THE FIXED POINTS OF IMAGES AND SCENES

Simon Kasif
Azriel Rosenfeld

Computer Vision Laboratory, Computer Science Center
University of Maryland
College Park, MD 20742

Abstract

This paper describes a general method of con-
sistent labelling based on fixed point theory. We
show that a large class of labelling problems can
be formulated as the problem of finding the fixed
point of a function defined on a semilattice. More-
over, in many cases a simple iteration process is
guaranteed to give the fixed point within a limited
number of steps. The standard '"discrete relaxation”
process is a special case of this approach, and
other cases can also be defined.

1. Introduction

Since the mid-1970's, there has been consider-
able interest in a class of cooperative processes,
known as ''relaxation" processes, for solving con-
sistent labeling problems [1-3]. The basic idea of
this approach is as follows: let there be given a
set of interrelated objects, such as regions in an
image; a set of labels that each object can have;
and a set of "compatible pairs" of labels that each
pair of objects can have. Then by repeatedly dis-~
carding incompatible labels (i.e., a label is dis-
carded from an object if, for some other object,
there is no label compatible with it), we can often
reduce the labelling ambiguity; and in many cases
can obtain a unique labeling. This process is
known as "Waltz filtering" or "discrete relaxation.”

In this paper we show that discrete relaxation
is a special case of a general class of processes
for finding fixed points of functions defined on a
semilattice. The general fixed point problem is
formulated in Section 2, and some examples, includ-
ing the case of discrete relaxation, are presented
in Sections 3 and 4. It should be mentioned that
our approach can also be generalized to non-dis-
crete situations; this will be the subject of a
forthcoming paper.

2. Fixed points of functions on semilattices

The relation < on a set S is called a partial
order if it is reflexive, antisymmetric, and tran-
sitive - i.e., if for all x, y, z in S we have

The support of the National Science Foundation un-
der Grant MCS-79-23422 is gratefully acknowledged,
as is the help of Janet Salzman in preparing this

paper.

CHI1891-1/83/0000/0454$1.00 © 1983 IEEE

XX
x<y and y=x imply x=y
x=y and y=z imply xuz

The pair (S,=) is called a partially ordered set,
or poset.

1f T is any subset of S, t€T is called a least
element of T if t=w for all w¢T. Evidently t is
unique, since if t and t' are both least elements
of T we have t'=t and t=t'. The least element of
s, if it exists, will be denoted by e.

It T is any subset of S, x€S is called an
upper bound of T if t=x for all t€T. Moreover,
y€S is called the least upper bound (LUB) of T if
it is an upper bound, and if y=x for any upper
bound x. (Evidently y is unique, since it is the
least element of the set of upper bounds of T.)
(S,<) is called an upper semilattice if for all u,v
in S, the set {u,v} has an LUB.

A chain in S is a sequence of elements Xp,X1,.-.
such that xg=x1=... We will call (S,=) complete
if any chain has an LUB.

Let (A,<) and (B,=) be posets(to simplify the
notation we use the same symbol for both partial
order relations). A function f:A»B is called mono-
tonic if for all x,y in A we have

x<y implies £(x)=f(y)
Let (A,<) and (B,=) be complete upper semilattices;

then f is called upper semicontinuous if it is mono-
tonic, and for all chains {xq,%;,...} in A we have

LUB{f(xO),f(xl),...}=f(LUB{x0,xl,...})

(Note that since f is monotonic we have f(x)Sf(xl)
=..., so that the sequence on the left hand side
is a chain.)

Let x be a function from a set A into itself;
we recall that x is called a fixed point of f if
f(x)=x. If (A,=) is a poset, y is called the least
fixed point of f if it is a fixed point, and y<x
for all fixed points x of f. (Note that y is unique.)

1

Theorem 1. Let (8,.) be a complete upper semilat-
tice with least element e, and let f:S+S be upper
semicontinuous; then f has a least fixed point

N b

namelv LFB{U,f(E),fZ(e),...}.

Proof: Since e is the least element of S we have
¢ f(¢), and since f is monotonic, it follows that
f(e) £(e)-£(f(e)), fz(e)ff3(e), and so on, so that
the sequence in braces is a chain, and hence has
an LUB, call it E. Since f is upper semicontinuous,

we have

£(1) f(1,us{e,f(e)f2(e),...})=LUB{f(e),f2(e),
3y, ..}
:LUB{u,f(e),fz(e),...}=E

so that E is a fixed point of f. (Since e is the
least element of S, for any T¢S we have LUB(TU{e})=
LUB(T).) Finally, let E' be any fixed point of f.
Since e E', we have f(e)“f(E")=E', £2(e)<f2(E')=E",
., so that E' is an upper bound of {e,f(e),f<(e),
.}; hence E'E', since E is the LUB, which proves
that E is the least fixed point of f. //

Note that if a chain is finite, say xj=xj=...
TRl T its LUB is equal to its greatest ele-
ment x,. We say that (S,=) has height =k if all
chains have at most k+l distinct elements. Evi-
dently, if (S,=) has height =k, and f:5-5 is mono-
tonic, it is also upper semicontinous.

