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Abstract
This article considers the problem of multi-robot coverage control, where a group of robots has to spread out over an
environment to provide coverage. We propose a new approach for a group of robots carrying out this collaborative task
that will adapt online to performance variations among the robots. Two types of performance variations are considered:
variations in sensing performance (e.g. differences in sensor types, calibration, or noise), and variations in actuation (e.g.
differences in terrain, vehicle types, or lossy motors). The robots have no prior knowledge of the relative strengths of their
performance compared to the others in the team. We present an algorithm that learns the relative performance variations
among the robots online, in a distributed fashion, and automatically compensates by assigning the weak robots a smaller
portion of the environment and the strong robots a larger portion. Using a Lyapunov-type proof, we show that the robots
converge to a locally optimal coverage configuration. The algorithm is also demonstrated in both MATLAB simulations
and experiments with Pololu m3pi ground robots.
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1. Introduction

We are interested in decentralized control strategies for
groups of robots that can adapt to individual deficiencies
and performance variations within the group. Our work
considers a team of robots carrying out a coverage con-
trol task, wherein the robots must spread out across the
environment while covering areas of high importance. Once
deployed, the robots may be given a variety of tasks, such
as sensing, surveillance, or servicing events within the envi-
ronment. The group is heterogeneous in that some robots
may perform better than others. The difference in perfor-
mance can be assessed by various parameters of the robot
and will depend on the given task. We assume the robots are
unaware of their relative performance with respect to the
group, as in the case of a real-world implementation. We
propose an algorithm that incorporates online learning and
adaptive control into Voronoi-based coverage control. The
robots will learn “performance weightings” indicating their
performance metric relative to the other robots in the group.
This is calculated using the robot’s sensing and actuation
errors and local communication with nearby neighbors. If
a robot is determined to have low performance weightings,
this will shrink the size of the robot’s dedicated coverage
area, while high performance weightings correspond to a
robot taking charge of a larger portion of the environment.

In this article, we divide coverage tasks into two cat-
egories: sensing-based and actuation-based. For sensing-
based tasks, the robots move to the centroid of their weighed
Voronoi cell, and use sensors to monitor the environment.
Here, performance variations can occur due to different sen-
sors on each robot, differences in quality or degradation of
the sensors, and sensor creep in long-term deployments.
External factors, such as dust or fog, can also affect the
quality of each robot’s camera, and our algorithm adjusts
for these variations online. For actuation-based tasks, the
Voronoi cells provide regions over which a robot responds
to events, requiring the robot to move around its cell as
events occur. Both speed and accuracy of the robot are
important to the successful completion of their tasks. We
combine speed and accuracy into a single metric that we
call the performance weighting. Variations in actuation can
occur for several reasons. The robots may have different
hardware components, or the terrain over which the robots
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are moving can be varied. For example, if the environ-
ment contains a mix of paved roads, forested areas, or
dirt paths, the terrain will affect the robots’ actuation per-
formance. Overall, internal and external variations lower
the efficiency of the entire group. Our algorithm accounts
for these variations and adapts the performance weights
accordingly.

Applications of sensing-based or actuation-based tasks
can be illustrated with several examples. For a sensing-
based task, consider a group of robots that has been
deployed to take pictures of a region following some dis-
aster, such as an earthquake or building collapse. Here,
the robots’ Voronoi cells dictate the part of the region for
each robot to photograph. Due to varying levels of dust
and debris, each robot’s picture quality can vary. Using
our adaptive weighting algorithm, these lower-performing
robots can be compensated for and given a smaller region in
the environment. One example of an actuation-based task is
a group of agricultural robots that are deployed across some
fields to water crops in the environment. Once deployed,
the robots must move around their cells to water crops
as needed. Errors in their speed and precision affect how
successfully they deliver water, which can affect the over-
all health of the crops. Another application to consider is
the problem of illegal fishing. Some experts estimate this
accounts for approximately one in five fish caught in the
wild, which may account for up to $23.5 billion worth of
fish in the world market (Pew, 2015). Here, Voronoi-based
coverage control could be used to distribute a robotic net-
work across some area of interest. As boats enter a robots’
region, the robots may need to move closer or track patterns
of the boats to identify illegal activity. Errors in actuation
can compromise how quickly or effectively a robot could
track a suspicious boat.

1.1. Related work

Our work builds upon Voronoi-based coverage control,
a common problem in multi-robot systems. A decentral-
ized, multi-robot algorithm was first proposed by Cortés
(2010) and Cortes et al. (2004), wherein the robots con-
tinuously move towards the centroid of their Voronoi cell.
This is commonly referred to as the move-to-centroid algo-
rithm. Through this online algorithm, the robots can move
through the environment to some locally optimal config-
uration. The algorithm is decentralized, meaning it scales
with the size of the group, and does not require commu-
nication with some central agent. Voronoi-based coverage
control builds upon previous work in locational optimiza-
tion, such as the optimal placement of retail facilities, as
well as algorithms for data compression (i.e. “vector quanti-
zation”) (Drezner, 1995). However, a limitation of this orig-
inal algorithm is that all agents are assumed to have equal
characteristics, while in practice a group of agents may have
a wide range of performance and sensing capabilities. Other
extensions of the Voronoi-based coverage control algorithm

use a weighted Voronoi diagram, also called a power dia-
gram. These weightings account for heterogeneity among
the robots. Pavone et al. (2009) showed that different cell
weights allow the agents to take on varying sensing respon-
sibility by modifying the accountable area for each robot.
Here, a lower relative weight resulted in a smaller cell
area for each robot. When the performance or health of
the robots is known globally, the weightings can be used
to adjust accountability within the group. To link the cell
weightings to performance, Pimenta et al. (2008) used the
sensing radius of the robot as its weighting. The sensing
radius allows the robot to take on a relatively larger cell if it
can sense points in its region, and conversely shrink its cell
if it has a smaller sensing radius. Another approach used
the weightings as an energy-efficiency metric (Kwok and
Martinez, 2007). Here, a lower efficiency corresponds to a
lower weighting, allowing the high power robots to com-
pensate for the low power robots in the Voronoi tessellation.
Marier et al. (2011, 2012) quantified sensor health with the
Voronoi weights, assigning low-performing robots smaller
areas of coverage. In their implementation, the health was
incorporated as a multiplicative factor in a relevant cost
function. In Mahboubi et al.’s work (2014b), the cover-
age radius of each agent is utilized to minimize the holes
within their Voronoi polygons. By minimizing the coverage
holes individually, the group is able to achieve an improved
global coverage. An extension to this work employs mul-
tiplicatively weighted Voronoi cells, which have curved
boundaries similar to a circular sensor footprint (Mahboubi
et al., 2014a). When the features of the environment are
changing, Lee et al. (2015) present a strategy that tracks
the time-varying information density function within the
Voronoi-based coverage configuration.

