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Abstract

This paper describes a general method of con-
sistent labelling based on fixed point theory. We
show that a large class of labelling problems can
be formulated as the problem of finding the fixed
point of a function defined on a semilattice. More-
over, in many cases a simple iteration process is
guaranteed to give the fixed point within a limited
number of steps. The standard '"discrete relaxation”
process is a special case of this approach, and
other cases can also be defined.

1. Introduction

Since the mid-1970's, there has been consider-
able interest in a class of cooperative processes,
known as ''relaxation" processes, for solving con-
sistent labeling problems [1-3]. The basic idea of
this approach is as follows: let there be given a
set of interrelated objects, such as regions in an
image; a set of labels that each object can have;
and a set of "compatible pairs" of labels that each
pair of objects can have. Then by repeatedly dis-~
carding incompatible labels (i.e., a label is dis-
carded from an object if, for some other object,
there is no label compatible with it), we can often
reduce the labelling ambiguity; and in many cases
can obtain a unique labeling. This process is
known as "Waltz filtering" or "discrete relaxation.”

In this paper we show that discrete relaxation
is a special case of a general class of processes
for finding fixed points of functions defined on a
semilattice. The general fixed point problem is
formulated in Section 2, and some examples, includ-
ing the case of discrete relaxation, are presented
in Sections 3 and 4. It should be mentioned that
our approach can also be generalized to non-dis-
crete situations; this will be the subject of a
forthcoming paper.

2. Fixed points of functions on semilattices

The relation < on a set S is called a partial
order if it is reflexive, antisymmetric, and tran-
sitive - i.e., if for all x, y, z in S we have
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x<y and y=x imply x=y
x=y and y=z imply xuz

The pair (S,=) is called a partially ordered set,
or poset.

1f T is any subset of S, t€T is called a least
element of T if t=w for all w¢T. Evidently t is
unique, since if t and t' are both least elements
of T we have t'=t and t=t'. The least element of
s, if it exists, will be denoted by e.

It T is any subset of S, x€S is called an
upper bound of T if t=x for all t€T. Moreover,
y€S is called the least upper bound (LUB) of T if
it is an upper bound, and if y=x for any upper
bound x. (Evidently y is unique, since it is the
least element of the set of upper bounds of T.)
(S,<) is called an upper semilattice if for all u,v
in S, the set {u,v} has an LUB.

A chain in S is a sequence of elements Xp,X1,.-.
such that xg=x1=... We will call (S,=) complete
if any chain has an LUB.

Let (A,<) and (B,=) be posets(to simplify the
notation we use the same symbol for both partial
order relations). A function f:A»B is called mono-
tonic if for all x,y in A we have

x<y implies £(x)=f(y)
Let (A,<) and (B,=) be complete upper semilattices;

then f is called upper semicontinuous if it is mono-
tonic, and for all chains {xq,%;,...} in A we have

LUB{f(xO),f(xl),...}=f(LUB{x0,xl,...})

(Note that since f is monotonic we have f(x )Sf(xl)
=..., so that the sequence on the left hand side
is a chain.)

Let x be a function from a set A into itself;
we recall that x is called a fixed point of f if
f(x)=x. If (A,=) is a poset, y is called the least
fixed point of f if it is a fixed point, and y<x
for all fixed points x of f. (Note that y is unique.)
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Theorem 1. Let (8,.) be a complete upper semilat-
tice with least element e, and let f:S+S be upper
semicontinuous;  then f has a least fixed point

N b

namelv LFB{U,f(E),fZ(e),...}.

Proof: Since e is the least element of S we have
¢ f(¢), and since f is monotonic, it follows that
f(e) £(e)-£(f(e)), fz(e)ff3(e), and so on, so that
the sequence in braces is a chain, and hence has
an LUB, call it E. Since f is upper semicontinuous,

we have

£(1) f(1,us{e,f(e)f2(e),...})=LUB{f(e),f2(e),
3y, ..}
:LUB{u,f(e),fz(e),...}=E

so that E is a fixed point of f. (Since e is the
least element of S, for any T¢S we have LUB(TU{e})=
LUB(T).) Finally, let E' be any fixed point of f.
Since e E', we have f(e)“f(E")=E', £2(e)<f2(E')=E",
., so that E' is an upper bound of {e,f(e),f<(e),
.}; hence E'E', since E is the LUB, which proves
that E is the least fixed point of f. //

Note that if a chain is finite, say xj=xj=...
TRl T its LUB is equal to its greatest ele-
ment x,. We say that (S,=) has height =k if all
chains have at most k+l distinct elements. Evi-
dently, if (S,=) has height =k, and f:5-5 is mono-
tonic, it is also upper semicontinous.

