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Abstract— This paper proposes an algorithm for generating
Pareto-optimal privacy-aware trajectories for multi-robot cov-
erage. Our approach utilizes a genetic algorithm to generate a
set of modified trajectories for a team of robots that wishes to
obscure its goal from an observer. A novel velocity-constrained
crossover algorithm ensures all child trajectories are feasible for
a holonomic vehicle. The Pareto front of generated trajectories
allows a team to select an allowable trade-off between privacy
and coverage cost given within their task. Simulation results
demonstrate the performance of our algorithm in Voronoi-based
coverage control. We show our approach successfully obscures
the objective from our proposed observer.

I. INTRODUCTION

Distributed multi-robot systems provide robust, adaptable,
and versatile solutions to many problems in environmental
coverage. Long-standing consensus controls, built on natural
communications, provided a rigorous mathematical founda-
tion for distributed systems [1], with many guarantees on
robustness in the presence of problems such as switching net-
work topologies [2] and communication limitations [3], [4].
Meanwhile, more modern automata can provide a framework
for allocating tasks and coordinating behaviors to accomplish
complex and abstract goals [5], [6]. Further, algorithms such
as Voronoi-based coverage control [7] have paved the way
for many expansions of the coverage control problem, from
automated search and exploration [8] to guarantees on the
capture of evaders [9].

While many of these algorithms are robust to performance
variations, malicious incursions, and agent failures, they
contain vulnerabilities in privacy. In particular, a malicious
entity could predict the overall goal locations or targets of the
team through observations and trajectory reconstruction. This
provides a significant risk when using distributed teams for
sensitive tasks. For example, consider a team of drones per-
forming wildlife monitoring of endangered animals. A ma-
licious poacher could observe the trajectories of the drones
and identify the location of this wildlife. Another area of risk
is foraging for competitive resources, where it is undesirable
for rival teams to know the locations of resources. Robots can
obscure their goals from malicious observers by introducing
deviations in their trajectories, however, this also introduces
inefficiencies. A key challenge in generating privacy-aware
trajectories for the team is balancing the resultant increase
in coverage cost.
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Fig. 1: Our algorithm generates Pareto-optimal privacy-aware
trajectories to obscure a coverage goal from an observer. (a)
Sample trajectories generated during the genetic algorithm.
(b) Pareto front trading off privacy versus coverage cost.

This paper proposes a new framework for generating
privacy-aware trajectories in multi-robot coverage control
applications. Given an allowable loss in optimality, we
determine the Pareto-optimal trajectories that provide the
most privacy for the team. Within this paper, we quantify
privacy as the ability to obfuscate critical information from
an observer. These trajectories arise from the manipulation
of existing control laws to reveal observable features. These
features can then be used as a privacy cost function to
be optimized alongside the original coverage cost. These
objective functions are inherently conflicting and require a
trade-off. Evolutionary algorithms are excellent at solving
these types of optimizations as their solution populations
naturally approach and distribute themselves along the Pareto
front. Of these algorithms, the popular NSGA-II [10] al-
gorithm is chosen to generate our candidate trajectories,
using a real valued crossover operator to solve the multi-
objective optimization problem in free space. The resulting
Pareto-optimal trajectories both satisfy prescribed velocity
constraints and allow for a team to select trajectories that
provide the most privacy for a known increase in coverage
cost. The key contributions of this work are:

1) An algorithm that generates a set of Pareto-optimal
privacy-aware trajectories for multi-robot coverage;

2) Velocity-constrained crossover for genetic algorithms
that produces feasible new trajectories that obey orig-
inal velocity constraints;

3) Demonstration in simulations that obscure a goal lo-
cation from an observer.

The remainder of the paper is organized as follows:
Section II provides an overview of related work. Section
III presents our problem formulation, and Section IV details



our trajectory generation algorithm. Simulation results are
presented in Sections V, and we state our conclusions in
Section VI.

II. RELATED WORK

Most mathematical formalization for the concept of pri-
vacy stems from security of statistical databases and protect-
ing the samples that create them [11]. Differential privacy
refers to a guarantee that any analysis performed on a
database will not be substantially affected by the addition
or removal of a single database entry [12]. Such concepts
have become very popular in when studying data collected
by ridesharing companies and other GPS services [13], [14].