Within the existing research utilizing weighted Voronoi
cells, all to our knowledge assume the correct weightings
are known beforehand. In contrast, our approach learns
the performance weightings online using only information
about the robot’s performance and the data from its neigh-
bors. Preliminary versions of some of the results in this
article appeared in conference versions, which incorporated
sensing performance (Pierson and Schwager, 2013) and
actuation variation (Pierson et al., 2015) into an adaptive
trust weighting. This version presents a unified, streamlined
theoretical approach to both cases, as well as new simu-
lation results and hardware experiments. This adaptation
occurs in parallel to the Voronoi-based coverage control
algorithm. We first present an adaptation law in the context
of sensing-based tasks, where the robot knows its perfor-
mance parameters and then adapts the performance weight
relative to the performance of the robot’s neighbors. Next,
we use an actuation-based task to illustrate the case where a
robot does not know its performance parameters, and must
estimate them online. Using a Lyapunov-style analysis, we
show the robots converge to a locally optimal coverage
configuration, while the weightings converge to a set of
values defined by the performance error. Our algorithm is
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demonstrated through MATLAB simulations and hardware
experiments using Pololu m3pi robots.

The rest of the article is organized as follows. Section 2
outlines the main assumptions, definitions, and problem for-
mulation. Section 3 presents the proof of convergence to a
locally optimal configuration when no parameter estimation
is needed. Section 4 incorporates a parameter estimator for
an actuation-based task and illustrates how the proof of con-
vergence can be written for this added uncertainty. Results
of MATLAB simulations are presented in Section 5, exper-
imental results are given in Section 6, and conclusions in
Section 7.

2. Problem set-up

Consider a group of n robots in a bounded, convex
environment1 Q ⊂ �2. Points in Q are denoted q, and
positions of individual agents are denoted pi ∈ Q. Prior
coverage control algorithms use the standard Voronoi par-
tition, and for our work, we will use the weighted Voronoi
partition. Let {V1, . . . , Vn} be the Voronoi cells of Q, where
each cell is defined as

Vi = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖, ∀j �= i}

The weighted Voronoi partition, also known as the Power
Diagram (Aurenhammer, 1987), introduces a weight for
each of the cells. Consider wi as the cell weight for each
robot i, and let {W1, . . . , Wn} be the weighted Voronoi cells
in Q, with each cell defined as

Wi = {q ∈ Q | ||q − pi||2 − wi ≤ ||q − pj||2 − wj, ∀j �= i}
(1)

Figure 1 illustrates the differences between a regular and
weighted Voronoi diagram. In the figure, the blue lines
denote the regular Voronoi diagram, and the green lines
are the weighted Voronoi diagram. Here, robot 2 has been
assigned a lower weight relative to its neighbors, and we see
that its weighted Voronoi cell is smaller. Similarly, robot 6
has been assigned a higher relative weight, and its weighted
cell is larger. Each robot uses its performance weightings
as the Voronoi cell weighting, calculated using informa-
tion about its individual performance health and the perfor-
mance of its neighbors. We map these performance param-
eters to a scalar hi, which indicates the relative “health” of
the robot. In the event that the robot cannot directly measure
its performance parameters, we also introduce an online
estimator.

For our region Q, we also define an integrable function
φ : Q → �>0 to represent the areas of importance in
the environment. Large values of φ( q) correspond to areas
of more importance than small values of φ( q). All robots
are assumed to have knowledge of this function. When the
robots do not know this function, techniques have been
developed to learn the function online (Martínez, 2010;
Schwager et al., 2009).

Fig. 1. Here, the regular Voronoi partition is shown in blue, and
the weighted partition is shown in green. robot 2 has a lower
weight, which gives it a smaller cell. Similarly, robot 6 has a higher
relative weight, and therefore has a larger cell.

2.1. Locational optimization

Before introducing our problem formulation, we state some
basic nomenclature and results from Voronoi-based cover-
age control. A cost function (Cortes et al., 2004; Pavone
et al., 2009) for the robot network over the region Q is
formulated as

HV ( p1, . . . , pn) =
n∑

i=1

∫
Vi

1

2
‖q − pi‖2φ( q) dq (2)

Intuitively, a low value of HV indicates a good coverage
configuration of the robots across the environment. For our
work, we use the weighted Voronoi cell, also known as
the Power Diagram, given in (1). We formulate a similar
cost function from the weighted cells that incorporates the
robots’ performance in the cost. Consider a scalar-valued
“health” hi indicative of the robot’s individual performance.
We incorporate this into the cost function as

HW ( p1, . . . pn) =
n∑

i=1

∫
Wi

1

2

(‖q − pi‖2 − hi

)
φ( q) dq. (3)

We also define MWi and CWi of the weighted Voronoi cell as

MWi =
∫

Wi

φ( q) dq and CWi = 1

MWi

∫
Wi

qφ( q) dq

By definition, φ( q) is strictly positive, thus MWi is anal-
ogous to the physical mass of the weighted Voronoi cell,
and CWi is analogous to the centroid. While there exists a
complex dependency between the position of the robots and
the geometry of the Voronoi cells, a surprising result from
locational optimization (Drezner, 1995) is that

∂HW

∂pi
= −

∫
Wi

( q − pi) φ( q) dq = −MWi ( CWi − pi) (4)
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which implies the critical points of HW will correspond
to the robots positioned at the centroids of their weighted
Voronoi cells (Marier et al., 2011; Pavone et al., 2009), or
pi = CWi for all i. Critical points can correspond to either
local minima, local maxima, or saddle points. Cortes et al.
(2004) introduced a gradient-based controller that drives
the robots to critical points corresponding to local min-
ima of (2). Using (4) we will introduce a similar controller
that only drives the robots towards the local minima of (3).
The global optimization of (3) is known to be NP-hard;
thus, we only consider local minima of HW . When refer-
ring to optimal coverage configurations, we mean locally
optimal configurations, which are known to be satisfactory
in practice. Variations on the control law that attempt to find
the global minima of (2) via exploration are discussed in
Salapaka et al. (2003); Schwager et al. (2008).

2.2. Sensor quality model

We assume that the robots are equipped with passive sen-
sors, such as cameras, microphones, IR cameras, or RF
listening devices. Each of these sensors have performance
variations that affect its overall sensor health. We introduce
the function γi( ·) that relates the sensor health to the quality
of data sensed by the robot. Here, γi( ·) represents a value
measured by the robot’s sensor, such as pixel brightness for
a camera, which can be used to compare relative quality
between agents. The quality of γi( ·) is influenced by the
position of the robot, the point the robot is sensing, and
the health of the sensor. For passive sensors with an unob-
structed line-of-sight signal path, the received signal quality
for a point distance d away is proportional to d2 (Goldsmith,
2005). To account for individual sensor variations, we con-
sider a constant offset hi as a “sensor health” for robot i.
In digital cameras, this offset hi is akin to a noise footprint,
which varies by camera model as well as the sensor size
(Lukas et al., 2006).

