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Abstract— This paper presents asocial agents for selec-
tive negotiations in stochastic dynamic games. Game-theoretic
frameworks in the belief-space show promise in modeling
complex interactions in scenarios such as surveillance, herding,
and racing. Stochastic dynamic games can be solved as a
continuous POMDP to find a local Nash Equilibrium solution
of all agents using a game-theoretic belief-space variant of
iLQG. However, the scalability of this method suffers due
to the large dimensionality of beliefs which the iLQG must
propagate, and fails to consider environmental features such
as dynamic obstacles. We introduce asocial agents models,
which follow fixed input trajectories in the planning horizon.
Ego agents can selectively toggle which agents it considers
asocial, thereby reducing computational overhead. Simulations
demonstrate that our approach to selective negotiations can
help scale stochastic dynamic games with faster computation
times and minimal performance decline.

I. INTRODUCTION
Trajectory planning for multiagent systems under uncer-

tainty is a complex problem with extensive research. Recent
work in multiagent systems focuses on developing planners
which take into account both the interactivity between agents
and the quality of information each agent possesses when
planning trajectories. These planners have application in
surveillance, pursuer-evader games, racing, and traffic nego-
tiation. A recent approach combines game-theoretic decision
making with belief-space planning [1]. Game-theoretic plan-
ning provides an easy way to model interactions and decision
making between autonomous agents. Belief-space planning
allows agents to address their quality of information. This
method allows agents to take actions to gain information and
use it to their advantage while fulfilling tasks. By formulating
the problem as a game-theoretic Partially Observable Markov
Decision Process (POMDP), a local Nash Equilibrium can be
found using an iterative Linear Quadratic Gaussian (iLQG).

However, the large quantity of beliefs and interactivity
of game-theoretic planning means scalability suffers as the
number of agents increase. Depending on the scenario,
modeling interactions between certain agents can yield non-
influence, resulting in wasted computations. For example,
a driver may only need to consider the behavior of cars
which are nearby, as distant cars are not impacted by the
driver’s behavior. Ideally, the driver would selectively model
the policies of agent’s whose interactivity is important while
partially ignoring others. We seek to extend prior work in
[1] to allow for this selective planning and increase the
scalability and complexity of games. Figure 1 illustrates a
selective negotiation that changes over time.
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Fig. 1. Selective negotiations allow an agent to ignore asocial agents that
have little impact on their actions. Our framework allows the ego agent to
choose its most relevant neighbors, which may evolve over time. Running
this specific game with selective negotiations for N = 50 trials results in a
38% decrease in computation time compared to full negotiation planning.

The main contributions of this paper are:
1) The introduction of “asocial” agents within games;
2) A selective negotiation framework for toggling when

agents are social or asocial; and
3) Simulations that demonstrate reductions in computa-

tion effort with minimal performance impact.

A. Background and Related Work

Game-theoretic models excel in modeling social dilem-
mas, where agents must make decisions when their objec-
tives are at odds. Common applications include modeling
human interactions in driving and racing scenarios [2]–[4].
Approaches to solving the Nash Equilibria include Best
Iterated Response [5], iterative quadratic approximations [6],
and solving the necessary conditions [4]. [1] solves the Nash
Equilibrium’s necessary condition of a static quadratic game
at each stage of a backwards pass in an iLQG.

Belief-Space Planning [7] uses distributions of the robot’s
state estimate to represent the robot’s uncertainties. These
distributions are called beliefs, and computing policies over
the belief space can be described by a POMDP [8]. POMDPs
are a commonly used framework for modeling real world
processes under uncertainty. While solving POMDPs to
global optimality is NP-Hard [9], optimization based ap-
proaches [10] [11] such as the iterative Linear Quadratic
Gaussian(iLQG) [12] scale linearly in the planning horizon
l, making it feasible for real world implementation.

