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Deployment of autonomous vehicles on public roads promises
increased efficiency and safety. It requires understanding the
intent of human drivers and adapting to their driving styles.
Autonomous vehicles must also behave in safe and predictable
ways without requiring explicit communication. We integrate
tools from social psychology into autonomous-vehicle decision
making to quantify and predict the social behavior of other
drivers and to behave in a socially compliant way. A key com-
ponent is Social Value Orientation (SVO), which quantifies the
degree of an agent’s selfishness or altruism, allowing us to bet-
ter predict how the agent will interact and cooperate with others.
We model interactions between agents as a best-response game
wherein each agent negotiates to maximize their own utility.
We solve the dynamic game by finding the Nash equilibrium,
yielding an online method of predicting multiagent interactions
given their SVOs. This approach allows autonomous vehicles to
observe human drivers, estimate their SVOs, and generate an
autonomous control policy in real time. We demonstrate the capa-
bilities and performance of our algorithm in challenging traffic
scenarios: merging lanes and unprotected left turns. We validate
our results in simulation and on human driving data from the
NGSIM dataset. Our results illustrate how the algorithm’s behav-
ior adapts to social preferences of other drivers. By incorporating
SVO, we improve autonomous performance and reduce errors in
human trajectory predictions by 25%.

autonomous driving | Social Value Orientation | social compliance |
game theory | inverse reinforcement learning

Interacting with human drivers is one of the great challenges of
autonomous driving. To operate in the real world, autonomous

vehicles (AVs) need to cope with situations requiring com-
plex observations and interactions, such as highway merging
and unprotected left-hand turns, which are challenging even for
human drivers. For example, over 450,000 lane-change/merging
accidents and 1.4 million right-/left-turn accidents occurred in
the United States in 2015 alone (1). Currently, AVs lack an
understanding of human behavior, thus requiring conservative
behavior for safe operation. Conservative driving creates bot-
tlenecks in traffic flow, especially in intersections. For exam-
ple, Waymo, considered a leader in autonomous driving, still
struggles with left turns and acting in predictable manners (2).
This conservative behavior not only leaves AVs vulnerable to
aggressive human drivers and inhibits the interpretability of
intentions, but also can result in unexpected reactions that con-
fuse and endanger others. In a recent analysis of California
traffic incidents with AVs, in 57% of crashes, the AV was
rear-ended by human drivers (3), with many of these crashes
occurring because the AV behaved in an unexpected way that
the human driver did not anticipate. For AVs to integrate
onto roadways with human drivers, they must understand the
intent of the human drivers and respond in a predictable and
interpretable way.

While planning a left turn may be trivial for an AV on an
empty roadway, it remains difficult in heavy traffic. For human
drivers, these unprotected left turns often occur when an oncom-
ing driver slows down to yield, an implicit signal to the other
driver that it is safe to turn. An AV must also recognize these

social cues of selfishness or cooperation, and failure to do so
impacts the overall flow of the traffic network and even the
safety of the traffic participants. AVs rely on explicit com-
munication, state machines, or geometric reasoning about the
driving interactions (4–8), neglecting social cues and driver per-
sonality. These approaches cannot handle complex interactions,
resulting in conservative behavior and limiting autonomy solu-
tions to simple road interactions. Additionally, humans cannot
directly quantify and communicate their actions and decisions
to autonomous agents. We use game theory to capture the
dynamic interactions between agents, considering an agent’s
“best response” given the decisions of all other agents. Other
approaches that use game-theoretic formulations model agents
as selfish with homogeneous decision making (9–12). Instead,
we extend the ability of AVs’ reasoning by incorporating esti-
mates of the other drivers’ personality and driving style from
social cues. This allows us to handle more complex navigation
scenarios that rely on interactions, like multiple vehicles in an
intersection. We present a mathematical formulation that com-
bines control-theoretic approaches with models and metrics from
the psychology literature, behavioral game theory, and machine
learning.

