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Abstract— We consider a team of heterogeneous robots, each
equipped with various types and quantities of resources, and
tasked with supplying these resources to multiple areas of de-
mand. We propose a Voronoi-based coverage control approach
to deploy robots to areas of demand by defining a position-
and time-varying density function to represent the quality at
which demand is being met in the environment. This approach
allows robots to prioritize the various demand locations in a
continuous, distributed fashion. We present analyses to show
that our controls drive the robots to critical points in the
environment, along with simulations and hardware-in-the-loop
experiments to demonstrate our approach.

I. INTRODUCTION

Control of multi-robot systems has become an active
research topic, and rightly so; in most scenarios, a team of
multiple robots can accomplish much more than a single one.
A popular application of multi-robot systems is the delivery
of goods to humans. For example, in an emergency situation
in which medical supplies are needed in multiple locations
for first responders to treat victims, a fleet of medical
drones would be useful to deploy medical resources to those
locations. In such situations where terrain and environmental
conditions may be dangerous, the use of drones ensures
human safety. The problem then becomes how to deploy
the robots to meet the demand of medical supplies given the
resources each robot carries, i.e. the capacity of each robot.

To address such a resource allocation problem, we propose
a Voronoi-based coverage control approach. Coverage con-
trol deploys robots to areas of importance in an environment
to effectively “cover” those areas. In Voronoi-based coverage
control, the space is partitioned into Voronoi cells, where
each robot is responsible for covering the space in its cell,
and the importance is represented by a density function
ϕ(q), where q are points in the environment. Voronoi-based
coverage control poses many advantages in multi-robot sys-
tems, including a continuous control policy, collision avoid-
ance between teammates, adaptivity, and opportunities for
distributed and decentralized implementations. Distributed
coverage control was first proposed in [1] and has since been
utilized and extended for many coverage control applications.
For example, the authors of [2] proposed adaptive (learning)
density functions. In [3], the authors proposed adaptive
weightings of weighted Voronoi cells.
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Fig. 1. Final configuration of a team of 5 robots supplying multiple
resources of a single type to 2 different locations (×). Quantities of resources
carried/demanded are printed to the right of the robot/×. The colorbar
indicates density in the space on a scale of 0 to 3, and lines represent
Voronoi boundaries.

In this paper, we utilize Voronoi-based coverage control
to deploy supplying robots to areas of demand. We consider
a heterogeneous team of robots, each equipped with various
types of resources and varying capacities for those resources.
The robots are tasked with supplying their resources to
multiple areas of demand, each requiring different types
and quantities of resources. We propose a position-varying,
time-varying density function which takes into account the
capacities of each robot, the demand, and the positions of the
robots with respect to the demand. We propose a controller to
minimize the locational cost function for our heterogeneous
team. We show that our controller drives the robots to
minimize the locational cost. The main contributions of this
paper are:

• Coverage control for deploying a heterogeneous team
with supply constraints to multiple demand locations;

• Analyses to prove minimization of locational cost; and
• Simulations and hardware-in-the-loop experiments to

demonstrate performance.

Related Work

A common approach to representing heterogeneous robots
within Voronoi-based methods invokes weighted Voronoi
diagrams [3], [4], [5], [6], [7], [8], [9], [10], [11], where each
robot’s Voronoi cell is weighted by a constant or variable.
Intuitively, a lower relative weight yields a smaller cell
relative to its neighbors. To address a supply-and-demand
problem, one might weigh robot i’s Voronoi cell by its supply
capacity. While this method ensures that robots with larger
capacities cover more demand than its neighbors, it does not
account for multiple resource types among the robots.



Recent coverage control work related to task allocation
focuses on deploying a team of heterogeneous robots to
different locations. For example, [12], [13], [14] assign
robots with different sensing capabilities to regions requiring
that sensor. One can think of these approaches as deploying
robots with different resource types to areas requiring those
resources types. In [11] and [15], robots with differing
dynamical abilities are deployed to multiple areas of impor-
tance. The authors of [16] assign a fidelity level and sensing
function to each sensing type before deployment. In [17],
regularized optimization methods are implemented to adapt
to failed agents at various event types.