To address complexity across large teams, some distributed
algorithms will break a centralized problem into smaller
sub-problems, reducing which agents coordinate with an
ego agent [13] [14] [15]. These methods only consider the
existence of agents in close proximity, ignoring all other
agents. This limits the complexity of games which can be
played and can lead to difficulty tracking agents that enter
or exit the ego’s proximity. Thus, we seek a method which
can track all agents without modeling all of their interactions.



The remainder of this paper is organized as follows:
Section II summarizes mathematical preliminaries, belief dy-
namics, and iLQG algorithm from [1]. Section III introduces
the asocial agent, derives a linear feedback policy for mixed
social/asocial agent modeling, and introduces the modified
iLQG with selective negotiation. We show the utility of
asocial agents and selective negotiation in Section IV.

II. MATHEMATICAL PRELIMINARIES

In this section, we formulate the POMDP and stochastic
system in the belief space. We then approximate the general
Bayesian Filter update with an EKF to propagate our Gaus-
sian beliefs. We then briefly reintroduce the iLQG algorithm
for dynamic games with belief space planning from [1].
We first take inspiration from [16] and introduce a formal
definition for all agents in [1] which contain the social ability
to negotiate with other agents.

Definition 1 (Social Agent). An agent is considered social if
it considers the interactions between itself and other agents
when planning its inputs.

Assumption 1 (Common Knowledge). Social agents have
models for cost, dynamics, and observations of other agents.

Assumption 2 (First Order Beliefs). All agents share the
same beliefs about each other. An agent i’s belief about an
agent j and that agent j’s belief about itself are the same.

Later, Section III-B introduces our Asocial Agents, which
do not consider the interactions of others and have a different
Common Knowledge model.

A. POMDP Formulation
We start by defining POMDPs in their most general form

following notation from [10]. The expected return of each in-
dividual agent under a control trajectory of all agents defined
as u subject to uncertainty on the observed measurements z
over the horizon l is determined by the action value function
Qi(b0,u) = E

[
cil(bl) +

∑l−1
k=0 c

i
k(bk,uk)

]
, where cik and

cil are the cost at time k and terminal cost of agent ai and b
is the belief about the expected state x of the system, in this
case the state and covariance of the state. Since there exists
an action value function for each agent, there are N distinct
action-value functions for i ∈ {1, ..., N}.

Given an initial belief b0 for agents ai, i = {1, ..., N},
we seek to solve the stochastic optimal control problem

πi =argmin
ui

Qi(b0,u) ∀i ∈ {1, ..., N}, (1)

s.t. bk+1 = β(bk,uk, zk+1).

where β denotes the stochastic belief dynamics of bk and πi

denotes the optimal policy of agent ai. A general solution to
(1) can be defined recursively by the Bellman equation [1]:

Qi
k(bk,uk) = cik(bk,uk) + E

zk+1

[
V i
k+1(β(bk,uk, zk+1, ))

]
,

V i
k (bk) = min

ui
k

Qi
k(bk,uk), V i

l = cil(bl),

πi
k(bk) = argmin

ui
k

Qi
k(bk,uk), (2)

where V i
k (bk) is the value function and πi

k(bk) is the optimal
policy at time step k.

B. Problem Formulation and Belief Dynamics

In order to find a solution to the continuous POMDP, we
follow [1] and consider beliefs as Gaussian distributions.
We approximate the belief dynamics through an EKF, and
use a quadratic approximation of the value function about a
nominal trajectory in the belief space. We use these to for-
mulate an algorithm which iteratively computes a local Nash
equilibrium over all agents through a belief space variant of
iLQG which performs a Bellman backwards recursion.

We assume nonlinear stochastic dynamics and observation
models for any single agent ai as:

xik+1 = f(xik,u
i
k,m

i
k), mi

k ∼ N (0, I), (3)

zik = h(xik, x
¬i
k ,nik), nik ∼ N (0, I), (4)

where mk and nk denote process and measurement noise
whose distributions can be arbitrarily transformed inside the
equations, and x¬i

k refers to the state of all other agents. We
formulate the joint process and measurement functions of all
agents ai, i = {1, ..., N} [1]

f(xk,uk,mk) = [f1(x1k,u
1
k,m

1
k)

⊤, . . . ,

fN (xNk ,uNk ,mN
k )⊤]⊤, (5)

h(xk,nk) = [h1(x1k, x
¬1
k ,n1k)

⊤, . . . , hN (xNk , x¬N
k ,nNk )⊤]⊤.