These notions of privacy are also of interest to the robotics
community. One early mention of privacy in robotics comes
from [15], where a hypothetical panda that is under surveil-
lance could become compromised. This privacy setting was
later classified into a set of of privacy problems [16].
Differential privacy appears in [17], where the authors create
a model for evaluating privacy in heterogeneous swarms,
as well as in limiting the information disclosure between
agents during cooperative actions [18]. In [19], the authors
balance privacy within flocking behaviors of multi-agent
systems with the aid of a genetic algorithm. Within this
paper, we assess privacy in our system by the performance
of an observer. We specifically explore this in the context of
Voronoi-based multi-robot coverage control [7], [20], [21],
[22], [23], [24], [25], which is known to be adaptable to
changes in environment and team composition. However, to
our knowledge, the question of keeping the coverage goal
private from an observer within these coverage tasks remains
an open question.

Genetic Algorithms: Our approach utilizes a genetic al-
gorithm to analyze trade-offs between privacy and coverage
cost. Genetic algorithms are a family of search based opti-
mization algorithms, inspired by the ideas of natural selection
and biological evolution [26]. Traditionally, these algorithms
simulate a population of candidate solutions which are then
subjected to some selection process followed by a mixing
of information, also known as crossover. During each gen-
eration of the algorithm, new higher-performing children
candidates replace the worst solutions in the population.
Mutation can also occur at a small rate to randomly change
some characteristics of a candidate. Due to the nature of
simulating large populations of potential solutions, genetic
algorithms excel at solving optimization problems with mul-
tiple objective functions [27], [28]. As a genetic algorithm
progresses, its candidate solutions will approach the optimal
Pareto solutions for the multi-objective problem. In [10],
NSGA-II proposed a computationally efficient way to rank
solutions and preserve diversity along the front through the
fast non-dominated sort and crowding distance comparison
functions. Genetic algorithms have an enormous breadth
of applications, and robotic path planning is no exception.
Since traditional genetic algorithms operate in discrete spaces
they are good at path planning on complex graphs which
are common problems in robotics. [29], [30], [31]. As for

free space planning, genetic algorithms require fine tuning
and careful selection of crossover and mutation operators
to ensure feasibility. If done properly, these algorithms can
solve very challenging multi-objective path planning prob-
lems such as the optimal control of a space robot [32].

III. PROBLEM FORMULATION

In this section, we present preliminaries on the multi-robot
coverage control, as well as our observer model. Consider
a bounded, convex environment Q ⊂ R2, with points in
q ∈ Q. For a team of n robots, we denote the positions of
the robots as pi ∈ Q for i ∈ {1, ..., n}. We assume all robots
have integrator dynamics,

ṗi = ui, (1)

where ui is the desired control input for each robot i. All
robots are constrained with the same maximum velocity, such
that ∥ṗi∥ < vmax. Our team of n robots is tasked with
providing coverage in the environment. The function ϕ(q)
describes the relative importance of a point q.

We also assume the presence of an observer in the en-
vironment, which aims to uncover the importance function
ϕ(q). The observer is not able to gather information directly
about ϕ(q), however, can observe the motion of the team of
agents. To demonstrate the effectiveness of our approach, we
will assume a highly-capable observer that can both observe
the positions and velocities of all robots. Additionally, we
assume the observer knows the team is tasked with Voronoi-
based coverage control.

A. Voronoi-Based Coverage Control

We assume the robots are initially tasked with providing
coverage of an environment, and start from a Voronoi-based
coverage control policy. We define the configuration cost
H(·) to assess the quality of a particular configuration of
all robots given the information density ϕ(q), defined

H(p1, ...pn) =

n∑
i=1

∫
Vi

∥q − pi∥2ϕ(q)dq, (2)

where Vi is the Voronoi cell corresponding to robot i. We
can define a mass Mi and centroid CVi for each cell as

Mi =

∫
Vi

ϕ(q)dq, CVi =
1

MVi

∫
Vi

qϕ(q)dq. (3)

Although the relationship between the robot positions and
the configuration cost is complex, it turns out a control
policy that moves all robots towards their centroids will
minimize the configuration cost in (2) [7]. This move-to-
centroid control policy is defined

ṗi = ui = −kprop(pi − CVi
), (4)

where kprop is a proportional gain constant. Although this
move-to-centroid policy provides robust decentralized cov-
erage, it does not obscure the information density function
ϕ(q) from an outside observer. The next section demonstrates
how an observer can recover this information.