Other approaches to resource allocation focus on optimiza-
tion methods, routing, and scheduling to allocate robots to
demand locations. The authors of [18] propose a dynamic
programming algorithm for multi-robot task allocations. In
[19] and [20], authors focus on routing and task allocation for
robot teams in smart warehouses. In [21], authors propose a
scheduling algorithm for charging mobile robots. The authors
of [22] propose methods for multi-agent task allocation based
on capabilities and features of each robot.

From the perspective of resource allocation using robot
teams, prior work in heterogeneous coverage control has
focused on either deploying resource types to multiple loca-
tions, or deploying a single resource of varying capacity to
a single location. To our knowledge, the resource allocation
problem considering multiple resource types with varying
capacities remains an open problem. While it is indeed
possible to compute a globally optimal robot assignment,
then deploy robots to demand using Voronoi-based methods,
such an approach does not allow for a continuous, distributed
control policy. In this paper, we propose a Voronoi-based
coverage control method capable of distributed implemen-
tations to deploy a heterogeneous robot team to multiple
demand locations, where each robot has a different capacity
of each resource type, and each demand location requires
different resource types and quantities.

The remainder of this paper is organized as follows: Sec-
tion II provides an introduction to heterogeneous coverage
control. Section III details our proposed density function,
cost function, controller, and includes analyses to prove
performance. In Section IV, we provide simulations, com-
paring our proposed controller against that which does not
consider capacity constraints. Section V contains details and
results from hardware-in-the-loop experiments. We state our
conclusions and future work in Section VI and provide
detailed computational results in Section VII.

II. PRELIMINARIES AND BACKGROUND

Consider a team of N robots in a bounded, convex
environment Q ⊂ R2, with points in Q denoted q, and robot
positions denoted pi ∈ Q, i ∈ R, i = 1, . . . , N . In this
section, we provide a brief background on classic Voronoi-
based coverage control, and introduce the recent work on
coverage control for heterogeneous multi-robot teams.

Traditional Voronoi-based coverage control [1] partitions
the environment Q into N Voronoi cells, and deploys robots

according to a locational cost function using Lloyd’s algo-
rithm [23], [1], with the goal of covering the environment Q
according to the density function ϕ : R2 → R. The density
function represents areas of importance; a greater value of
ϕ(q) indicates greater importance in coverage at point q.

To address a heterogeneous robot sensing team, i.e. sens-
ing capabilities that vary among agents, the authors of [13],
[14] create one Voronoi partition for every sensing type
j, j ∈ D, j = 1, . . . ,M . Each partition is assigned a
different density function ϕj(q) representing the importance
associated with sensor j. Robots equipped with sensor j are
considered in the partition Pj = {i | j ∈ T (i)}, where T (i)
is the set of sensors carried by robot i. The environment Q
is then divided into M Voronoi partitions [13], [14] by

V j
i = {q ∈ Q | ∥pi − q∥ ≤ ∥pl − q∥,∀l ∈ Pj , i ̸= l}. (1)

Robots are then deployed using Lloyd’s algorithm to mini-
mize the cost function [13], [14]

H(p1, . . . , pn) =
∑
i∈R

∑
j∈D

∫
V j
i

f(∥q − pi∥)ϕj(q)dq, (2)

where f : R → R. The mass and centroid [13], [14] for
robot i’s Voronoi cell in partition j are, respectively,

mj
i =

∫
V j
i

ϕj(q)dq

cji =

∫
V j
i
qϕj(q)dq∫

V j
i
ϕj(q)dq

=
1

mj
i

∫
V j
i

qϕj(q)dq,

(3)

and the robots adhere to the control law

ṗi = ui, (4)

where ui = −κ
∑

j∈T (i)

∫
V j
i (p)

∂f(∥q−pi∥)
∂pi

ϕj(q)dq, and κ is
a positive proportional gain constant [13].

Note that with the heterogeneous partitioning (1), collision
avoidance is not guaranteed for those robots that do not
share the same partition. For example, if robot 1 only
has sensor type 1, and robot 2 only has sensor type 2,
then those robots will not “see” one another, because they
cannot share a Voronoi boundary, and there is a chance for
collision. However, in sensor coverage, robots cover a large
space, and at such a large scale, collision avoidance can be
locally managed. In the following section, we describe our
proposed implementation to accomplish a resource allocation
task, considering not only resource types, but also resource
quantities.