We define bk = (x̂⊤k ,Σk) as the Gaussian belief, where
mean state x̂⊤k and variance Σk describes the stochastic state
xk ∼ N (x̂⊤k ,Σk). We must now propagate these beliefs
through a Bayesian Filter. We follow [10] and approxi-
mate the Bayesian filter as an EKF with standard EKF
update equations to make the belief propagation tractable
[1], x̂k+1 = f(x̂k,uk, 0) + Kk(ẑk+1 − h(f(x̂k,uk, 0), 0)),
Σk+1 = Γk+1 − KkHkΓk+1, with corresponding ma-
trices defined by Γk+1 = AkΣkA

⊤
k + MkM

⊤
k , Kk =

Γk+1H
⊤
k (HkΓk+1H

⊤
k + NkN

⊤
k )−1, Ak = ∂f

∂x (x̂k,uk, 0),
Mk = ∂f

∂m (x̂k,uk, 0), Hk = ∂h
∂x (f(x̂k,uk, 0), 0), Nk =

∂f
∂n (f(x̂k,uk, 0), 0). We redefine bk = [x̂⊤k , vec(Σk)

⊤]⊤,
where vec(Σk)

⊤ is the matrix Σk reshaped into vector
form. We define s = [b⊤,u⊤]⊤ as shorthand for belief
and controls. We formulate the stochastic belief dynamics as
bk+1 = g(bk,uk) +W (bk,uk)ξk, ξk ∼ N (0, I), where

g(bk,uk) =

[
f(x̂k,uk, 0)

vec(Γk+1 −KkHkΓk+1)

]
,

W (bk,uk) =

[√
KkHkΓk+1

0

]
,

where ξk is a Gaussian with dimension of state x that
is applied to the stochastic part of bk. ξk represents both
process and measurement noise in the belief transition.



C. Algorithm for Dynamic Game Belief Space Planning

We formulate the iLQG with the Bellman equations and a
quadratic approximation to obtain backwards pass equations
from [1]. We start by defining the action value functions [1]

Qi
k = cik + V i

k+1 +
1

2

nx∑
j=1

W
(j),⊤
k V i

bb,k+1W
(j)
k , (6)

Qi
s,k = cis,k + g⊤s,kV

i
b,k+1 +

nx∑
j=1

W
(j),⊤
s,k V i

bb,k+1W
(j)
k ,

Qi
ss,k = ciss,k + g⊤s,kV

i
bb,k+1gs,k +

nx∑
j=1

W
(j),⊤
s,k V i

bb,k+1W
(j)
s,k ,

where the subscripts b, s, bb, and ss denote gradients and
Hessians, except for gk and Wk where they denote Jacobians.
Dropping the k for notation convenience, we recover other
partial derivatives from (6),

Qi
s =


Qi

b

Qi
u1

...
Qi

uN

Qi
ss =


Qi

bb Qi
bu1 . . . Qi

buN

Qi
u1b Qi

u1u1 . . . Qi
u1uN

...
...

. . .
...

Qi
uNb Qi

uNu1 . . . Qi
uNuN

 ,

(7)

Q̂uu =


Q1

u1u

Q2
u2u
...

QN
uNu

 , Q̂ub =


Q1

u1b

Q2
u2b
...

QN
uNb

 , Q̂u =


Q1

u1

Q2
u2

...
QN

uN

 ,

(8)
and define our linear feedback policy to be

πk = ūk + jk +Kkδbk, (9)

where ū is the nominal input of the agent, jk = −Q̂−1
uu Q̂u is

the feedforward term, and Kk = −Q̂−1
uu Q̂ub is the feedback

term. This linear feedback policy depends on changes in the
joint belief δbk, meaning the predicted inputs will change if
any agents deviate from their predicted behavior.