B. Information Observer

The aim of this paper is to generate privacy-aware tra-
jectories that obscure the the team’s coverage goal from
a highly-capable observer. Here, we present our observer
model, which comprises a parameterized fitting function,
an observation cost, and is optimized with a Simulated
Annealing-based algorithm, outlined in Algorithm 1.

Recall the overall objective is for the observer to recon-
struct the information density ϕ(q). We employ a Gaussian
Mixture Model to create an estimate of ϕ(q), denoted ϕ̂(q):

ϕ̂(q, θ) =

m∑
j=1

N (q|µj ,Σj), (5)

where θ is a parameter vector containing the values of µ
and Σ for the m Gaussians. The observer manipulates values
of the parameter vector to approximate the true information
density. Naturally, to drive (5) towards the true value, we
could create a squared error cost function:

min
θ

Jϕ = ∥ϕ(q)− ϕ̂(q, θ)∥2. (6)

Unfortunately, the observer cannot directly compute Jϕ, as
it does not have access to ϕ(q). Instead, we use knowledge
of the the team’s control policies to create an alternative
cost. Recall form (3) the centroid of of an individual Voronoi
cell contains ϕ(q). Therefore, by estimating the centroid of
the robots’ Voronoi cells, we can indirectly also estimate
the density function. Consider a cost that assesses the error
between true and estimated centroids:

min
θ

JC =

n∑
i=1

∥CVi
− ĈVi

∥2, (7)

where ĈVi
is calculated from ϕ̂(q, θ) as

ĈVi
=

∫
Vi

qϕ̂(q, θ)dq∫
Vi

ϕ̂(q, θ)dq
. (8)

Although CVi is not directly available to the observer,
knowledge of the team’s control policies allow the observer
to minimize (7).

Proposition 1. The solution that minimizes the cost

min
θ

J (θ, p, ṗ) =

n∑
i=1

∥( ṗi
kprop

+pi)−
∫
Vi

qϕ̂(q, θ)dq∫
Vi

ϕ̂(q, θ)dq
∥2 (9)

also minimizes the cost JC in (7).

Proof. We assume that the observer has knowledge of the
control policies, as it knows the team is performing Voronoi-
based coverage control. We can re-arrange an individual
robot’s control policy (4) as

CVi
=

ṗi
kprop

+ pi. (10)

Substituting (10) and (8) into (7) yields the cost function (9),
thus completing the proof.

Although the cost functions (7) and (9) are equivalent,

Algorithm 1 Simulated Annealing Information Observer

1: Input: Temperature T , Cooling Schedule NT , Cooling
Rate CT , Move Limiter α, Feature Vector θ

2: Initialize random values for θ
3: Evaluate current energy: J (θ) ▷ (9)
4: Initialize Iteration Counter: i = 0
5: while Observing do
6: i += 1
7: Generate θNEW = θ + α ∗ rand
8: Evaluate new energy: J (θNEW ) ▷ (9)
9: if J (θNEW ) ≤ J (θ) then

10: θ = θNEW

11: else if rand ≤ exp(−J (θNEW )−J (θ)
T ) then

12: θ = θNEW

13: if NT mod i = 0 then
14: T = CT ∗ T
15: i = 0

the observer uses the form in (9) as it can determine all
necessary variables from observations. We also note this cost
in (9) has two desirable properties: first, the cost is positive
semi-definite for all possible parameter values. Second, the
cost is exactly equal to zero if the parameter estimations are
identical to the ground truth. With these properties, we can
ensure that a solution to the minimization exists.

