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Abstract— This paper presents a new control strategy to
control a group of dog-like robots to drive a herd of non-
cooperative sheep-like agents to a goal region in the environ-
ment. The sheep-like agents, which may be biological or robotic,
respond to the presence of the dog-like robots with a repelling
potential field common in biological models of the behavior
of herding animals. Our key insight in designing control laws
for the dog-like robots is to enforce geometrical relationships
that allow for the combined dynamics of the dogs and sheep
to be mapped to a simple unicycle robot model. We prove
convergence of a single sheep to a desired goal region using two
or more dogs, and we propose a control strategy for the case of
any number of sheep driven by two or more dogs. Simulations
in Matlab and hardware experiments with Pololu m3pi robots
demonstrate the effectiveness of our control strategy.

I. INTRODUCTION

We consider the problem of non-cooperative herding,
analogous to dogs coordinating their motions to drive a herd
of sheep to a goal location. In this system, the “sheep” agents
naturally run away from the “dog” robots, and by designing
controllers for the dogs, we can drive the sheep to some
desired region in the environment. We propose a feedback
control strategy for the dogs to coordinate their positions with
one another to so as to partially encircle the herd. The dogs
use this partial encirclement to apply pressure to the herd
to move it in a desired direction, and can thereby steer the
herd towards the goal. First, we introduce control strategies
for two dogs controlling a single sheep, and show that under
certain geometrical constraints, the dynamics of this system
can be reduced to the well-known unicycle kinematic robot.
Using this insight, we map a simple linear control strategy
for the unicycle robot back into a nonlinear feedback control
law for the two dogs. We generalize this approach to the case
of an arbitrary number of dogs driving a single sheep, and
finally to the general case of multiple dogs driving multiple
sheep. Performance of the control strategies is demonstrated
in Matlab simulations and hardware experiments with Pololu
m3pi robots in a motion capture environment.

Although we will use the dog-sheep analogy throughout
this paper, in general the “dogs” are robotic agents under
our control, while the sheep may be biological herding
animals, or other robots that behave like herding animals.
The herding agents respond to the dogs with a repulsive
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potential field commonly used to model the response of
herding animals to perceived threats. Our control strategy
could be useful in wildlife management, as well as other
applications. For example, in Australia, helicopters are used
to muster cattle for large-scale relocation. This dangerous
profession requires pilots to fly at low altitudes and perform
quick maneuvers, which results in as many as 10 deaths
per year [1]. Implementing our control strategy on teams of
UAVs to autonomously muster cattle may reduce the human
risks and fatalities. Another application is managing wildlife
populations in national parks, where it is necessary to moni-
tor animals, as well as steer them away from environmental
dangers. Our controllers may also apply to the problem
of micro-manipulation of bacteria with magnetic fields [2].
Human crowds may also be controlled and directed by robots
in an emergency evacuation using our control strategy. The
controller we describe may also offer a plausible biological
hypothesis for how real dogs herd sheep.

We consider this as a non-cooperative multi-robot prob-
lem, since the objective of the dogs is to steer the sheep,
but the sheep are not actively inclined nor opposed to being
steered. This scenario lies somewhere between a fully a
cooperative setting, in which all robots work towards the
goal, and a fully adversarial setting, in which two teams of
robots work against each other toward opposite goals.

A. Related Work

There has been surprisingly limited prior work on non-
cooperative robotic herding. One exception is Vaughan’s
pioneering work [3], [4], in which a single robot is used
to herd ducks in a specially design experiment arena. More
recently, Lien et. al developed a set of behavior primitives for
controlling a flock with multiple shepherds [5]. In contrast
to both of these, our work takes a control theoretic approach
to design feedback laws for an arbitrary number of dogs
to drive an arbitrary number of sheep. Other authors have
formulated the problem as a dynamic pursuit-evasion game
to find optimal trajectories that allow the herder to drive
the sheep to some goal position [6], [7]. In this work, the
herder “catches” the sheep at the goal location, whereas in
our setting the herders relocate the herd without the intent to
“catch” it. Furthermore, in the area of multi-agent formation
control, researchers have considered driving robots into a
desired formation [8], [9]. In this setting, the robots typically
have linear dynamics, and have cooperative control laws that
are intended to move them into a formation, while in contrast,
our herd of sheep are non-cooperative, and have a nonlinear
response to the dogs.

