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In this paper we examine two methods {or controlling the execution of parallel
logic programs. Specifically, we compare control driven execution of PRISM
programs vs. data driven execution of Concurrent Prolog. Given a PRISM
program we present several automatic trapsformations for deriving & Con-
current Prolog program whose execution is isomorphic {o the coriginal program.
Although in many specific cases we may be able to write very natural
specifications based on read-only variable and commit constructs, in general it
is difficult to simulate control flow naturally using a transformatiop based on
these constructs. Since control Jow primitives are shown 1o have a simple and
efficient implementation it seems that both data-flow and control-flow
mechanisms are desirable for a general purpose parallel logic programming
language. Subsequently, we propose a simple low level langnage to implement
both PRISM nested control flow and Concurrent Prolog read-only variables.
The idea i5 to convert the control/data dependencics into simple event scripts
and then use existing methods to implement these scripts efficiently, Finally, we
imiroduce a data structure that supports an efficient implementation of PRISM
nested control (low.
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1. INTRGDUCTION

1.1. Mativation

In conventional programming systems, control is embedded in the
program and is difficult to modify without affecting the logic of the
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algorithm. In a logic programming system, control decisions can be made |
by the interpreter dynamically depending on the state of the execution, the |
local context and availability of resources. Thus, a problem solving system -
specified using logic may incorporate facilities for dynamic decomposition
of the problem, recognizing multiple data streams and distributed control.
Specifically, several processors may solve the problem simultaneously and
then cooperate with the rest of the system to obtain the complete solution.

A primary issue in achieving an effective parallel logic programming
system is developing a formalism that will allow:
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1. Control of execution of parallel logic programs by specifying a
partial order on the execution of program statements. It is
desirable that the specification is natural in the sense that
sequencing constraints are expressed directly.

2. Automatic detection of concurrency in logic programs. By this we
mean that the formalism must allow us to exploit the intrinsic con-
currency of the computation, even in cases where it is impossible
to detect a priori that two tasks may be executed in parallel.

3. Analysis of the relative effectiveness of control constructs in terms
of their expressiveness and cfficiency.

Control issues in programming languages belong to two categories:
execution {process) control and communication control. These problems
are sometimes very difficuit to treat separately. In this paper however, we
shall emphasize the process control compoenent of parallel logic programs.
Communication control is studied in Ref. 1. We investigate and compare
two prevalent facilities for execution contrel of parallel logic programs:
control and data driven sequencing. Our objective is to investigate the can-
didate control constructs in terms of their efficiency, difficulty of implemen-
tation and closeness to the spirit of logi¢ programming.

We shall assume that the reader is familiar with the basic concepts of
logic programming (see Ref. 2). Throughout the paper we shall assume a
top-down execution of logic programs. The programming convention we
shall use is that variables are denoted by names starting with lower case
letters. To simplify the notation we shall avoid formal rigor, and for the
purpose of this paper assume the procedural interpretation of logic
programs. For completeness, we begin with some remarks pertaining to the
elements of the reduction process that need to be controlled.

1.2. Why Sequence Literals

There are two reasons for introducing partial order on the execution
of literals in a clause (literal sequencing). Firstly, efficiency considerations
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may dictate a particular order on the execution of literals. A typical exam-
ple is the logic program for the computation of Ancestor {(given by the
following) where the literal F in the second clause should be executed
before the literal 4.

Alx, y) « F(x, y)
A(x, z) + A(y, z), F(x, y).

F(A, B).

F(B, C).

FC, D).

F(D, E).

F(E, F).

A rather dilferent need for literal sequencing arises whenever logic
programming is used to write essentially procedural programs such as
programs that manipulate shared data-structures, perform I/O operations
or have side-effects. Several self-explanatory examples that belong to this
category are given by the following.

GET/(gift, box) « TAKE_OUT(gift, box), THROW_OUT(box)

DO-LAUNDRY(x, x”) « WASH(x, x'), DRY(x’, x")
Executing procedures GET or DO_LAUNDRY in any other order except
left to right makes little or no sense. Consider the following program that
tests the membership of an integer in a set of integers in a binary tree
representation,

Binary(a, Tree(t1, root, 12)) « Equal(a, root).