Ccorollary 2. In Theorem 1, if S has height =k, the
least fixed point of f can be computed in at most
k steps.

Proof: Start with e and apply f repeatedly, yield-
ing the chain e=f(e)=f (e)<... In any chain, if
xj=x; for some i~j, we must have X{=X{4]1=.. "X by
antisymmetry and transitivity. Since S has height =
k, the elements e,f(e),fz(e),..”fk+l(e) cannot all
be distinct; hence for some i<j<k+l we have fl(e)=
£fl(e) (where f-(e)ze), so that by the preceding
senfence we have fl(e)=f1+l(e)=...=f3(e). Hence
g3l (e)=f1(e), and by'repeatedl§ applying f to both
sides we have fJ(e)=fJ+l(e)=fJ+ (e)=..., so that
fl(e) is the greatest element of the chain. Since
i<k+l, we see that at worst fK(e) is the greatest
element, making it the LUB of the chain and so the
least fixed point ot f. //

3. Example 1: Discrete relaxation

In this section we show how the standard dis-
crete relaxation algorithm is a special case of the
fixed point computation process of Corollary 1. In
order to do this, we first present a simple exten-
sion of our results to power sets.

Let (S,<) be a poset, let s™ be the nth power
of S (i.e., the set whose elements are n-tuples of
elements of S), and let = be the relation on SP de-
fined by f(xl,...,xn)f(yl,...,yn) iff.xifyi for all
1<i<n. Readily, this new = is a partial order

. n
relation gn S°. Moreover, if S has least element
e, then S" has least element (e,...,e).

Proposition 1. If S has height =k, then S" has
height <kn.

Proof: 1In any chain of distinct elements, at least
one term must change from one element to the next.
The sequence of values of each term, eliminating
repetitions, is a chain of distinct elements in §;
hence the number of changes in each term is at most
k. Thus the total number of changes is at most

kn. //

Let f; be a function from s" into S, 1<i=n, and
let f be the function from ST into S® defined by
f(xl,...,xn)=(fl(xl,...xn),...,fn(xl,...,xn)). Evi-
dently, if each f{ is monotonic, so is f, since we
have (xl,...,xn)i(yl,...,yn) implies f(xl,...,xn)=
(fl(xly-'"xn),--';fn(xl)'")Xn))f(fl(}’l;---$}’n)y---s
fn(Y1,---,Yn))=f(Y1,---,Yn) D

Proposition 2. Let S be a complete upper semilat-
tice; then if each fi is upper semicontinuous, so
is f.

Proof: Let {(xll""’xln)’(XZI""’xzn)""} be a
chain in S%. By the definition of = on st it is
easily seen that LUB{(xll,...,xln)(le,...,xzn)...}=

(LUB{Xll,le,...},...,LUB{Xln,xzn,...}). {This
follows from the fact that (yy,..-,yp) is an upper
bound of {(xll,...,xln),(x21,...,xzn),...} if and

only if y) is an upper bound of {X]171,X21s-+-}s--H¥,
is an upper bound of {xln,xzn,...}.] Hence LUB{(f
(xll,...,xln),f(le,...,xzn),...}=LUB{(fl(xll,...,
Xln), “ee ’fn(xll" .. ,Xln)), (fl(le,. . ,in) 3o .,fn
(X21)"',x2n))1"-}

= (LUB{fl(xll"'"xln)’fl(XZl""’XZn)""}"'“

LUB{fn(xll,...,xln),fn(XZl,...,xzn),...})

(fl(LUB{(xll,...,xln),(x21,...,x2n),...},...,

£ (LUB{ G 5 - -

f(LUB{(Xll"'"Xln)’(XZl""’XZn)""})' //

ity ) s GRypaeeeaXpg)see e D)

We now apply these ideas to the discrete relaxa-
tion process. Let 03,.-+50p be a set of objects and
let L={€l,...,5m} be a set of labels. Let S be 2.
(the set of subsets of L), and let = be 2, i.e., if
A,B are subsets of S we write A<B iff ADB. Ev%dent—
ly, S is an upper semilattice under this =; L is
its least element; and it has height <m (no chain
of subsets under 2 can be longer than mt+l), so that
in particular it is complete.

