1. LOGIC PROGRAMMING 1989:6:229-241 229

SOME RESULTS ON THE COMPLEXITY
OF EXPLOITING DATA DEPENDENCY
IN PARALLEL LOGIC PROGRAMS

ARTHUR DELCHER AND SIMON KASIF

[be We consider several problems related to maintaining and analyzing dataflow
dependencies in AND-parallel execution of logic programs. Several problems
related to optimal selection of literals for parallel execution are established
to be intractable (NP-complete). Most importantly, we establish intractabil-
ity even when the arity of the predicates in the logic program is restricted to
a small constant. This situation represents PROLOG programs used in
practice. We subsequently address the complexity of maintaining data-
dependency changes that occur during program execution as variables in
the literals become instantiated. For this problem we propose a simple and
efficient data structure to maintain the dataflow dependencies among liter-
als during the execution of the program. These dependencies may then be
used by an intelligent control to minimize backtracking. <

1. INTRODUCTION

In attempting to devise schemes for parallel execution of logic programs, one
obvious approach is to execute, independently in parallel, all the literals in a current
goal of a program, When variables are shared among literals, however, each process
executing a literal must ensure that the terms it binds to its variables are compatible
with the terms every other process binds to the same variables. We call literals that
'share a variable date-dependent, and those that don’t data-independent. For exam-
ple, in the goal

—p(X,Y),4(Y, 2).

Address correspondence to Professor Simon Kasif, Depariment of Computer Science, The Johns
Hopkins University, Baltimore, MD 21218.
Received 20 May 1987, accepted 6 December 1987,

THE JOURNAL OF LOGIC PROGRAMMING

©Elsevier Science Publishing Co., Inc., 1989
655 Avenue of the Americas, New York, NY 10010 0743-1066,/89 /83.50

230

ARTHUR DELCHER AND SIMON KASIF

if the process executing the literal p(X,Y) instantiates Y to a, while the process
executing the literal ¢ instantiates Y to b, then these two processes must communi-
cate and resolve their discrepancy. Yet at this point, it is difficult to determine which
of the two candidate bindings should be retained, for the ultimate value for ¥ may
turn out to be cither a or b, or some other value entirely.

For this reason many current parailel logic programming systems emplay dataflow
analysis, namely, the determination of data dependency among literals in the
program. The methods generally belong to one of two categories:

The execution of a logic program is guided by annotation that dictates the
selection of executable literals.

The interpreter tries to select for execution an “optimal” set of literals that don’t
share any variables. In this case, at every step the interpreter is essentially
facing a scheduling problem whose complexity -previously has been unknown.

In either case the interpreter depends heavily on dataflow analysis.
In this paper we study two problems related to dataflow analysis of logic
programs:

(1) The complexity of scheduling goals in parallel logic programs.

(2) The complexity of incremental dynamic dataflow analysis, ie., the data-
dependency changes that occur during program execution as variables in the
literals become instantiated. It has been observed that such dynamic dataflow
analysis may be computationally prohibitive. To the best of our knowledge,
however, no explicit complexity results have been reported.

We study these problems in the context of the relatively simple class of function-
free logic programs (sometimes referred to as datalog programs). This class has
numerous applications for databases and expert systems. We show that the problem
of determining an optimal set of literals for parallel execution is NP-complete for
this class, Clearly, since the simplest instance of the problem is shown to be
intractable, our resuits are immediately applicable to the class of logic programs at
large.

Problem (1) and its variations are shown to be intractable (NP-hard) even for this
restricted subset of logic programs. Most importantly, we establish intractability
even when the arity of the predicates in the logic program is restricted to a small
constant. This situation represents PROLOG programs used in practice. Thus, our
findings support the intuitions conjectured in [2] and {5] which propose several
heuristic approaches for the problem.

For problem (2) we propose a simple and efficient algorithm to maintain the
dataflow dependeficies among literals during the execution of the program. These
dependencies may then be used by an intelligent control to minimize backtracking.