Binary{a, Tree((1, root, 2)) + Less(a, root), Binary(a, t1).

Binary(a, Tree(11, root, £2)) « Greater(a, root), Binary(a, £2).

Binary Search Program in Logic

An important aspect of the semantics of the Binary Search program is
determined by its procedural interpretation, and its only reasonable inter-
pretation is Prolog-like (left-to-right). The number of examples where one

uses procedural (imperative) language to specify a partially ordered
sequence of events is numerous. In Refl. 3, we describe a general transfor-
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mation of flowcharts to logic programs. Consider the Algol-style program
to exchange the values of two memory locations.

L tmp = X;
2:x=y;
3: y=tmp;

Using the transformation given in Ref 10 we derive the following Prolog

program: ,

Pl(x, tmp, y) « P2(x, x, y).
P2(x, tmp, y) « P3(y, tmp, ).
P3(x, tmp, ¥) «— P4(x, tmp, tmp).

It is not easy to associate a meaningful declarative semantics with the
Prolog program above. Its procedural semantics as a top down goal reduc-
tion is similar to the operational semantics of the Algol program. In many
cases such as robot programming languages, the sequencing and syn-
chronization of activities are the central problem in the specification. In
these cases it is essential that control be an integral part of the algorithm
specification.

1.3. Why Sequence Clauses

The sequencing of the execution of clauses has two distinct rationale
illustrated by the following two examples.

The first case arises when it is more likely to find a solution faster
using one clause then the other. This was indeed the case in the Ancestor
program above. Many instances of these phenomena may be found in the
domain of heuristic programming, where a heuristic function dictates the
selection of the best node to expand.

The second and perhaps more important case arises when one clause
should be tried only if the other had failed. A typical example is a recursive
program specified by a base case and an inductive case where the inductive
case should be executed ifl the base case fails. In principle, it is possible to
associate a set of literals with the inductive case that will ensure that this
case is exccuted ifl the base case failed. However, it is both inelegant and
inefficient to perform the test for the base case twice, when the same effect
may be attained by explicit sequencing of the two alternatives. A slightly
less intuitive example is given by the following.

e
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+—MAXR(0, max).
MAXR(x, max}« R(y), Greater(y, x), MAXR(y, max).
MAXR(x, x).

Finding The Maximum of a Relation

This program finds the maximum element of a relation R whose length
is unknown that consists of a set of positive integers i, 0 < 7. It is easy to see
that MAXR works iff the second clause is executed iff the first one failed.
The specification of the MAXR problem without resorting to sequencing
constraints is rather complicated.

These observations have been recognized by the logic programming
community since the emergence of the discipline and raised many
interesting solutions. In this paper we shall focus on the literal sequencing
component of paralle! Jogic programs. Specifically, we shall investigate and
compare control and data driven execution of logic programs.

2. MEANS FOR ACHIEVING CONTROL IN PARALLEL LOGIC
PROGRAMS

Roughly speaking, control of existing logic programming languages
belongs to two categories: control-flow driven and data-flow driven. As the
name control flow driven computation suggests, the computation of a
program is guided by some select procedure that at each point of the com-
putation determines the next set of executable instructions. Once the set of
executable instructions is defined, it is immediately executed. Two examples
of logic control driven logic programming languages are Prolog and
PRISM. Prolog is perhaps the best known logic programming language
and was designed to run efficiently on a sequential computer. PRESM® is
a parallel system developed for a highly parallel multiprocessor ZMOB.*
Data flow driven systems select ALL the statements in a program for
possible execution. However, they add an EXAMINE step to check for the
firing condition of each statement. Typically, the firing criterion is the
availability of data that serve as the arguments for the statement. Logic
programming languages that incorporate data-driven execution are Con-
urrent Prolog,'® Parlog,” Epilog,® and GHC,® IC-Prolog!'®. Parlog
nd Epilog have control flow primitives as well.

In the following sections we shall examine the control facilities
vailable in current logic programming systems and compare their relative
bificiency and applicability.