To model the herd dynamics, we use potential fields, which



is common in animal aggregation modeling for schools of
fish [10], birds, slime molds, mammal herds, and other
swarms [11], [12]. These models have been applied to
multi-agent systems to simulate flocking [13], cooperative
group control [14], [15], [16], and interaction with collision
avoidance [17].

Our work proposes a reduction from the nonlinear dog-
sheep system to the well-known unicycle model for a differ-
ential drive robot [18], [19]. This introduces a nonholonomic
constraint, which limits the robot to only translate in the
direction of its heading. Several techniques to drive the
unicycle robot to the origin without violating Brockett’s
Theorem [20] include optimal control [21], [22], sliding
mode control [23], or Lyapunov-like functions [24]. Our
chosen strategy is to control a point that is offset from the
center of mass of the robot, whose dynamics then become
holonomic [25]. We call this control strategy a point-offset
controller. By designing feedback controllers for the point
offset, we obtain nonlinear feedback controllers for the dogs,
which in turn drive the sheep to a goal region in the
environment.

The remainder of the paper is organized as follows.
In Section II we present our mathematical formulation of
the problem. Section III builds the kinematic models for
the various numbers of dogs and sheep and describes the
reduction to a unicycle robot. We propose a two part control
strategy in Section I'V. Results of simulation and experiments
are given in Sections V and VI, respectively, and we give our
conclusions in Section VII.

II. PROBLEM FORMULATION

Consider m herders (or “dogs”) with positions d; € R?,
where j € {1,...,m}, and n herd members (or “sheep”)
with positions s; € R?, where i € {1, ...,n}. The “dogs” in
this model are presumed to be robots since they are under
our control, while the herd members can be robots, sheep,
cattle, other herding animals, or even humans. However,
for the purposes of this paper we will use the shepherding
analogy throughout. We will assume the dogs have integrator
dynamics, _

dj = Uj. (1)

Here, u; is the control input moving d; through the envi-
ronment. Our main goal is to design u; such that the dogs
drive the sheep to some goal region. We will model the
sheep’s repulsion from the dogs using an artificial potential
field [14], which is common in robotics and in models of
biological herding animals. Using the potential field W =
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For now we do not c0n51der the additional forces from
flocking dynamics between members of the herd, although
this will be introduced later in Section III.

Also consider a user-defined goal region

Bi(g) ={q e R*||lq—gll < ¢}

centered at a goal point g € R? with a desired radius
¢ > 0. This goal region represents the set of allowable
final configurations for the sheep to occupy. Without loss of
generality, we can define our coordinate frame to be centered
at the goal point, so that g = 0. We take the goal point to
be the origin through the rest of the paper.

Problem 1: (Multi-Agent Herding) Given the dynamics
of the herd (2), find control laws u; = f(d, s) for d; herders
with dynamics (1) to relocate the herd from arbitrary initial
conditions to the desired region in the environment By(g).

III. KINEMATIC MODELING AND REDUCTION TO
UNICYCLE

We propose a solution to Problem 1 that is both simple and
scalable to m herders. The key insight of our approach lies
in enforcing geometrical relationships that map the complex,
nonlinear dog and sheep dynamics to a simple unicycle
model. This creates an ideal unicycle-like system which we
will utilize in our controller design. We will first introduce
terminology and basic nomenclature to describe the unicycle
model, then present our herding models that reduce to the
unicycle-like system.

A. Ideal Unicycle Model

Consider the nonholonomic vehicle model shown in Figure
1. For a nonholonomic vehicle, we can define a local
reference frame () relative to the global base frame B. Its
forward velocity v defines the local ¢, direction, as shown
on the right in Figure 1. The orientation ¢ relates the heading
s to the global b,, and the angular velocity is defined as
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Fig. 1. Nonholonomic vehicle model

Consider also some point offset p a distance ¢ from the
center of the vehicle. While the unicycle-like vehicle has
nonholonomic dynamics, it turns out that p is holonomic. It
can be shown that the dynamics of p can be related to v and
w as [25]

In Section IV, we will introduce our control strategy for the
point offset p, which relates to the unicycle using (3).

