ARTIFICIAL INTELLIGENCE 275

On the Parallel Complexity of Discrete
Relaxation in Constraint Satisfaction
Networks

Simon Kasif

Department of Computer Science, The Johns Hopkins
University, Baltimore, MD 21218, USA

ABSTRACT

Constraint satisfaction networks have been shown to be a very useful tool for knowledge representa-
tion in Artificial Intelligence applications. These networks often utilize local constraint propagation
techniques to achieve local consistency (consistent labeling in vision). Such methods have been used
extensively in the context of image understanding and interpretation, as well as planning, natural
language anglysis and truth maintenance systems. In this paper we study the parallel complexity of
discrete relaxation, one of the most commonly used constraint propagation techniques. Since the
constraint propagation procedures such as discrete relaxation appear to operate locally, it has been
previously believed that the relaxation approach for achieving local consistency has a natural paralle!
solution. Our analysis suggests that a parallel solution is unlikely to improve the known sequential
solutions by much. Specifically, we prove that the problem solved by discrete relaxation (arc
consistency) is log-space complete for P (the class of polynomial-time deterministic sequential
algorithms). Intuitively, this implies that discrete relaxation is inherently sequential and it is unlikely
that we can solve the polynomial-time version of the consistent labeling problem in logarithmic time
by using only a polynomial number of processors. Some practical implications of our result are
discussed. We also provide a two-way transformation between AND/OR graphs, propositional Horn
satisfiability and local consistency in constraint networks that allows us fo develop optimal linear-time
algorithms for local consistency in constraint networks.

1. Introduction

Constraint satisfaction networks have been shown to be a very useful tool for
knowledge representation in Artificial Intelligence applications [19]. These
networks often utilize local constraint propagation techniques to achieve global
consistency, Such methods have been used extensively in the context of image
understanding and interpretation [7, 12, 15] as well as planning, natural lan-
guage analysis and commonsense reasoning [19].

In particular, this paradigm has been applied to solve the constraint satisfac-
tion problem (CSP) which is a key problem in many Artificial Intelligence

Artificial Intelligence 45 (1990) 275-286
0004-3702/90/$03.50 © 1990 — Elsevier Science Publishers B.V. (North-Holland)

276 S. KASIF

applications. The constraint satisfaction problem can be informally defined as
follows. Let § be a set of objects. Each object has a set of possible labels
associated with it. Additionally, we are given a set of constraints that for each
object s and label x describe the compatibility of assigning the label x to object
s with assignment of any other label x’ to any other object s'. Intuitively, we
have to produce an assignment of labels to objects which is consistent with all
the constraints.

Since the CSP is known to be NP-complete, the discrete relaxation method
has been proposed to reduce the initial ambiguity and achieve local con-
sistency. Local consistency or arc consistency (see formal definition in the next
section) allows us to assign a label x to an object s iff for any other object ' in
the domain there exists a valid assignment of a label x’ which does not violate
the constraints (a formal definition is given in the next section). This formaliza-
tion allows us to achieve local consistency by local propagation of constraints.
Specifically, a discrete relaxation algorithm can discard a label from an object if
it is incompatible with all other possible assignments of labels to the remaining
objects. The discrete relaxation approach has been successfully applied to
numerous computer vision applications [2, 4, 11, 18]. The sequential time
complexity of arc consistency is discussed in [13].

In this paper we study the parallel complexity of arc consistency. Since the
constraint propagation procedures such as discrete relaxation appear to operate
locally, it has been previously believed that the relaxation approach for the
CSP has a natural parallel solution [1, 15, 19]. Our analysis suggests that a
parallel solution is unlikely to improve the known sequential solutions by
much. Specifically, we prove that the problem of achieving local consistency
belongs to the class of inherently sequential problems called log-space com-
plete for P (P-complete).

Intuitively, a problem is log-space complete for P iff a logarithmic-time
parallel solution for the problem will produce a logarithmic-time parallel
solution for any polynomial-time deterministic sequential algorithm. This
implies that, unless PCNC (the class of problems solvable in logarithmic
parallel time with polynomial number of processors), we cannot solve the
problem in logarithmic time using a polynomial number of processors. This
result is based on the “parallel computation thesis™ proved in [6] that estab-
lishes that parallel time computation is polynomially related to sequential
space. Specifically, the class of problems that can be solved in logarithmic
parallel time with polynomial number of processors is equivalent to the class of
problems that can be solved in polynomial time using logarithmic space on a
sequential machine. For length considerations, we assume that the reader is
familiar with elementary complexity theory and log-space reducibility tech-
niques [5] and the literature on discrete relaxation (network consistency
algorithms). For completeness we shall provide the necessary definitions in the
next two sections,