-1.1. Graph Representation of Data Dependency

We assume that the current goal of our function-free logic program contains n
function-free literals, whose maximum arity is m, and that the entire goal contains &
different variables. Discounting constants and multiple occurrences of the same
variable in a single literal (since these have no effect on data dependency), it is clear

DATA DEPENDENCY IN PARALLEL LOGIC PROGRAMS 231

that m < k < mn. The current goal can then be expressed in general as
H pl(Al,l!‘] Al,m])" b] pn(An.l’ srr2 An,m)‘

where the p,’s are the principal functors of the literals (and by obvious identification
will be used to refer to the literals), and the 4,;’s are the arguments, each one
corresponding either to a variable V,, 1 < g < k, or to some constant, or to a null
entry in the case that the literal is of arity less than m. When not otherwise
mentioned, it will be assumed that .here are neither constants nor multiple occur-
rences of the same variable in a single literal.

Data dependency in a clause can be regarded in terms of a (simple) graph whose
vertices correspond to the literals in the clause, with an arc between two literals iff
they share a variable. We refer to the graph in this form as the connectivity graph
(CG). An equivalent representation is a bipartite graph, hereafter referred to as BP,
in which each literal and each distinct variable name in the clause correspond to a
unique vertex in the graph, with an arc joining every literal to each of the variables
it contains. Figure 1 illustrates the CG and BP that correspond to the clause

—p(X,Y,2),q9(Y, W), r(X,Y),s(Z,W).

BP will always have k (the number of variables in the clause) more vertices than
CG. It is likely, though, that BP has fewer arcs than CG. An extreme case is a
clause with n literals, each containing the same single variable, such as

i~ pi(X), 2 (X),..., p(X).

Here BP has exactly n arcs, whereas CG has n(n — 1)/2 arcs.

In the course of execution of a logic program, as the current goal changes,
corresponding changes occur in the data-dependency graph. Nodes (and their
incident edges) are added and deleted as a result of literals being added to and
removed from the current goal through resolution. Edges must be added to existing
nodes when different variables become unified, and deleted when a variable becomes
bound to a constant. For example, if the goal

:_pl(X)s P!(X)S’pn(X)
is resolved against a clause such as
pi(a).
then the variable X is bound to the constant a4, so that there are no shared variables

FIGURE 1. CG and BP for :— p(X, Y, Z), g(¥, W), r(X, 1), s(Z, W).

CcG BP

232 ARTHUR DELCHER AND SIMON KASIF

left in the resolvent. In any explicit representation of CG, this process would
necessitate the deletion of O(n?) arcs.
A similar situation occurs in a program like

=p(X,Y), q(X),.. ¢, (X), (T)., (7).
%’J(X, X).

If p is executed, it succeeds immediately and unifies X and ¥ throughout the goal,
which requires st new edges to be added to an explicit representation of CG.

For these reasons, we generally assume that the data dependency in a clause is
represented in the form of BP, and that if CG is needed, it must be constructed
from BP. Thus, for example, to find all literals dependent on a given literal (i.e., its
neighbors in CG), using the BP representation, we must find the union of sets of
literals—one set for each variable in the given literal, with each set consisting of all
literals that contain that variable. Since all these sets might be identical, the time
spent might be increased by a factor equal to the arity of the literal, compared to the
time required using a direct representation of CG.

2. COMPLEXITY OF ACHIEVING MAXIMUM PARALLELISM

In the next two subsections we state some results concerning the run-time complex-
ity of performing optimal scheduling of literals in logic programs so as to minimize

total execution time.
d

2.1. Computing the Maximum Number of Data-Independent Literals

Let P be a goal containing » literals. The obvious strategy to exploit parallelism as
much as possible without executing data-dependent literals in parallel is to select for
exccution the maximum number of data-independent literals. Unfortunately, the
following result shows that this strategy is, in the worst case, impractical.

Proposition 1. The problem of determining a maximum-size set of literals, no two of
which share a variable, is NP-complete. More formally, given N literals and a
positive integer K < N, to determine whether there is a data-independent subset of K
or more literals is NP-complete. (Hereafter, we shall not formally restate each
problem as a decision problem.)