B. Single-Sheep Model

Instead of allowing the dogs to occupy any point in
the environment, consider the case where all dogs are a
fixed distance r from the sheep. We can show that when
this occurs, the system dynamics reduce to a unicycle-like
vehicle. First, we introduce basic concepts in our kinematic
model with a single sheep and two dogs, then we generalize
this to any m dogs.



1) Single Sheep with Two Dogs: We begin with the case
of n =1 sheep and m = 2 dogs, shown in Figure 2.
A
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Fig. 2. Configuration of two dogs and a single sheep

Figure 2 illustrates the configuration where both dogs are
located some distance r from the sheep. The position of
the dogs d; can then be written in terms of their angular
orientation ¢; relative to the sheep as

o cos(6;)
dj—s—i-r[ sin(6;) } 4)
Furthermore, the dynamics of the herd introduced in (2) can
be simplified as

é:

=1 | X cos(6;) 5)
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To maintain this kinematic relationship, the dynamics of the
dogs in (1) must take the form

i ;| —sin(0;)

dj =35+10; { cos(0;) } . (6)
Similar to our unicycle model, we can define the heading ¢
as the direction of $ relative to the base frame, where

1
¢:§(91+92)+7T

We can also see that d; and do are always symmetric
around the line formed by s. Consider the angular separation
between the two herders as A = 05 — 0. Thus, we can re-
write the angles in terms of ¢ and A as

A A
91=¢+7T—57 92=¢+7T+§~ @)

These simplifications of the angle in (7) will allow us to
distill the complex dynamics of the herders into two main
state variables, ¢ and A, which makes it much simpler to
describe the dynamics when considering m dogs.

2) Single Sheep with m Dogs: To generalize to m dogs,
we will assume equal spacing of the dogs between d; and
d., along the desired radius, as shown in Figure 3. Thus, A
becomes the total separation between the first dog d; and
last dog d.,.
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Fig. 3. Configuration of m dogs and one sheep.

The angular orientation of each dog with respect to ¢ can
be expressed as

0 =¢+m+ A4, (®)
where
o (2j —m—1)
A=A (2m —2)

Substituting (8) into (5), the sheep dynamics become

o= 1| 2 c08(65) :M cos(¢)
re [ > sin(6;) ] 2sin (47 ) [ sin()

which allows us to describe the dynamics of the sheep using
only the two state variables, ¢ and A, despite having m
dogs. Similarly, by substituting (8) in (6), the dynamics for
the dogs become

} €))

sin(¢ + Aj) } C0)

dj:$+r(¢+Aj> { —cos(p+ Aj)

By defining the orientation of the dogs in terms of ¢ and A
along some radius in (8) and restricting the dogs’ kinematics
to obey (10), we can map these quantities to the angular and
linear velocity of a unicycle-like vehicle.

Remark 1: Note that this model assumes the dogs are
fixed on some circle of radius r relative to the herd, which
limits the initial configurations of the dogs relative to the
sheep. Later, we will introduce a tracking controller for the
dogs that allows them to start anywhere in the environment
and converge upon this configuration. We also present a
radial controller in (14) to adjust the radius used by the dogs
online when controlling multiple sheep.

Proposition 1: The herding dynamics in (5) and (6) can
be reduced to an equivalent unicycle model with forward
velocity v and orientation ¢.

Proof: To see this mapping, note that the direction
of the unicycle’s velocity v and the direction of the herd’s
velocity s are both ¢. As for the velocity, we can find

i sin (ngAm)
72 sin (27A2m) '

Note that for (11), there are an infinite number of possible
values of A for a given value of v. However, over the range
of A = (0, 27), this mapping is one-to-one. Thus, for a given
velocity, we can find the corresponding A.

