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Abstract— This paper proposes a new approach for a group
of robots carrying out a collaborative task to adapt on-line
to actuation performance variations among the robots. We
consider the problem of multi-robot coverage, where a group of
robots has to spread out to cover the environment. We suppose
that some robots have poor actuation performance (e.g. weak
motors, friction losses in the gear train, wheel slip, etc.) and
some have strong actuation performance (powerful motors, little
friction, favorable terrain, etc.). The robots do not know before
hand the relative strengths of their actuation compared to the
others in the team. The algorithm in this paper learns the
relative actuation performance variations among the robots on-
line, in a distributed fashion, and automatically compensates by
giving the weak robots a small portion of the environment, and
giving the strong robots a larger portion. Using a Lyapunov-
type proof, we prove that the robots converge to locally optimal
positions for coverage. The algorithm is demonstrated in both
Matlab simulations and experiments using Pololu m3pi robots.

I. INTRODUCTION

For multi-robot systems to perform robustly and practi-
cally in real-world settings, it is necessary for the robots to
adapt to individual deficiencies and performance variations
among the team. Our work considers a team of robots
carrying out a coverage control task, in which the robots
must spread out over the environment. Once deployed, the
robots may need to perform sub-tasks that require movement
around the environment. The team is heterogeneous in that
some robots have better actuation performance than others.
The difference may be due to different hardware components
in the robots, differences in aging and degradation over
time, or differences in the underlying terrain on which the
robots are moving. In any case, we assume that some robots
move faster and more accurately towards their goal than
others. Furthermore, the robots do not know their relative
performance with respect to the group, as would be the
case in a real world setting. We propose an algorithm that
incorporates online learning and Voronoi based coverage
control. Using this algorithm, the robots learn a “performance
weighting” indicating their own performance relative to the
others in the group, using only local communication, and
knowledge of their own actuation errors measured online.
The effect of a low “performance weighting” is to shrink the
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size of the robot’s dedicated coverage area, while robots with
a high “performance weighting” take charge of covering a
larger portion of the environment.

This ability to adapt online to actuation performance vari-
ations is important in several examples. First, consider the
problem of illegal fishing, which accounts for approximately
1 in 5 fish caught in the wild [1]. Here, robots could use
a Voronoi-based coverage control framework to distribute
themselves across the environment. As boats enter their
regions of interest, these robots may need to move closer
or track patterns of the boats to identify illegal activity.
Errors in actuation can compromise how quickly a robot
could track a boat in its region. Another example is a group
of robots working in a warehouse. In this scenario, robots
are assigned regions of the warehouse and must retrieve
items within their region as necessary. Actuation errors could
limit the robot’s speed and precision and impair the group’s
efficiency. Our algorithm accounts for this actuation quality
and adapts the performance weights accordingly so that items
are retrieved efficiently despite robot performance variations.
Consider another situation in which robots are covering an
environment with highly variable terrain (e.g. paved in some
places, forested in other, sandy in others). In this case the
wear and tear on the vehicles as well as the terrain itself will
affect actuation across the terrain. These variations can be
accounted for with our algorithm, so that the team maintains
efficient coverage despite the heterogeneous terrain. Indeed,
many coverage scenarios with real world performance vari-
ations can benefit from our algorithm.

Our algorithm builds upon the Voronoi based coverage
strategy first proposed by Cortés et al. [2], [3]. This algo-
rithm, often referred to as the move-to-centroid controller,
all robots continuously drive toward the centroids of their
Voronoi cells. This builds upon previous work in optimally
locating retail facilities [4], as well as applications in data
compression (i.e. “vector quantization”) [4]. Other exten-
sions of Voronoi coverage control have used the weighted
Voronoi diagram, also called the power diagram, where the
weightings account for heterogeneity among robots. Using
the Power Diagram, Pavone et. al showed that different
cell weights allowed for agents to take on varying sensing
responsibility [5]. Within a heterogeneous group of robots,
the weighting can be used to correspond to the sensing radius
of the robot [6]. Another approach used weighted Voronoi
cells as an energy-efficiency metric, allowing the group to
compensate for low-energy robots [7]. By using the Voronoi
weights to quantify sensor health, Marier et. al assigned low-
performing robots smaller areas of coverage ([8], [9]).