We formulate the backwards equations to propagate the
value functions V i backwards as quadratic approximations

V i
k = Qi +Qi,⊤

u jk +
1

2
j⊤k Qi

uujk, (10)

V i
b,k = Qi

b +K⊤
k Qi

uujk +K⊤
k Qi

u +Qi,⊤
ub jk, (11)

V i
bb,k = Qi

bb +K⊤
k Qi

uuKk +K⊤
k Qi

ub +Qi,⊤
ub Kk, (12)

V i
l = cil(b̄l), V i

b,l =
∂cil(b)

∂b

∣∣∣∣
b=b̄l

, V i
bb,l =

∂2cil(b)

∂b2

∣∣∣∣
b=b̄l

.

(13)

D. Control and Belief Regularization

Following [1] and [17], we implement a Levenberg-
Marquardt style regularization [18] to ensure convergence
to a policy in two parts: control and belief regularization.

Q̃i
uu = Q̂i

uu + µuI, (14)

Qi
ss,k = ciss,k + g⊤s,k(V

i
bb,k+1 + µbI)gs,k

+

nx∑
j=1

W
(j),⊤
s,k (V i

bb,k+1 + µbI)W
(j)
s,k , (15)

where µu and µb are positive scalar values. This adds a
quadratic cost to the current control sequence and previous
belief trajectory, causing new sequences to deviate less as
µu and µb increase, respectively.

III. TECHNICAL APPROACH

The prior section outlined the mathematical preliminaries
for stochastic dynamic games [1]. Our goal is to scale
these methods to greater numbers of agents through selective
negotiations, enabled by “asocial” agents. We first modify
our regularization to account for more agents in the iLQG
with a new conditional line search. Next, we define asocial
agents. Finally, we present a selective negotiation framework
that utilizes asocial agents in a modified iLQG algorithm.

A. Conditional Line Search

As the number of agents increase, using automatic dif-
ferentiation to obtain the Jacobians gs and Ws becomes
infeasible due to memory limitations. Instead, we utilize
finite differences for these terms which can result in slight
errors propagated through our policy. As such, the control
and belief regularization will sometimes only converge near
the nominal policy. To ensure convergence to a minimum,
we implement a conditional line search similar to [10]

πk = ūk + αjk +Kkδbk, (16)

where α = 1 when unregularized. Whenever a new proposed
trajectory matches the previous proposed trajectory within
some percent tolerance, α is decreased. When a new policy
is accepted, α is reset to 1. This ensures linear convergence
to a policy. Intuitively, our control and belief regularization
quadratically converge when far from a minimum. Then, the
conditional line search linearly converges if regularization is
detected to be ineffective near the minimum.

B. Asocial Agents

We wish to model agents that do not consider the inter-
activity of its actions nor the interactions of other agents.
Ideally, a social agent should be able to reactively plan
around the decisions of these agents, but should not be able
to influence their decisions. One simple example of this
is a dynamic obstacle on a fixed path. A social agent can
plan to avoid the obstacle, but it cannot affect the obstacle’s
trajectory. We define these agents as asocial.

Definition 2 (Asocial Agents). An agent is considered aso-
cial if the planned actions of all agents do not affect its
planned actions, such that πas

k = ūask ,∀k = 0, . . . , l − 1 .

In the context of the iLQG, an asocial agent’s policy
should equal their nominal input, and social agents should
assume that they cannot influence the decisions of asocial
agents. To allow social agents to plan around asocial agents,
we introduce Assumption 3.

Assumption 3 (Asocial Agent Common Knowledge). Social
agents have models for nominal input sequence ūask , dynam-
ics, and observations(but not cost) for all asocial agents.