The remaining quantities in the mapping are é and A in
the herder’s dynamics (10). We can directly map ¢ = w
from the unicycle dynamics. The dynamics for A can also
be found from the dynamics of . [ ]

Ultimately, we will use Proposition 1 in our controller
design of the system. Instead of trying to determine individ-
ual controllers for all of the dogs, we will instead design
controllers for the ideal unicycle-like system. Based on the
idealized system, we can find controllers for the dogs that
will enforce this behavior.

v=1|3

Y




C. Multi-Sheep Model

Now, consider the case of m dogs and n sheep. In the case
of multiple sheep, we define the radius r from the mean of
the herd, s, as shown in Figure 4.

Fig. 4. Configuration of m dogs and n sheep.

Here, the dynamics of the herd mean are

. B 1 n m —(d—Sl)
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Due to the varying nature of the extent of the herd, we also
introduce an additional term 7 in the controller to regulate
the radius . The dynamics are then written

dj =5+r6; [ —sin(6;) ] +,a{ cos(0;) } .

cos(6;) sin(6;) (13)

We design the radius controller 7 to maintain some desired
radius 7o, as well as adjust for the standard deviation of the
herd. Our proposed controller is

n

= (ro — 1) + % > 2(si = 5)7 (3 — 8).

i=1

(14)

where 1 is the desired radius if the herd were a single sheep.

IV. CONTROLLER DESIGN

Section III introduced geometric constraints on the system,
which allow us to map the kinematics of the herding system
to a unicycle-like vehicle. Our goal, as stated in Problem
1, is to drive the herd to some ball around the origin. To
control this system, in this section we propose a controller
that drives a point-offset of the unicycle-like system to the
origin. Given some desired velocity that controls the ideal
system towards the goal region, we can calculate desired
positions for the dogs along the circumference of the circle.
We then employ a tracking controller to drive the dogs to
these desired positions. For our analysis, we assume the
dynamics of the ideal unicycle-like system are significantly
slower than the dynamics to drive the dogs to their ideal
positions.

To design the tracking controller, consider the desired
position, d}, for each dog. This ideal position occurs when
the dogs lie on a circle of radius r around the sheep, with
spacing A;. Let the ideal orientation, ¢*, be the angle that
points the herd’s velocity towards the origin. To find the
ideal velocity for the unicycle-like system, we will find a
controller for a point-offset p from the sheep that drives the
point offset to the origin. While there exist many possible

choices for controlling the point-offset p, we opt for a simple
proportional feedback controller,

p=—kp. (15)

Plugging this into our mapping in (3), we find the ideal
velocity becomes

v" = [cos(¢) sin(¢)](—kp).

Using the mapping in (11), we can then determine the desired
separation A for the dogs. Overall, this yields the desired
position of the dogs, written as

cos(¢* + A¥)

G=5+T| _n(e + A¥) (16)
Finally, our tracking controller becomes
dj = —Kq(d; — dj), (17)

Under the following mild assumption, we can analyze the
performance of this control strategy.

Assumption 1: The desired dog positions d; (16) evolve
slowly enough compared to the speed of our dogs dj a7
that we can approximate them as being fixed.

Under Assumption 1, the desired positions d; are constant
and the tracking controller (17), d; converges exponentially
to dj. In practice, this allows us to the start the dogs from
any point within the environment, and they will converge
upon the ideal unicycle-like system. The following algorithm
summarizes the steps in the controller. Note that when there
are multiple sheep in the herd, the radius is continuously
updated using our radial controller (14). In the case of a
single sheep, the radius is always constant.

Algorithm 1 Herding Control

1: Calculate the controller for p (15)
Find ideal heading ¢* and velocity v* (3)
Find A;‘- from v* using (11)
Calculate desired dog positions d (16)
Calculate radial controller for 7 (14)
Calculate tracking controller for d]- a7

AN

Using our assumption that the tracking controller allows
the dogs to converge upon their ideal positions, we can
analyze the system as if it were the simple unicycle-like
system. Before presenting our main proposition, we will first
define some necessary quantities. The point-offset is defined
relative to the herd in the direction of the herd’s velocity. Let
Q be the local coordinate frame of the herd, with ¢, defined
in the direction of the herd’s velocity, shown in Figure 1,
and written as

| cos(¢)
qz = [ sin(qS) :| Qy L q,. (18)
Our point offset p and its derivative can then be written
p = s+lg 19)
p = $+Llpqgy, (20)



We can also write s and § in the ) frame as

§ = SaQx + SyQy, 5= vqy

where v is the norm of the herd’s velocity in the global
reference frame. Combined, the expressions for p and p
become

p = (81' + E)qub + SyQy,
P vqy + Ldqy.