III. A COVERAGE CONTROL APPROACH TO RESOURCE
ALLOCATION

In this paper, we consider robots that each carry different
types and quantities of resources. We use Voronoi-based
coverage control to deploy a heterogeneous team of robots
to various locations in need of resources.



A. Partitioning the Space

Each robot i carries (supplies) ski ∈ R+ resources of type
k ∈ S . We wish to deploy robots to M locations µj ∈ Q,
j ∈ D, j = 1, . . . ,M , which require (demand) dkj ∈ R+

resources. Given multiple demand locations, and that each
robot has a different ability to meet that demand, we define
M different Voronoi partitions in the environment Q. We
assign robot i to partition j if robot i can supply resources to
demand j. In other words, if demand j requires resource type
k, we assign all robots that carry resource type k to partition
j. More formally, we define the set of robots assigned to
partition j as

Pj = {i | ∃k : dkj > 0 ∧ ski > 0}. (5)

Then, the Voronoi cell for robot i ∈ Pj is given by

V j
i = {q ∈ Q | ∥q − pi∥ ≤ ∥q − pl∥,∀l ∈ Pj ,∀l ̸= i}.

B. Defining the Density

Recall that the density function ϕ represents areas of
importance in the environment Q. Thus, in a supply-and-
demand scenario, one can think of ϕ as the relative demand
of resources at any point q ∈ Q. We propose the following
time-varying and position-varying density function to deploy
robots based on demand and robot capacities:

ϕj(q, p, t) =
Dj∑
l∈Pj Sl

, (6)

where

Dj =
∑
k∈S

dkj exp

[
− 1

σ
(q − µj)

TΣ−1(q − µj)

]
, (7)

Sl =
∑

k∈S,dk
j ̸=0

skl exp

[
− 1

σ
(q − pl)

TΣ−1(q − pl)

]
, (8)

σ is a positive constant, and Σ is a constant covariance
matrix. Note that, although we sum over all resource types
in (7) and (8), the partition assignment (5) helps distinguish
between resource types. While traditional coverage control
utilizes density functions that depend on q only, our pro-
posed density function, for supply-and-demand applications,
depends additionally on robot positions p(t), and thus time
t. Note, however, that classic and heterogeneous Voronoi-
based coverage control do not utilize time-varying density
functions. In fact, we can only use Lloyd’s algorithm with
quasi-static time-varying density functions [24]. Therefore,
we need to implement control laws compatible with time-
varying density functions.

C. Serving Heterogeneous Multi-Resource Demand

In order to deploy robots according to the relative im-
portance (6), we require a method to compute the control
input of time-varying density functions. The works [25], [26],
[27] propose a solution for converging time-varying density
functions, but requires slowly varying density functions and
estimated solutions. Because our proposed density function
(6) relies on p(t), we require a control law suited for more

rapidly varying density functions with more precise solu-
tions. We therefore implement a variation of the minimum-
energy, constraint-driven approach for coverage control with
time-varying density functions [28].

For this paper, we let f(∥q− pi∥) = ∥q− pi∥2 in (2), and
define the locational cost J(p, t) as the sum of individual
costs Jj

i of each robot i ∈ R in each of their assigned
partitions j. Formally, J(p, t) =

∑
i∈R

∑
j∈D Jj

i (pi, t).
We define the individual cost of robot i in partition j as
Jj
i (p, t) = 1

2m
j
i∥pi − cji∥2, where mj

i and cji are given by
(3). We can then write the total cost as

J(p, t) =
∑
i∈R

∑
j∈D

1

2
mj

i∥pi − cji∥
2. (9)

We let each robot i obey the single integrator dynamics (4),
where ui is computed by solving the optimization problem

min
ui

∥ui∥2

s.t.
∑
j∈D

(−mj
i (pi − cji )

T(I − ∂cji
∂pi

)ui

− 1

2
∥pi − cji∥

2 ∂m
j
i

∂pi
ui) ≥

∑
j∈D

(−α(−Jj
i (p, t))

−mj
i (pi − cji )

T ∂c
j
i

∂t
+

1

2

∂mj
i

∂t
∥pi − cji∥

2),

(10)
where I is the identity matrix, and α is an extended class
K function, α : p ∈ R 7→ α(p) ∈ R, superadditive for
p < 0, i.e. α(p1+p2) = α(p1)+α(p2), ∀p1, p2 < 0. For the
partial derivatives of cji and mj

i , see Appendix (Section VII).
Remarkably, the control input computed by (10), minimizes
the cost (9) in a decentralized fashion given the dynamics
(4), as formalized in Lemma 1.