While in practice it is not necessary to know the exact
form, for our convergence proofs we assume that γi( ·) is
approximated by

γi( pi, q, hi) = −α
(‖q − pi‖2 − hi

)
(5)

where hi is the sensor performance health for robot i and
α is a scaling factor (Pierson and Schwager, 2013). Note
this equation for γi( pi, q, hi) shares a similar structure with
the weighted Voronoi cell definition (1). We also see that
γi( pi, q, hi) can take on different values by different robots
looking at the same point q. For example, if γi represents the
color at point q, variations in camera sensors may produce
a different value for a robot i located at pi versus a robot j
located at pj.

It is not necessary for the robots to know hi or α directly,
so long as γi( ·) can be calculated from properties of the
measurements. The variables α and hi shape the approxima-
tion of how the sensing quality of some point q decreases
as the sensor pi moves further away from q. Although we

Fig. 2. For some vector ui, the possible directions of Kiui are
shown in the shaded region, and one sample path is illustrated in
red.

use the example of cameras in this article, γi( ·) can also
model other 2D sensors. In Section 6, we present an exper-
iment wherein the robots compare the variance of their
noisy images with their neighbors to determine relative
performance.

2.3. Robot model

This section describes our models for the dynamics of the
robots. Let the robots have integrator dynamics. We can
equivalently assume that low-level controllers are in place
to cancel existing dynamics and enforce the desired con-
trol input. The robots are also given some additive actuation
error, denoted by �i and calculated from the robot’s perfor-
mance parameters. The dynamics of the robot can then be
written

ṗi = ui + �i

Here, ui is the control input and �i is the actuation error.
For this article, we assume that �i has the form

�i =
[

�i,1 �i,2

�i,3 �i,4

]
ui (6)

which leads to

ṗi = Kiui, Ki =
[

1 + �i,1 �i,2

�i,3 1 + �i,4

]
(7)

We assume Ki remains a positive definite matrix. Practically
speaking, this implies that the robot drives within 90◦ of its
intended direction, as shown in Figure 2. If there is no actua-
tion error, then Ki reduces to the identity matrix. In practice,
we may not know the value of these actuation parameters,
in which case we propose an estimator to find K̂i, derived
from known quantities and discussed in Section 4.

We define the communication network as an undirected
graph in which two robots share an edge if they share
Voronoi cell boundaries. This is also known as a Delau-
nay graph. The set of neighbors for any robot i can then
be written as Ni := {j|Vi ∩ Vj �= 0}. We assume that the
robots are able to communicate with their neighbors and
share information, such as their position, weight, and sens-
ing data. Additionally, we assume robots are able to com-
pute their weighted Voronoi cell, as defined by (1), which



Pierson et al. 341

Fig. 3. For neighbors i and j the green line highlights their shared
Voronoi cell boundary. The weightings adaptation law compares
sensing data along points in this boundary.

can be computed with well-known algorithms (Cortes et al.,
2004; Marier et al., 2011; Salapaka et al., 2003).

Using these models for the sensor and actuation errors,
we can now present the problem to be addressed in this
work:

Problem 1. (Adapting to sensing and actuation variations
in coverage control.) Given a group of robots with positions
pi and performance weights wi, find the control laws for ui

that locally minimize the coverage cost function given in
(3) and adaptation laws for ẇi that compensate for varia-
tions in either sensor health modeled in (5) or variations in
actuation errors modeled in (6).

3. Adapting to sensing variations

In this section we propose a controller and adaptation law
that drives the robots to an optimal configuration while
adjusting weightings to account for variations in sensing
performance. To account for these performance variations,
we will define a move-to-centroid control law, and an adap-
tation law to change the weightings of the robots based
on sensor data. We will also assume that the sensor val-
ues can be measured directly. We will then prove that the
control law drives the robots to converge asymptotically to
a stable equilibrium configuration corresponding to a local
minimum of the sensing cost function. For this section, we
assume there is no actuation error in the robots.

We propose to use the control law

ṗi = ui = kp( CWi − pi) (8)

where CWi is the centroid of robot’s Voronoi cell and kp is a
proportional gain. For the weightings adaptation law, using
the sensing function described in (5), we propose

ẇi = kw

2MWi

∑
j∈Ni

(∫
bij

[
γi( pi, q, hi) −γj( pj, q, hj)

]
dq

)
(9)

where kw is a positive proportional gain constant, and bij is
the shared cell boundary line between neighboring agents i
and j. Essentially, this compares the values of the sensing
data between two neighbors over shared points along their
boundaries, which is illustrated in Figure 3.

To simplify this expression, we notice from (5) the
integrand becomes

γi( pi, q, hi) − γj( pj, q, hj) =
− α

(‖q − pi‖2 − hi − ‖q − pj‖2 + hj

)
However, we are evaluating the point q along the cell
boundary, so we know it satisfies (1)

‖q − pi‖2 − wi = ‖q − pj‖2 − wj

Combining these expressions, we find that for points q
along the cell boundary

γi( pi, q, hi) −γj( pj, q, hj) = −α
(
wi − wj − hi + hj

)
This yields another form of the weightings adaptation law

ẇi = −αkw

2MWi

∑
j∈Ni

[
( wi − hi) −( wj − hj)

]
dij (10)

where dij is the length of the shared boundary bij. Note that
(9) and (10) are mathematically equivalent; however, the
robots can only calculate (9) from sensing data. We will use
(10) in the proof of our following theorem.

Theorem 1. For a group of n robots in a bounded, convex
environment Q, using the control law (8) and the weightings
adaptation law (9), the robots converge to the centroids of
their weighted Voronoi cells

‖pi − CWi‖ → 0 ∀ i ∈ n (11)

Furthermore, the weightings satisfy

( wi − wj) →( hi − hj) ∀ i, j (12)

Proof. To prove (11) and (12), we will invoke a global ver-
sion of LaSalle’s Invariance Principle (Bullo et al., 2009,
Theorem 1.20). First, we will introduce a continuously dif-
ferentiable Lyapunov-like function V that is similar in form
to our coverage cost function (3). We use this to show that
all trajectories of the system are bounded, and the function
is non-increasing; thus, V̇ ≤ 0. Then we will use LaSalle’s
Principle to prove the claims of the theorem. Consider the
function

V =
n∑

i=1

∫
Wi

1

2

(‖q − pi‖2 − wi

)
φ( q) dq (13)

Its time derivative is

V̇ = −
n∑

i=1

∫
Wi

( q − pi)
T φ( q) dqṗi −

n∑
i=1

ẇi

∫
Wi

φ( q) dq

The derivative can then be written in two parts as

V̇1 = −
n∑

i=1

∫
Wi

( q − pi)
T φ( q) dqṗi, V̇2 =

n∑
i=1

−MWi

2
ẇi
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where V̇ = V̇1 + V̇2. Utilizing (4) and substituting our
controller (8) into V̇1 yields