21

Recall that we chose a simple feedback control for our point-
offset in (15). Using our mapping in (3), we can write the
velocity and angular velocity as

v=—kqlp, w=¢= quyTp (22)

We are now ready to state our main proposition on the
behavior of a single sheep and m dogs.

Proposition 2: For the single sheep, m dog system de-
scribed in (9) and (10), with the tracking controller in (17),
the herd converges to the ball of radius ! about the origin,
By.

Proof: For our unicycle-like system centered around the
sheep, the point offset p is defined in (19). It is equivalent
to say that if the point offset converges to the origin, the
herd converges to the ball B, about the origin. Consider the
Lyapunov candidate function

1
V=cph
217 p
with derivative
VvV =pTp.
Substituting our expression for p (21), this becomes

V =p" (vg, + Lgy).

For our unicycle system, we can then plug in the expressions
for v and ¢ chosen in (22), thus

V =p"(—k(aXp)a. + —k(q} p)ay)
= —k|jp|* < 0.

From Lyapunov theory [26], the equilibrium point p* = 0 is
asymptotically stable. Furthermore, when p = 0, the sheep
are at most a distance ¢ away from the origin, thus proving
Proposition 2. n

V. SIMULATIONS

The following simulations were performed in Matlab to
demonstrate the capabilities of our herding algorithm. First,
we present simulations illustrating the case of n = 1 sheep
with m dogs. Despite starting from random configurations,
our system converges to the dynamics of the ideal unicycle-
like vehicle, and we can successfully relocate the herd to a
ball around the origin. We also demonstrate our algorithm
for multiple sheep, and investigate the effects of including
additional inter-agent repelling and attracting forces among
the sheep.

A. Herding with n = 1 Sheep

Our first simulation shows the case of m = 4 dogs and
a single sheep. Figure 5 illustrates the configuration and
trajectories of all agents over time. In the figure, the green
x represents the goal point, and the green circle denotes the
goal region By(g). The blue squares denote the dogs, and
black circle and x are the sheep and point offset, respectively.

(@) (b)
Fig. 5. (a) Initial configuration of m = 4 herders and single sheep moving
towards goal region. (b) Trajectory of the agents and the point offset, ending
within the goal region.

In Figure 5, the dogs do not start near the sheep, but
converge to a circle around the sheep, which then drives
the point-offset to the origin. To illustrate the performance
for a variety of initial conditions, Figure 6 compares the
distance between the point offset (||p||) and the goal over 30
trials. The initial starting locations were randomized for each
agent in each of the trials, yet we see in all simulations the
point-offset converges to the origin, validating our claims in
Proposition 2.

Distance to Goal (||P||)

) 5‘0 12)0 1‘50 200 250 300
Time (sec)

Fig. 6. Convergence of the point offset to the origin over 30 trials.

B. Herding with n > 1 Sheep

For the case of multiple sheep with m dogs, we add inter-
agent forces between the sheep in the herd in addition to the
repulsion forces the sheep experience from the dogs. For the
purposes of these simulations, we use the flocking dynamics
presented in Vaughan’s work ([3], [4]) for inter-agent forces.
Figure 7 shows two examples of controlling multiple sheep.
The controllers use the herd mean 5, as well as the radial
controller presented in (14). For the simulations presented
in Figure 7, the inter-herd forces have low repulsion relative
to the distances to the dogs, meaning the sheep act as a
cohesive unit. With these properties, the dogs are still able
to control the group to some goal region using our point-
offset controller on the mean of the herd.
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Fig. 7. (a) Trajectories of m = 3 dogs and n = 10 sheep moving towards
goal region. (b) Trajectories of m = 5 dogs and n = 4 sheep moving
towards goal region.