rm——r

rouTm

PARALLEL COMPLEXITY OF DISCRETE RELAXATION 277

2. Constraint Satisfaction Networks and Discrete Relaxation

The constraint satisfaction problem and arc consistency are formally defined in
[11]. For completeness we give a semiformal definition here. Let V=
{v,,...,v,} be a set of variables. With each variable v, we associate a set of
labels L;. Now let P; be a binary predicate that defines the compatibility of
assigning labels to objects. Specifically,

Pij(x! y)=1

iff the assignment of label x to v, is compatible with the assignment of label y to
v,. The constraint satisfaction problem (CSP) is defined as the problem of
finding an assignment of labels to the variables that does not violate the
constraints given by P, (consistent with all the constraints). More formally, a
solution to the CSP is a vector (x,, ..., x,) such that x, is in L, and, for each {
and j, P;(x,, xj) =],

The standard approach to model CSPs is by means of a constraint graph.
The nodes of the constraint graph correspond to the variables of the CSP. The
edges of the graph correspond to the binary constraints in the CSP. That is,
with each edge in the constraint graph we associate a matrix that shows which
assignments of labels to variables on the arc are permitted. Thus, the size of
the input is O(EK?), where E is the number of edges in the graph and K is the
number of labels. ‘

For example, the four-queens problem can be seen as an instance of a CSP.
To confirm this, associate a variable with cach column in the board and let
L;={1,2,3,4} for 1=i=4. Let P,(x, y) =1 iff positioning of a queen in row
x at column { is “safe”” when there is a queen in column j and row y.

As mentioned in the introduction, the CSP is known to be NP-complete.
Therefore several polynomial approximation algorithms were proposed and
were shown to perform quite well in practical applications. The most significant
class of algorithms are variations on discrete relaxation [15], also known as
network consistency algorithms [12]. Formally, a locally consistent solution to
the CSP (arc consistency, abbreviated as AC in the remainder of the paper) is a
set of sets M, ..., M, such that M, is a subset of L, and a label x is in M, iff
for every M, [#j, there is a y_, in M, such that P (x, y)= 1. Intuitively, a
label x is assigned to a variable iff for every other variable there is at least one
valid assignment of a label to that other variable that supports the assignment
of label x to the first variable. We call a set M, ..., M, a maximal solution for
an AC problem iff there does not exist any other solution S,, . . ., §, such that
M, C §; for all 1 <i=n. We arc only interested in maximal solutions for AC.
This restriction is necessary since any AC problem has a trivial solution: the set
of empty sets. Additionally, recall that any solution for an AC problem
represents a set of candidate solutions for the original CSP, which will
eventually be verified by a final exhaustive check. Thus, by insisting on

s

.
=
I

L
!}'

T Ity S it
,

I Nt

TR o e

278 5. KASIF

maximality we guarantece that we are not losing any possible solutions for the
original CSP, Therefore, in the remainder of this paper a solution for an AC
problem is identified with a maximal solution.

The standard approach for achieving arc consistency is by repeatedly apply-
ing the following procedure (discrete relaxation):

PAR-AC
for each arc from X; to X of the constraint graph test whether for
cach label [for X there exists ' for X; that permits it.

It is easy to see that this algorithm will terminate in Q(EK’nK) or
equivalently Q(rEK’) time, where E is the number of edges in the graph and
K is the number of labels (recall that EK” is the size of the input). In fact, in
[13] and this paper much better sequential algorithms for the problem are
developed.

3. The Complexity of Searching AND/OR Graphs

In this section we state several preliminary definitions and results that will be
used in the following section to analyze the complexity of AC. We begin by
defining AND/OR graphs [14].

Definition 3.1. An AND/OR graph is a six-tuple (A, O, E, s, §, F) where A is a
set of AND-nodes, O is a set of OR-nodes, £ is a set of directed edges
connecting nodes in AU O U S U F, 5 is a unique start node in A, § is a set of
success nodes and F is a set of failure nodes, The solvability of a node in an
AND/OR graph is defined recursively:

—If x is an S-node, it is solved.

—If x is an AND-node, then it is solved iff all its successors (defined by the

direction of the edges of E) are solved.
—If x is an OR-node then it is solved iff one of its successors is solved.
An AND/OR graph has a solution iff 5 is solved.