Jp—— S —
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3. PRISM

PRISM™ is a logic programming language that provides the user with
control facilities to specify a partial order on the execution of literals and
clauses in a program. This partial order expresses the dependencies among
the subgoals within a goal (a procedure body may be considered 1o be 2
goal), or within alternative procedures for solving the same goal. Since
PRISM was originally designed as a problem sclving system tailored for
Artificial Intelligence applications it has many contrel facilities that are
irrelevant to the comparisons performed in this paper. We shall focus our
attention on the primitives that are necessary for the analysis that follows
(see Refs. 4 and 11 for a fuil description).

A convenient way to represent PRISM structured control specification
is by using the notion of a control group defined recursively as follows:

1. A control group is either an S-group or a P-group, where § and P
denote sequential and parallel execution respectively.

2. A P-group is a set of elements that are either atoms or control °

groups.

3. An S-group is a set of elements that are either atoms or control |

groups.
We use parenthesis ( ) and brackets [ ] to specify sequential
execution concurrent execution respectively. For instance the [P, (Q.R), 5]
represents a P-group that consists of the atom P, the S-group (Q, R) and
the atom S. The semantics of this specification is that the elements of a P-
group may be executed in parallel, whereas the elements of an S-group
must be executed sequentially.
The clause selection notation is symmetric with the notation for atom
selection. A simple schematic description of PRISM interpreter in PRISM
is given by.

L

PRISM(P) « (Clause(P « Body), PRISM(Body)).
PRISM([ 2, 0]) « [PRISM(P), PRISM(Q)].
PRISM{(Z, 0)) « (PRISM(P), PRISM(Q)).

1
A PRISM Interpreter in PRISM

Whenever the control specification is not given PRISM assumes default |

ordering determined at the initiation of the system. We shall assume
parallel sequencing as a defauit.

T Jy R
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PRISM has been fully implemented and the preliminary experimental
results are reported in Ref. 12.

4. DATA DRIVEN LOGIC PROGRAMMING

Consider a logic program for the computation of factorial and its data
flow graph as given in Fig. 1. Tt is evident that the data flow graph
provides valuable control information that could be useful in sequencing
the literals. Several early ideas based on this theme were originally
proposed in Refs. 10, 13 and 14. (References on Data driven computation
go back to 1970.) These ideas spurred 2 significant amount of work and
indeed proved fertile since today there exist a large class of languages and
models based on data driven execution of logic programs. Since Con-
current Prolog is widely known, we shall restrict our discussion to the con-
structs found in this language.

41. Concurrent Prolog

The fundamental difference between Prolog and Concurrent Prolog!®
is based on a different operational interpretation of logic programs found
in each. In Prolog the interpretation of

PP, P,
P At Ql L Qm

is»to solve P solve P, then P, and so on. I the first clause that matches P
fails the second one is tried. In Concurrent Prolog to solve a goal «P the
system tries (in parallel) to match the goal against the heads of both
clauses. A commitment is then made to the clause whose head matches the
goal and whose guard succeeded (see text below) first irrespective of
whether there were additional matches. Hence, only one clause is being
effectively executed (no OR-parallelism). The system proceeds by a parallel
invocation of all the process¢s in that procedure body. As a result, con-
junctive atoms in Concurrent Prolog are interpreted as communicating

Fact(0,1).

1 "
Fact(x,y) +— Plus(x’,1,x), Fact(x’,y’),Mult(y’x,y).

Fig. . A data flow graph for a factorial program.
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parallel processes. There are two constructs that allow synchronization o
Concurrent Prolog programs: the commit operator and read-onh
variables. Commit used to specify the Dijkstra guarded command seman-
tics. For example the clause:

P—G|Q

specifies that process P’ is reduced to process O if P’ is unifiable with P and
the guard G terminates successfully. The use of this construct in the context
of logic programming was originally in Ref 15. A read-only variable
denoted syntactically by x?, allows the programmer to suspend the
execution of an atom in which it occurs. The atom will be activated when
the variable is bound to a nonvariable term during the execution of
apother atom where x also oceurs. This concept is a generalization of data
flow sequencing in functional languages.