Within this variety of existing research on weighted



Voronoi cells, most assume the correct weightings are known
a priori. In contrast, our work seeks to learn performance
weightings online using only information about the robot’s
actuation, and data from its neighbors. This paper builds
on the authors’ previous work, which incorporated sensing
performance into an adaptive trust weighting [10]. Here, we
consider actuation error instead of sensing errors. Actuator
performance is significantly more challenging to learn than
sensing performance because it requires learning a gain
matrix using all past history of actuation errors, leading to
a two part adaptation law for the performance weights. In
contrast, our previous work learns a scalar value (indicating
sensor performance) with a one part adaptation law. In this
work we derive a two part adaptation law for each robot
to (i) learn an unknown control gain matrix that quantifies
actuation errors, and (ii) use this to adapt a performance
weight to penalize or reward the robots based on its learned
gain matrix. This adaptation occurs simultaneously while
the robots carry out a Voronoi-based coverage control al-
gorithm. Using a Lyapunov style proof, we show that the
positions of the robots converge to a locally optimal coverage
configuration, while the weightings converge to a set of
values defined by the actuation error. We demonstrate the
performance of the algorithm in Matlab simulations, and in
hardware experiments with Pololu m3pi robots.

II. PROBLEM SET-UP

Consider a set of n robots in a bounded, convex environ-
ment Q C R2. Points in @ are denoted g, and the position of
the i-th agent is p; € Q. Prior coverage control algorithms
use the standard Voronoi partition of the environment. Let
{Vi,...,V,} be the Voronoi partition of @, with each cell
defined as

Y # i}
For our work, we use the weighted Voronoi partition,

also known as the Power Diagram, with each weighting
w,; serving as the performance weighting for robot i. Let

Vi={qeQ]|llg—pil <llga—p;l-

{Wy,...,W,} be the weighted Voronoi partition of @, with

each cell defined as

Wi={q€Qllla—pill*—wi < [lg—pjll* —w;, Vj#1}.
(1

For our bounded region (), we also define an integrable
function ¢ : Q — R~ to represent the areas of importance
in the environment. Areas with large values of ¢(q) are more
important than those with small values, and all the robots
have knowledge of this function. When the robots do not
know this function, techniques have been developed to learn
it online from sensor data [11], [12].

A. Locational Optimization

Before introducing our problem formulation, we will state
some basic nomenclature and results from Voronoi based
coverage control. A complete discussion can be found in
[3], [5]. Using our definition of the weighted Voronoi cell

given in (1), we can formulate a cost function for coverage
over some area () as
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where W, is the robot’s weighted Voronoi cell, and w; is
the robot’s individual performance weighting. Intuitively, a
low value of W indicates a good configuration of robots
for coverage of the environment. We can also define the
quantities My, and Cyy,, analogous to the physical masses
and centroids of the Voronoi cells, calculated as

1
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Although there is a complex dependency between the robot
position and the geometry of the Voronoi cells, a surprising
result from locational optimization [4] is that the critical
points of W correspond to the configurations in which all
the robots are located at the centroid of their Voronoi cell,
or p; = Cyy,, for all <. Cortés introduced a gradient-based
controller that is guaranteed to drive the robots to the critical
points corresponding to local minimum [3] and which has
been generalized to the weighted Voronoi cell ([5], [8]).
We restrict ourselves to only considering local minima of
W since global optimization of (2) is known to be difficult
(NP-hard). Thus, when we refer to optimal coverage config-
urations, we mean locally optimal configurations. Variations
on the control law which attempt to find global minima
through exploration are discussed by Salapaka et al. [13]
and Schwager et al. [14].

B. Robot and Actuator Model

In this section, we describe our model for the dynamics of
the robots and the quality of the actuation. First, we assume
that the robots have integrator dynamics, where

Di = u; + Ay 3

Here, w; is the control input to the robot, and A; is an
actuation uncertainty. We can equivalently assume there are
low-level controllers in place to cancel existing dynamics
and enforce (3). We also assume that the robots will be able
to communicate with their neighbors and share information
about their actuation error. We define the communication
network as an undirected graph in which two robots share
an edge of the graph if they share Voronoi cell boundaries,
also known as the Delaunay graph. We can then write the
set of neighbors for any robot ¢ as N; := {j|V; NV, # 0}.
Additionally, robots are able to compute their own weighted
Voronoi cells, as defined by (1), which is a common assump-
tion in the literature ([3], [8], [13]).