Proposition 3.2 (Jones and Laaser [8]). Finding a solution for an AND/OR graph
is log-space complete.

Proof. This result can be obtained by observing that GAME studied in [8] is an
instance of the problem of AND/OR solvability. O

We now define the class of propositional Horn clauses.
Definition 3.3. A propositional formula H is said to be a propositional Horn

clause iff one of the following holds:
- H is a propositional atem of the form @, called an assertion.

PARALLEL COMPLEXITY OF DISCRETE RELAXATION 279

- H is a propositional formula of the form P« P, & --- &P,, denoted by
P« P, ..., P, and called an implication.

— H is a propositional negative atom (literal) of the form —1 P, denoted by
«P and called a goal.

We note that our slightly restrictive definition of Horn clauses (not allowing
multiple literals in the goal) does not restrict the expressiveness of the
language.

Definition 3.4. A propositional logic program is a set of propositional Horn
clauses with a single goal. We define the unsatisfiability of a set of propositional
Horn clauses S as a solvability relation on the set of propositional names in S.
The definition is recursive:
—If P is an assertion in S, then it is solvable.
— If P appears on the left-hand side in a set of implications of the form
PeP,...,F

n?’

then P is solvable iff each one of the P, is solvable in at least one of the
implications.

A propositional logic program is unsatisfiable iff the propositional name that
appears in the single negative atom is solvable. The problem of testing whether
a propositional logic program is unsatisfiable will be referred to as the
propositional Horn satisfiability problem (PHSP).

Example 3.5. The following set of Horn clauses is unsatisfiable since P is
solvable:

P
P« Q. R.
P<S,T.
ReS§.
TP
Q.

S.

The next theorem, though not explicitly stated previously in a published
form, is part of the common folklore among theoreticians [17].

Theorem 3.6 (folklore). The problem of testing the satisfiability of propositional
Horn clauses is log-space complete.

Proof. The proof is by reduction from solvability of AND/OR graphs (GAME of

280 8. KASIF

Jones and Laaser [8]) and will not be presented here in full detail. Generally,
“reduction” is the most common technique to show a problem X is log-space
complete. Specifically, it is adequate to show the problem is in P (the class of
polynomial-time aigorithms), and then reduce a known log-space complete
problem to X using a function computable in logarithmic space (log-space) by a
deterministic Turing machine. Since log-space reducibility is a transitive rela-
tion, we can then deduce that if we had a logarithmic-time parallel algorithm to
solve X, we could also perform every other sequential polynomial-time compu-
tation in logarithmic time. In our case the reduction of AND/OR graph
solvability to propositional Horn satisfiability is immediate (in some sense it is
the same problem). We label all the nodes in the AND/OR graph with distinct
propositional atoms. Then for each AND-node P connected to P,,..., P, we

create a formula P<-P,,...,P,. For cach OR-node P connected to
P, ..., P, we create formulae

PP, .

PP, .

For each terminal success node ¢ we create the assertion . Finally if the start
node of the graph is labeled by P we add the goal <P to the set.

It is easy to sec that the original graph has a solution iff the set of formulae
created in this fashion is unsatisfiable and the transformation can indeed be
done in log-space. 0]

It is not difficult to verify that the following is also true:

Theorem 3.7. Theorem 3.6 holds for propositional logic programs restricted to
implications that have at most two atoms on the right-hand side of the impli-
cation.

4. The Complexity of AC

In this section we present a two-way reduction between PHSP and AC. This
will establish our main result, namely that the probiem of finding a solution to
AC is log-space complete (AC is P-complete). Additionally, this will show that
AC can be solved by a linear-time algorithm developed previously for the
PHSP.

To show AC is P-complete we show that AC is in P and subsequently prove
that satisfiability of propositional Horn clauses (PHSP) is reducible to AC. The
first part of the proof is straightforward since PAR-AC as presented above has
polynomial-time sequential complexity (see [13]). In fact the edge consistency
algorithm as given in [12] is linear in the number of edges in the constraint
graph [13].

PARALLEL COMPLEXITY OF DISCRETE RELAXATION 281

Theorem 4.1, The propositional Horn clause satisfiability problem (PHSP) is
log-space reducible to AC.

Proof. Let Pr be a propositional logic program such that no implication has
more than two atoms on its right-hand side. We will also assume that all the
atoms in Pr are uniquely labeled with integer values. We shall construct an AC
problem G from Pr such that Pr is unsatisfiable iff a unique variable (P,) in G
that corresponds to the unique goal <P, does not have a valid assignment of
the label f. The AC problem is constructed in the following way.