Suppose we are given, for each pair of objects
01,04, a set Chi (i, 1) of allowable paiFs Qf labels
(Lp>Ly) - The interpretation of Cy (i,3) is that
0; cannot have label £y, unless each Oj has some



label £ such that (Zh,ﬂk)échk(i,j). Let f; be

the function from S® into S defined as follows:

For any n-tuple of label sets (L1,...,Ly) we have
ep€f (Ly, .. ,Ly) iff for each j there exists an
@kéLj such that (Bh,ﬂk)GChk(i,j). Evidently, £;

is monotonic. By Proposition 1, S™ has height =mn,
and thus fj is also upper semicontinuous. By
Proposition 2, it follows that f:S$">8", defined by
f(Ll,...,Ln)=(f1(L1,...,Ln),...,fn(Ll,...,Ln)), is
upper semicontinuous. Thus f has a least fixed
point, namely LUB{(L,...,L),f(L,...,L),fZ(L,...,L),
...} (Theorem 1), and it can be computed by applying
f at most mn times to (L,...,L) (Corollary 1).
Note that this is exactly the standard discrete
relaxation algorithm, in which we start with (L,
...,L) and repeatedly discard non-allowable labels,
"in parallel," until no further change occurs, i.e.,
until a fixed point is reached.

4. Example 2: Conditional functions

We now give another general example involving
a rather different class of constraints.

Let (S,<) be a poset. By a proposition on §
we mean a function P:S+{e, true, false}, where we
define a partial order relation on the range of P
by specifying that e=true and e=false, but true
and false are not related. A conditional function
F:5-5 is defined inductively as follows:

a) Any function f: S$»S is a conditional
function

b) If P is a proposition and F

,F2 are con-
ditional functions, then F &efln

ed by
F(x)=e if P(x)=e

F(x)=F, (x) if P(x)=true
F(x)=F,(x) if P(x)=false

is a conditional function.

Proposition 3. If P,Fy, and F are monotonic, F
(defined as in (b) above) is also monotonic.

Proof: Let xZy. If P(x)=e, we have F(x)=e, and
since e is the least element of {e, true, false},
we automatically have F(x)<F(y). If P(x)=true,
we have F(x)=F;(x)<Fj(y) since F1; is monotonic.
But since P is monotonic we must have P(y)=true,
so that F(y)=Fj(y), proving F(x)=F(y); and analo-
gously if P(x)=false. //

Proposition 4. If (S,<) is a complete upper semi-
lattice, and P,Fland F2 are upper semicontinuous,
so is F.

Proof: Let{x;,X),...} be a chain. It is easily
seen that if P(xj)=e for all i we have P(LUB{x;,xy,
...})=LUB{P(X1),P(x2),...}=e. Similarly, if P(xg)=
true for any i, we have P(xj)=true for all j>i and
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P(LUB{x},x9,...})=true; and analogously, if P(xj)=
false for any i. Similar remarks apply to Fj and
Fp. In each of these cases, it follows that F is
upper semicontinuous. [/

It follows that if F is any conditional func-
tion, and the f's, P's, Fis and Fjs involved in
the definition of F are all monotonic or upper
semicontinuous, so is F.