In our opinion Concurrent Prolog is an elegant language, and it meets
many of the design goals of its creators. However, (similarly to Prolog) due
to the loss of the clean model theoretic semantics of logic programs, a Con-
current Prolog program may no longer be seen as a set of logic formulae
that specify the semantics of the problem. This is not a criticism since the
designers of these languages made a conscious decision to prove the effec-
tiveness of the logic programming paradigm by sacrificing logical com-
pleteness in favor of efficiency. As a result, in many cases the semantics of
Concurrent Prolog/Parlog programs may not be understood only by
studying the declarative semantics of the clauses. This is due to the fact that
both commit and read-only variable may cause incompleteness.

4.2. Communication and Synchronization

Communication in data-driven languages is based on the principle of
suspending a consumer until all its input arguments have becn bound.
Concurrent Prolog offers the most flexible communication facility in its
group: read-only variable,

A read-only variable, distinguished syntactically by associating a “?”
on its right is uniftable with a term y iff y is a variable. If the unification of
a literal that contains a read-only variable x? with a procedure head fails
due to the read-only annotation the execution of this literal is suspended
until the variable x is bound to a nonvariable term. Read-only variable
were introduced in IC-Prolog"® and are also facilitated in Epilog.®

There are several problems with the read-only variable construct as
the only synchronization facility (see Refs. 1, 16, and 17. A key problem
arises due to the fact that there is no way to communicate to a process
except for explicit variable sharing. Thus, in order to define more elaborate
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control constructs, state variables must be introduced that affect the
declarative semantics of the program. We shall elaborate on this point in
Section 5.

5. COMPARISON

In this section we shall study the utility of data flow and control flow
sequencing in the context of logic programming. It is well recognized that
data flow synchronization is applicable in the evaluation of functional
languages and arithmetic expressions, whereas control flow is superior in
the domain of general purpose programs that manipulate shared complex
data structures and perform many /O operations.®’ Since logic program-
ming is a general framework that allows both kinds of programming styles,
the question which is the “right” control is inevitable.

This problem may be answered by examining the cost of simulating
one method with the other. If the transformation from a programming style
A to a style B is simple and may be supported efficiently, then this will
serve as a conclusive evidence in favor of B.

5.1. Control Flow to Data Flow Translation

In this section we shall investigate the methods of transforming
PRISM programs into Concurrent Prolog programs. This problem has
been independently studied in the following Refs. 1, 19, and 20. Since we
would like to focus on the sequencing of atoms (as supposed to sequencing
the execution of clauses), we informally define the notion of a deterministic
PRISM program as follows. A PRISM program Pr is deterministic if it
satisfies either of following conditions.

Cl. All procedures in Pr have only one definition.

C2. If a procedure P in Pr has several definitions, then the
procedures heads in the alternative definitions of the procedure P
do not unify,

C3. If a procedure P in Pr has two or more definitions whose heads
unify, then all these matching definitions must have a commit in
the body of the procedure definition. When the first k-atoms in
the matching definitions are mutually exclusive e.g., Less(x, 5)
and Greater(x, 5), we omit the commit operator in PRISM
clauses.

These conditions guarantee that the execution of the PRISM program may
be simulated correctly in Concurrent Prolog. Given a PRISM logic
program with a partial order defined on the literals we derive an equivalent

AW b T TR kWY T AT Wt paifht T W i

P




P

8z Kasif

Concurrent Prolog program. The two programs should be equivalent in
the following semnse. If we have enough computing resources to execute all
the exccutable nodes then at each point of the execution the sets of
executable nodes in the two programs are equivalent. To simplify the
presentation we shall appeal to the reader’s intuition and shall not give a
rigorous definition of such an equivalence.

5.2. Transformation Using Commit

Consider the PRISM program that performs a binary search given by
the following.

Binary(a, Tree(r1, root, 12)} «+ Equal(g, root).
Binary(a, Tree(t1, root, £2)) « (Less(a, root), Binary(a, t1)).

Binary{a, Tree(t1, root, 12)) « (Greater(a, root), Binary(a, 12)).
A Binary Search Program In PRISM

Surely, in this simple case the program may be replaced with the following
Concurrent Prolog program.