(1) For each atom A in Pr, we create a unigue variable {A).

(2) For each assertion Q in Pr we create a unique variable (SOLVED,,).

(3) Create a unique variable { P,) that corresponds to the goal <P, of Pr.

(4) For each implication of the form P« Q,R. We add the variable {Q, R)
to G.

This construction defines all the variables of G. The initial label sets are
created as follows:

- Each variable, with the exception of the (SOLVED) variables, is assigned
the label /.

~ For each assertion {0 in Pr we add the label ¢ to the initial label set of
(SOLVED,,).

—For each variable of the form {R}) we add the labe) f to its initial set.

~ For each variable of the form (S, T) we add the labels f; and £, to its
initial set.

We are now ready to define constraints of the problem G. We define the
constraints using a compatibility matrix COM, whose entries are of the form

COM|variable, variable, label, label] .

COM{v,, v;, x, y} =1 iff the assignment of label y to variable v, is compatible
with the assignment of label x to variable v,. An alternative natural representa-
tion is to use a directed multigraph where the nodes correspond to the
variables of the problem and the edges are labeled with the constraints of the
problem. It is important to observe that in order to preserve log-space
reducibility we do not need to create the entire compatibility matrix cOM. For
a full description of the AC problem we only need to create a list of the
constraints of the form COM[var, var, label, label] = 0. That is, we describe only
the incompatible assignments. The remaining entries in the matrix can be filled
with 1s,
For each implication of the form P<- R we add the constraints:

coM[{P),(R), f, f]=1,
com[{P}, (R}, /,1]=0.

282 S. KASIF

For each implication of the form P« Q,R we add the constraints:

coM[(P), (Q.R), f, fol =1,
COM[(P>7 (Q’R)’ f" fR] =1 »
coM[(P), (Q.R), f,1]=0,

COM[(Q!R>5 (R)! f.R! f] =1]
COM[{Q,R), {R), fr, 1] =0,

COM[(Q)R)’ <Q>! fQ’ f] =1)
coM[{Q,R},{(Q), fo,11=0.

Finally, for every variable of the form (SOLVED,) we add the constraint

coM[{Q), (SOLVED,), f, q] =0.

This completes the definition of all the “necessary” constraints of the AC
problem. The rest of the matrix COM can be filled with 1s.

Note that the label f must be removed from all the variables that correspond
to the assertions of the logic program. Using induction on the length of the
satisfiability proof it is fairly easy to show that the label f will be removed from
the variable (P,) that corresponds to the goal <P, iff P, is solvable. The
formal proof is omitted.

Now we have to verify that the above construction can be done using only
logarithmic space on the work tape of the Turing machine. We shall sketch the
main ideas of the proof method. If the construction were to be carried out in
the order given above it would have taken linear space (linear in the number of
total occurrences of all the atoms in Pr). Fortunately, since we assumed the

CoM[(P), (Q,R), f,1]=0
CoM[{P), (S,T), f, =0
cOM[{@,R}, (R), fz, 1]=0
coM[{ Q.R},(Q), fo, 1]=0
coM[{S,T), (8, f5,]=0
comM[{ S8, TY, (T}, fr, 1]=0
COM[{R)}, {(S), f,1]=0
coM[(T), (P}, f,1]=0

coM[{ @), (SOLVED,), £, q] =0
coM[(S), (SOLVEDy), f,s]=0

Fig. 1. Constraints for Example 4.2.

PARALLEL COMPLEXITY OF DISCRETE RELAXATION 283

atoms were initially numbered by integers, we can follow the above construc-
tion in a demand-driven fashion as explained below.

To start off we can create all the variables of the form (Q) and their
respective label sets. This can be deone with logarithmic-space consumption
since processing each one of the N-variables we need (lg N)-bits. For each
assertion we can add the respective label to (SOLVED). For implications of the
form P« Q,R we generate a new variable and its respective initial label set.
This step requires a counter that can be implemented in logarithmic space.
Finally, for each implication encountered we can gencrate the constraints
(again in logarithmic space). This completes the generation of all the necessary
(see above discussion) information that completely describes the AC problem
G. O

Example 4.2. Consider the following PHSP:

«P.
P« Q,R
PS5, T.
R<S.
TP
0o,

S.