We choose to optimize the observer with a Simulated
Annealing [33] based approach, presented in Algorithm 1.
It is well-known that the configuration cost function (2)
contains many local minima, therefore, we require an opti-
mization algorithm that can explore past these local minima.
Simulated Annealing provides a balance between exploration
and exploitation of the space within quick iterations, allowing
it to make predictions in real time alongside a team of robots
performing coverage control. Further, it is adaptable to vary-
ing density functions. We quantify our observer performance
in Section V.

IV. GENERATING PRIVACY-AWARE TRAJECTORIES WITH
A GENETIC ALGORITHM

Given our multi-robot coverage objective, as well as a
model of our observer, we now present our algorithm for
generating Pareto-optimal privacy-aware trajectories. Within
the context of this paper, we define privacy as counter to the
objectives of the observer presented in Section III.

Definition 1 (Privacy-Aware Trajectory). A robot’s trajectory
that increases the observer cost in (9).

Here, we now assume the team of robots knows it is under
observation, and therefore can modify its behavior to trick
the observer. Intuitively, we can define a privacy cost R that
counters the observer cost in (9). We define the privacy cost

max
p,ṗ

R(p, ṗ) =

n∑
i=1

[(
ṗi

kprop
+ pi)−

∫
Vi

qϕ(q)dq∫
Vi

ϕ(q)dq
]2. (11)

Note that while the robots do not know the observer’s



estimate of the information density function, ϕ̂(q, θ), they
do have access to the true information density function
ϕ(q) and their true centroids CVi . Trivially, if the robots
only maximize the privacy cost (11), then they move in the
opposite direction of their centroid, which also maximizes
their configuration cost (2). Since their goal is to provide
coverage of this information density function, the team must
balance the privacy cost (11) with the configuration cost (2),
summarized in Problem 1.

Problem 1. For a given increase in the coverage cost, find
the most private trajectories for a team of robots under
observation.

To solve Problem 1, we must quantify this trade-off
between trajectory level privacy and optimality. We propose a
multi-objective optimization algorithm that generates Pareto-
optimal solutions based upon NSGA-II [10], a popular
evolutionary algorithm. We also introduce a new crossover
method which guarantees feasible child trajectories from any
two parent trajectories.

A. Evaluating Trajectory Costs

Although traditional coverage-control algorithms run on-
line, here, we generate the trajectories for the team offline
with a genetic algorithm. We define a trajectory for a robot i
as Wi, with W representing the trajectories of all robots.
Waypoints within the trajectory are denoted wk for k =
{1, ...,m} waypoints. Our genetic algorithm evaluates two
costs that represent the trade-off between coverage cost H
and privacy R:

min
W

H(W ) =

m∑
j=1

n∑
i=1

∫
Vij

∥q − wij∥2ϕ(q)dq, (12)

max
W

R(W ) =

m∑
j=1

n∑
i=1

[(
ṗij
kprop

+ wij )−

∫
Vij

qϕ(q)dq∫
Vij

ϕ(q)dq
]2.

(13)
As these costs exist in a continuous space, a real-valued
genetic algorithm must be used. Algorithm 3 utilizes these
costs, starting from an initial set of feasible trajectories.
Given the maximum velocity constraints on our robots,
we require that the children trajectories have a feasible
set of waypoints. Typical point crossover methods do not
incorporate these constraints; if two parent solutions are
very different, blending crossover methods may generate an
infeasible trajectory. Therefore, we propose a new crossover
method for generating feasible velocity-constrained trajecto-
ries with real-valued genetic algorithms.

B. Real Valued Velocity Constrained Crossover

Our proposed crossover method in Algorithm 2, balances
the dissemination of information between child solutions
while guaranteeing feasibility. We enforce the maximum
velocity constraint for our robots with a maximum allow-
able distance between any two waypoints in the trajectory,
represented with a circle of radius rv , illustrated in Figure 2.
During crossover, any new waypoint generated within this

k

rv

1.5rv

k

k

Fig. 2: Visualization of a simple crossover case. For two
candidate trajectories, new crossover points are calculated
at the k-th waypoint. Geometric constraints on generation
ensure new candidates are feasible.