Ccorollary 2. In Theorem 1, if S has height =k, the
least fixed point of f can be computed in at most
k steps.

Proof: Start with e and apply f repeatedly, yield-
ing the chain e=f(e)=f (e)<... In any chain, if
xj=x; for some i~j, we must have X{=X{4]1=.. "X by
antisymmetry and transitivity. Since S has height =
k, the elements e,f(e),fz(e),..”fk+l(e) cannot all
be distinct; hence for some i<j<k+l we have fl(e)=
£fl(e) (where f-(e)ze), so that by the preceding
senfence we have fl(e)=f1+l(e)=...=f3(e). Hence
g3l (e)=f1(e), and by'repeatedl§ applying f to both
sides we have fJ(e)=fJ+l(e)=fJ+ (e)=..., so that
fl(e) is the greatest element of the chain. Since
i<k+l, we see that at worst fK(e) is the greatest
element, making it the LUB of the chain and so the
least fixed point ot f. //

3. Example 1: Discrete relaxation

In this section we show how the standard dis-
crete relaxation algorithm is a special case of the
fixed point computation process of Corollary 1. In
order to do this, we first present a simple exten-
sion of our results to power sets.

Let (S,<) be a poset, let s™ be the nth power
of S (i.e., the set whose elements are n-tuples of
elements of S), and let = be the relation on SP de-
fined by f(xl,...,xn)f(yl,...,yn) iff.xifyi for all
1<i<n. Readily, this new = is a partial order

. n
relation gn S°. Moreover, if S has least element
e, then S" has least element (e,...,e).

Proposition 1. If S has height =k, then S" has
height <kn.

Proof: 1In any chain of distinct elements, at least
one term must change from one element to the next.
The sequence of values of each term, eliminating
repetitions, is a chain of distinct elements in §;
hence the number of changes in each term is at most
k. Thus the total number of changes is at most

kn. //

Let f; be a function from s" into S, 1<i=n, and
let f be the function from ST into S® defined by
f(xl,...,xn)=(fl(xl,...xn),...,fn(xl,...,xn)). Evi-
dently, if each f{ is monotonic, so is f, since we
have (xl,...,xn)i(yl,...,yn) implies f(xl,...,xn)=
(fl(xly-'"xn),--';fn(xl)'")Xn))f(fl(}’l;---$}’n)y---s
fn(Y1,---,Yn))=f(Y1,---,Yn) D

Proposition 2. Let S be a complete upper semilat-
tice; then if each fi is upper semicontinuous, so
is f.

Proof: Let {(xll""’xln)’(XZI""’xzn)""} be a
chain in S%. By the definition of = on st it is
easily seen that LUB{(xll,...,xln)(le,...,xzn)...}=

(LUB{Xll,le,...},...,LUB{Xln,xzn,...}). {This
follows from the fact that (yy,..-,yp) is an upper
bound of {(xll,...,xln),(x21,...,xzn),...} if and

only if y) is an upper bound of {X]171,X21s-+-}s--H¥,
is an upper bound of {xln,xzn,...}.] Hence LUB{(f
(xll,...,xln),f(le,...,xzn),...}=LUB{(fl(xll,...,
Xln), “ee ’fn(xll" .. ,Xln)), (fl(le,. . ,in) 3o .,fn
(X21)"',x2n))1"-}

= (LUB{fl(xll"'"xln)’fl(XZl""’XZn)""}"'“

LUB{fn(xll,...,xln),fn(XZl,...,xzn),...})

(fl(LUB{(xll,...,xln),(x21,...,x2n),...},...,

£ (LUB{ G 5 - -

f(LUB{(Xll"'"Xln)’(XZl""’XZn)""})' //

ity) s GRypaeeeaXpg)see e D)

We now apply these ideas to the discrete relaxa-
tion process. Let 03,.-+50p be a set of objects and
let L={€l,...,5m} be a set of labels. Let S be 2.
(the set of subsets of L), and let = be 2, i.e., if
A,B are subsets of S we write A<B iff ADB. Ev%dent—
ly, S is an upper semilattice under this =; L is
its least element; and it has height <m (no chain
of subsets under 2 can be longer than mt+l), so that
in particular it is complete.