Main Contributions. This article proposes a system to measure,
quantify, and predict human behavior to better inform an
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Fig. 1. (A) Knowing a driver’s SVO helps predict their behavior. Here, the AV (blue) observes the trajectories of the other human driver (black). We can
predict future motion of the black vehicle for candidate SVOs based on a utility-maximizing decision model (Driving as a Game in Mixed Human–Robot
Systems). If the human driver is egoistic, they will not yield, and the AV must wait to turn. If the human driver is prosocial, they will yield, and the AV
can safely turn. In both cases, the driver is utility-maximizing, but the utility function varies by SVO. An egoistic driver considers only its own reward in
computing its utility. A prosocial driver weights its reward with the reward of the other car. The most likely SVO is the one that best matches a candidate
trajectory to the actual observed trajectory (Measuring and Estimating SVO Online). The AV predicts future motion using the most likely SVO estimate. (B)
SVO is represented as an angular preference ϕ that relates how individuals weight rewards in a social dilemma game. Here, we plot the estimated SVOs for
drivers merging in the NGSIM dataset, explained in Methods and Results. (C) The distribution of mean SVO estimates during interactions. We find merging
drivers (red) to be more competitive than nonmerging drivers (blue).

autonomous system. A game-theoretic formulation models driv-
ing as a series of social dilemmas to represent the dynamic
interaction between drivers. We formulate a direct solution of
the best-response game, allowing for fast, online predictions
and planning, while integrating environmental and planning
constraints to ensure safety. The game’s reward functions are
dynamic and dependent on the vehicles’ states and the environ-
ment. Since we learn the reward functions from human driving
data, we expect that our approach translates to other traffic sce-
narios and, broadly, human–robot interactions, where we can
derive similar predictions trained on relevant data. Using Social
Value Orientation (SVO), a common metric from psychology,
we quantify human social preferences and their corresponding
levels of cooperation. SVO measures how an individual weights
their reward against the rewards of others, which translates into
altruistic, prosocial, egoistic, or competitive preferences. We
estimate the human drivers’ SVOs from observed motion and set
the AV’s SVO based on the scenario.

The main contributions of this paper are as follows: modeling
driving as a dynamic game and computing its Nash equilib-
rium; predicting human actions from expected utility maximiza-
tion; integrating SVO preferences into the utility-maximizing
framework; estimating SVO online from observed driving trajec-
tories; simulations of emerging socially compliant autonomous
driving behavior; and validation on Next Generation Simula-
tion (NGSIM) (13) driving data, a human dataset of the US
Highway 101.

Driving as a Game. We model driving as a noncooperative
dynamic game (14), where the driving agents maximize their
accumulated reward, or “payout,” over time. At each point in
time, the agent receives a reward, which may be defined by fac-
tors like delay, comfort, distance between cars, progress to goal,
and other priorities of the driver. Fig. 1A illustrates an example
of a driving game: an unprotected left turn. Here, the blue car
must make a left turn across the path of the black car. Depend-
ing on how the interaction is resolved, the agents accrue different
rewards for decisions such as comfortable braking, waiting for
others to pass, or safety. In Fig. 1A, if each driver only maximizes
their own reward, then the black vehicle would never brake for
the blue vehicle making the unprotected left turn. However, we
know that human drivers often brake for others in an act of altru-
ism or cooperation. Similarly, in highway driving, we observe
human drivers open gaps for merging vehicles. If all agents
were to act in pure selfishness, the result would be increased
congestion and, therefore, a decrease in the overall group’s

reward. We thus conclude that driving poses a sequence of social
dilemmas.

Social Coordination. Social dilemmas involve a conflict between
the agent’s short-term self-interest and the group’s longer-term
collective interest. Social dilemmas occur in driving, where
drivers must coordinate their actions for safe and efficient joint
maneuvers. Other examples include resource depletion, low
voter turnout, overpopulation, the prisoner’s dilemma, or the
public goods game. The autonomous control system proposed
in this paper builds on social preferences of human drivers to
predict outcomes of social dilemmas: whether individuals coop-
erate or defect, such as opening or closing a gap during a traffic
merge. It allows us to better predict human behavior, thus offer-
ing a better basis for decision-making. It may also improve the
efficiency of the group as a whole through emerging cooperation,
for example, by reducing congestion.