Lemma 1: Let the time-varying cost function J(p, t) be
defined by (9). Then, a group of N robots obeying the
single-integrator dynamics (4) minimizes the cost J in a
decentralized fashion if each robot executes the control input
solution of the optimization problem (10).

Proof: We begin by showing that the formulation of
our cost function satisfies the set of conditions outlined in
[29]. A general expression for the locational cost that leads
to decentralized control laws is

J(p, t) =
∑
i∈R

∑
j∈D

∑
l∈N j

i

Jj
il(∥pi − pl∥, t), (11)

where N j
i is the neighbor set of robot i in partition j (i.e.

the set of all robots with which robot i shares a Voronoi
boundary in partition j), and Jj

il is the pairwise performance
cost between neighbors i and l in partition j. We require
Jj
il : R+ × R+ → R+, Jj

il(∥pi − pl∥, t) = Jj
li(∥pl − pi∥, t)

symmetric, Jj
il ≥ 0, ∀p ∈ Rn, ∀t ∈ R+, such that J(p, t) ≥ 0

∀p ∈ Rn, ∀t ∈ R+ [29]. Given the formulation of our cost
function in (9), and that mj

i ≥ 0 ∀p ∈ Rn, ∀t ∈ R+, then
J(p, t) ≥ 0 ∀p ∈ Rn, ∀t ∈ R+. Additionally, given the graph
topology induced by the Voronoi partition j, then (9) can be
written in the form (11). Thus, our cost functions satisfies



the conditions outlined in [29]. Therefore, by [30], a group
of N robots obeying single integrator dynamics minimizes J
in a decentralized fashion if each robot executes the control
input solution of the optimization problem [30]

min
ui,δi

∥ui∥2 + |δi|

s.t. − ∂Ji
∂pi

ui ≥ −α(−Ji(p)) +
∂Ji
∂t

− δi.
(12)

We can reformulate (12) for our cost J by taking the partial
derivatives of (9) with respect to pi and t as follows:

∂Jj
i

∂pi
=
∑
i∈R

∑
j∈D

−mj
i (pi − cji )

T ∂c
j
i

∂pi
+

1

2

∂mj
i

∂pi
∥pi − cji∥

2,

∂Jj
i

∂t
=
∑
i∈R

∑
j∈D

1

2

∂mj
i

∂t
∥pi − cji∥

2 +mj
i (pi − cji )

T(ṗi −
∂cji
∂t

).

(13)
Then, plugging in (13) and (4), we can reformulate (12)
to exclude the slack variables, and obtain (10). Therefore,
by [30], our control policy minimizes the cost J , which
completes the proof.

Lemma 1 shows that the control input (10) minimizes the
cost (9). We can now show that with input (4) computed from
the optimization problem (10), each robot i converges toward
a critical point, which is that at which the cost Ji(pi, t) is
minimized.

Proposition 1: Let robot i with planar position pi be
assigned to at least one partition j and evolve according
to the control law (4), where ui is attained by solving the
optimization problem (10). Let pi = pc,i be the location
at which robot i is located at a critical point of its cost
Ji(pi, t). Then, the distance between pi and pc,i, ∥pi−pc,i∥,
is uniformly bounded.

Proof: First note that, at the critical point pi = pc,i,
pi − pc,i = 0, and we wish to prove that ∥pi − pc,i∥ is
uniformly bounded about pi − pc,i = 0. Since Ji(pi, t) is
continuously differentiable, strictly increasing, and strictly
positive when robot i is assigned to at least one partition j,
then there exist class K functions α1,i(pi) and α2,i(pi) such
that

α1,i(∥pi − pc,i∥) ≤ Ji(pi, t) ≤ α2,i(∥pi − pc,i∥). (14)

Now, we compute the time derivative of the associated with
robot i to be

J̇i(pi, t) =
∑
j∈D

J̇j
i (pi, t) =

∑
j∈D

∂Jj
i

∂pi
ṗi +

∂Jj
i

∂t
.