Algorithm 2 Real Valued Velocity Constrained Crossover

1: Input: Parent Trajectories Wparent1 ,Wparent2 , Travel
Constraint rv , Crossover indices Wi, Mutation rate λ

2: Generate children c1 and c2 by replicating Wparent1 and
Wparent2

3: for k ∈ Wi do
4: Generate line, ℓ, intersecting c1(k) and c2(k)
5: for c1, c2 do
6: Generate circular constraints, circv
7: Generate circular hyper-constraint, hcircv , of

radius 1.5rv centered on c(k − 1)
8: Calculate intersections, int1, int2, of ℓ with

hcircv
9: Classify intersections as intcross =

int1, int2 ∈ {c1(k) − c2(k)} and
intmut = int1, int2 /∈ {c1(k)− c2(k)}

10: if ∀int /∈ {c1(k)− c2(k)} then
11: c(k)NEW = circv ∪ (c(k − 1)− 1

2 (c1(k) +
c2(k)))

12: else if rand < λ then
13: c(k)NEW = intmut

14: else
15: c(k)NEW = intcross

16: [c(k), ..., c(end)] += c(k)NEW − c(k)

circle is considered a valid next waypoint. By computing
the intersections between constraints and lines connecting
crossover points, this method shares information similarly to
other real value blending methods. By including mutation
in the crossover process, we can ensure that feasibility is
maintained while providing a means for information outside
the parent populations extrema to be introduced to the
algorithm.

C. Algorithm Overview

With established cost functions (12) and (13), and the
proposed crossover method in Algorithm 2, we now present
our algorithm for generating privacy-aware trajectories, de-
tailed in Algorithm 3. First, we generate an initial population
of feasible trajectories, based on the initial locations of
all robots. Note that the trajectory that solves (2) repre-



Algorithm 3 Privacy-Aware Trajectory Generation

1: Input: Initial Agent Positions p, Information Density
ϕ(q)

2: Generate Voronoi Optimal Trajectory W (1)
3: Generate Random Initial Trajectories W (2 : PMAX)
4: for G ≤ GMAX do
5: Compute Costs H,R ∀WG ▷ (12,13)
6: Rank solutions in WG by Pareto dominance ▷ [10]
7: Sort Pareto fronts by crowding distance ▷ [10]
8: Add WG(1 : PMAX/3) to WG+1

9: while WG+1 < WG do
10: Select two parent W ’s from WG

11: Apply crossover to generate c1 and c2 ▷ Alg. 2
12: Add c1 and c2 to WG+1

sents a Pareto-optimal solution. We choose this trajectory
to seed the initial population, ensuring that high quality
information on optimality rapidly spreads through the early
generations of populations. The rest of the initial population
comprises randomly-generated trajectories that obey velocity
constraints. Figure 4(a) illustrates an initial population with
k = 250 waypoints and a population of 120.

We evaluate each trajectory for both coverage cost (12) and
privacy (13), then sort solutions within the population by the
fast non-dominating sort with crowding distance proposed in
[10]. Next, we replicate the top third of the population into
the new generation. Tournament selection is held for between
all solutions in the old generation, removing selected trajec-
tories from the tournament. This style of tournament favors
more optimal solutions for crossover, while still allowing
for exploration with less optimal solutions. From the parent
pairs, crossover and mutation occurs with Algorithm 2. We
repeat this process until the new generation is the same size
as the old generation, and the cycle repeats. Algorithm 3
summarizes these steps.

V. SIMULATIONS

Simulations conducted in Matlab demonstrate the efficacy
of our algorithms. Within our simulated environment, we
first optimize for the privacy-aware trajectories with Algo-
rithm 3. Then, we assess the performance by running these
trajectories in parallel with the observer (Algorithm 1). Our
results show the ability to create a diverse set of trajectories,
which reduce the performance and efficacy of an observer.
Videos with animations of the simulations are included with
the submission of this paper.

A. Baseline Observer Performance

The performance of the observer can be quantified by
calculating the Mean Square Error (MSE) between the peak
of ϕ(q) and the peak of its estimate ϕ̂(q, θ). Figure 3 depicts
the mean-variance plot of this observer error over 100 ran-
domized simulations. We tested our observer against teams
of three robots performing Voronoi-based coverage control
for 250 seconds. For these simulations, the information
density function evolves with an elliptical orbit. As shown in

Fig. 3: MSE for an observer tracking a moving ϕ(q, t)
function for 100 randomized trials.