Binary(a, Tree(t1, root, 12)) +~ Equal(a, root)|.
Binary(a, Tree(r1, root, ¢2)) « Less(a, root}| Binary(a, ¢1).
Binary(a, Tree(t1, root, £2)) « Greater(a, root)| Binary(a, 12).

Binary Search in Concurrent Prolog

The sequencing of atoms in the second clause of the Concurrent Prolog
program is attained by the commit construct, that forces the guard
Less(a, root) to be evaluated before the recursive call to Binary. We shall
show that sequencing based on the commit operator may not be that easy
in general.

Consider a binary tree, used to store a set of pairs {index, word},
where index is an integer and word is an arbitrary size symbolic string over
some finite alphabet. We represent such an object in logic by a term
pair(i, w). Now, consider a PRISM program that searches for the object
pair(i, w) stored in a binary tree. The ordering of atoms in the following
program guarantees that an expensive comparison on the right portion of
each object is not performed before a successful comparison of the left part.

Binary(pair(i, w), tree(t1, pair(#, w’), 12)) « (Equal(i, {'),
Equal, (w, ')).
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Binary(pair(i, w), tree(z1, pair(#, w), £2)) « (Equal(i, i'),
Less(w, w'), Binary(pair{i, w), 11)).

Binary(pair(i, w), tree(¢1, pair(i’, w’), £2)) «- (Less(i, ['),
Binary(pair(i, w), 11)).

Binary(pair(i, w), tree(:1, pair(’, w'), ¢2)) « (Equal(i, i'}),
Greater(w, W'), Binary(pair(i, w), 12)).

Binary(pair{i, w), tree(z1, pair(i’, w'), 12)) « (Greater(i, i'),
Binary(pair(i, w), 12)).

Binary Search for pairs in PRISM

If we attempt to perform a similar transformation we derive the
following Concurrent Prolog program.

Binary(pair(i, w), tree(z1, pair(i’, w'), {2)) « Equal, (i, i'),
Equal, (w, w')|.

Binary(pair(i, w), tree(¢1, pair(#, w'), 12)) « Equal, (7, i),
Less{w, w')| Binary(pair(i, w), 1).

Binary(pair(i, w), tree(¢1, pair(#, w'), 12)) « Less(i, i'})]
Binary(pair{i, w), t1).

Binary(pair(i, w), tree(s1, pair(f’, w'), 2)) « Equal, (7, '),
Greater(w, w') | Binary(pair(i, w), £2).

Binary(pair(i, w), tree{#1, pair(i’, w'), 12}) « Greater(i, i}|
Binary(pair(i, w), £2).

Binary Search for pairs in Concurrent Prolog

The Concurrent Prolog program does not allow us to sequence the com-
parisons of the left and right portions of the compared obijects. The
problem is, that the commit construct forces the execution to commit to
the branch where the construct was executed. In clauses 1, 2, and 4 we can-
not commit before both comparisons in the guards were executed suc-
cessfully, and therefore, we cannot have the commit between the guards.
Thus, “commit™ cannot be used exclusively as a sequencinig construct, since
it has an additional side-effect of terminating all sibling computations.

We now analyze this transformation slightly more formally. First we
prove a technical lemma that will simplify our analysis. Specifically, we
shall show that for every PRISM program there is an equivalent PRISM
program in 2-normal form. It is straight forward to show that for each
logic program Pr there is an equivalent program Pr’ in 2-normal form. The
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new program Pr’ is constructed by a transformation similar to the:
Chomsky normal form transformation,®'} which must be modified to
accommodate for substitutions. The transformation here is analogous, with
the exception that we must preserve control annotations in PRISM. Since
we would like to focus on the control component, whenever no confusion
may arise we omit the variables in the clause. We first illustrate our trans-
formation with an example. Consider the goal:

«(P, 0, [R(S1,8)}, T, V)
This goal may be replaced with an equivalent PRISM program:

—(P, (@ [R, (51, 82)], T, ¥)))

(@, [R, (81, 82)], T, V}) < (@, ([R, (51, 52)], T, ¥)))
(LR, (S1,52)], T, V) « (K[R, (81, 82)1, (T, ¥)>)
(IR, (S1,82)1) « [R, (51, 52)}]

ALV« (T, V)

(51, S2)> « (51, 52)

The expression {(Q, [R, (S1,52}], 7, V)) is just a new predicate name
{whose variables are the same as the variables in the atoms O, R, §1, 82, T
and V), and so are the rest of the expressions enciosed in ¢ ).

