robots converge to critical points of (6). The
robots use a heterogeneous version of Lloyd’s algorithm,



Algorithm 1 Covering Discrete Events
1: initialize t = t0, pi(t0), ṗi(t0) = [1, 1]T, gi(t0), Ci, T ,
Dj = ∅, Mj

i = ∅, Ti = ∅ nj
i,served = 0, nj

i = 0,
wj

i = rji = ϵ ∀i, j
2: while ∥ṗi∥ > 0 ∀i do ▷ deploy robots to CVT
3: ġi ← getGeneratorDynamics(g)
4: ui ← ġi
5: end while
6: while true do
7: if new event(s) then
8: update event memory Dj for each j ∈ Ci
9: nj

i ← nj
i + 1 for each new µj

l ∈W j
i

10: end if
11: update tour Ti and number of events in cell nj

i

12: if mod( t
T ) = 0 then ▷ every T seconds

13: rji ← (3) ▷ compute reputation
14: nj

i,served ← 0, nj
i ← 0 ▷ reset performance

15: end if
16: ġi ← getGeneratorDynamics(g,Dj , r

j
i )

17: gi ← gi + ġi∆t ▷ move generators
18: if Ti ̸= ∅ then
19: di,next ← Ti(0)
20: ui ← dgi,next−pi

∥di,next−pi∥vi,max ▷ move to next event
21: if ∥di,next − pi∥ < λ then ▷ robot at event
22: nj

i,served ← nj
i,served + 1 for j | di,next ∈ Dj

23: remove di,next from Ti
24: end if
25: else
26: ui ← gi − pi ▷ move to generator
27: end if
28: t← t+∆t ▷ increment time
29: end while

Algorithm 2 getGeneratorDynamics(g,Dj , r
j
i )

1: for each j ∈ Ci do
2: Estimate the density ϕj(q) given events Dj (11)
3: ẇj

i ← (8) ▷ compute weight dynamics
4: wj

i ← wj
i + ẇj

i∆t ▷ update weights
5: Compute weighted Voronoi partition W j

i (4)
6: Compute mass M j

i and centroid Cj
i (5)

7: end for
8: Compute generator dynamics ġi = κ

∑
j∈Ci

M j
i (C

j
i−gi)

9: return ġi

outlined in Algorithm 2, in which they estimate the density
given the set of events Dj , compute the mass and centroid
given the updated weighted Voronoi partition, and follow a
move-to-centroid policy. Here, the robot positions serve as
the generators, so the robot dynamics ẋi = ui is equivalent to
the generator dynamics ġi. Once the robots have converged
to their critical points, the robots then begin to serve discrete
events within their cell(s) W j

i , while adapting to performance
variations, a process which is repeated until termination.

2) Update events (lines 7-10): At each iteration, the
robots check for new events that may have appeared and

assign them to robots. If a new event requiring capability j
appears, then the robot updates the event memory Dj while
ensuring the number of elements in Dj is equivalent to nj ,
thus keeping a sliding memory of events that contribute to
the estimated density ϕj,est. If a new event µj

l appears in
robot i’s cell W j

i , we add to the total number of events nj
i

for the current time window Tk.
3) Update tour (line 11): The robots then update their

tour Ti, which is the queue of events that robot i is to serve
within all its cells W j

i , ∀j ∈ Ci. As new events appear
in a robot’s cell, or as events are removed from its cell,
each robot updates its own tour to accommodate changes
in events. Note events can be removed from the tour by
either meeting the event, or by a transfer of events between
neighboring robots as cell boundaries move. A loss of an
event by transfer would result in the gain of said event by
the corresponding neighboring robot. Note this tour update
can be computed in a distributed fashion.

4) Compute reputation (lines 12-15): Each robot com-
putes the reputation of all robots in the team, including
itself. Every T seconds, we compute the robot performance
of the previous time window Tk−1 using (2), then update
the reputation memoryMj

i , which contains the performance
values pji from up to the last N time windows. If there is
currently no reputation memory (Mj

i = ∅), or the number
of elements in Mj

i is less than N , then we append the new
reputation value of time window Tk−1 to Mj

i . If there are
already N performance values in Mj

i , then we append the
new reputation value, and pop the first element fromMj

i . We
useMj

i in (8) to update the weights (lines 3-4 in Algorithm
2). The number of events served and total number of events
are reset prior to starting the new time window Tk.

5) Move generators and robots (lines 16-27): Finally, we
update the generators using Algorithm 2, which also updates
the weighted cells. If the robot has events in its cell, the
robot sets the next event in its cell di,next as its destination,
and the robot moves at maximum speed to this event. If the
robot is already at that event, we consider the event served.
We then add this event to the total number of events served
and remove this event from the tour Ti. If there are no events
in any of robot i’s cells (Ti = ∅), the robot moves toward
its generator, where it will be optimally positioned based on
the estimated probability density.