Suppose we are given, for each pair of objects
01,04, a set Chi (i, 1) of allowable paiFs Qf labels
(Lp>Ly) - The interpretation of Cy (i,3) is that
0; cannot have label £y, unless each Oj has some

label £ such that (Zh,ﬂk)échk(i,j). Let f; be

the function from S® into S defined as follows:

For any n-tuple of label sets (L1,...,Ly) we have
ep€f (Ly, .. ,Ly) iff for each j there exists an
@kéLj such that (Bh,ﬂk)GChk(i,j). Evidently, £;

is monotonic. By Proposition 1, S™ has height =mn,
and thus fj is also upper semicontinuous. By
Proposition 2, it follows that f:S$">8", defined by
f(Ll,...,Ln)=(f1(L1,...,Ln),...,fn(Ll,...,Ln)), is
upper semicontinuous. Thus f has a least fixed
point, namely LUB{(L,...,L),f(L,...,L),fZ(L,...,L),
...} (Theorem 1), and it can be computed by applying
f at most mn times to (L,...,L) (Corollary 1).
Note that this is exactly the standard discrete
relaxation algorithm, in which we start with (L,
...,L) and repeatedly discard non-allowable labels,
"in parallel," until no further change occurs, i.e.,
until a fixed point is reached.

4. Example 2: Conditional functions

We now give another general example involving
a rather different class of constraints.

Let (S,<) be a poset. By a proposition on §
we mean a function P:S+{e, true, false}, where we
define a partial order relation on the range of P
by specifying that e=true and e=false, but true
and false are not related. A conditional function
F:5-5 is defined inductively as follows:

a) Any function f: S$»S is a conditional
function

b) If P is a proposition and F

,F2 are con-
ditional functions, then F &efln

ed by
F(x)=e if P(x)=e

F(x)=F, (x) if P(x)=true
F(x)=F,(x) if P(x)=false

is a conditional function.

Proposition 3. If P,Fy, and F are monotonic, F
(defined as in (b) above) is also monotonic.

Proof: Let xZy. If P(x)=e, we have F(x)=e, and
since e is the least element of {e, true, false},
we automatically have F(x)<F(y). If P(x)=true,
we have F(x)=F;(x)<Fj(y) since F1; is monotonic.
But since P is monotonic we must have P(y)=true,
so that F(y)=Fj(y), proving F(x)=F(y); and analo-
gously if P(x)=false. //

Proposition 4. If (S,<) is a complete upper semi-
lattice, and P,Fland F2 are upper semicontinuous,
so is F.

Proof: Let{x;,X),...} be a chain. It is easily
seen that if P(xj)=e for all i we have P(LUB{x;,xy,
...})=LUB{P(X1),P(x2),...}=e. Similarly, if P(xg)=
true for any i, we have P(xj)=true for all j>i and

456

P(LUB{x},x9,...})=true; and analogously, if P(xj)=
false for any i. Similar remarks apply to Fj and
Fp. In each of these cases, it follows that F is
upper semicontinuous. [/

It follows that if F is any conditional func-
tion, and the f's, P's, Fis and Fjs involved in
the definition of F are all monotonic or upper
semicontinuous, so is F.

We can now consider a general class of con-
straint satisfaction problems in which the con-
straints are specified by arbitrary conditional
functions, rather than in terms of allowable pairs
as in the case of discrete relaxation. Using con-
ditional functions, we can concisely express con-
straints such as "if 0 has label ¢ then 05 has
label £y ," which would be cumbersome to express in
terms of allowable pairs. Let the constraints on
04 be defined by a_monotonic conditional function
Fi:Sn+S, where S=2L, and let F:5™S™ be defined in
terms of the F;, just as in Section 3.* Since st
still has height =mn, we can still find the least
fixed point of F by at most mn applications of F
to (e,...,e)=(L,...,L), exactly as in Section 3.
In other words, if we reformulate the standard
discrete relaxation algorithm as repeated applica-
tion of a monotonic function F to the least ele-
ment of an upper semilattice, we see that discrete
relaxation is just one example of a wide class of
constraint satisfaction algorithms, characterized
by the fact that they can be expressed in terms of
fixed points of monotonic functions.

References

1. A. Rosenfeld, R. A. Hummel, and S. W. Zucker,
Scene labeling by relaxation operations, IEEE
Trans. Systems, Man, Cybernetics 6, 1976, 420-
433,

2. R. M. Haralick and L. G. Shapiro, The consis-
tent labeling problem, IEEE Trans. Pattern
Analysis Machine Intelligence 1, 1979, 173-184,
and 2, 1980, 193-203.

3. L. S. Davis and A. Rosenfeld, Cooperating pro-
cesses for low-level vision: a survey, Artifi-
cial Intelligence 17, 1981, 245-263.

4. R. D. Smart, Fixed Point Theorems, Cambridge
University Press, Cambridge, UK, 1974.

*For example, the function Fi might be defined as
follows:

eheFi(Ll,...,Ln) iff either P (L;,...,L)=e,
or Pi(Ll,...,Ln)=true and
ghGFil(Ll,...,Ln), or Pi(Ll,...,Ln)=false and

gh=Fiz(Ll,...,Ln), where P, is a proposition,
and Fil’Fiz are (conditional) functions, from

s® into S.