Lemma 1. For every PRISM program there is an equivalent
PRISM program in 2-normal form.

Proof. The proof is by induction on the length of the clause, ie., the
number of atoms in the body of the clause (denoted informally by ).

For assertions our claim is trivially correct.

Assume then, that each PRISM clause of length #—1 has an
equivalent PRISM program in 2-normal form. Let C be a PRISM clause
and |C|=n. C must be either a P-group or an S-group. Without loss of
generality assume C is an S-group (the proof for P-group is analogous),
that is, C is of the form

A« (Bl, B2,..., Bk).,

where Bl, B2.,.., Bk are P-groups and k <n. We replace C with the follow-
ing PRISM program

A« ({(B1>, {(B2,., Bk>).
{Bl1) + Bi.
{B2,.., Bn> « (B2,.., Bk).
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The first clause is already in 2-normal form, the second and the third clause |
are of length n— 1, and by the induction hypothesis may be placed in 2- :
normal form. .

As a result of this transformation we may assume that all the clauses ¥
in the program are of the form:

(LY, L2)) « (L1, L2), 1
([LY, L2]> « [L1, L2].,

or

Le. |

Corollary 2. Each deterministic PRISM program can be transfor- '
med to Concurrent Prolog using commit. b

Proof. 1f the program satisfies conditions C1 and €2 a call to a ;
procedure never invokes more than one procedure body. Thus for PRISM l .
programs that satisfy conditions C1 and C2 the proof is straight forward .
by observing that any procedure of the form P« (Q, R) can be transfor- f

med to P+ Q| R,
But now let us consider 4 simple deterministic program that satisfics
C3 but not Ci and CZ

i
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P+ (Q1, R1)I.
P+~ (02, R2)|.

The transformation using commit cannot not be applied to this program as
before since positioning the commit operator after Q1 will cause aborting
the execution of the second clause if 01 succeeds. A simple trick resolves
this problem. We convert this program to the following program.

P« Pl
PP

P1 < (Q1|R1).
P2 (Q2|R2). 1L

L, If we allow read-only variables in the guards (there are no read-only
ariables in PRISM) an interesting pathological scenaric may occur as
described in Ref 19. Consider the following simple program:

—P(x, y), Q(x, y)
P(4, y) < P1(yN{ P2(y)
Q(x, B)« 01(x7)| Q2(x) 1}
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In Concurrent Prolog the commit operator does not allow bindings to be

passed to the caller until a commitment is made. Although x is bound to §
“A” and y is bound to “B” these bindings are not passed to Q1 and Pl §

respectively and they both enter a deadlock.

5.3. Transformation Using Read-Only Variables

In this section we present two distinct procedures to obtain a

mechanical transformation for converting PRISM programs into Con-

current Prolog programs using read-only variables. The first method relies

on the notion of state variables to obtain a Concurrent Prolog program 3

from a PRISM program. The basic idea of the transformation is simple. §

With each event that needs to be monitored we associate a variable, called ¥

state variable, that will be bound at the occurrence of the event

Specifically, the events in PRISM that need to be represented are com- |
pletions of procedures. Thus, if we want to sequence the execution of a goal ]

« P(a), S(a), we convert the unary predicates P(a) and S(a) to binary §

predicates and convert the original goal to the goal + P(q, 5), S(a, s7). We
also have to ensure that the variable s in P will get bound to a nonvariable |

term only at the completion of P.

The transformation based on the state-variables method is given in the i

next example. To simplify the discussion we represent the terms m the
clauses by a single variable x.