VI. SIMULATIONS

We performed a series of simulations comparing our
approach (Algorithm 1) with one that does not track robot
reputation. Specifically, the comparison algorithm is Algo-
rithm 1 without a weighted Voronoi diagram, thus we keep
wj

i constant for the duration of the comparison trial. We
consider two scenarios: one with five robots and up to two
capabilities (n = 5, m = 2), and one with five robots and up
to three capabilities (n = 5, m = 3). We randomized robot
positions, robot capabilities, and maximum robot velocities.
We also randomly generated events every 10 seconds, with
the probability of an event popping up at point q being
weighted by a Gaussian Mixture Model (GMM). Capabilities



(a) t = 0s (b) t = 200s

(c) t = 400s (d) t = 800s

Fig. 2. Time series of an example trial with n = 5 robots and
m = 2 capabilities under our approach (Algorithm 1). Here, the robots are
represented by white discs, with their capabilities (blue square and/or red
triangle) printed on top of the discs. The solid blue and red lines indicate the
Voronoi boundaries for the square and triangle capabilities, respectively. The
event history Dj locations are denoted by the ×’s, with red ×’s contributing
to the triangle density, and the blue ×’s contributing to the square density.
The contour lines represent probability of event occurrences as estimated
by KDE from Dj . Events that have yet to be served are denoted by the red
and blue triangles, and the robot tours are denoted by the black solid lines.

(a) Weights over time. (b) Reputation over time.

Fig. 3. Weights and reputation values for the trial presented in Figure
2. Each line indicates the weights wj

i (t) associated with robot i serving
capability j. In this case, j is either a square or a triangle (see Figure 2).

Fig. 4. Randomized simulations comparing the total events met under
weighted Voronoi cells and a non-weighted cells. Each box consists of 25
trials. Statistical significance is indicated between the two cases.

j = 1 and j = 2 each had two Gaussian peaks, as shown
in Figure 2, and capability j = 3 had a single peak at the
center of the environment, as shown in Figure 1. The GMMs
slowly migrated across the space and were effectively tracked
by our KDE (see Figure 1). Note the multiple, overlapping
partitions open up the possibility for collisions between
agents. While we do not account for collision avoidance in
our implementation, as collisions are highly unlikely in large
environments, in practice, we assume robots can carry out
collision avoidance locally when necessary.

We carried out 25 randomized simulations of each of the
two scenarios under both our approach (with weights) and the
comparison algorithm (without weights). As a performance
metric, we recorded the total number of events met by the
end of the trial. All computation was performed in Python. To
compute the tour Ti, each robot solves a traveling salesman
problem (TSP) given the events in all its cells using Gurobi3

optimizer. We use KDEpy4 for our density estimation.
Figure 2 shows a time series of a randomized simulations

for n = 5 robots and m = 2 capabilities. Full simulations of
this trial, along with a trial showing m = 3 capabilities (also
shown in Figure 1), are provided in the supplemental video.
We plot the weights wj

i and reputation values rji over time
for this trial in Figure 3. Here, weights and reputation values
start at 200 because we use an ϵ value of 200, which allows
us to scale the weightings to the size of the environment.

We present results from all simulations in Figure 4. We
performed a statistical analysis comparing the number of
events met in the weights and no-weights cases. We observe
that our weighted approach outperforms the non-weighted
approach, with a statistical significance of p < 0.001 in
the scenario where m = 2, and p < 0.05 when m = 3,
as indicated in Figure 4. We therefore conclude that, by
adjusting the size of a Voronoi cell based on robot reputation,
the number of events the team meets as a whole increases.

VII. CONCLUSIONS

In this work, we introduce the concept of robot reputation
to improve overall performance of heterogeneous teams
tasked with serving discrete events. We use a weighted,
heterogeneous Voronoi-based coverage control approach to
optimally assign robots to cell(s) based on their individual
capabilities. We show that the Voronoi partition generators
converge to critical points of the weighted heterogeneous
locational costs, allowing the environment to be optimally
partitioned for robots to serve events. Each robot is respon-
sible for serving the events that appear in their individual
cell(s). We use KDE to estimate the probability of event oc-
currences across the environment, which continually evolves
as events appear. Robots track the reputation of each agent
over time and use the reputation to weigh their Voronoi
cells, and ultimately adjust the amount of space they cover.
Our simulations show that weighing cells using reputation
improves overall team performance.

3https://www.gurobi.com/
4https://kdepy.readthedocs.io/en/latest/index.html
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Control With Application to a Team of Small UAVs,” IEEE Transac-
tions on Control Systems Technology, vol. 21, no. 5, pp. 1719–1730,
2013.

[4] A. Pierson, L. C. Figueiredo, L. C. A. Pimenta, and M. Schwager,
“Adapting to sensing and actuation variations in multi-robot coverage,”
The International Journal of Robotics Research, vol. 36, no. 3, pp.
337–354, 2017.

[5] J. M. Palacios-Gasós, D. Tardioli, E. Montijano, and C. Sagüés, “Eq-
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