III. DECENTRALIZED CONTROL

The main goals of our work are to 1) drive the robots to
an optimal coverage configuration in the environment and 2)
adjust weightings to account for variations in performance



in the positional controller. To accomplish these goals, we
propose one control law to change the positions of the robots
and one adaptation law to change the weightings of the
robots. We will then prove that both of these control laws
will drive the robots to converge asymptotically to a stable
equilibrium configuration corresponding to a local minimum
of the cost function.
With respect to the position controller we will use

k, 0
U; = Kp(CWL' _Pi)7 Kp = |: Op kp :| )

where k£, is a positive proportional gain constant. We will
assume that the actuation errors can be quantified as

Ai = KAiKp_lui,

where KA, is a matrix. This yields the overall closed loop
equation
pi = ui + A; = Ki(Cw, — pi), “)

where Cy, is the centroid of the weighted Voronoi cell and
K, = Ky + Ka,.

This controller is a modification of the move-to-centroid
control law, first proposed by Cortés ([3]) and extended and
modified in ([15],[8], [11]). While the original control law
used the unweighted Voronoi cell centroid, C'y;, it does not
impact the performance of the controller to use the weighted
Voronoi centroid, Cyy, ([8], [6]). In the unlikely case of an
empty Voronoi cell, we evaluate (4) using the integral form
of the gradient descent based controller, letting u; = 0.

For the purposes of this paper, we can consider the
KA, matrix as one way to capture the imperfections in the
movement of the robot. This paper considers the errors such
that K; is still a positive definite matrix. In practice, we
may not know the exact value of K, so we will introduce
an estimator, Ki, derived from known quantities. From the
estimate K, the robot can then adjust for positional errors
with the following adaptation law

. —kw 2 2
w; = My, JEN; <(wl - f(K3)) — (w; — f(Kj))) ®)

where k., is a positive proportional gain constant and f (KZ)
is some function of the properties of K;. Note that the choice
of f (IAQ) is subjective, based on the desired performance
metrics of the system. The adaptation controller is inspired
by consensus algorithms ([16],[17], [18]).

A. Estimating K;

In practice, it is unlikely that the robots have direct
knowledge of the actuator error Ka,, so we will introduce
an estimator, K;, that utilizes known quantities. We propose
the following online estimator for the robots to use

Ai = 5i(Cw, — pi)" (6)
Ai = (sz _pi)(CWi _pi)T'

Integrating A; and A;, we can simplify this expression as

. t
Ki= Fi [ (€o(r) = p0)(Cu (7) = () Tdr
0
= —K;A(t)
where K; = (XZ — K;). Note that while (6) and (7)
are mathematically equivalent, the robots can only directly

compute (6) because they do not have knowledge of the true
error K;. However, the form in (7) is useful for analysis.

)

B. Controller Performance

The behavior of our system with our positional control law,
weightings adaptation law, and K; estimator is formalized in
the following theorem.

Theorem 1: Using the positional control law (4), weight-
ings adaptation law (5), and estimator for f(i (6), the robots
converge to the centroids of their weighted Voronoi cells,

Furthermore, the control gain matrix estimation error con-
verges to the null space of A,(t),

tlirglol?i(t)Ai(t) =0V ic{l,..,n} )

Proof:

To prove (8) and (9), we will invoke a global version of
LaSalle’s Invariance Principle ([19], Theorem 1.20). We will
first introduce a continuously differentiable Lyapunov-like
function V. We use this to show that show all trajectories
of the system are bounded, and that the function is non-
increasing, V < 0. We then use LaSalle’s Principle to prove
the claim of the theorem. Consider the function
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We can break this into three parts as
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By plugging in our controller (4) for p;, the time derivative
V1 becomes

Vi = ; /W (q—pi)" o(q)dq [Ki(Cw, — p;)]

=Y —Mw,(Cw, — pi)" Ki(Cw, — py).
=1



Given that K; is positive definite and Myy, is positive, we
know that overall V; <0.
For Vs, plugging in our controller (5) for w; yields

Dy =300 S (fwn — fORD) — (g~ 7))
i=1 JEN;
=0.