V̇1 = −
n∑

i=1

∫
Wi

( q − pi)
T φ( q) dq

[
kp( CWi − pi)

]

=
n∑

i=1

−kpMWi‖CWi − pi‖2 ≤ 0

We can also see that plugging in our adaptation law (9) into
V̇2, this simplifies as

V̇2 =
n∑

i=1

−kw

4

∑
j∈Ni

(∫
bij

[
γi( pi, q) −γj( pj, q)

]
dq

)

= 0

Thus, we have V̇ ≤ 0.
Given that the derivative V̇ ≤ 0, we can infer that the

trajectories of the robots pi( t) are bounded. To determine
whether the weightings are bounded, consider the vector
form of ẇ, formulated from (10). First, we define

w( t) =

⎡
⎢⎣

w1( t)
...

wn( t)

⎤
⎥⎦ , M−1 =

⎡
⎢⎢⎣

1
MW1

0 0

0
. . . 0

0 0 1
MWn

⎤
⎥⎥⎦ ,

h =

⎡
⎢⎣

h1
...

hn

⎤
⎥⎦ , and L =

⎡
⎢⎢⎣

. . . Lij∑
j∈Ni

dij

Lij
. . .

⎤
⎥⎥⎦ ,

where Lij =
{

−dij for j ∈ Ni

0 otherwise

Here, M−1 is a diagonal matrix of positive entries and L
is the weighted Laplacian of the neighbor graph, which is
known to be positive semi-definite (Godsil and Royle, 2001;
Horn and Johnson, 1990), and it can be shown that the prod-
uct M−1L is positive semi-definite. Hence we can write the
derivative in vector form as

ẇ( t) = −αkw

2
M−1Lw( t) +αkw

2
M−1Lh (14)

We see that w( t) is the state of a marginally stable fil-
ter defined by (14). Note that since the health is static, h is
bounded and we have the input to the filter defining w( t)
is bounded. From input-to-state properties of marginally
stable filters we know that for the weights w( t) to go
unbounded the driving signal αkw

2 M−1Lh must lie in the null
space of the dynamics matrix −αkw

2 M−1L of the filter. How-
ever, since the input h is itself multiplied by αkw

2 M−1L, the
driving signal αkw

2 M−1Lh can have no component in the null
space of −αkw

2 M−1L. Therefore, w( t) remains bounded, and
this shows that all trajectories of the system (pi( t) and wi( t)
for all i) remain bounded.

By the properties of stable linear filters, we know that as
the input approaches a limit, the state will also approach a
limit (Khalil, 2002), which satisfies the steady-state equa-
tion

w → {w∞|0 = −αkw

2
M−1L( h − w∞) }

Solving for w∞, we find

αkw

2
M−1Lw∞ = αkw

2
M−1Lh

Lw∞ = Lh

Since L is the graph Laplacian, this is equivalent to

wi,∞ − wj,∞ = hi − hj (15)

proving (12) from Theorem 1.
Given that we have shown that V̇ ≤ 0, to complete the

proof we must find the largest invariant set within the set
defined by V̇ = 0. We can see that V̇ = 0 occurs when
pi = CWi . From our control law (8), this itself is an invariant
set. Therefore, by LaSalle’s Invariance Principle, we have
that

pi( t) → CWi ( t) as t → ∞
proving (11) from Theorem 1.

Remark 1. This proof shows that using the weightings
adaptation law (9), our weightings converge to a set of val-
ues relating the sensing performance among agents. Over-
all, the convergence of the weightings implies they will
reach static values, which in conjunction with the move-
to-centroid controller (8) means the robots will find final
locations in the environment. While changing the weight-
ings causes a change in the cell boundaries, thus a change
in the centroids, the weightings eventually converge to an
invariant set, which means the positions of the robots will
eventually reach their centroids.

Remark 2. Theorem 1 guarantees convergence of the dif-
ference between the weightings to the difference between the
corresponding health factors, but it does not guarantee the
convergence of each weighting to its corresponding health
factor. This is expected, as the robots only have relative sen-
sor measurements to compare. However, weighted Voronoi
cell boundaries are calculated by a relative difference (1),
so any constant offset is canceled from both sides.

Remark 3. The proof structure was chosen to illustrate the
parallels with the proof in Section 4 for variations in actu-
ation. The proof can also be written with a simpler struc-
ture that only uses a Lyapunov-like function and LaSalle’s
Invariance Principle, and is presented in the authors’ pre-
liminary conference version (Pierson and Schwager, 2013).

If the weightings are initially assigned the correct val-
ues, it implies all robots will agree in the compared sensing
data values. In the final result of Theorem 1, the final posi-
tions of the robots in the environment are as good as if the
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Fig. 4. For neighboring robots i and j, the weighted midpoint qc

(green) lies along the shared Voronoi boundary (blue).

correct performance weightings were known beforehand.
Using this result, we can show that the positional control
law (11) and weightings adaptation law (12) provide a solu-
tion to Problem 1. Corollary 1 formalizes this by demon-
strating that when the weightings converge to a static set of
values, our Lyapunov-like function shares the same minima
as our coverage cost function.

Corollary 1. Given the convergence of the performance
weightings to the set described by (12), the local minima
of our Lyapunov-like function (13) are equal to the local
minima of our coverage cost function (3).

Proof. For some constant c, (12) implies wi,∞ = hi − c for
all i. Substituting this into (13), we write

V =
n∑

i=1

∫
Wi

1

2

(‖q − pi‖2 − hi − c
)
φ( q) dq

= HW + c

∫
Q

φ( q) dq

Since c
∫

Q φ( q) dq is constant, the set of positions
( p1, . . . , pn) that comprise a local minima of (13) will also
comprise a local minima of (3).

We can simplify the computational complexity of the
weightings adaptation law by comparing sensing values
only at a single point, instead of across the entire boundary
bij. The motivation to compare sensing functions at fewer
points, as illustrated in Figure 4, is that it may be faster
and computationally easier than the boundary calculation,
albeit less robust. Corollary 2 shows that a simplification
to a single point still maintains the convergence of the
weightings to an invariant set, as well as convergence of the
location of the robots to their centroids.

Corollary 2. The claims of Theorem 1 also hold true for
the adaptation law

ẇi = kw

2MWi

∑
j∈Ni

(
γi( pi, qc, hi) −γj( pj, qc, hj)

)
(16)

where qc is any point in bij.

Proof. Using (16) in place of the previous weightings
adaptation law (9), noting the weighted graph Lapla-
cian becomes the normal graph Laplacian (Godsil and
Royle, 2001), the same proof and arguments hold from
Theorem 1.