PrOOF. The problem is clearly in NP. It is now easy to reduce the maximum-inde-
pendent-set problem for graphs [8] to this problem. Turn nodes in the graph into
distinct predicate names, and edges into distinct variables. Then construct a goal
with one literal for each predicate name, and make it contain exactly those variables
that represent edges incident on the node represented by the predicate name. It is
easy to see that independent sets in the graph now correspond exactly to data-inde-
pendent sets of literals. [

On the surface, Proposition 1 appears related to the main theorem in [12] that
shows that the problem of finding the maximal unifiable subset of a set of unifiers is
NP-complete. On close inspection, however, the problems are quite different.

T e L S WA ST e s T s
e SR SR A ——ae

DATA DEPENDENCY IN PARALLEL LOGIC PROGRAMS 233

In practice, the arity of the predicates in logic programs is often restricted to be
less than some fixed constant. The next result shows that the problem above is still
NP-hard even when the arity of the literals is restricted to be no greater than three.

Proposition 2. From a goal G consisting of N literals, none with more than three
variables, the problem of determining if there is a subset with at least K data-inde-
pendent literals is NP-complete.

ProoF. Identical to the proof of Proposition 1, except that the reduction is from the
maximum-independent-set problem for cubic graphs [8]. O

In the case where no clause contains more than two variables we have:

Proposition 3. If all literals in a clause have arity 2, a maximum data-independent set
of literals can be selected in polynomial time.

PrROOF. Let each variable in the clause be regarded as a node of a graph, and each
literal be regarded as an edge connecting its variables. Then a data-independent set
of literals is equivalent to a set of edges no two of which are incident on the same
node. Such a set of edges is called a marching. Thus, the arity-2 case can be reduced
to finding a maximum matching in a graph, which can be solved in polynomial time.

O

Note that in practical parallel interpreters we want a very fast scheduling
algorithm. Even a quadratic-time algorithm is prohibitive unless the size of the
clavses is small, In Section 2.3 we discuss simple heuristics which, though not
guaranteed to deliver the best solution, are likely to give reasonable overall perfor-
mance.

2.2. Computing Other Strategies

The strategy of finding the largest set of data-independent literals to execute in
parallel may be far from the best strategy in many logic programs. It is easy to see
that even if each literal in the current goal can succeed immediately, the maximum-
independent-set strategy is not necessarily optimal. For example, in the program

—p(W, X),q(Y,Z),r(Q,W, X, Z),5(0, X, Z).
pla,bd).

g(ec, d).

r(e,a,b,d).

s(e, b, d).

a maximum-independent-set strategy selects the literals p and g to execute first.
They bind their variables to constants, but the remainder of the goal would still not
be independent, so that two more execution steps would be needed, for a total of
three parallel execution steps. But if, instead, r were executed first, it would succeed
and bind all the variables except Y to constants, thercby removing all data
dependencies. The rest of the goal could now be executed simultaneously, yielding a
total of just two parallel executions steps.

234

ARTHUR DELCHER. AND SIMON KASIF

This lack of optimality in scheduling literals for execution is not peculiar to the
maximum-independent-set strategy. In fact, no simple scheduling strategy is likely
to be optimal, since the following result indicates that the problem of finding an
optimal strategy is intractable, even for simple cases like the above example.

Proposition 4. Let S be a logic program comprising ground assertions only, such that
no predicate name occurs more than once in S. Let P be a goal. The problem of
determining the optimal order of parallel execution of the literals in P, such that
literals sharing uninstantiated variables may not execute simultaneously, is NP-com-
plete.

ProoOF. Since every literal must be executed, the order of the execution can be
thought of as a partition of the literals into an ordered sequence of sets, where no
two literals in the same set share an uninstantiated variable, In terms of the
connection graph CG, this is almost a coloring of the nodes in such a way .that
nodes of the same color correspond to literals that are executed in paraliel during
the same step. The only difference is that it is possible at later steps to execute in
parallel nodes which share variables, if earlier steps have already instantiated those
shared variables. Thus, determining the chromatic number of CG is not equivalent
to determining the optimum order of parallel execution. We can, however, reduce
the problem of determining the chromatic number of a graph (which is known to be
NP-complete [8]) to that of finding an optimum parallel execution strategy.