1. Each parallel procedure of the form:
(L1, L2] 3 (x) « [L1(x), L2(x)]

is replaced with the procedure
{[L1, L2]»(x, T,end 12}« L1{x, s,end 1), L2(x, s, end 2},

Complete(end 1?, end 27, end 12)

At the completion of L1 and L2 the variables end 1 and end?

(respectively) will be bound. This, in turn, will activate procedure §

Complete, which will result in the binding of end 12.
2. Each sequential procedure of the form:

(L1, L2)>(x) « (L1(x), L2(x}).

is replaced with the procedure
(L1, L2)>(x, T,end 12) «- L1(x, s,end 1), L2(x, end 17, end 2),
Complete(end 17, end 27, end 12),

o
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The variable end { will not get bound until L1 has completed
execution, and consequently L2 will be suspended until such time.

3. Finally, all the assertions in the PRISM program of the form:
Li(x).

are replaced with the assertion
Li(x, T, T.

The variables s, end t, end 2 and end 12 are state variables and T is a new
constant that does not belong to the Herbrand universe of the program.
Procedure Complete is defined by the assertion:

Complete(T, T, T) +

Intuitively, we have converted every n-ary predicate P in the program
fo a n+ 2 predicate. The two new variables monitor the execution of the
atom in which they occur. Specifically, the n+ Ith variable monitors the
beginning of the execution of the atom, and the n 4 2th variable monitors
its completion.

Proposition 3. Let Pr be a deterministic PRISM program. The
transformation previously given derives a Concurrent Prolog Program Pr’
whose execution is isomorphic to the original PRISM program.

Proof. The proof may be obtained by induction on the length of the
reflutation and is omitted,

The restriction to deterministic PRISM programs in Proposition 2 is
necessary because the PRISM interpreter supports the parallel execution of
OR-nodes, which is not facilitated in the current version of Concurrent
Prolog.

Example. Consider the following clause that typically occurs in a
merge-sort program.

(1) Sort(x, y) « (Split(x, x1, x2), [Sort(xl, y1), Sort(x2, y2}],
Merge(x1, »2, y))

The semantics of this clause is self explanatory. Without going to the inter-
mediate level of 2-normal form we could obtain the clause

(2) Sort(x, y, T, end) « Split(x, x1, x2, 5, end 1),
Sort{x1, yl,end 17, end 2},
Sort(x2, y2,end 17, end 3),

1 e o=
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We cobserve that in this example (1) has a simple representation in Con-
current Prolog:

(3) Sort{x, y)« Split(x, x1, x2},
Sort(x1?, yl),
Sort(x2?, ¥2),
Merge( 17, 21, y).

The program in (3) is not operationally equivalent to (1), since (3) allows
stream parallelism (pipelining). There is little doubt that (1) and (3) are
equally natural representations, and (2) is a very cumbersome specification.
We object to the use of state variables for sequencing because the programs
do not preserve the original clean semantics which is affected by the
introduction of state variables. Additionaily, we shall show in Section ¢
that control flow sequencing is amenable to a more efficient implemen-
tation. '

The second method to transform PRISM programs to Concurrent
Prolog programs is based on the simulation approach (see Refs. 1,19, and
22). This method simply defines a meta-interpreter that simulates the
execution of the desired control regime with given control facilities. The
transformation based on the meta-interpreter method is depicted by

I(p, T, s) + Clause( p + body)| K(body,—, ).
Ii[p,ql, T, s) < I(p,_, 51), I{q,—, 52), Complete(s1?, 527, ).
I(p, q), T, 5) « (p,— 51), I(q, 512, 52), Complete(s1?, 527, s}.
K[)LT.T)
Complete(T, T, T).

PRISM to Concurrent Prolog Transformation

The variables s, s1, and s2 are state variables and T is a new constant. The
notation “.” denotes an arbitrary variable which is different from the
remaining variables occurring in the clause. The correctness of this trans-
formation may be proved by induction on the length of the execution.
There are several obvious problems with the practicality of the
PRISM-Concurrent Prolog transformations presented. If the transfor-

mation were to be done by the user, the declarative semantics of the
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program is affected by the introduction of state variables. If the transfor-
mation were to be carried out by the system automatically, it seems to
require a substantial penalty both in memory and time. In Section 6, we
discuss an efficient implementation of PRISM control constructs, and the
cost of the transformation will become evident. It should be mentioned that
the use of partial evaluation methods may dramatically improve the effec-
tiveness of meta-interpreters such as this one.