On the other hand, if we set the flocking dynamics to
have higher repulsive forces between the herd members, the
sheep have a greater tendency to disperse. Figure 8 shows the
trajectories of two simulations where the sheep experience
high repulsive forces.
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Fig. 8. Trajectories of (a) m = 6 dogs and single n = 3 sheep and (b)
m = 12 dogs, n = 10 sheep with higher inter-herd repulsive forces relative
to the distance to the dogs.

As seen in Figure 8, when the sheep have high repulsive
forces between each other, the group spirals away from
the mean. Surprisingly, the point offset from the mean still
remains near the origin, as predicted by our controller. Note
that the only metric in the radial controller is to adjust for the
variance, but there is nothing in the current controller design
to decrease the variance. As the sheep disperse under high
repulsive forces, the dogs also disperse, but overall keep the
mean of the herd near the origin. Future work will investigate
modifications to the control strategy that gives guarantees on
the final variance of the herd.

VI. EXPERIMENTS

To demonstrate our algorithm, experiments were con-
ducted at Boston University. Our lab utilizes an OptiTrack'
system with IR cameras to track reflective markers and
provide real-time localization. We use Pololu’s m3pi® robot
equipped with an mbed microcontroller and XBee® radio.
Position data is obtained from OptiTrack and sent to Matlab,
which is then used to compute control laws and send
information to the m3pi robots via the XBee radio. Due to the
limitations of the mbed microcontroller, computation is done
on a central computer and only updated velocity information
is sent to the m3pi robots.

lwww.naturalpoint.com/optitrack
2
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www.pololu.com
www.digi.com/xbee

The biggest challenge during implementation was the cul-
mination in system inefficiencies not present in simulation.
While our simulations assume that all robots have holonomic
dynamics, the m3pis are nonholonomic vehicles with noisy,
lossy actuation. In addition, the floor mats in the lab intro-
duce a friction force on the robots, requiring them to travel
at a minimum speed. These unmodeled behaviors are hard to
predict or quantify in simulation. Despite these challenges,
we were still able to perform successful a experiment with
the m3pi robots in the loop.

For this experiment, we will use n = 1 m3pi “sheep”, and
m = 3 m3pi “dogs.” Figure 9 illustrates the evolution of the
system over time. The positions of the dogs (blue squares)
and sheep (red circle) have been highlighted in each video
frame. The goal region representing By(g) is indicated by
the green circle. Over the course of the experiment, we see
the herders are able to successfully relocate the sheep to the
desired goal region.

Figure 10 displays the time history of the sheep and dogs
over the course of the experiment. Here, the trajectories
are noisier than those seen in simulations. The additional
noise comes from the unmodeled dynamics, communica-
tion delays, and a low-level nonholonomic controller within
the experimental system. Despite the added noise, we still
achieve our goal of relocating the sheep to some desired
region. This demonstrates an inherent robustness in our
feedback controllers to tolerate uncertainty in our system.

0 5 10 15 20 25 30 35
X

Fig. 10. Trajectories of the dogs (blue squares) and sheep (black circle).

We can also assess the performance by looking at the
distance of the sheep’s point-offset p from the goal, as shown
in Figure 11. From this figure, we see the distance decreases
over time, indicating the sheep was successfully relocated
to the goal region by the herders. Although there is chatter
present, it does not impact the overall performance of the
controllers.

VII. CONCLUSION

We consider a scenario in which robotic dogs seek to
control the location of a herd of non-cooperative sheep. The
goal is for the herders to relocate the sheep to a region close
to a goal point. Despite the highly nonlinear dynamics of
the system, using the constraint that the dogs maintain some
radius around the herd allows us to map these dynamics to
unicycle-like dynamics, for which a simple feedback con-
troller can be formulated. Unlike previous work in herding,
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Fig. 9. Images from the experimental video, illustrating the herding of n = 1 robot sheep (red circle) by m = 3 robot herders (blue squares).
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