Figure 3, the MSE quickly converges to zero, implying the
observer identifies the true peak location, and successfully
tracks the movement of the peak over time. In subsequent
simulations, we assume a static ϕ(q), but include it here for
demonstration.

B. Generating Diverse Trajectories

Figures 1 and 4 illustrate the evolution of privacy-aware
trajectories for a team of n = 3 robots. The initial population
in Figure 4a contains a total of 120 trajectories, including
the Voronoi-optimal trajectory alongside 119 randomized
feasible trajectories. Each trajectory contains k = 250
waypoints, and we run Algorithm 3 for 60 generations.
After 8 generations, we begin to see a variety of trajectories
emerge in Figure 1a, with the complete set in Figure 4b
illustrating the diversity. We also see after 60 generations
that these solutions fill out the Pareto front in Figure 4f.
In this scenario, the information density ϕ(q) contains a
single peak at [7.5, 7.5] in the upper-right corner. Figure
4c illustrates the trajectory with the highest privacy score
on the Pareto front, while Figure 4d balances privacy with
optimality. As expected, the most optimal trajectory in Figure
4e is the Voronoi-based coverage control solution without
modification.

The resulting Pareto front highlights the ability to choose
an allowable trade-off between privacy and coverage cost.
Our algorithm successfully populates a diverse set of candi-
date trajectories, which allow a team to improve their privacy
based on an acceptable increase in coverage cost. Further,
all trajectories are feasible, guaranteed by the velocity-
constrained crossover method in Algorithm 2. Next, we
examine the effect of increasing privacy on the observer’s
performance.

C. Impact on Observer’s Performance

We replay the trajectories of the team and run the observer
alongside the trajectories to assess the observer’s ability to
predict the information density ϕ(q), which encodes the
team’s goal. We then assess the performance of the observer
in the same manner as section V.A.

Recall in Figure 3, without any trajectory modification the
observer quickly converged to the actual value of ϕ(q), repre-
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Fig. 4: Algorithm 3 produces privacy-aware trajectories that
allows a team to trade-off between privacy and optimality. (a)
Initial population of trajectories for n = 3 robots, with the
Voronoi-based solution provided. (b) Final trajectories after
60 generations of all 120 trajectory sets. (c) The trajectory
with the most private cost along the Pareto front. (d) A
trajectory that balances optimality with privacy. (e) The most-
optimal trajectory, which is the Voronoi-based solution. (f)
Pareto front of all trajectories.

senting a large privacy risk. Figure 5 illustrates three different
randomized scenarios, comparing the generated Pareto front
of trajectories to observer performance. Each of these random
initializations contains a population size of 60 trajectories,
k = 120 waypoints, and ran for 60 generations. To give our
observer the best performance, in each case the information
density function ϕ(q) was a single Gaussian peak with a
randomized peak location. In total, we ran 44 randomized
scenarios. Figure 5a highlights three selected Pareto fronts
from the set of all scenarios. Due to randomization in initial
conditions and peak location, the fronts have varying slopes
and ranges of coverage and privacy costs. Figure 5b plots the
corresponding observer MSE for the varying privacy values
in each Pareto front. The MSE was averaged over the final
20 waypoints of the trajectories, in order to assess a near
steady-state performance. Across all three scenarios, we see a
clear trend that as privacy increases, the MSE of the observer
also increases. These results validate our approach, and show

(a) Pareto Fronts for Randomized Scenarios
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(b) Observer MSE Across the Pareto Front

Fig. 5: (a) Pareto fronts for randomized scenarios. Each color
represent a different set of trajectories. (b) Corresponding ob-
server MSE along the Pareto fronts for a given privacy score
of a trajectory. As the privacy score increases, so does the
observer MSE, successfully demonstrating the obfuscation
of the goal location.

that our privacy-aware trajectory generation algorithm can
successfully help a team obscure their goal from an observer.