For Vg, we see that

Overall, V < 0. Given this, we see that the trajectories of
both p;(t) and K;(t) are bounded, which also implies that
Ki is bounded.

To determine whether the weightings are bounded, we can
consider the vector form w as

= —kyM 'Lw+ k,M'Lf(t) (10)

where M ~! is a diagonal matrix of positive entries, L is the
Laplacian of the graph in which all Voronoi neighbors share
an edge (the Delaunay graph), and

FKL(1))
FEL ()

It is known that the graph Laplacian L is positive semi-
definite ([20], [21]), and it can be shown that the product
M~'L is positive semi-definite. Therefore w(t) is the state
of a marginally stable filter defined by (10). Also, since Ri
is bounded for all ¢, f(¢) is bounded, and we have that the
input to the filter defining w(t) is bounded. From the input-
to-state properties of marginally stable filters we know that
for w(t) to go unbounded the driving signal k., M ~1Lf(t)
must lie in the null space of the dynamics matrix —k,, M ~'L
of the filter. However, since the input f(¢) is itself multiplied
by kM 1L, the driving signal k, M ~'Lf(t) can have no
component in the null space of —k,M 'L, hence w(t)
remains bounded. This shows that all trajectories of the
system (p;(t), IN(i(t), and w;(t) for all ¢) remain bounded.
Notice that we have already showed that V < 0. There-
fore, to complete the proof, we have to find the largest
invariant set within the set defined by V = 0. We can see
that V = 0 occurs when p; = Cw,, and K;A\; = 0. From
our control law (4) and estimator (7), we can see that this
is itself an invariant set. Therefore, by LaSalle’s Invariance
Principle, we can say that the positions of the robots obey

ft) =

pi(t) = Cw,(t) as t — oo

and
K,(t)A,(t) —0ast— o0,

proving (8) and (9) from Theorem 1. |
Corollary 1: If A;(t) achieves full rank for all ¢ €

{1,...,n} and any ¢ > 0, then
lim K;(t)=K; Yie{l,..n}

t—o0

Y

Furthermore,

lim (w;(t) — w;(t)) = f(K;) — f(K;)

t—o00

for all 4,5 € {1,...,n}.

(12)

Proof: In Theorem 1, we stated that K;(t) converges
to the null space of A;(t). It can be shown that the rank of
A;(t) is nondecreasing in time. Hence if at some 7 > 0,
A;(7) has full rank, then A;(¢) has full rank for all ¢ > T,
and the null space of A;(t) is the set comprised of the zero
vector. Therefore for K; = ([A(l - K;),

t—o0
t—o00

proving (11). Furthermore, as shown before, our weightings
adaptation law (5) can be written in vector form as (10). By
the properties of stable linear filters, we know that as the
input approaches a limit, the state will also approach a limit
[22], which will satisfy the steady state equation

W — {Weo|0 = ki M L(foo — woo)}
where fo is the limit of f(t), written as
J(K)
fI)
Solving for ws, we find

koM ' Lwe = kM 1Lf

Lws = Lfs.
Given that L is the Graph Laplacian, this is equivalent to
Wioo — Wjoo = f(Ki) — f(K),
proving (12) from Corollary 1. [ ]

Remark 1: In practice, we have seen in every simulation
and experiment that A;(t) quickly achieves full rank for all 4.
To see why, notice that for A;(¢) not to achieve full rank, the
robot ¢ must move in a precisely straight line throughout its
entire trajectory, which is highly unlikely given the nonlinear
nature of the system. However, this fact is difficult to prove
rigorously.

IV. SIMULATIONS

To demonstrate our move-to-centroid controller (4),
weightings adaptation law (5), and K; estimator (6), we
conducted simulations in Matlab. Using a rectangular envi-
ronment () with a constant density function ¢(q), the results
demonstrate the performance of our controller, adaptation
law, and estimator. Here, we chose the following function to
measure the actuation performance

f(Ki) = || K-
All the agents have a zero K A, matrix, except agent 4, which

has Ka, = [-0.4,0.0;0.0, —0.4]. The weights are initially
set to one, except agent 2, which is assigned a lower weight



wy = 0.5. Figure 1 shows the initial and final positions of
the agents and Figure 2 shows the cost function and the
performance of the agents, w; — || K;||. The weight of agent
4 is in red, and the weight of agent 2 is in green.
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Fig. 1.