One method to model asocial agents to satisfy Definition 2
is to complete the iLQG and set the relevant feedforward and
feedback terms of the policy to 0, similar to enforcing input
constraint violations [12]. However, asocial agents without
cost functions (i.e. dynamic obstacles with set inputs) would
become impossible to model. Instead, we model asocial
agents by assigning their backwards pass action value gradi-
ents and Hessians. We define the dynamics and measurement
equation of asocial agents as seen in (3,4). We fix the cost
gradient and Hessian for asocial agents in our system as

Qas
s,k = 0sx1, Qas

ss,k = Isxs, (17)

for all steps k in the planning horizon. This is equivalent
to setting the action value of the agent to a minimum. This
results in Qas

uu = Iuxu, Q
as
ub = 0uxb, Q

as
u = 0ux1 for all

asocial agents. Plugging into (9), the linear feedback policy
for a fully asocial agent system becomes πas

k = ūask .
We now seek to combine social and asocial agents and

derive a new linear feedback policy. We first present Lemma
1, which states the properties of a 2x2 Block Matrix Inverse.
We use this result in our proof of Theorem 1, which presents
our linear feedback policy for our game.

Lemma 1 (2x2 Block Matrix Inverse [19]). Let S =[
A B
C D

]
where A and D are square blocks of arbitrary size

and B and C are conformable with them for partitioning. Let
D be invertible. Then S is invertible if and only if the Schur
complement D′ = A−BD−1C of D is invertible, and

S−1 =

[
(D′)−1 −(D′)−1BD−1

−D−1C(D′)−1 D−1 +D−1C(D′)−1BD−1

]
.

Proof. We refer to [19] for our proof.

Theorem 1. Given a system containing social and asocial
agents, the joint policies πk of all agents results in linear
feedback policies for social agents and the nominal input
for asocial agents such that

πk =

[
ūso

ūas

]
−
[
(µuIuso +Qso

usouso)−1Qso
uso

0

]
−
[
(µuIuso +Qso

usouso)−1Qso
usob

0

]
δbk, (18)

where Qso
usouso , Qso

usob, Qso
uso are obtained from the stacked

partial derivatives (8) of all social agents.

Proof. Consider a multiagent system with social agents
aso,m, {m = 1, ...,M} and p asocial agents aas,p, {p =
1, ..., P}. We refer to aso and aas as all social and asocial
agents, respectively. We now solve the quadratic game as
defined by (9). We drop k for notational convenience and
obtain the following regularized matrices at timestep k

Q̃uu =

[
µuIuso +Qso

usouso Qso
usouas

0 µuIuas + Iuas

]
, (19)

Q̂ub =

[
Qso

usob

0

]
, Q̂u =

[
Qso

uso

0

]
, (20)

where I are conforming identities and Qso
usouso , Qso

usouas ̸= 0.
Now consider the inverse of Q̃uu from (19). Q̃uu is

positive definite due to the regularization from (14), and
thus Q̃−1

uu exists [20]. The sub-matrix D = µuIuas + Iuas is
trivially invertible. If Q̃uu and D are invertible and C = 0,
then the Schur complement D′ = A−BD−1C = A is also
invertible. From Lemma 1 we find Q̃−1

uu , then use (20) and
(9) to find (18) and thus prove Theorem 1.

Intuitively, Theorem 1 claims for asocial agents, the action
value is set to a minimum, meaning the nominal input will
never change. For social agents, the partial derivatives are
only taken with respect to social agent inputs and beliefs. As
such, social agents do not attempt to negotiate with asocial
agents, they instead reactively plan around asocial inputs.

C. Selective Negotiation Requirements

A key advantage of asocial agents is that they can exist
alongside social agents. By design, an agent can also change
its designation over the course of a game. We now present
our selective negotiation framework, which allows our ego
agent to assign social and asocial agents. We define the
following requirements for selective negotiation:

1) The ego agent must consider the existence all agents
in the problem, even if not all agents are social;

2) The property of being social does not need to be
intrinsic to any agent;

3) The method must fit into the previous iLQG as defined
in Section II, and provide faster runtime complexity.