Social Value Orientation. Behavioral and experimental economics
shows that people have unique and individual social preferences,
including interpersonal altruism, fairness, reciprocity, inequity
aversion, and egalitarianism. Self-interested models, like the
homo economicus (15), assume that agents maximize only their
own reward in a game, which fails to account for nuances in
real human behavior. In contrast, SVO indicates a person’s
preference of how to allocate rewards between themselves and
another person. SVO can predict cooperative motives, negotia-
tion strategies, and choice behavior (16–21). SVO preferences
can be represented with a slider measure (22), a discrete-form
triple dominance measure (23), or as an angle ϕ within a ring
(24). We denote SVO in angular notation, shown in Fig. 1B.

Returning to Fig. 1A, SVO helps explain when the black car
yields. Here, the black car considers both its reward and the
reward of the blue car, weighted by SVO. As the angular pref-
erence increases from egoistic to prosocial, the weight of the
other agent’s reward increases, making it more likely that the
black car will yield. Knowing a vehicle’s SVO helps an AV bet-
ter predict the actions of that vehicle and allows it to complete
the turn if cooperation is expected. Without SVO, it would wait
conservatively until all cars cleared the intersection.

An AV needs to estimate SVO, since humans cannot commu-
nicate this directly. Instead, humans observe and estimate SVO
from actions and social cues (25). SVO preference distributions
of individuals are largely individualistic (∼ 40%) and prosocial
(∼ 50%) (22, 26–29), which emphasizes that an SVO-based
model will be more accurate than a purely selfish model. We
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estimate SVOs of other drivers by determining the SVO that best
fits predicted trajectories to the actual driver trajectories. This
technique enables the estimation and study of SVO distributions
of agent populations directly from trajectory data, extending
beyond driving. We plot the estimated SVOs for drivers merging
in the NGSIM dataset in Fig. 1.

Socially Compliant Driving. Using SVO estimates of human
drivers, we can design the control policy of the AV. We define
socially compliant driving as behaving predictably to other human
and autonomous agents during the sequence of driving social
dilemmas. Achieving socially compliant driving in AVs is fun-
damental for the safety of passengers and surrounding vehicles,
since behaving in a predictable manner enables humans to
understand and appropriately respond to the AV’s actions. To
achieve socially compliant driving, the autonomous system must
behave as human-like as possible, which requires an intrinsic
understanding of human behavior, as well as the social expecta-
tions of the group. Human behavior may be imitated by learning
human policies from data through imitation learning (30, 31). Our
autonomous system design enables social compliance by learning
human reward functions through inverse reinforcement learning
(IRL) (32). The optimal control policy of the best-response game
with learned rewards yields a human-imitating policy (9, 33, 34).
Mathematically, the imitating policy is the expectation of human
behavior based on past observed actions, capable of predict-
ing and mimicking human trajectories. Combined with SVO,
this enables an AV to behave as a human driver is expected to
behave in traffic scenarios, such as acting more competitively
during merges, and mirroring the utility-maximization strate-
gies of humans with heterogeneous social preferences in social
dilemmas (35).

When designing a cooperative AV, it may be desirable to
assign the AV a prosocial SVO. Prosocials exhibit more fairness
and considerateness compared to individualists (16) and engage
in more volunteering, proenvironment, procommunity, and char-
itable efforts (17, 36–38). They also tend to minimize differences
in outcomes between self and others (inequality aversion and
egalitarianism) (18, 22). Additional findings suggest reciprocity
in SVO and resulting cooperation (35, 39, 40).

To make the unprotected turn in Fig. 1A, the AV first observes
the trajectory of the oncoming car, which can be done with
onboard sensors. Using the reward (payoff) structure learned
from data and our utility-maximizing behavior model, it gener-
ates candidate trajectories based on possible SVO values. The
most likely SVO is the one that best matches a candidate trajec-
tory to the actual observed trajectory. With this estimated SVO,
the AV then generates future motion predictions and plans when
to turn safely.

Estimating Driver Behavior with SVO
Our approach integrates SVO into a noncooperative dynamic
game, and we model the agents as making utility-maximizing
decisions, with the optimization framework presented in Driving
as a Game in Mixed Human–Robot Systems. To integrate SVO
into our game-theoretic formulation, we define a utility func-
tion g(·) that combines the rewards of the ego agent with other
agents, weighted by the ego agent’s SVO angular preference ϕ.
For a two-agent game,

g1 = cos(ϕ1)r1(·) + sin(ϕ1)r2(·), [1]

where r1 and r2 are the “reward to self” and “reward to other,”
respectively, and ϕ1 is the ego agent’s SVO. We see that the
orientation of ϕ1 will weight the reward r1 against r2 based
on the ego agent’s actions. The following definitions of social
preferences (22, 24) are based on these weights:

1) Altruistic: Altruistic agents maximize the other party’s
reward, without consideration of their own outcome, with
ϕ≈ π

2
.