4. Adapting to actuation variations

In our sensing task example, we proposed a control law to
drive robots to the centroids of their Voronoi cells, as well
as a weightings adaptation law to compare sensor data to
compensate for low-performing agents. This section will
examine an actuation-based task. In contrast to the previ-
ous case, it is necessary to use a parameter estimator in
determining the performance health of a robot. We use our
estimated parameters in a weightings adaptation law sim-
ilar to the previous case to adjust the robots’ weightings.
We then prove that the robots still converge asymptotically
to a stable equilibrium configuration corresponding to the
local minimum of our cost function (3). We also prove our
parameter estimator converges to the true parameter value.

The robots’ dynamics are composed of two parts: the
desired input ui and some actuation error �i defined in (6).
Our desired input will be the move-to-centroid controller
introduced in the last section, written

ui = kp( CWi − pi)

Substituting this controller into the dynamics defined in (7),
we write

ṗi = ui + �i = Ki( CWi − pi) (17)

where CWi is the centroid of the robot’s weighted Voronoi
cell and Ki > 0 is the matrix representing control gain and
actuation error from (7). In the unlikely case that a Voronoi
cell is empty, we evaluate (17) using the integral form of the
gradient-descent based controller and let ui = �i = 0.

We define a function mapping the matrix Ki to a scalar-
valued health

hi = g( Ki)

where hi is the actuation performance “health,” and g( Ki)
is a function of the properties of the matrix Ki. We require
that g( Ki) is bounded when Ki is bounded and continuous;
however, the choice of g( Ki) is subjective to the desired per-
formance metrics. Some common choices for g( Ki) include
the matrix norm, determinant, trace, or eigenvalues. Here,
the robots do not know Ki, so we find an estimate of the
matrix, denoted K̂i. This mapping of the actuation parame-
ters to a health can then be used in our weightings adapta-
tion law. By changing the robot’s cell weights, we can adjust
the size of their Voronoi cell corresponding to their rela-
tive performance. Similar to (9), we write the weightings
adaptation law as

ẇi = −kw

MWi

∑
j∈Ni

(
( wi − g( K̂i) ) −( wj − g( K̂j)

)
(18)
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where kw is a positive proportional gain constant. In the
unlikely case of an empty cell, where MWi goes to zero, we
let ẇi = 0.

4.1. Estimating K̂i

To compute the estimated matrix K̂i, we propose the follow-
ing online estimator

˙̂Ki = λi − K̂i�i

λ̇i = ṗi( CWi − pi)
T

�̇i =( CWi − pi) ( CWi − pi)
T

(19)

We further simplify this expression as

˙̂Ki =
∫ t

0
λ̇i( τ ) dτ − K̂i

∫ t

0
�̇i( τ ) dτ

=
∫ t

0
Ki( CWi ( τ ) −pi( τ ) ) ( CWi ( τ ) −pi( τ ) )T dτ

− K̂i

∫ t

0
( CWi ( τ ) −pi( τ ) ) ( CWi ( τ ) −pi( τ ) )T dτ

= −K̃i�i( t)

(20)

where K̃i =( K̂i − Ki)
Note that although (19) and (20) are mathematically

equivalent, the robots can only directly compute (19)
because they do not have knowledge of the true error
K̃i. However, the form in (20) is useful for analysis. The
behavior of our system compensating for actuation-based
variations can be formalized in the following theorem.

Theorem 2. For a group of n robots in a bounded, con-
vex environment Q, using the control law (17), weightings
adaptation law (18), and estimator for K̂i (19), the robots
converge to the centroids of their weighted Voronoi cells

lim
t→∞ ‖pi( t) −CWi ( t) ‖ = 0 ∀ i ∈ {1, . . . , n}. (21)

Furthermore, the control gain matrix estimation error con-
verges to the null space of �i( t)

lim
t→∞ K̃i( t) �i( t) = 0 ∀ i ∈ {1, . . . , n}. (22)

Proof. The proof of (21) and (22) will invoke a global ver-
sion of LaSalle’s Invariance Principle (Bullo et al., 2009,
Theorem 1.20), similar to the proof of Theorem 1. We will
introduce a continuously differentiable Lyapunov-like func-
tion V which will include an additional term to account for
the parameter estimation. This will be used to show that all
trajectories of the system are bounded, and the function is
non-increasing, V̇ ≤ 0. We then use LaSalle’s Principle to
prove the claim of the theorem. Consider the function

V =
n∑

i=1

∫
Wi

1

2

(‖q − pi‖2 − wi

)
φ( q) dq

+
n∑

i=1

1

2
Tr[K̃iK̃

T
i ]

(23)

The time derivative of this function is

V̇ = −
n∑

i=1

∫
Wi

( q − pi)
T φ( q) dqṗi −

n∑
i=1

ẇi

∫
Wi

1

2
φ( q) dq

+
n∑

i=1

Tr[ ˙̂KiK̃
T
i ]

We can break this into three parts

V̇1 = −
n∑

i=1

∫
Wi

( q − pi)
T φ( q) dqṗi,

V̇2 = −
n∑

i=1

1

2
MWi ẇi, V̇3 =

n∑
i=1

Tr[ ˙̂KiK̃
T
i ]

Substituting our controller (17) for ṗi, the time derivative
V̇1 becomes

V̇1 = −
n∑

i=1

∫
Wi

( q − pi)
T φ( q) dq

[
Ki( CWi − pi)

]

=
n∑

i=1

−MWi ( CWi − pi)
T Ki( CWi − pi)

Since MWi is positive and Ki is positive definite, we know
V̇1 ≤ 0. For V̇2, plugging in our adaptation law (18) for ẇi

yields

V̇2 =
n∑

i=1

kw

2

∑
j∈Ni

(
( wi − g( K̂i) ) −( wj − g( K̂j) )

)

= 0

For V̇3, we plug in our estimator (20) for ˙̂Ki; thus

V̇3 =
n∑

i=1

Tr
[−K̃i�i( t) K̃T

i

]
≤ 0

Which leads to V̇ ≤ 0. Since the trajectories of both pi( t)
and K̃i( t) are bounded. From this, we see K̂i is also bounded.
To determine whether the weightings are bounded, consider
the vector ẇ. To do so, we define

gK( t) =

⎡
⎢⎣

g( K̂1)
...

g( K̂n)

⎤
⎥⎦

Hence we can write the adaptation law in vector form as

ẇ = −kwM−1Lw + kwM−1LgK( t) (24)

where M−1 is a diagonal matrix of positive entries and L is
the Laplacian of Delaunay graph as defined in Theorem 1.
By using the same arguments given in the proof of Theorem
1 based on the input-to-state properties of marginally stable



Pierson et al. 345

filters and the fact that gK( t) is bounded and continuous, we
can say that w( t) remains bounded. Thus, all trajectories of
the system (pi( t), K̃i( t), and wi( t)) for all i remain bounded.

Since we have already shown that V̇ ≤ 0, to complete
the proof we must find the largest invariant set within the
set defined by V̇ = 0. We can see that V̇ = 0 occurs when
pi = CWi and K̃i�i = 0. From our control law (17) and
estimator (20), this itself is an invariant set. Therefore, by
LaSalle’s Invariance Principle, we can say that the positions
of the robots obey

pi( t) → CWi ( t) as t → ∞
and

K̃i( t) �i( t) → 0 as t → ∞
proving (21) and (22) from Theorem 2.