Requirement 1 means that the ego agent cannot ignore
other agents. Otherwise, certain games may become impos-
sible to formulate without the existence of all agents being
known. Requirement 2 means that the ego agent can switch
its classification of other agents to be social or asocial.
For example, a driver should be able to model a faraway
car as asocial, and then model it as social when it gets
closer. We fulfill these requirements by assigning agents
as social or asocial before the iLQG begins. We do this
by using heuristics based on an agent’s beliefs, such as
nearest neighbor. We can also permanently assign agents,
for example, a dynamic obstacle is always asocial.

D. Algorithm for Solving the Nash Equilibrium

We now present our algorithm to solve for the Nash
Equilibrium with asocial agents with Algorithm 1. We first
assign each agent to be social or asocial using a heuristic.
We then assign nominal inputs for each agent, which contains
unchanging inputs ūas and changing inputs ūso.

We begin the iLQG to find a local Nash Equilibrium of the
social ego agent. The current belief estimate b0 and nominal
controls ū are used to find an initial belief trajectory. Then,
the backwards pass finds the policy π for all agents, with
only the social agent action value functions being propagated.
We note that ūas is encoded within π and does not change
per Theorem 1. The forward pass updates the belief trajec-
tory based on the belief dynamics model and the updated
feedback policy π. When all the action value functions of
social agents improve, we assign the new belief and control



trajectories as nominal and reduce regularization. Otherwise,
we reject the trajectories and increase regularization. This
iteration of backwards and forwards pass continues until
all action value functions of social agents converge with a
relative change less than the threshold ϵ.

Algorithm 1 Nash Equ. Solution with Asocial Agents
Input: Initial belief b0, models cik, cil , f , h, agents ai

Output: Predicted trajectories b̄, ū, feedback law π

1: Flagai ← isSocialAgentHeuristic(ai,b0, cik, c
i
l)

2: ūi ← getAgentInput(ai,b0, cik, c
i
l, F lagai )

3: ū← ū1,...,N ▷ Contains ūso, ūas

4: b̄← Propagate b0 with g and ū

5: while any(∥Q
so(b̄new,ūnew)−Qso(b̄,ū)∥

Qso(b̄,ū)
> ϵ) do

6: Backwards Pass:
7: V so

b,l , V
so
bb,l ←From terminal bound. conditions (13)

8: for k from l − 1 to 0 do
9: Qso

s,k, Q
so
ss,k ← Prop. action value funcs. (6)

10: Qas
s,k, Q

as
ss,k ← 0sx1, Isxs (17)

11: πk, jk,Kk ← Solve quadratic game (9)
12: V so

b,k, V
so
bb,k ← Prop. value funcs. (10)(11)(12)

13: end for
14: Forward Pass:
15: b̄new, ūnew ← Propagate b0 with g and π
16: if any(Qso(b̄new, ūnew) ≤ Qso(b̄, ū)) then
17: b̄, ū← b̄new, ūnew ▷ Only ūso changes in ū
18: Lower Regularization (14)(15)(16)
19: else Increase Regularization
20: end if
21: end while

E. Social and Asocial Agent Heuristic Selection

The social/asocial heuristic from Algorithm 1 is problem
specific, though some ground rules exist for proper heuristic
selection. First, the ego agent must always be considered
social to derive new trajectories. Likewise, agents without
cost functions such as dynamic obstacles must always be
considered asocial. More complex selection can be done
through analyzing an ego agent’s cost function. For example,
agents avoiding collisions should model nearby agents as
social in order to obtain more reliable collision avoidant
trajectory predictions. Further selection can be done by
analyzing agents which have coupled dynamics and mea-
surement equations to the ego agent, such as an agent
connected to the ego by a spring. Essentially, agents whose
interactions greatly influence the reward or actions of the
ego should be modeled as social, while other agents can be
modeled as asocial. Proper heuristic selection is necessary
for large improvements in computation times. For example,
for N = 50 trials of the game in Figure 1 we observed a 38%
decrease in computation times using selective negotiations,
with 28% less iterations to converge on average.