2) Prosocial: Prosocial agents behave with the intention of ben-
efiting a group as a whole, with ϕ≈ π

4
. This is usually defined

by maximizing the joint reward.
3) Individualistic/egoistic: Individualistic agents maximize their

own outcome, without concern of the reward of other agents,
with ϕ≈ 0. The term egoistic is also used.

4) Competitive: Competitive agents maximize their relative gain
over others, i.e., ϕ≈−π

4
.

We limit our definitions to rational social preferences, with
more in refs. 22 and 24. While our definitions give specific values
of SVO preferences for clarity, we also note that SVO exists on a
continuum. For example, values in the range 0<ϕ< π

2
all exhibit

a certain degree of altruism. We denote cooperative actions as
actions that improve the outcome for all agents. For example,
two egoistic agents may cooperate if both benefit in the outcome.
Prosocials make cooperative choices, as their utility-maximizing
policy also values a positive outcome of others. These coopera-
tive choices improve the efficiency of the interaction and create
collective value.

Measuring and Estimating SVO Online. Given that other drivers
maximize utility, we can predict their trajectories from obser-
vations and an estimate of their SVO. The choice of SVO
changes the predicted trajectories. In Fig. 1A, a prosocial
SVO generates a braking trajectory prediction, while an ego-
istic SVO generates a nonbraking trajectory. We compute the
likelihood of candidate SVOs from evaluating the Gaussian
kernel on the distance between predicted and actual trajec-
tories. We also consider a maximum-entropy model, which
builds a likelihood function based on the distance of the
observed trajectory to optimality given a candidate SVO (see
SI Appendix, section S3 for derivations). We utilize these meth-
ods to estimate SVO from human driver trajectories in Methods
and Results.

Benefit of SVO. We improve predictions of interactions by esti-
mating the SVO of other drivers online. Incorporating SVO
into the model increases social compliance of vehicles in the
system, by improving predictability and blending in better. For
the AVs, SVO adds the capability of nuanced cooperation
with only a single variable. The AV’s SVO can be speci-
fied as user input, or change dynamically according to the
driving scenario, such as becoming more competitive during
merging.

Driving as a Game in Mixed Human–Robot Systems
To create a socially compliant autonomous system, our
autonomous agents must determine their control strategies
based on the decisions of the human and other agents. This
section details how we incorporate a human decision-making
model into an optimization framework; see SI Appendix, section
S2 for more detail. We formulate the utility-maximizing opti-
mization problem as a multiagent dynamic game and then
derive the Nash equilibrium to solve for a socially compliant
control policy.

Consider a system of m human drivers and autonomous
agents, with states such as position, heading, and speed, at time
k denoted xki ∈X , where i = {1, . . . ,m} and X ∈Rn is the set of
all possible states. We denote uk

i ∈U as the control input, such
as acceleration and steering angle, of agent i and ϕi ∈Φ as SVO
preference, where U ∈Rn is the set of all possible control inputs
and Φ is the set of possible SVO preferences. For brevity, we
write the state of all agents in the system as x = [xᵀ1, . . . , xᵀm ]ᵀ, all
control inputs as u = [uᵀ

1, . . . , uᵀ
m ]ᵀ. The states evolve according
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Table 1. Trajectory prediction error

Multiagent game theoretic

Prediction Baseline 1 2 3

SVO — Egoistic Static best Estimated
MSE position 1.0 0.947 0.821 0.753

Relative position mean squared error (MSE) between predicted and actual
trajectories, compared to a single-agent baseline. Our multiagent game-
theoretic model reduces error, and the dynamic, estimated SVO performs
best.

to dynamics Fi(xki , uk
i ) subject to constraints ci(·)≤ 0 with the

discrete-time transition function

xk+1 =F(xk , uk ) =
[
F1(xk1, uk

1)ᵀ, . . . ,Fm(xkm , uk
m)ᵀ

]T
. [2]

The notation x¬i refers to the set of agents excluding agent i .
For example, we can write the state vector x = [xᵀ

1 | x
ᵀ
¬1]ᵀ, with

x¬1 = [xᵀ2, . . . , xᵀm ]ᵀ. The agents calculate their individual con-
trol policies ui by solving a general discrete-time constrained
optimization over N time steps and time horizon τ =

∑N
k=1 ∆t .