We construct the following AC problem. The variables of the problem are:

(P}, (@), (R), (8}, {T), {(Q,R), {S,T), (SOLVED,), (SOLVED;). The
initial assignments of Iabels are as follows:

(PYy: {f, 1}

(@) {f, 1}

(R): {f, 1}

(S): {£, 1}

(T): {£.1}
(Q!R): {fQ’ fR> l}
(S:T): {fS! fT’ l}
(SOLVED,): {q}
(SOLVED): {s}

Finally, the constraints are given in Fig. 1.

4.1. Reducing AC to PHSP achieves an optimal time algorithm for AC

In this section we shall give a linear-time reduction from AC to PHSP. It is also
possible to show that this reduction is log-space, but we could not find any Al

284 S. KASIF

applications for this particular theoretical result. Thus, for simplicity of pre-
sentation we provide the linear-time reduction only. Theorems 4.1 and 4.3
establish that the two problems have essentially the same complexity (sequen-
tial and parallel) and allow us to derive a simple linear-time solution to AC.

Theorem 4.3. Arc consistency (AC) is linear-time reducible to the propositional
Horn clause satisfiability problem (PHSF).

Proof. The reduction is similar to the one used in Theorem 4.1. Instead of
presenting a formal proof, we sketch the construction for a simple constraint
network that consists of threc¢ variables X, Y and Z. We observe that a label {
drops from X iff all the labels that are compatible with { at Y drop or all the
labels compatible with / at Z drop. We express this statement in propositional
Horn logic. We let Py, be a proposition that is true iff / drops from X. Let

Py, ... be a proposition that states that /;,,,... drop from Y, where
Iy, 05, ... is the set of labels compatible with / at X. Let P, , be a
proposition that states that /,, /,, . .. drop from Z, where [, /,, . . . is the set of

labels compatible with ! at X. It is clear that we can express the conditional

statement that ! drops from X in propositional Horn form by the following
formulae:

Pyie=Pypp -
Py ‘_Pz,r,,.fz,... ‘
PY,II,JZ,... ‘_‘Py,:lapy,;z, caas

Proty. <Pz Pz

Now, we apply one iteration of algorithm PAR-AC to the network to
construct the set (list) of all labels that will be draopped in the first iteration.
For all such labels we construct a proposition of the form P, ,. E.g, if /| is
dropped from variable Y in the first iteration of PAR-AC we construct a
proposition (assertion) of the form Py, . We claim, that a label [is dropped
from a variable V iff the proposition Py, is provable from the program we
constructed. The proof can be obtained by a simple induction on the number of
iterations of PAR-AC.

It is easy to see that this reduction can be accomplished in linear time. One
iteration of PAR-AC requires O(EK?) time, where E is the number of edges in
the graph and K is the number of labels. Thus, constructing all the assertions of
the program will require O(EK®) time. The construction of the rules of the
propositional program requires one traversal of all the edges of the constraint
graph. Each “1” in the compatibility matrix associated with an edge corre-
sponds to exactly one predicate symbol occurrence on the right-hand side of an

PARALLEL COMPLEXITY OF DISCRETE RELAXATION 285

implication in the propositional program we create. Thus, the entire construc-
tion can be done in linear time. 0[O

Theorem 4.4. ARC consistency (AC) can be solved in O(EK") sequential time.

Proof. By Theorem 4.3 we can convert any AC problem to a PHSP in linear
time such that the resulting program is of size O(EK?). It is known that PHSP
can be solved by a simple linear-time algorithm (essentially by a modified
topological sort algorithm). O

Theorem 4.4 is a minor improvement of the result published in by Mack-
worth and Freuder [13] who report an O(EK’)-time algorithm. A similar
complexity result was also independently derived by Samal and Anderson [16].
However, here we derive the result by a simple reduction to PHSP.

It is worth noting that Theorem 4.3 establishes a precise connection between
the basic iteration step of discrete relaxation {PAR-AC) and the fixpoint
operator associated with every logic program. Thus, algorithm PAR-AC can be
seen a special case of the bottom-up algorithm that computes the fixpoint of a
propositional logic program. We observe the conuection between constraint
networks and fixpoint operators in discrete lattices in [10]. Similar connections
have been pointed out by Bible [3] where it has been shown that constraint
networks can be seen as a special case of function-free logic programs (datalog
programs). Our construction is stronger since it shows a reduction to the
simplest possible class of logic programs, namely, propositional logic programs.
Additionally, the connection is tight in the complexity sense, namely, the
reduction from AC to PHSP and back can be accomplished in linear time.