Given a graph G, we construct a set of literals as shown in Figure 2 by creating
one literal for each node, and one variable for each edge, and having the literal
contain a variable iff the corresponding edge is incident on the corresponding
vertex. Now given a parallel execution strategy for the literals, the order of the steps
in the strategy does not matter. This is because each variable is contained in exactly

Sample Graph: ‘

FIGURE 2. Graph and corresponding
goal as in proof of Proposition 4.

Corresponding Goal:

~v e, e, &),
v, (e, &),
v, (e, &),

C v e, e, &, &)
v, (g,).

DATA DEPENDENCY IN PARALLEL LOGIC PROGRAMS 235

two literals, so that when a literal instantiates a variable, it cannot affect the data
dependency between any two other literals. So literals can be executed in parallel iff
they share no variables at the start of execution, which is equivalent to the
corresponding nodes in G not being adjacent. Thus, there is a one-to-ene correspon-
dence between node colorings of G and parallel execution strategies for the literals,
where literals are executed in the same parallel step iff the corresponding nodes have
the same color. Therefore the chromatic number of G is the same as the number of
steps in the optimum parallel execution of the literals. Since our problem is clearly
in the class NP, we are done. O

In the case where all literals have arity no greater than a constant m, we have the
following easy result:

Lemma 1. Under the conditions of Proposition 4, if m is the maximum arity of the
literals to be executed, the parallel execution requires at most m + 1 steps.

PrOOF. Let A be a greedy algorithm which scans the goal list from left to right and

selects for execution any literal that does not share a variable with an already
selected literal. The time complexity of the execution sequence produced by A4 is no

more than m + 1 steps. This is because, at each step, any literal not being executed

must share a variable with a literal that is executing, so by the'end of the step that
variable will be instantiated. Thus, after a total of at most m steps, every variable

‘ has been instantiated and in one more step any remaining literals can be executed.
: O

Under the stated conditions, the above result guarantees a fast parallel execution
for small values of m. To determine the fastest parallel execution, however, is
NP-complete when m = 3, as seen in Proposition 5.

Proposition 5. The result of Proposition 4 is still valid under the condition that all
literals have arity of at most 3.

Proor. If all literals have arity no greater than 3, the strategy of Proposition 4 no
longer works, because there is a polynomial-time solution for the problem of
determining the chromatic number of graphs with vertex degrees no greater than 3.
Yet, as mentioned in-the proof of Proposition 4 above, the problem of determining
the fastest parallel exccution strategy is harder than coloring, because when vari-
ables are instantiated, dependencies among the remaining literals are “removed”.
We show the arity-3 case to be NP-complete by reducing from the problem of
determining if a collection of 3-member sets contains an c¢xact cover, ie., a
subcollection in which each element appears exactly once [8].

Without loss of generality, assume that no element is contained in only one of the
3-member sets (otherwise discard that 3-member set—it must be included in any
exact cover). We regard the 3-member sets as literals where the elements represent
variables. If there exists a two-step parallel execution strategy, then the literals
executed during the first step must form an exact cover. Conversely, if the literals in
an exact cover are executed, all variables become instantiated and any remaining
literals can be executed together in step 2. Thus, there is an exact cover iff there is a
two-step parallel execution. O

236

ARTHUR DELCHER AND SIMON KASIF

Combining Lemma 1 and Proposition 5 yields the following curiosity. For m = 3,
using Lemma 1, we easily can obtain a 4-step parallel execution (in linear time), but
the problem of determining whether there is a 2-step parallel execution is NP-

complete.
The case in which no literal has more than two variables can be determined in

polynomial time, as the following shows:

Proposition 6. Under the conditions of Proposition 4 with the added condition that all
literals have arity 2, an optimum execution strategy can be determined in polyno-
mial time.