We can now consider a general class of con-
straint satisfaction problems in which the con-
straints are specified by arbitrary conditional
functions, rather than in terms of allowable pairs
as in the case of discrete relaxation. Using con-
ditional functions, we can concisely express con-
straints such as "if 0 has label ¢ then 05 has
label £y ," which would be cumbersome to express in
terms of allowable pairs. Let the constraints on
04 be defined by a_monotonic conditional function
Fi:Sn+S, where S=2L, and let F:5™S™ be defined in
terms of the F;, just as in Section 3.* Since st
still has height =mn, we can still find the least
fixed point of F by at most mn applications of F
to (e,...,e)=(L,...,L), exactly as in Section 3.
In other words, if we reformulate the standard
discrete relaxation algorithm as repeated applica-
tion of a monotonic function F to the least ele-
ment of an upper semilattice, we see that discrete
relaxation is just one example of a wide class of
constraint satisfaction algorithms, characterized
by the fact that they can be expressed in terms of
fixed points of monotonic functions.
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ABSTRACT

This paper presents a new algorithm for detec-
ting subgraph isomorphisms for pairs of graphs.
This algorithm entails a tree searching procedure
over the projections of the implicit product of the
two graphs. It utilizes the minimum number of
neighbohrs of the projected graphs to detect in-
feasible subtrees. The algorithm in comparison to
that presented in [9] is more efficient in its
storage space utilization and average running time.
It does not suffer from the ambiguity which arises
in {9], when cyclic graphs are matched.

I. INTRODUCTION

The graph monomorphism problem, also known as
the subgraph isomorphism problem, is one which
finds whether or not there exists a one-to-one ver-
tex mapping between two graphs while preserving
incidence relations. The graphs are assumed to be
finite. The formalism and terminology used are
based on Berge [3] and Ghahraman et al. [11].

Graph monomorphisms have wide applications in
areas such as scene analysis, information storage
and retrieval, chemical documentation and network
analysis. In scene analysis, a graph morphism task
is to compare an image to a reference scene for
purposes of recognition and/or classification.
Ideally, the graph morphism problem is that of iso-
morphism. However, if occlusion is possible, then
graph monomorphism or even largest common subgraph
isomorphism is more applicable. The transportation
problem is that of finding an optimal cost graph
monomorphism [12] in which each itinerary is mapped
onto a transport network to achieve the best 1tin-
erary.

Tt is well known that the graph monomorphism
problem belongs to the class of NP-complete problem
[10]. Problems in this class are inherently in-
tractable, that is, any algorithm designed to solve
the general problem will require exponential time
complexity. Over the past two decades, consider-
able efforts have been devoted to the problems re-
lated to graph isomorphism. A comprehensive survey
of the major works can be found in [16]. Unfor-
tunately, hitherto, no polynomial time algorithm
has been found. Attempts to solve the problem have
been largely concentrated in four areas:

(1) The design of polynomial time algor%thms for
special cases of the problem. For instance,
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the tree isomorphism algorithm which runs in
O(n) (pp. 84-86 [1]). Also, there is the
O(nlogn)algorithm of Hopcroft and Tarjan [(14)
for detecting isomorphism of a pair of planar
graphs.

(2) The design of polynomial time heuristics which
iteratively partitions the vertices of the twc
graphs into classes and then refine those par-
titioned classes until a one-to-one vertex map-
ping is (or is not) achieved. Unfortunately,
these heuristics fail for graphs of high orders.
The most celebrated example is that of Corneil
and Gotlieb [8]. Another, is that of Sussen-
guth {19] which extends Ungers' isomorj:hism
algorithm [23] to include graph monomori-hism.

(3) Theoretical works such as finding the mathe-
matical functions [5, 18, 21] and iroving that
certain classes of the problem are polynomially
equivalent [6].

(4) Use of backtracking for exhaustive scarch. Al-

gorithms in this category, utilize rcfinement
techniques based on the neighbours of the two
graphs to prune the search tree. Notable jro-
cedures are the depth first search algorithm
Dec [9]; the distance matrix algorithm of
Schmidt [17] (which suffers from its inajjlica-

bility to graph monomorphism); Ullmann's sulb-
graph isomorphism [22]; and recently Chenag ot
al. [6] which utilizes Berztiss' [4] elementary
K-formula and Ullmann's tree scarch to dev

a parallel algorithm for sukgrajh isomor: nisr.

Recently, Ghahraman et al. [111
backtracking algorithm based on the 1
the net) of two graphs, namely, the
which recresents the domain of the
the base graph the ranage. hccordin:
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for each vertex in the net. The fo
each vertex is dete 2d Ly osolving

Maximum Matci
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