5. Conclusion

In this paper we showed a tight connection between the problem of achieving
local consistency in propositional constraint networks and the problem of
satisfiability of propositional Horn clauses. The immediate corollary of our
reductions is that a very important class of algorithms (discrete relaxation)}
which were previously believed to be highly parallelizable are in fact inherently
sequential. This negative worst-case result needs to be quantified. Essentially,
it suggests that the application of massive parailelism will not change signifi-
cantly the worst-case complexity of discrete relaxation (unless one has an
exponential number of processors). However, this result does not preclude
research in the direction of applying parailelism in a more controlled fashion.
For instance, we can easily obtain specdups when the constraint graph is very
dense (the number of edges is large). With O(E) processors we can always
achieve O(nK), performance by a brute-force parallelization of PAR-AC (see
details in [9]). Speedups are also possible in the case where the number of

286 8. KASIF

processors is significantly smaller than the size of the constraint graph (a very
likely case). In this case, it may be possible to obtain a full P-processor
speedup. We are currently actively investigating this interesting case.

ACKNOWLEDGEMENT

Thanks are due to Johan de Kleer, Alan Mackworth and Azriel Rosenfeld for their constructive
comments that contributed to the final form of this paper. The initial stages of the research
reported in the paper were supported by NSF under grant DCR-18408 while the author was a
visiting scientist at the Center for Automation Research, University of Maryland. This research
was also supported by the Air Force Office of Scientific Research under grant AFOSR-89-1151,
National Science Foundation under grant IRI-88-09324 and NSF/DARPA under grant CCR-
8908092,

REFERENCES

. D.H. Ballard and C.M. Brown, Computer Vision (Prentice-Hall, Englewood Cliffs, NJ, 1982).

2. H.G. Barrow and J.M. Tenenbaum, MSYS: A system for reasoning about scenes, Tech, Note
121, SRI AI Center, Menlo Park, CA (1976).

3. W, Bible, Constraint satisfaction from a deductive viewpoint, Artificial Intelligence 35 (1988)
401-413,

4. R.A. Brooks, Symbolic reasoning among 3-D models and 2-D images, Artificial Intelligence 17
(1981) 285-348.

5. M.R. Garey and D.S. Johnson, Computers and Intractability; A Guide to NP-Completeness
{Freeman, San Francisco, CA, 1979).

6. L.M. Goldschiager, A unified approach to models of synchronous parallel machines, in:
Proceedings 10th Symposium on Theory of Computing (1978) 89-94.

7. R.M. Haralick and L.G. Shapiro, The consistent labeling problem: Part 1, IEEE Trans.
Pattern. Anal. Mach. Intell. 1 (1979) 173-184,

8. N. Jones and T. Laaser, Complete problems for deterministic polynomial time, Theor.
Comput. Sci. 3 (1977) 105-117.

9. S. Kasif, Parallel solution for constraint satisfaction problems, in: Proceedings Conference on
Principles of Knowledge Representation (1989).

10. §. Kasif and A. Rosenfeld, The fixpoints of images and scenes, in: Proceedings 1983
Conference on Computer Vision and Pattern Recognition (1983).

11, L.J. Kitchen, Relaxation applied to matching quantitative relational structures, IEEE Trans.
Syst. Man Cybern. 10 (1980) 96-101.

12. A.K. Mackworth, Consistency in networks of relations, Artificial Intelligence 8 (1977) 99-118.

13. A.K. Mackworth and E.C. Freuder, The complexity of some polynomial network consistency
algorithms for constraint satisfaction, Artificial Intelligence 25 (1985) 65-74.

14. N.J. Nilsson, Problem-Solving Methods in Artificial Intelligence (McGraw-Hill, New York,
1971).

15. A. Rosenfeld, R. Hummel, and S. Zucker, Scene labeling by relaxation operations, IEEE
Trans. Syst. Man Cybern. 6 (1976) 420-433.

16. A. Samal and T. Henderson, Parallel consistent labelling algorithms, Int. J. Parallel Program.
16 (1987) 341-364,

17. 1. Uliman, Personal communication (1985).

18. D. Waltz, Understanding line drawings of scenes with shadows, in: P.H. Winston, ed., The
Psychology of Computer Vision (McGraw-Hill, New York, 1975) 19-92.

19. P.H. Winston, Ardficial Intelligence (Addison-Wesley, Reading, MA, 1984).

f—

Received October 1985; revised version received March 1990