Proor. It is easy to determine if all the literals can be executed in a single step, just

by seeing if there are any shared variables, and Lemma 1 guarantees the execution

takes no more than three steps. Thus, the problem reduces to determining if there is

a two-step execution strategy.

To determine if there is a two-step execution strategy, we convert the literals to a
graph as in the proof of Proposition 3: variables corresponding to nodes, and literals
corresponding 1o edges whose ends represent the variables contained in the literal.
In this form a two-step execution corresponds to a set of edges (representing the
literals to be executed during the first step) such that no two are incident on the
same node (Le., a matching) and such that every node with degree at least 2 is an
end of one of the edges. The first requirement guarantees that literals executed
during the first step are data-independent. The second requirement guarantees that
all literals left over for the second step are data-independent, since if a degree-2
node were not an end of an edge in the matching, its corresponding variable would
not- be instantiated during the first execution step. Since its degree is two, there are
two literals that contain it, and they could not both be executed during the second
step. Thus, there is a two-step execution strategy iff there is a matching that touches
each node in the corresponding graph, except possibly for degree-1 nodes.

If there are no degree-1 nodes, such a matching must touch every vertex (a
perfect matching), and polynomial-time algorithms to determine the existence of
perfect matchings are well known. If there are degree-1 nodes present, then the
graph can be modified so that there is a two-step execution iff the modified graph
admits a perfect matching. First, add a dummy node (if needed) to make the total
number of nodes even. Then add a dummy edge between every two degree-1 nodes,
and if there is a dummy node, add dummy edges from it to each degree-1 node. It is
now clear that any suitable matching in the original graph can be extended to a
perfect matching in the modified graph. Conversely, a perfect matching in the
modified graph can be converted to a suitable matching in the original graph by

simply disregarding all dummy edges. 0O

Again, it is worth noting that in this subsection we have considered just the
simplest possible cases of parallel selection. It seems likely that any generalization
would only increase the complexity of optimal scheduling.

2.3. Heuristics
For many practical purposes, a data-independent set whose size is very near the
maximum might well suffice. In this case a simple heuristic method of selecting a

- amie

A ee—

DATA DEPENDENCY IN PARAILEL LOGIC PROGRAMS 237

maxima/ data-independent set of literals might produce a set which is often, in fact,
a maximum, and otherwise is close to a maximum. One such method is to repeat the
following steps until all literals are exhausted:

1. Select a literal with the smallest number of literals data-dependent on it.
2. Delete it and all literals dependent on it from those under consideration.

Step 2 ensures that the set of selected literals will be data-independent and maximal.
Step 1 is performed to minimize the number of literals discarded in step 2, thereby
leaving more literals and tending to produce a larger data-independent set. This
algorithm can be executed in time proportional to the number of edges in CG. In
preliminary simulations on clauses composed of randomly selected literals with
bounded arity, the algorithm computed a maximum independent set most of the
time, while in the other cases it computed a set only one literal smaller than the
maximum, For more details of these simulation results, see [6].

The algorithm can be improved somewhat by adding an extra condition to
discriminate among ties in step 1. If two or more literals each have the same
smallest number of literals dependent on them, select the one with the most literals
dependent on its dependent literals. In terms of CG, this states that when two or
more nodes have minimum degree, select the one which has the most nodes exactly
2 edges away from it. This serves to remove as much dependency as possible from
the literals left after step 2 is performed. As a result, there are more possibilities for
independent sets, so that larger ones can be found. .

3. MAINTAINING AN ACTIVE DATA-DEPENDENCY GRAPH

As a logic program executes and literals are unified, variables can acquire bindings
which affect data dependency. For example, in the goal

—p(X),q(X,Y), r(X, Z).

all three literals are dependent on one another. But if p is executed and binds X to
a constant, the dependency between g and r is eliminated. Dependencies can also
be created during the course of execution. For example, in the goal

:_p(X! Y)! q(X),J‘(Y)
the dependencies are only between p and g, and between p and r. But if p is
executed and unifies with the assertion p(Z, Z)., both X and Y have Z substituted
for them, and ¢ and r become dependent because they now share Z.