Plugging in (9) and (13), we obtain

J̇i(pi, t) =
∑
j∈D

[mj
i (pi − cji )

T(I − ∂cji
∂pi

)ui

+
1

2
∥pi − cji∥

2 ∂m
j
i

∂pi
ui

−mj
i (pi − cji )

T ∂c
j
i

∂t
+

1

2

∂mj
i

∂t
∥pi − cji∥

2].

Summing over each demand j ∈ D in (10), and given the
superadditive property of α(·), we obtain

J̇i(pi, t) ≤ α(−Ji(pi, t)). (15)

Let ᾱ = −α(−r), then ᾱ is also an extended class K
function, and α(−Ji(pi, t)) = −ᾱ(Ji(pi, t)). Thus, (15)
becomes

J̇i(pi, t) ≤ −ᾱ(Ji(pi, t)) ∀∥pi − pc,i∥ ≥ µi > 0. (16)

We can now use Theorem 4.18 in [31] to complete the proof.
Let ri > 0 such that Bri ⊂ Q, and suppose that µi <
α−1
2,i (α1,i(ri)). Then, by Theorem 4.18 in [31], for all initial

states p0,i satisfying ∥p0,i−pc,i∥ ≤ α−1
2,i (α1,i(ri)), and since

(14) and (16) are satisfied, then ∥pi − pc,i∥ is uniformly
bounded, which completes the proof.

Corollary 1: When the cost of each robot Ji(pi, t) is
bounded, then the total cost of the team J(p, t) is bounded.

Proof: The total cost J(p, t) is given by (9). Given that
the costs associated with each of the N robots is bounded,
then, summing over all robots i ∈ R, the total cost J(p, t)
is also bounded.

Remark 1: By Lemma 1, our control input (10) minimizes
the cost (9). Therefore, the critical points to which the robots
converge will be either a local minimum or a saddle point
within each robot’s cell. In practice, we notice that each robot
converges to one of the centroids within its cell, as shown in
our simulations and experiments, and each robot oscillates
around the centroid to which it converges, as can be seen in
the supplemental video.

Remark 2: Such oscillating behavior is a feature of the
control input (10), whose constraint serves to drive Ji to 0.
However, since Ji ̸= 0 when robots belong to more than one
partition, ui ̸= 0.

Proposition 1 states that, under our proposed control pol-
icy, each of the N robots will drive toward a critical point of
the cost (9). Furthermore, those critical points cannot be local
maxima, as formalized by Remark 1. In the next section, we
present simulations to demonstrate the performance of our
proposed control policy.

IV. SIMULATIONS

We performed simulations to evaluate the ability of our
control policy to reduce the cost (9). We consider two
scenarios: 1) the initial demand parameters M , µj , and dkj
remain constant, while the initial team parameters N , pi,
and ski are randomized for each trial, and 2) the initial
team parameters remain constant, while demand varies. We
performed 50 trials of each scenario for a total of 100 trials,
the initial conditions for which are summarized in Table I.

Additionally, we present the same 100 trials alongside a
baseline simulation, in which robots are assigned to partitions
based on whether or not they have a resource type k, as in our
proposed approach, but robot capacities are not considered.
To achieve this, we “hide” the capacities by setting ski = 1
for all ski ̸= 0, and ski = 0 otherwise. Similarly, we set
dkj = 1 for all dkj ̸= 0, and dkj = 0 otherwise. These values
are used to compute the density function and ultimately the



TABLE I
SIMULATION CONDITIONS

Scenario Constants Randomized Variables

1
Randomized

Team

k = {1, 2}
µ1 = (−0.5,−0.5)
µ2 = (0.5, 0.5)