The set of states over the horizon is denoted as x0:N , and
the set of inputs is u0:N−1. To calculate the control policy, we
formulate a utility function for each agent and then find the
utility-maximizing control actions. The utility function is defined
as a combination of reward functions ri(·), as described in Eq. 1,
and calculated from weighted features of the current state, con-
trols, the environment, and social preference ϕi . At a given time
k , each agent i ’s utility function is given by gi

(
xk , uk ,ϕi

)
, and

gN
i

(
xN ,ϕi

)
. The utility over the time horizon τ is denoted Gi(·),

written

Gi(x0, u,ϕi) =

N−1∑
k=0

gi
(

xk , uk ,ϕi

)
+ gN

i

(
xN ,ϕi

)
. [3]

In this paper, we learn the reward functions ri(·) from the
NGSIM driving data to approximate real human behavior; see
SI Appendix, section S3 for more details on this approach.

Human Decision-Making Model. From psychology literature, we
find that people are heterogeneous in their evaluation of joint
rewards (18), and we can model preferences for others using
utility functions that weight rewards (39–41). Murphy and
Ackermann (35) model human decision making as expected util-
ity maximizing under individual preferences. Based on these
findings from behavioral decision theory, we model human
agents in our system as agents that make utility-maximizing deci-
sions. Other robotics literature (9, 33, 34) supports this case.
Translating this decision making into an optimization framework
for socially compliant behavior, we write the utility-maximizing
policy

u∗i
(
x0,ϕi

)
= arg max

ui
Gi

(
x0, ui , u¬i ,ϕi

)
. [4]

The solution u∗i to Eq. 4 also corresponds to the actions
maximizing the likelihood under the maximum entropy model

P(ui |x0, u¬i ,ϕi)∝ exp
(
Gi(x0, ui , u¬i ,ϕi)

)
, [5]

used to learn our rewards by IRL (32, 42). Under this model, the
probability of actions u is proportional to the exponential of the
utility encountered along the trajectory. Hence, utility maximiza-
tion yields actions most likely imitating human driver behavior,
which is important for social compliance.

Although the human driver does not explicitly calculate
u, we assume our model and formulation of u captures the

Fig. 2. (Upper) Snapshot of NGSIM dataset with n = 2 active cars (purple
and green) and n = 50 obstacle cars (gray). Here, car 1 (purple) is attempting
a merge and must interact with car 2 (green). The solid lines indicate the pre-
dicted trajectory from our algorithm. For SVO estimates at each frame, the
blue represents the distribution, while the red line indicates our estimate.
(Lower) The solid line indicates SVO estimate over time, with the shaded
region representing the confidence bounds. Initially, car 2 does not coop-
erate with car 1 and does not allow it to merge. After a few seconds, car
2 becomes more prosocial, which corresponds to it “dropping back” and
allowing the first car to merge.
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Strong interaction

/4

/2

truth
estimateSVO

Fig. 3. (Left) Estimated distribution of SVO preference of blue car shown as polar histograms in SVO circles for premerge and during merge. (Right) The
mean estimate is shown as red and the ground truth (80◦, altruistic) in black. SVO estimates with 1-σ uncertainty bounds are shown on the right. Area of
strong interaction corresponds to gray area on both sides.

decision-making process of the human driver based on their
observations, control actions, and underlying reward function
ri(·) of the environment. Later, we validate on the NGSIM
dataset that our learned model successfully predicts the actual
trajectories driven by the human drivers.