In order 1o exploit dataflow analysis effectively, changes in dependency that
occur in the course of program execution must be applied efficiently to the
data-dependency graph representation. The general problem of incrementally updat-
ing graphs (i.e., adding and deleting edges and nodes) is studied widely in the
literature (for example, see [7]). In the context of logic programming, the following
changes occur in the data-dependency graph:

(1) Node deletion occurs when a literal succeeds and binds all its variables to
constants,

(2) Node addition occurs when a literal unifies with the head of a clause, and the
literals in the tail of that clause are added to the current goal.

238 ARTHUR DELCHER AND SIMON KASIF

O OO ®

i / \ (\ ()
aXyY) bz e XY 2)

a(r, 2) a(A A) b8, 8)

. |

b (8, 8)

(b)

b1AZ) ctAAZ) a2z

\ /X

c (B, 8, 8) d (B, 8)

F—— L

S
e —

O] O ©)

¢ (B, B, B) d (B, 8)

FIGURE 3. Updating the pointer representation of BP: (a) initial representation, (b) after
unifying a(X, ¥) and a4, A), (c} after unifying 5(4, Z} and (B, B), {d} alter a reference
to the second argument in c(B, B, B).

———-——

DATA DEPENDENCY IN PARALLEL LOGIC PROGRAMS 239

(3) Edge addition occurs when different variables become bound to the same
variable, as in the preceding paragraph.

(4) Edge deletion occurs when a variable becomes bound to a constant.

These changes in dependency can be maintained in what is essentially the BP
form by maintaining a chain of pointers from each argument in the literals of a
clause to the current name of the argument, something like what is done in
PROLOG environments. (For purposes of analyzing data dependency, chains
pointing to names that are constants are not considered part of BP.) For example, in
Figure 3(a) we show the pointers as they would be initially for the clauses in the
program -

—a(X,Y),b(X,2Z),e(X,Y, 2),d(Y, Z).
a(4, 4).
b(B, B).

When a substitution is applied to an argument, the argument and each node in its
chain are pointed to the new name. Moreover, for any reference to the name of an
argument, each pointer in the chain is made to point directly to the end node of the
chain. In this way the current names can be updated efficiently, and the pointer
chains are continually compressed to prevent lengthy chain traversals. As further
illustration, Figure 3(b) shows the effect of unifying a(X,Y) with the simple
assertion a(A, A). Figure 3(c) shows what then happens when b(A, Z) is unified
with b(B, B). Finally, Figure 3(d) shows the situation after a reference to the
second argument in the literal ¢. (Note that the node with the name 4 has been
dropped, since nothing now points to it.)

This pointer structure is identical to that described in [1] for UNION-FIND set
operations. In our context, the sets are sets of arguments with the same current
name; the FIND operation is that of determining the current name associated with
an argument; and the UNION operation is that of unifying two variables. As shown
in [1], for a given constant ¢, a sequence of ¢n UNION and FIND instructions can be
executed in.at most ¢, n log* n steps, where ¢, depends on ¢ and log* » is the inverse
function of 22" with n exponents of 2. Thus, BP can be maintained and processed
in a way that uses essentially constant time to determine each edge. The application
of UNION-FIND data structures to logic programs was also noted by Mannila and
Ukkonen [10], who independently observed that the results of a sequence of
unifications and deunifications can be maintained in a UNION-FIND form. Our result
follows directly from the incremental graph operations generated by the execution
of a logic program.

4. DISCUSSION

Originally, logic programming was proposed as a declarative method of program-
ming that alleviated many of the low-level control considerations of other program-
ming languages. Only recently have logic programs been used in a procedural style
of programming to describe efficiently and concisely programs typical of system-level
applications [3,11]. In the context of system-level programming, it is clear that one
wants to minimize to a constant the run-time complexity of analyzing dataflow

4 4 —
m— AE— b — A —

240

ARTHUR DELCHER AND SIMON KASIF

dependencies. This sometimes requires the sacrifice of flexibility and potential
parallelism in favor of restricted control constructs that improve the run-time
behavior 3,5]. Our resulis have application to Concurrent PROLOG /Parlog-type
systems. At any point during execution, a Concurrent PROLOG interpreter is trying
to schedule the unification of k literals that appear in the current goal in such a way
that the actual assignment of bindings to the shared variables must not be done
concurrently, Now assume that we have k processors allocated to each one of the
literals and they are trying to perform the unification of their respective terms in
such a way that no two processors will access the same variable location simultane-
ously. Our results suggest that determining the optimal scheduling of this process is
intractable and that the procedure currently used by the interpreter (namely first-in
first-out) actually may be «quite reasonable when the arity of the literals is low.