dk1 = {75, 0},dk2 = {20, 60}

N ∈ [5, 15]
ski ∈ [0, 20] ∀i, k

pi ∈ Q ∀i

2
Randomized

Demand

k = {1, 2}, N = 10
pi,x0 = {−.9,−.5, .5, .9,

.9, .9, .5,−.5,−.9,−.9}
pi,y0 = {−.9,−.9,−.9,

−.9, 0, .9, .9, .9, .9, 0}
s1i = {1, 0, 5, 3, 15,

20, 16, 18, 1, 1}
s2i = {2, 4, 0, 1, 1,

1, 1, 1, 15, 20}

M ∈ [2, 4]
pi ∈ Q

dki ∈ [0, 50] ∀j, k

control input. Performing this binary version of coverage
control deploys robots based solely on whether they have
resource type k, rather than the capacity of the robots. We
refer to this case as the Hidden Capacity case. In order
to compare this baseline with our proposed algorithm, we
compute the total cost with the true capacities. In other
words, although the actual capacities are hidden from the
controller, we compute the total cost as if the capacities exist,
so as to provide a comparison for our approach.

We performed all simulations in MATLAB and imple-
mented the robot dynamics (4) with ui computed from (10),
limiting ṗi to 0.1 m/s. We set σ = 0.12, Σ as the identity
matrix, and α(x) = x

1
3 . Results for the 50 trials each of

Scenarios 1 and 2, with both known and hidden capacities,
are shown in Figure 2. Here, we present box-and-whisker
plots of the total cost at the end of each trial. In both
scenarios, the final cost is lowest when capacities are known,
which demonstrates the ability of our control policy to deploy
a heterogeneous team of supply robots to meet demand. We
notice that Scenario 2 generally results in a higher final cost
than Scenario 1, because robots have far fewer resources
than can meet the total demand; thus, the total performance
is poorer, and the cost is higher.

We also present two example trials in Figure 3, one from
each scenario under the Known Capacity and Hidden Capac-
ity cases. We provide snapshots of the final configurations,
along with the cost-time plots. In the final configurations
of both scenarios, all robots have converged to one of the
centroids in their cell. As we can see in the animations,
and as mentioned in Remark 1, once a robot reaches its
centroid, it experiences small, bounded oscillations about that
centroid, which is a feature of the optimization problem (10)
[28]. When capacities are hidden, we observe from Figure
3 that the final configuration results in a higher density over
the space compared to the known capacity case, indicating
that the team performance in meeting the demand is poorer
when capacities are unknown. This higher density ultimately
results in a higher cost.

V. EXPERIMENTS

In addition to simulations, we performed hardware-in-the-
loop experiments to demonstrate that our proposed control

Fig. 2. Box-and-whisker plots comparing the final cost of the Known
capacity and Hidden capacity cases for both scenarios. Each box results
from 50 trials.

policy maintains performance on real robots and in real time.
We implemented our control policy on a fleet of five Agilex
LIMO1 omnidirectional robots, powered by the NVIDIA
Jetson Nano2, using Robot Operating System (ROS). A
desktop computer (8-core, 32GB RAM, Windows 10) sent
the following linear and angular velocity steering commands
[26], respectively, to each robot via Wi-Fi:

vi = kv
[
cos θi sin θi

]
ṗi,

ωi = kω arctan

([
− sin θi cos θi

]
ṗi[

cos θi sin θi
]
ṗi

)
,

where θi is the heading angle with respect to the global
frame, and kv and kω are positive constants. The desktop
computer received position and orientation information from
an Optitrack Motion Capture system3.

We present two experiments in Figures 1 and 4. For both
experiments, five LIMO robots started in the same initial po-
sitions in the center of the environment, as shown in the sup-
plemental video, and had capacities s1i = {15, 10, 20, 5, 10}.
In the first experiment, µ1 = (2.0, 1.0) with d11 = 30, and
µ2 = (7.0, 2.0) with d12 = 15. In the second experiments,
µ1 and µ2 remained the same, and we swapped the demand
such that d11 = 15 and d12 = 30. We present both of these
experiments in the supplemental video. Under our proposed
controller, the robot with the highest demand i = 3 con-
verged to the centroid associated with the highest demand in
both experiments, ensuring that the robots meet the demand.

VI. CONCLUSIONS

In this work, we present a method to allocate a heteroge-
neous multi-robot team equipped with various resource types
and quantities to various demand. We utilize Voronoi-based
coverage control with a time-varying and position-varying
density function, such that the density, or performance,
changes as robots cover the space. Our approach serves as
a method of deploying robots to multiple locations while
considering resources types and quantities. We provide a
continuous control policy with opportunities for distributed
and decentralized implementations, and we show that it
drives robots to minimize the locational cost. We present
simulations comparing our work with those which do not

1https://global.agilex.ai/products/limo
2https://developer.nvidia.com/embedded/jetson-nano-developer-kit
3https://optitrack.com/



(a) Scenario 1, Known Capacity. (b) Scenario 1, Hidden Capacity.