Corollary 3. If �i( t) achieves full rank for all i ∈
{1, . . . , n} and any t > 0, then

lim
t→∞ K̂i( t) = Ki ∀ i ∈ {1, . . . , n}. (25)

Furthermore

lim
t→∞( wi( t) −wj( t) ) = g( Ki) −g( Kj) (26)

for all i, j ∈ {1, . . . , n}.
Proof. From Theorem 2, we see that K̃i( t) converges to the
null space of �i( t). It can be shown that the rank of �i( t)
is nondecreasing in time. Thus, if at some τ > 0 we find
�i( τ ) has full rank, then �i( t) has full rank for all t > τ ,
and the null space of �i( t) is the set only containing the
zero vector. Therefore for K̃i =( K̂i − Ki), we can write

lim
t→∞ K̃i�i = 0

⇒ lim
t→∞ K̂i = Ki

proving (25). Furthermore, our weightings adaptation law
(18) can be written in vector form, as shown in (24). By
the properties of stable linear filters, we know that as the
input approaches a limit, the state will also approach a limit
(Khalil, 2002), which satisfies the steady-state equation

w → {w∞|0 = −kwM−1L( gK∞ − w∞) }
where gK∞ is the limit of gK( t), written as

gK∞ =

⎡
⎢⎣

g( Ki)
...

g( Kn)

⎤
⎥⎦

Solving for w∞ we find

kwM−1Lw∞ = kwM−1LgK∞
Lw∞ = LgK∞

Given that L is the graph Laplacian, this is equivalent to

wi,∞ − wj,∞ = g( Ki) −g( Kj)

proving (26) from Corollary 3.

Remark 4. In all of our simulations and experiments, we
see that �i( t) quickly achieves full rank for all i. To see
why, notice that for �i( t) not to achieve full rank, the robot
i must move in a precisely straight line throughout its entire
trajectory, which is unlikely given the nonlinear nature of
the system. However, this fact is difficult to prove rigorously.

Remark 5. Using arguments similar to Corollary 1, we
can show that the local minima of our Lyapunov-like func-
tion (23) are also local minima of our coverage cost func-
tion (3). Using Theorem 2 and Corollary 3, our controller
(17), weightings adaptation law (18), and K̂i estimator (19)
provide a solution to Problem 1.

4.2. Combining sensing and actuation variations

It may be desirable to implement both sensing and actua-
tion adaptation laws during a coverage control deployment.
Here, we will outline the setup for simultaneous adapta-
tion to both sensing and actuation variations. For our cost
function in (3) consider

hi = hi,s + hi,a

where hi,s is the sensor health and hi,a is the actuation perfor-
mance health. Let wi,s and wi,a be performance weightings
corresponding to the sensing and actuation performance,
respectively, such that

wi = wi,s + wi,a

Let ẇi,s to be the adaptation law presented in (9) and ẇi,a is
the adaptation law presented in (18). Following the proof of
Theorem 2 and Corollary 3, it can be shown that the robots
will converge to their centroids, the sensing performance
weightings satisfy

( wi,s − wj,s) →( hi,s − hi,j) ∀ i, j

and the actuation performance weightings satisfy

lim
t→∞( wi,a( t) −wj,a( t) ) = g( Ki) −g( Kj)

5. Simulations

To demonstrate our move-to-centroid controller (8), weight-
ings adaptation laws (9) and (18), and actuation perfor-
mance estimator (19), we conducted a series of simulations
in MATLAB. We present three different simulations: the
first simulation is a sensing-based task, where all robots are
initialized with equal weights, but one robot has a lower
relative health. The second simulation is also for a sensing-
based task, but the sensor healths have been randomized.
The third simulation shows an actuation-based task, where
the initial weights have been randomized and there is one
higher-performing robot and one lower-performing robot.

For the actuation-based scenarios, we chose g( K̂i) =
‖K̂i‖ to measure our actuation performance.
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Fig. 5. The (a) initial and (b) final configurations of the robots during a sensing-based task. Here, the cell shading corresponds to the
relative performance weight. In the initial configuration, all robots have equal weights, but by the final configuration, robot 2 has the
lowest relative weight, as expected.

Fig. 6. Sensing cost (3) over time. The cost decreases to a
minimum value, indicating the group reached a locally optimal
configuration.

5.1. Sensing example simulation

We use MATLAB to simulate the sensing-based weightings
adaptation law within our coverage control algorithm for
n = 8 robots. A uniform information density function φ( q)
is used. Weightings are initialized to wi = 1 for all i, and the
sensing health is hi = 1 for all i, except for robot 2, which
has a health of h2 = 0.1. Figure 5 compares the initial and
final configurations of the robots.

Figure 6 shows the cost function (3) over time. We see
that the cost decreases until it reaches a minimum value,
which corresponds to the group reaching the centroidal
Voronoi configuration.

Figure 7 shows the true value of the performance weights
over time, and the convergence of the relative difference
( wi − hi) to a common value, with robot 2 shown in red.
We see that robot 2’s weight decreases over time, which is

expected given its lower sensor health. However, the differ-
ence ( wi −hi) reaches a common value across all agents, as
predicted by Theorem 1.

5.2. Sensing example with randomized health

This sensing-based task simulation was also performed in
MATLAB to demonstrate our controller performance in a
randomized configuration. We use a uniform information
density function φ( q) and n = 30 agents. In this simulation,
the weightings were initialized to be wi = 1 for all i, and
sensing health factors were initialized as random numbers
drawn from the uniform distribution over [0, 1]. Figure 8
compares the initial and final configurations of the robots.

Figure 9 shows the cost function (3) as well as the
difference ( wi − hi) over time.

From Figure 8, we see the algorithm reaches a centroidal
Voronoi configuration from randomized initial positions.
Note that in the initial configuration, all weights are equal,
so the shading is the same (white) for all cells. However,
by the end of the simulation, the shading reflects the vari-
ous differences in performance weights to match the vari-
ations in health. Robots with the highest relative health
have the strongest shade of green, while the lowest rela-
tive health are designated via the strongest red. We also
observe in Figure 9 that despite the weights diverging to
unique values, the weightings converge to the invariant set
of ( wi − hi) =( wj − hj).

5.3. Actuation example simulation

To demonstrate our adaptation law and parameter estima-
tor, we simulated an actuation example in MATLAB. We
use a uniform information density function and n = 10
agents with randomized initial weighting values drawn from
the uniform distribution over [0, 1], as noted below. Robots
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Fig. 7. (a) Values of the performance weights over time, with robot 2 in red. As predicted, robot 2 attains a lower relative weight than
the rest of the group. (b) The difference ( wi − hi) over time, with robot 2 in red. For the group, this difference converges to a common
value as predicted by Theorem 1.