Game-Theoretic Autonomous Control Policy with SVO. To design
the control policy for the AV, note that Eq. 4 formulated for
all m agents simultaneously defines a dynamic game (14). Given
SVO estimates for all agents and a set of constraints on the sys-
tem, we solve for the optimal control policy of a vehicle, u∗i ,
assuming the other agents in the system also choose an opti-
mal policy, u∗¬i . For an intuition on how these dynamic games
work, we first start with a Stackelberg game. An example traffic
scenario that can be modeled as a Stackelberg game is cars arriv-
ing at a four-way stop, where they must traverse the intersection
based on the first arrival. In the traditional two-agent Stackelberg
game (43), the leader (i = 1) makes its choice of policy, u1, and
the follower (i = 2) maximizes their control given the leader
policy, u∗2(u1). See SI Appendix, section S2 for details on the
general procedure of a multi-agent Stackelberg game. While the
Stackelberg game can model some intersections, in many traffic
scenarios, it is unclear who should be the leader and the follower,
thus necessitating a more symmetric and simultaneous choice
game, which is the approach we use in this paper. In the two-
agent case, the follower chooses u2(u1), but the leader readjusts
based on the follower, or u1(u2). This back and forth creates
more levels of tacit negotiation and best response, such that
u2(u1(u2(u1(. . .)))). This strategy removes the leader–follower
dynamics, as well as any asymmetric indirect control, yielding a
simultaneous choice game.

Nash Equilibrium. The iterative process of exchanging and opti-
mizing policies is also called iterative best response, a numerical

Fig. 4. Unprotected left turn of an AV (red; i = 1) with oncoming traffic. As
the AV approaches the intersection, two egoistic cars (blue; i = 2, 3) continue
and do not yield. A third altruistic car (magenta; i = 4) yields by slowing
down, allowing the AV to complete the turn in the gap.

method to compute a Nash equilibrium of the game defined
by Eq. 4. A limitation is its iterative nature; optimizing may
take an unacceptable amount of steps. To make solving for
the Nash equilibrium computationally tractable, we reformulate
the m interdependent optimization problems as a local single-
level optimization using the Karush–Kuhn–Tucker conditions
(14, 44). We solve the locally equivalent formulation, includ-
ing all constraints, with state-of-the-art nonlinear optimizers.
This preserves all safety constraints in the optimization, criti-
cal for guaranteeing safe operation, and performance Algorithm
1 provides an overview of our method, with more details in SI
Appendix, section S3.

The Nash equilibrium yields a control law for the AV u∗i as
well as predicted actions u∗¬i for all other m − 1 agents N time
steps into the future. Based on learned reward functions and the
maximum entropy model, Eq. 5, u∗¬i are also maximum likeli-
hood predictions. The Nash equilibrium is the predicted out-
come of the driving social dilemma and mimics the negotiation
process between agents.

Methods and Results
We implement our socially compliant driving algorithm in two
ways: first to predict human driver behavior in highway merges,
then in simulations of autonomous merging and turning scenar-
ios. This section highlights illustrative examples of our results,
with expanded analysis included in SI Appendix, section S7. We
evaluate human driver predictions on the NGSIM dataset and
examine highway on-ramp merges into congestion. We analyze
a total of 92 unique merges from the dataset and discuss key
results on a representative example. Incorporating SVO reduces
errors in trajectory predictions of human drivers by up to 25%.
For the AV simulations, we replicate this merging scenario and
also present an unprotected left turn. Our simulations demon-
strate how using SVO preferences assists the AV in choosing safe
actions, adding nuanced behavior and cooperation with a single
parameter.

Predicting Human Driving Behavior. To validate our algorithm, we
test its ability to predict human trajectories on highway on-ramp
merges in the NGSIM dataset. We implement a noninteractive
baseline algorithm, where each agent computes their optimal
policy while modeling other agents as lane-keeping dynamic
obstacles. Using the dataset and trajectory history, we com-
pare the baseline prediction’s performance to the multiagent
game-theoretic models with: 1) static egoistic SVO, equal to

Algorithm 1: Socially Compliant Autonomous Driving:

1: x0← Update state observations of all agents
2: ϕ¬1← Update SVO estimation of all agents
3: ϕ1← Choose AV SVO
4: u*← Plan and predict for all agents Eq. 4 (multiagent Nash

equilibrium)
5: Execute AV’s optimal control u*1
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neglecting the SVO model; 2) best static SVO; and 3) estimated
dynamic SVOs. The best static SVO corresponds to the best
SVO estimate when holding it constant throughout the interac-
tion. For different interactions, this may yield a different static
SVO. Table 1 examines the relative position error between the
true vehicle trajectory and our predictions. We find that incorpo-
rating the multiagent game-theoretic framework, but remaining
egoistic, alone improves performance by 5%. Highlighting the
importance of SVO, we see an 18% improvement over the
baseline with static SVO and 25% with estimated dynamic SVO.