F. Dominant Runtime Analysis

We define N and Nso as the number of total agents and
social agents in the system, respectively. We define the joint

Fig. 2. The social agents (red, green) traverse past dynamic obstacles
(black), localize themselves within a moving light source (blue), and
proceed towards their goal positions (cyan) while avoiding collisions. The
light source is modeled with exponential decay to encourage negotiations.
Initially, both social agents wait for obstacles to pass before proceeding
towards the light source. They then negotiate so that both can localize
themselves without colliding. After localization, the red agent waits for
obstacles to pass while the green agent cuts past the obstacle.

state dimension as O(nx) and assume all agent’s contain
the same number of states such that O(nx) = O(Nni

x). We
also assume nx = nu = nz. The covariance of the joint
state contains n2

x/2 unique elements. The joint belief b thus
contains nx + n2

x/2 elements, or O(n2
x) elements. Similar

to analysis in [1], we find a computational bottleneck when
evaluating the action-value function Qi

ss,k in (6). The term
g⊤s,kV

i
bb,k+1gs,k requires a matrix multiplication of dimension

O(n2
x) × O(n2

x) = O(n6
x) = O(N6ni,6

x ) complexity. This
operation is only completed for social agents, meaning a
full iteration of this algorithm has a dominant runtime com-
plexity of O(lNsoN

6ni,6
x ), where l is the planning horizon.

The original algorithm’s runtime complexity is O(lN7ni,6
x ).

Thus, replacing social agents with asocial agents can linearly
lower the dominant runtime since Nso ≤ N .

IV. SIMULATIONS

In this section, we examine the utility of asocial agents
and the modified iLQG in two stochastic dynamic games: an
obstacle course and a narrow traffic scenario. We implement
our algorithm in Matlab simulations with CasADi [21]
to leverage automatic differentiation, static C-code/compute
graph generation, and sparse operations. We ran our simula-
tions on an Intel Core i7-13700KF at 3.4 GHz. Agents for all
simulations were run with a nominal control input sequence
of all zeros unless otherwise noted.

A. Obstacle Course

We first demonstrate our algorithm allows social agents
with car-like dynamics to plan around social and aso-
cial agents. Agents must avoid dynamic obstacles and an-
other social agent, localize within a moving light source,
and move towards their goal location. The states of
aso, x = [xso, yso, vso, θso] denote the position (x, y),
speed v, and orientation θ. The control inputs uso =
[usoacc,u

so
ste] denote acceleration usoacc and steering angle



TABLE I
AVERAGED COMPETITIVE PERFORMANCE: SOCIAL VS. ASOCIAL AGENT MODELING

Mean ±1σ for N = 50 Trials Ego (3 aso) Blue (3 aso) Ego (2 aso) Blue (3 aso) Ego (1 aso) Blue (3 aso)
Iteration Time (s) .2046± .0209 .2051± .0211 .1843± .0222 .2034± .0209 .1626± .0233 .2042± .0213
Yield from Shortest Path (m) 1.799± 1.273 1.580± 1.143 1.605± 1.164 1.681± 1.211 1.948± 1.510 1.640± 1.062
Time to Goal (s) 4.970± .4709 4.922± .5369 4.808± .4985 4.966± .6180 4.884± .7713 4.936± .6016

Total uacc/uste (m/s2)/(rad) 13.725 / 1.112 14.047 / 1.052 14.100 / 1.079 14.039 / 1.123 14.753 / 1.098 14.010 / 1.112

Fig. 3. The ego agent (red) reaches its target without collisions. It
minimizes its uncertainty by travelling on the light path, which incentivizes
interactions with other agents. The symmetric agent (blue) completes an
identical task, as both navigate around other social agents (green,yellow)
before negotiating with each other. This example shows a case where all
agents model all other agents as social. Covariances for green and yellow
agents are omitted for clarity.