VI. CONCLUSIONS

In this paper we have proposed a new method for in-
cluding privacy in coverage path planning for robotics. The
multi-objective genetic algorithm has been demonstrated as
effective for similar problems before and continues to be a
powerful tool here. The newly proposed crossover method
for genetic algorithms also offers great value for the use
of genetic algorithms on other robotics problems, as it
extends more traditional methods to allow for easy inclusion
of common constraints and provides both exploration and
exploitation of the free space. While the focused control
law in this work was that of Voronoi-based coverage con-
trol, the methods discussed represent a broader manner of
investigation for other possible controllers. By determining
information to be kept private and deriving a privacy cost
from a similar worst-case observer, the same optimization
could be run to obfuscate the information and improve
privacy.
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X. Li, M. López-Ibáñez, K. Ohkura, C. Pinciroli, and T. Stützle, Eds.
Cham: Springer International Publishing, 2016, pp. 15–27.

[18] L. Li, A. Bayuelo, L. Bobadilla, T. Alam, and D. A. Shell, “Coor-
dinated multi-robot planning while preserving individual privacy,” in
2019 International Conference on Robotics and Automation (ICRA),
2019, pp. 2188–2194.

[19] H. Zheng, J. Panerati, G. Beltrame, and A. Prorok, “An adversarial
approach to private flocking in mobile robot teams,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 1009–1016, 2020.

[20] M. Schwager, D. Rus, and J.-J. Slotine, “Decentralized, adaptive
coverage control for networked robots,” The International Journal of
Robotics Research, vol. 28, no. 3, pp. 357–375, 2009.

[21] J. Cortés, “Coverage optimization and spatial load balancing by robotic
sensor networks,” Automatic Control, IEEE Transactions on, vol. 55,
no. 3, pp. 749–754, 2010.

[22] S. G. Lee and M. Egerstedt, “Controlled coverage using time-varying
density functions,” in Proc. of the IFAC Workshop on Estimation and
Control of Networked Systems, 2013.

[23] A. Pierson, L. C. Figueiredo, L. C. Pimenta, and M. Schwager,
“Adapting to sensing and actuation variations in multi-robot coverage,”
The International Journal of Robotics Research, vol. 36, no. 3, pp.
337–354, 2017.

[24] A. Sadeghi and S. L. Smith, “Coverage control for multiple event
types with heterogeneous robots,” in 2019 International Conference
on Robotics and Automation (ICRA), May 2019, pp. 3377–3383.

[25] J. Kennedy, P. M. Dower, and A. Chapman, “Exponential convergence
in voronoi-based coverage control,” in 2021 Australian & New Zealand
Control Conference (ANZCC), 2021, pp. 226–231.

[26] D. E. D. E. Goldberg, Genetic algorithms in search, optimization,
and machine learning. Reading, Mass.: Addison-Wesley Publishing
Company, 1989.

[27] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang,
“Multiobjective evolutionary algorithms: A survey of the state of the
art,” Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 32–49,
2011.

[28] B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolutionary
algorithms: A survey,” ACM Comput. Surv., vol. 48, no. 1, sep 2015.

[29] J. Lee and D.-W. Kim, “An effective initialization method for genetic
algorithm-based robot path planning using a directed acyclic graph,”
Information Sciences, vol. 332, pp. 1–18, 2016.

[30] A. Tuncer and M. Yildirim, “Dynamic path planning of mobile
robots with improved genetic algorithm,” Computers & Electrical
Engineering, vol. 38, no. 6, pp. 1564–1572, 2012.

[31] K. Ellefsen, H. Lepikson, and J. Albiez, “Multiobjective coverage
path planning: Enabling automated inspection of complex, real-world
structures,” Applied Soft Computing, vol. 61, pp. 264–282, 2017.

[32] A. Seddaoui and C. M. Saaj, “Collision-free optimal trajectory gen-
eration for a space robot using genetic algorithm,” Acta Astronautica,
vol. 179, pp. 311–321, 2021.

[33] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.


	Introduction
	Related Work
	Problem Formulation
	Voronoi-Based Coverage Control
	Information Observer

	Generating Privacy-Aware Trajectories with a Genetic Algorithm
	Evaluating Trajectory Costs
	Real Valued Velocity Constrained Crossover
	Algorithm Overview

	Simulations
	Baseline Observer Performance
	Generating Diverse Trajectories
	Impact on Observer's Performance

	Conclusions
	References