Fig. 2 shows a two-agent merge with car 1 (purple) merging
into the lane with car 2 (green). We model the other cars in the
dataset as obstacles for the planner. For a dynamic SVO predic-
tion, we estimate SVO online from observed trajectories of the
vehicles, then leverage SVO in predicting the trajectory. Fig. 2
shows SVO predictions and confidence bounds for both cars
through the merge. Our SVO estimates help explain the inter-
actions occurring: At t = 2, the first car’s SVO is egoistic while
attempting to merge, but the second car is also egoistic and does
not provide a sufficient gap to merge. At t = 5, the second car
drops back and increases the gap for merging, corresponding to
a more prosocial estimated SVO. Once the first car has merged,
the second car closes the gap, returning to an egoistic SVO.

The capability of estimating SVOs of humans by observing
their motions allows us to investigate how SVO distributions in
natural populations differ. Separating merging and nonmerging
vehicles in the dataset, we find that merging cars are more likely
to be competitive than nonmerging cars, as shown in the his-
togram of Fig. 1C. This observation also withstands hypothesis
testing with statistical significance (P < 0.002), further discussed
in SI Appendix, section S7.

Autonomous Merging with SVO. Employing the estimation tech-
niques described in SI Appendix, section S3, we are able to mea-
sure SVO preference of another agent in a simulated highway-
merging scenario. Fig. 3 shows the AV’s (red) SVO estimates of
another vehicle (blue) over time. At first, the vehicles have lit-
tle interaction, and the observations of the driver’s SVO remain
ambiguous, such that the estimate is inaccurate with high vari-
ance. As the AV approaches the end of its lane, both vehicles
begin to interact, indicated in gray in the figure. During this time,
the SVO estimate quickly converges to the true value, with high
confidence. After the merge, the vehicles no longer interact, the
variance of the SVO estimate increases, and the estimate drifts
away from the true value. Note that estimating the characteristics
of an interaction (e.g., SVO) is only possible if the interaction
between agents is impactful; see SI Appendix, section S4 for a
Hessian-based analysis.

Unprotected Left Turns. In this scenario, the AV must make an
unprotected left turn against numerous cars traveling in the
oncoming direction. If the AV were in light traffic, it could be
feasible for it to wait for all other oncoming cars to pass. How-
ever, in congested traffic, the intersection might never fully clear.
Instead, the AV must predict when an oncoming car will yield,
allowing the vehicle to safely make the turn. Fig. 4 shows our
simulation, where the AV (red; i = 1) attempts to turn across
traffic. Two egoistic cars (blue; i = 2, 3) approach the intersec-
tion and do not yield for the AV, as predicted. An altruistic third
car (magenta; i = 4) yields for the AV by slowing down, such that
the gap between itself and the other blue car increases. With this
increased gap, the AV is able to safely make the turn, and the
magenta car continues forward.

Conclusions
We propose the use of SVO to measure, quantify, and pre-
dict the behavior of human drivers. We model the interactions
between drivers as a dynamic game and present a computation-
ally tractable way of finding its Nash equilibrium. Using SVO
as our key factor in predicting human behavior, we present two
likelihood functions to estimate the SVO of other drivers from
observed trajectories. We validate our findings in simulation and
on the NGSIM dataset, incorporating the human behavior into
the AV planner, resulting in intelligent, socially aware maneu-
vers. We find that the multiagent Nash equilibrium, SVO, as
well as its estimation improve predictions and prove essential
assets for interactive driving. Our unified algorithm improves on
human driver trajectory prediction by 25% over baseline models.
For highway merges in the NGSIM data, we also find that the
human drivers merging into traffic are consistently more compet-
itive than the drivers yielding to the merging car. These insights
can better inform AVs that currently struggle to make these
maneuvers. The ability to estimate SVO distributions directly
from observed motion instead of in laboratory conditions will
prove impactful beyond autonomous driving. Overall, robotic
and artificial intelligence applications where an autonomous sys-
tem acts among humans will benefit from integrating SVO in
their prediction and decision-making algorithms.

Data Availability Statement. The NGSIM data are available at
ref. 13.
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