Fig. 8. The (a) initial and (b) final configurations. The initial configuration begins with all robots at randomized locations, with equal
initial weights, shown by the lack of cell shading. By the final configuration, the robots have reached a more balanced configuration,
and the weights have adapted to the relative health differences. Lower weights are shown in red, and higher weights are shown in green.

Fig. 9. (a) Cost (3) over time. As the robots spread out over the environment, they minimize the sensing cost before settling into a final,
locally optimal configuration. (b) The difference ( wi − hi) for each robot. As expected, this relative difference converges to a common
value across the group.
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Fig. 10. The initial (a) and final (b) configurations, with the cell shading corresponding to the relative performance weight. The initial
configuration has the robots starting at randomized locations with varying initial performance weights. By the final configuration, the
highest performing robot 6 has the largest cell, and the lowest performing robot 1 has the smallest cell, with its relative weight indicated
by the shading.

Fig. 11. (a) Cost (3) over time. We see the cost decreases to a minimum, demonstrating the group reaches a locally optimal configuration.
(b) The relative difference ( wi − ‖K̂i‖), with robot 1 shown in red, and robot 6 in green. As predicted, the group reaches a common
value.

were assigned Ki = I , except robots 1 and 6, whose values
are given below.

w( 0) = [0.2, 0.7, 0.4, 0.5, 0.1, 0.5 1.0, 0.2, 0.4, 0.6]

K1 =
[

0.05 0
0 0.05

]
, K6 =

[
1.65 0

0 1.65

]

Figure 10 shows the initial and final configurations of the
agents, with their relative performance weights given by
the cell shading. Initially, the robots are assigned random
weights, but by the end of the simulation, robot 1 has
the lowest weight, and robot 6 has the highest weight, as
expected.

Figure 11 shows the global cost and convergence of wi −
‖K̂i‖.

We see that the cost over time decreases to a minimum,
corresponding to the the group finding a locally optimal

centroidal configuration. As expected, we see that the val-
ues of wi−‖K̂i‖ are equal across all agents. Figure 12 shows
the values of our K̂i estimator over time.

Although robots 1 and 6 do not initially know their Ki

matrix, using our online estimator they are able to success-
fully determine the correct values. Since their estimate of
performance converges, the conditions of Corollary 3 are
satisfied, and we know that the performance weightings will
converge to ( wi − ‖Ki‖).

6. Experiments

In order to verify the behavior of our controller, we imple-
mented our algorithm using m3pi2 robots equipped with
XBee3 radios. Pose data was calculated using an Optitrack4

system. The experiments were run to parallel the scenar-
ios presented in our Section 5. Videos of the experiments



Pierson et al. 349

Fig. 12. Convergence of ‖K̂i‖ to ‖Ki‖, with robot 1 shown in red,
and robot 6 in green. Initially, the estimate for these robots is incor-
rect, but over time, the robots learn their true value of Ki as they
move throughout the environment.

are included with this article and can also be found on
the Multi-robot Systems Lab website.5 For our weight-
ings adaptation law, all experiments use the performance
function g( K̂i) = ‖K̂i‖.

The m3pi robot is a small differential drive robot from
Pololu Robotics, shown in Figure 13. It utilizes an onboard
mbed microcontroller to handle actuation and communi-
cation. The mbed controls the motors on the robot, and
we send velocity data via XBee radios to the robots based
on the Voronoi calculations in MATLAB. To localize our
robots, we used NaturalPoint’s OptiTrack system with six-
teen IR cameras. Short-throw projectors were used to dis-
play the centroid and Voronoi boundaries on the floor mats
during the experiments, also shown in Figure 13.

Given the m3pi robots are non-holonomic vehicles,
we also incorporated a low-level point-offset controller
(Michael and Kumar, 2009) to account for the dynamics.
Here, instead of driving the robot to the centroid, we will
drive the point-offset of the robot to the centroid. In the
experiment video stills, the point-offset is plotted with a
circle, and the centroid of the Voronoi cells are plotted with
a ‘+’ symbol.

6.1. Sensing example

This experiment demonstrates the performance of the con-
trollers presented in Section 3. Here, our environment has a
uniform information density function φ( q). Seven robots
were initialized with different weight and health values,
assigned as

h = [1.0 0.3 1.0 1.0 1.0 1.0 1.0],

w( 0) = [0.6 0.8 0.4 0.1 0.7 0.3 0.5]

Here, the health value h is used to simulate the sensor
quality, given in (5). Figure 14 shows the initial and final

configurations of the agents over the course of the experi-
ment. Each cell is shaded to indicate its relative weight, with
green indicating a higher relative weight, and red indicating
a lower relative weight.

To assess the performance, we can also examine a plot of
the cost and ( wi − hi) given in Figure 15.

Similar to the simulations, we see the cost decreasing to
a minimum value, indicating the robots reach a locally opti-
mal configuration. The jumps present in the cost plot are
due to noise and other typical sources of error in experi-
mental hardware. We also see that over time, the difference
( wi − hi) converges to the same value across all robots, as
predicted by Theorem 1.

6.2. Sensing example with noisy images

This experiment demonstrates the performance of our sens-
ing adaptation law by introducing simulated noisy cameras
for each robot. The robots must then compare properties
of their image with their neighbors to determine relative
performance. Here, each robot is given a noisy image of a
forest environment, with the noise generated based on their
location and sensor health. By comparing sections of their
image along the Voronoi boundaries with their neighbors,
they are able to adapt to the performance variations within
the group. Consider Hi,q to be the random amount of noise
seen by sensor pi looking at point q, generated as

Hi,q = α
(‖pi − q‖2 − hi

)
X

where hi is the sensor health, α is a scaling factor and
X is a random number drawn from a uniform distribu-
tion. Note that Hi,q is similar to the sensor quality function
γi( pi, q, hi) in (5). We choose this model for Hi,q to be ran-
dom noise consistent with passive sensor quality loss (Gold-
smith, 2005), as discussed in Section 2.2. Here, we simulate
a noisy camera for visual feedback, but this model applies
to other passive sensors, such as microphones, IR cameras,
or RF listening devices. Figure 16 illustrates an example of
the noise seen by a robot, shown in red for clarity.

Although the robots do not know how noisy their sensor
is, the variance provides a relative level of noise between
neighbors looking at the same region. Using local statis-
tics, such as variance, is common in noise-modeling for
image processing (Lee and Hoppel, 1989; Liu et al., 2006).
A higher variance indicates a higher presence of noise,
whereas a lower variance indicates lower levels of noise. By
computing the pixel variance in a small patch centered on
their boundary and comparing it with their neighbors, the
robots can determine a relative noise level in their group.
Let Qij be a small, shared patch of the image around the
shared boundary bij of neighbors i and j. We calculate the
weightings adaptation law as

ẇi =
∑
j∈Ni

kw

MWi

(−Vari( Qij) +Varj( Qij)
)

where Vari( Qij) is the empirical variance computed by robot
i over the shared region Qij.
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Fig. 13. The m3pi robots (left) used in the experiments. Each robot is equipped with an mbed processor to handle the low-level control.
Communication with MATLAB is done via an XBee radio, and the silver reflective markers are used for identification in our Optitrack
system. The Voronoi cells are projected onto the floor during each experiment (right).