(c) Scenario 2, Known Capacity. (d) Scenario 2, Hidden Capacity.

(e) Scenario 1 Cost. (f) Scenario 2 Cost.

Fig. 3. Example simulations for Scenarios 1 (a)-(b) and 2 (c)-(d) with
Known and Hidden capacities. Here we present the final configurations of
the robots and the corresponding cost-time plots. Robots are represented
◦’s, and demand locations are represented by ×’s and color coded. The
quantities ski and dkj are printed next to each pi and µj , respectively, for
each k. The color bar to the right of each environment represents the density,
and the solid lines represent Voronoi boundaries. In (a) and (b), we only see
a single Voronoi partition because all robots are assigned to both partitions;
thus, the two Voronoi partitions overlap in these cases. Total cost is plotted
in (e) and (f).

(a) Experiment 2. (b) Experiment 2 Cost.

Fig. 4. Hardware-in-the-loop experiments with a team of five omni-
directional robots. (a) Final configuration for the experiment, and (b)
corresponding cost over time. Similarly to the simulations, we only see one
Voronoi partition here because the two Voronoi partitions overlap, since all
robots have resource type k.

consider supply constraints, and demonstrate our approach
in hardware-in-the-loop experiments. Our simulation results
show that our control policy reduces our locational cost
and results in a lower cost than when capacity is not
considered. Both our simulations and experiments show that
our approach deploys robots to multiple demand locations
while accounting for resource constraints.

VII. APPENDIX

Here, we provide additional detail in the derivation of
mj

i , cji , and ϕj . We derive the partial derivatives of mj
i and

cji using Reynolds Transport Theorem [32]. Differentiating
cji from (3) with respect to robot position and time using
Reynolds Transport Theorem, we obtain

∂cji
∂pi

=
∑
l∈N j

i

∫
V j
i (p)

(q − pi)ϕj(q, p, t)(pl − pi)
T

mj
i∥pl − pi∥2

dq

+
1

mj
i

∫
V j
i (p)

(q − cji )
∂ϕj(q, p, t)

∂pi
dq

+
∑
l∈N j

i

∫
∂V j

i (p)

(q − cji )ϕj(q, p, t)(q − pi)
T

mj
i∥pl − pi∥

dq,

and
∂cji
∂t

=
1

mj
i

∫
V j
i (p)

(q − cji )
∂ϕj(q, p, t)

∂t
dq,

where N j
i is the neighbor set of robot i in partition j.

Similarly, ∂mj
i

∂t and ∂mj
i

∂pi
can be computed from (3) to obtain

∂mj
i

∂t
=

∫
V j
i (p)

∂ϕj(q, p, t)

∂t
dq,

∂mj
i

∂pi
=

∫
V j
i (p)

∂ϕj(q, p, t)

∂pi
dq

+

∫
∂V j

i (p)

ϕj(q, p, t)
∑
l∈N j

i

(q − pi)
T

∥pl − pi∥
dq.

Next, we provide the partial derivatives of the density
function ϕj(q, p, t) required to compute the partial deriva-
tives of mj

i and cji . For this paper, we consider static dkj ,
skl , and µj ∀i, j, k. Thus, the only time-varying components
of the density function are the robot positions pl. Therefore,
the partial derivatives of the density function with respect
to position and time, required to compute (VII) and (VII)
respectively, are

∂ϕj(q, p, t)

∂pi
= −

∑
k∈S,dk

j ̸=0

2skl
σ

(q − pi)
TΣ−1

· exp
[
− 1

σ
(q − pi)

TΣ−1(q − pi)

]
Dj

(Sl)2

and
∂ϕj(q, p, t)

∂t
= − Dj

(Sl)2

∑
l∈N j

i

∑
k∈S,dk

j ̸=0

2skl
σ

(q − pl)
TΣ−1ṗl

· exp
[
− 1

σ
(q − pl)

TΣ−1(q − pl)

]
.
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