A NEW PRODUCT GRAPH BASED ALGORITHM FOR SUBGRAPH ISOMORPHISM

Funso A. Akinniyi and Andrew K.C. Wong
Department of Systems Design
University of Waterloo
Waterloo, Ontarioc, Canada, N2L 3Gl

ABSTRACT

This paper presents a new algorithm for detec-
ting subgraph isomorphisms for pairs of graphs.
This algorithm entails a tree searching procedure
over the projections of the implicit product of the
two graphs. It utilizes the minimum number of
neighbohrs of the projected graphs to detect in-
feasible subtrees. The algorithm in comparison to
that presented in [9] is more efficient in its
storage space utilization and average running time.
It does not suffer from the ambiguity which arises
in {9], when cyclic graphs are matched.

I. INTRODUCTION

The graph monomorphism problem, also known as
the subgraph isomorphism problem, is one which
finds whether or not there exists a one-to-one ver-
tex mapping between two graphs while preserving
incidence relations. The graphs are assumed to be
finite. The formalism and terminology used are
based on Berge [3] and Ghahraman et al. [11].

Graph monomorphisms have wide applications in
areas such as scene analysis, information storage
and retrieval, chemical documentation and network
analysis. In scene analysis, a graph morphism task
is to compare an image to a reference scene for
purposes of recognition and/or classification.
Ideally, the graph morphism problem is that of iso-
morphism. However, if occlusion is possible, then
graph monomorphism or even largest common subgraph
isomorphism is more applicable. The transportation
problem is that of finding an optimal cost graph
monomorphism [12] in which each itinerary is mapped
onto a transport network to achieve the best 1tin-
erary.

Tt is well known that the graph monomorphism
problem belongs to the class of NP-complete problem
[10]. Problems in this class are inherently in-
tractable, that is, any algorithm designed to solve
the general problem will require exponential time
complexity. Over the past two decades, consider-
able efforts have been devoted to the problems re-
lated to graph isomorphism. A comprehensive survey
of the major works can be found in [16]. Unfor-
tunately, hitherto, no polynomial time algorithm
has been found. Attempts to solve the problem have
been largely concentrated in four areas:

(1) The design of polynomial time algor%thms for
special cases of the problem. For instance,

CH1891-1/83/0000/0457$1.00 © 1983 IEEE

457

the tree isomorphism algorithm which runs in
O(n) (pp. 84-86 [1]). Also, there is the
O(nlogn)algorithm of Hopcroft and Tarjan [(14)
for detecting isomorphism of a pair of planar
graphs.

(2) The design of polynomial time heuristics which
iteratively partitions the vertices of the twc
graphs into classes and then refine those par-
titioned classes until a one-to-one vertex map-
ping is (or is not) achieved. Unfortunately,
these heuristics fail for graphs of high orders.
The most celebrated example is that of Corneil
and Gotlieb [8]. Another, is that of Sussen-
guth {19] which extends Ungers' isomorj:hism
algorithm [23] to include graph monomori-hism.

(3) Theoretical works such as finding the mathe-
matical functions [5, 18, 21] and iroving that
certain classes of the problem are polynomially
equivalent [6].

(4) Use of backtracking for exhaustive scarch. Al-

gorithms in this category, utilize rcfinement
techniques based on the neighbours of the two
graphs to prune the search tree. Notable jro-
cedures are the depth first search algorithm
Dec [9]; the distance matrix algorithm of
Schmidt [17] (which suffers from its inajjlica-

bility to graph monomorphism); Ullmann's sulb-
graph isomorphism [22]; and recently Chenag ot
al. [6] which utilizes Berztiss' [4] elementary
K-formula and Ullmann's tree scarch to dev

a parallel algorithm for sukgrajh isomor: nisr.

Recently, Ghahraman et al. [111
backtracking algorithm based on the 1
the net) of two graphs, namely, the
which recresents the domain of the
the base graph the ranage. hccordin:
gorithm, the sStar Pattern Subnet
for each vertex in the net. The fo
each vertex is dete 2d Ly osolving

Maximum Matci

ciated with t that wvertex. o

ting the exist - of e rooted et

jecﬁions coincide with the patter: arapn, the
existence of a monomorphl Cats bee anoertained,
The utilization of ti.- MMIGS critericoh foalled v
strona neccosary copdition an P11 Teads to an
affective and fast pruning of the nearon Yree wit
the resalt thot monomarp hinms are fowsl near Qe
root. Howover, the Jherat iwve solution of Uhe MM,
problem docs not enhance thee overall et tyoreney o

s