(a) Initial and (b) final configurations of the robots.

In the final configuration, we see that robot 4 has a
smaller area relative to its neighbors, due to the decreased
performance weight. The cost also decreased over time,
shown in Figure 2, settling to a local minimum. As expected,
(w; — || K;||) converges to a common value across all agents.
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Fig. 2. (a) Cost and (b) (w; — || K;]|).

Finally, Figure 3 illustrates the convergence of the esti-
mator K; to K, over time. Note that we only expect the
estimator of agent 4 to change, shown in red. Over the course
of the simulation, the K4 converges to the true value, K.

K

) 5 10 20 25 30

with XBee? radios. The m3pi robot utilizes an onboard mbed
microcontroller to handle actuation and communication. The
mbed handles the control of the motors on the robot, and we
send velocity data via XBee radios to the robots based on
the Voronoi calculations in Matlab. To localize our robots,
we used NaturalPoint’s OptiTrack® system. Each robot was
equipped with a unique configuration of IR markers, tracked
by the OptiTrack system. A video with the experimental runs
is attached to accompany this paper and can be found on
the Multi-Robot Systems Lab website. For our weightings
adaptation law, we use the performance function

FE) = |1 Kill.

We also incorporated a low-level point-offset controller [23]
to account for the nonholonomic dynamics of the m3pis.
Short-throw projectors were used to display the centroid and
Voronoi boundaries during the experiments.

In this experiment, our rectangular environment () had a
constant density function ¢(g). All six robots were assigned
initial weights of w; = 1, except for robot 2 and robot
6 with ws = 0.7 and wg = 1.1. Robots were given
a zero K, matrix, except robot 1, which was assigned
Ka, = [-0.3,0;0,—0.3]. Figure 4 shows the initial and
final configurations of the agents.

g

(a) Initial and (b) final configurations of the robots.

(b)

Fig. 4.

In Figure 5(a) we can see that the cost function decreases
over time to some minimum value, implying that the group
converged to a locally optimal configuration. We can also
see the successful convergence of our estimator f(i to K; in
Figure 5(b).
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Fig. 3. Convergence of || K;|| to || K|

V. EXPERIMENTS

In order to verify the behavior of our controller, we
implemented our algorithm using m3pi! robots equipped

"Pololu’s m3pi: www.pololu.com/product/2151

Fig. 5. (a) Cost and (b) K; estimator.

Figure 6(a) shows the weightings over time. We see that
agent 1 has the lowest weight over time, which is corresponds

2Digi’s XBee: www.digi.com/xbee/
3Natural Point OptiTrack: www.naturalpoint.com/optitrack/



to its lower relative performance. Figure 6(b) shows that the
difference (w; — || K;||) converges to a common value.

Weights (w‘)
wi — || K|

0 5 10 15 20 25 30 35 40 ) 5 10 15 20 25 30 35 40
Time (sec) Time (sec)

(a) (b)

Fig. 6. (a) Performance weightings and (b) (w; — || K;]|).

VI. CONCLUSION

In this paper, the authors have built upon their previous
method of using adaptive weightings to adjust for individ-
ual variations in performance within multi-robot coverage
control. To account for errors in actuation, the robots com-
pare values of an error estimate with their neighbors, and
using an adaptive weightings law, change the value of their
weightings. By controlling these weights, we are able to
modify the Voronoi boundaries between neighboring robots,
which adjusts a robot’s cell size relative to its neighbors.
The weightings adaptation law and error estimation occur
online within the coverage control algorithm. The positional
controller is similar to previous implementations of Voronoi
coverage control. We illustrate the success of our algorithm
using m3pi robots.

Our method incorporates actuation error into the decentral-
ized algorithm while maintaining stability and performance.
This can provide an additional level of robustness in real-
world applications when the robots are in an unknown
environment. This can be achieved by adjusting for internal
variations in actuation, as well as robustness against external
factors such as rough terrain. It can also provide insight
into identifying failures of a robot’s actuation. A current
limitation of the algorithm is the conservative assumption
that for each robot, K; > 0. Future work may relax this
restraint. Other extensions may study the robustness of this
algorithm to malicious agents. Another direction could tie to
the author’s previous work, where the weightings quantify
both sensing and actuation performance within the group.
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