usoste. We encode the dynamics of social agents as ẋk =[
vk cos θk vk sin θk uacc,k

vk tan uste,k

L

]⊤
, where L is

agent length. The discrete time dynamics are xk+1 = xk +
ẋkτ+M(uk)·mk, where τ is the timestep and M(uk) scales
the process noise multiplicative to the control input. We
encode the agent’s objectives by defining its cost functions

ck(bk,uk) = u⊤k Ruk + βk det(Σxy,k) + ccoll(xk),

cl(bl) = βl det(Σxy,l) + γl∥dgo∥2, (21)

where ∥dgo∥ is the Euclidean distance of (x, y) from the
desired position, γl, β, R are tuning parameters, Σxy denotes
the ego agent’s positional uncertainty, and ccoll(x) denotes
an exponential collision barrier as in [1].

We restrict the social agents to noisy position measure-
ments, with more precise measurements near the mov-
ing light source. The observation model becomes zsok =
[xso, yso]⊤+N(xsok , x¬so

k ) ·nsok . We model the asocial agents
with states x = [xas, yas] and inputs u = [ux, uy]. The
dynamics become ẋk =

[
ux,k uy,k

]⊤
, with similar discrete

time dynamics and observation model for aso. The asocial
agents in Figure 2 are the dynamic obstacles and light source.

We make predefined rectangular trajectories for the asocial
agents, with social agents only knowing their inputs within
the planning horizon. The resulting behavior in Figure 2
shows the social agents can traverse the obstacle course while
avoiding collisions and localizing themselves. As shown in
our video, we can find alternative emergent behaviors such
as aggressively cutting past the obstacles or taking more
conservative trajectories by tuning the cost function.

B. Narrow traffic negotiation

To demonstrate the utility of modeling social agents as
asocial, we devise a traffic problem for our ego agent to

traverse. As seen in Figure 3, agents must avoid collisions,
reduce their uncertainty, and move towards their goals. A
goal is considered reached when an agent is within 1 meter
of it. We note that an agent which is closer to its goal has
less incentive to deviate. For the ego and its symmetric agent,
this means whichever traverses the first negotiation faster will
gain an advantage in its second negotiation.

We benchmark performance by fixing the number of
other agents the ego agent can model as social to 3aso,
2aso and 1aso. We use a nearest neighbor heuristic which
updates at each timestep. In theory, our asocial modeling
heuristics(2aso, 1aso) should run faster and perform approx-
imately the same as the 3aso planner. All other agents model
all agents as social. All agents are homogeneous with car-like
dynamics, noisy position measurements, and cost functions
similar to the social agents in the obstacle course game.

We run N = 50 trials and show our results in Table I. We
see that when the ego and symmetric agent model 3aso, their
metrics are approximately equal with some advantage to the
symmetric agent. As the ego agent considers more agents
asocial, its iteration time decreases 10% for 2aso and 21%
for 1aso. The overall computation time per timestep for each
heuristic follows these trends.

Compared to 3aso, the 2aso ego yields ∼ 11% less at the
expense of 0.375m/s2 more uacc control effort and reaches
the goal in around the same amount of time. This indicates
that it converges to slightly more aggressive policies. One
explanation for this is that the difference in social agents
change when regularization occurs, potentially moving the
ego’s policies into different local Nash Equilibria under
certain circumstances. In the 1aso case, the nearest neighbor
heuristic does not model the blue agent as social quickly
enough, leading to the ego yielding ∼ 8% more with
1.028m/s2 extra control effort. This worse performance
verifies that only irrelevant agents should be assigned as
asocial. Thus, heuristic choices like 2aso which take the
structure of the game into account will perform better.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduce the asocial agent and examine
its utility through two stochastic dynamic games: an obstacle
course and a traffic negotiation. We show that asocial agents
allow us to encode environmental objects into the iLQG
from [1]. We utilize asocial agents for selective negotiations,
which simplifies the game-theoretic modeling in our game.
We show selective negotiations can result in 10-38% faster
computation times with minimal performance decline using
various heuristics. Future work will focus on belief space
simplifications and a scalable hardware implementation.
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