Fig. 14. In the initial configuration (a), the robots have been assigned random initial weights. We see robot 2 has the largest performance
weight, despite it actually having the lowest health. In the final configuration (b), we see that the group has compensated, and now robot
2 has the lowest relative weight, indicated by the red shading.

For this experiment, the environment has a uniform infor-
mation density function φ( q). Multiple trials were con-
ducted with n = 3 and n = 4 robots. In the first trial,
three robots were initialized with equal weights but different
health values, assigned as6

h = [−0.1, − 0.7, − 0.1] × 105

w = [ 1.0, 1.0, 1.0] × 105

In the second trial, four robots were initialized with equal
initial weights but different health values, assigned

h = [−0.1, − 0.8, − 0.1, − 0.1] × 105

w = [ 1.0, 1.0, 1.0, 1.0] × 105

Figure 17 shows the initial and final configurations of the
agents over the two trials using the forest image. In the ini-
tial configuration, the large amount of red shading indicates
a large amount of noise. By the final configuration, the over-
all image is less noisy, and the agent with the lowest health
has the smallest cell.

Figure 18 shows the difference ( wi − hi) converge to
the same value over time, as predicted by Theorem 1. The
minor fluctuations in value are due to the random noise
added in the image comparison, but despite this noise, the
robots still find a common value. To further assess the per-
formance, we can examine a plot of the cost over time in
Figure 19. Here, we have compiled the cost over multi-
ple trials. As in the simulations, the cost decreases to a
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Fig. 15. (a) Cost (3) over time. We see the cost decreases to a minimum value, indicating the group achieves a locally optimal final
configuration. Note that minor jumps are due to noise present in experimental hardware. (b) The value of ( wi − hi), with robot 2
indicated in red. Over time, the group reaches a consensus on the difference between the weights and the health.

Fig. 16. (a) Original forest scene. (b) Noisy image for the robot (green circle). Here, the noise is shown in red.

Fig. 17. Initial and final configurations for two trials. Initially, there is lots of noise present, shown in red on (a) and (c). By the final
configurations, the group has compensated for noisy robots, as seen by the decrease in red in (b) and (d). (a) Initial, n = 3. (b) Final,
n = 3. (c) Initial, n = 4. (d) Final, n = 4.

minimum value, indicating the robots reach a locally opti-
mal configuration. In the video accompanying this submis-
sion, one can see the noise decrease dynamically as the
agents move towards the centroids of their Voronoi cells and
improve their configuration.

6.3. Actuation example

In this experiment, we used six robots in a constant infor-
mation density function φ( q) environment. All robots were
initial weights of wi = 1. Robots were given Ki = I matrix,
except robot 1, which was assigned K1 = [0.6, 0; 0, 0.6],
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Fig. 18. (The value of ( wi − hi) over time shown for (a) n = 3 and (b) n = 4 robots. As expected, the robots converge to a common
value.

Fig. 19. Cost over multiple trials with n = 3 and n = 4 robots
with random initial configurations. Over time, the cost decreases
to a minimum, indicating convergence to a locally optimal config-
uration. Note that each initial configuration will yield a different
locally optimal solution, and a different minimum cost value.

and robot 6, which was assigned K6 = [1.2, 0; 0, 1.2]. Fig-
ure 20 shows the initial and final configurations of the
agents.

In Figure 21(a) we can see that the cost function
decreases over time, which means that the group converged
to a locally optimal configuration. We can also see the suc-
cessful convergence of our estimator K̂i to Ki in Figure
21(b).

A plot of the weightings over time in Figure 22(a) shows
that the lowest performing agent 1, shown in red, has the
lowest weighting over time. Figure 22(b) shows that the
difference ( wi − ‖K̂i‖) converges to a common value.

7. Conclusion

This article presents a method of using adaptive weightings
to adjust for individual variations in performance within
multi-robot coverage control. We consider both errors due

to sensing variations, and errors due to variation in actua-
tion abilities. To account for these errors, the robots com-
pare values of an error estimate with their neighbors, and,
using an adaptive weighting law, adjust the value of their
weightings online. By controlling these weights, we are
able to modify the Voronoi boundaries between neighbor-
ing robots, which adjusts a robot’s cell size relative to
its neighbors. The weightings adaptation law and error
estimation occur online within the coverage control algo-
rithm. We demonstrate the algorithm in both simulation and
experiments using m3pi robots.

Our method incorporates performance error into the
decentralized algorithm while maintaining stability and per-
formance. This can provide an additional level of robust-
ness in real-world applications when the robots are in an
unknown environment and may have varying capabilities
across the team. It can also provide insight into identify-
ing failures of a team member. In this work, we only con-
sider robots with variations in performance, but they are
not malicious or manipulative. In future work we plan to
explore models of malicious agents and their impact on our
algorithm.
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Fig. 20. In the initial configuration (a), note that all robots start off with equal weights. Robot 1 has the lowest health, but a relatively
large cell, while robot 6 has a high health, but small cell. In the final configuration (b), the shading indicates the relative weights. Note
that robot 1’s cell is now much smaller, and the red indicates its lower relative weight. Similarly, robot 6’s cell has increased in size, and
the green indicates a relatively higher performance weight.

Fig. 21. (a) Cost (3) over the course of the experiment. We see the cost decreases to a minimum value, indicating the group reaches a
static, locally optimal configuration. Minor jumps are due to noise and error present in the experimental hardware. (b) The K̂i estimator
versus the true value Ki over time. For agents 6 (green) and 1 (red), we see the estimator successfully converges to the true value over
the experiment.

Fig. 22. (a) True value of the weights over time. Note agent 6 (green) has a higher weight, corresponding to its better performance, and
agent 1 (red) has a lower health, corresponding to its weaker performance. (b) The difference ( wi − ‖K̂i‖) over time, which converges
to a common value across all agents.

Notes

1. It may be desirable to provide Voronoi coverage in a non-
convex environment. Strategies to do so are common in lit-
erature, and it is straightforward to extend our approach to a

non-convex environment following the techniques of Pimenta
et al. (2008), Lekien and Leonard (2010), or Breitenmoser
et al. (2010).

2. Pololu’s m3pi: www.pololu.com/product/2151.
3. Digi’s XBee: www.digi.com/xbee/.
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4. Natural Point OptiTrack: www.naturalpoint.com/optitrack/.
5. Experimental videos: http://sites.bu.edu/msl/research/adaptive-

trust-coverage/.
6. Here, the health and weight are multiplied by 105 due to the

scale of the environment.
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