In the context of artificial-intelligence applications, where the programs are likely
to be declarative (e.g. expert systems, databases), one is willing to pay a higher cost
in run-time overhead to improve the logical efficiency. of the system, i.e., the total
number of paths in the proof tree explored by the interpreter. Thus, many re-
searchers use dataflow analysis to minimize backtracking [4,2,9].

In this paper we have examined some aspects of the worst-case behavior of
dataflow analysis in these kinds of systems. We have proved that dataflow analysis
can be prohibitive, as previously conjectured by other researchers. We have estab-
lished that scheduling goals in parallel logic programs remains NP-complete even
when the arity of predicates is no larger than 3, and that it is rather difficult (but has
a polynomial-time solution) for arity 2. We also have proposed several simple
heuristic solutions that seem to work well in preliminary experiments.

There is much room to experiment with various restricted versions of the
questions investigated here that may prove very useful in practice. We are currently
investigating the application of dynamic dataflow analysis to intelfigent backtrack-
ing in the context of AND-parallelism, as well as the complexity of global (interpro-
cedural) dataflow analysis.

REFERENCES

1. Aho, A. V., Hoperoft, 1. E., and Ullman, I. D., The Design and Analysis of Compuier
Algorithms, Addison-Wesley, Reading, M4, 1974,

2, Chang, J. H. and A. Despain, Semi-intelligent Backtracking of PROLOG Based on Static
Dependency Analysis, in: Proceedings of the TEEE Symposium on Logic Programming,
Aug. 1985, pp. 10-21.

3. Clark, K. L, and Gregory, 8., PARLOG: Parallel Programming in Logic, ACM Trans.
Prog. Lang. & Sys. 8:1 (1986).

4, Conery, 1. S., The AND /OR Process Model for Paralle]l Interpretation of Logic Progrars,
Ph.D. Thesis, Univ. of California, Irvine, 1933,

5. DeGroot, D., Restricled anp-Parallelism, in: Proceedings of the 1984 Imternational
Conference on Sth Generation Computers, Tokyo, 1984.

6. Delcher, A., The Complexity of Exploiting Data-Dependency in Parallel Logic Programs,
M.S.E. Thesis, Dept. of Computer Science, Johns Hopkins Univ., 1986.

7. Even, $. and Shiloach, Y., An On-Line Bdge Deletion Problem, J. Assoc, Comput. Mach.
28:1-4 (1981).

8. Garey, M. R. and Johnson, D. S., Computers and Intractability: A Guide to NP-Complete-
ness, Freeman, San Francisco, 1979.

DATA DEPENDENCY IN PARALLEL LOGIC PROGRAMS 241

9. Kasif, S., Xohli, M., and Minker, J., Control Facilities of prISM—A Parallel Inference
System Based on Logic, in: Proceedings of the International Joint Conference on Artificial
Inteiligence, Aug. 1983.

10. Mannila, H. and Ukkonen, E., On the Complexity of Unification Sequences, in: Third
International Conference on Logic Programming, LNCS 225, Springer-Verlag, July 1986,
Pp. 121-133.

11. Shapiro, E., System Programming in Concurrent Prolog, in: Proceedings of 11th ACM
Symposium on Principles of Programming Languages, 1984,

12. Wolfram, D. A, Intractable Unifiability Preblems and Backtracking, in: Third Interna-
tional Conference on Logic Programming, LNCS 225, Springer-Verlag, July 1936, pp.
107-121.

i
i