6. Efficiency Consideration in Parallel Reduction of Logic
Programs

In this section we investigate several efficient schemes to implement
control and data flow sequencing for logic programs. We shall assume that
the control flow sequencing is specified using PRISM syntax, and data flow
synchromization is attained by read-only variables. As before, when no con-
fusion arises we omit the variables in the programs. A simple way to
implement both schemes is by using a more general concept of an event.
For control flow sequencing, the primitive event is defined as the com-
pletion of a procedure. For data driven languages, a primitive event is
defined to be the binding of a nonvariable term to a read-only variable. We
define a group event recursively to be:

- a primitive event

— a conjunction of group events.

We shall use a simplified language to describe events and group
events. In PRISM, for each parallel procedure of the form: S« [P, @] we
define the following event script

S=AND(P, Q)

that is, event S is defined as a conmjunction of event P and event Q.
Intuitively, the compietion of § is equated with the completion of both P
and Q. For each sequential procedure of the form

S (P, Q)
we write
§=0
and

on Pdo (.

That is, the completion of § is equated with the completion of Q. The

828/15/1-7
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invocation of @ is dependent on the completion of P. Note that we do not
need to define the start of a procedure as an event.

Now, the implementation of control/data flow sequencing is straight
forward by using the standard notion of ¢vent queues. Event scripts, such
as the previous one, are created at compile time. Also, for all the event
scripts of the form

onPdoQ

we create an event queue that is indexed by the event P and stores pointers
to all the procedures that depend on P for execution. When an event P
occurs a message must be sent (in some way or another) to all the
procedures that were stored in the event queue P. Analogously, data flow
sequencing may be specified by attaching the script

x=NON-VARIABLE (x) and

onxdo @

for each clause of the form § « P(x), @(x?). In this case the event queues
are indexed with variable names. An event queue indexed by x stores all
the procedures in which the variable x occurs as a read-only variable. Fora
thorough discussion of methods for efficient execution of general event
languages the reader is referred to Ref 23. There are a few important
implementation points that should be mentioned, and are discussed in the
following sections.

6.1. The Counter Method

Consider the goal ([P, @, R], 5). The invocation of procedure §
is dependent on the conjunctive event AND(P, O, R). A simple way
to implement this construct is to associate a counter with the event
AND(P, O, R}. The counter is initially set to 3, and is decremented by one
as each procedure P, Q, or R completes its execution. When the procedure
P is reduced, for example to (P1, P2, P3) we start a new event script

P=AND(P1, P2, P3)

which will cause another to be created. In this method, a virtual tree of
counters is created, Whenever some counter C in the tree becomes zero, it
decrements the father-counter by 1.

An alternative method is at each reduction step to increment the coun-
ter by n—1, where » is the number of atoms in the new node that was
created. In this example, we increment the counter for AND(P, Q, R) by 2
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Intuitively, the value of the counter is equivalent to the number of active
atoms that must complete excution before S may be activated.

The two alternatives exhibit a common trade-off: time vs. space. The
common counter method is most economical in terms of memory cells
used. However, the counter may ultimately become a bottleneck since dur-
ing the course of the execution it becomes accessible to an increasingly
growing number of procedures. The counter-tree method uses O(N) coun-
ters where & is the number of conjunctive events spanned by the program.
However, the number of procedures accessing each counter is bounded.
For example, consider a counter-tree, which is a complete binary tree of
depth n+ 1. In the common counter method this tree is represented by a
single counter whose value is 2”. Now, assume that all the leaf counters of
the tree are zero. In the tree method it takes O(n) parallel time to update
the root counter. In the common counter it will take 2% s steps. From this
discussion it is obvious that if our target implementation is'a concurrent
interpreter on a sequential machine then the common counter method is
the method of choice.

Now, we can show why the method of simulating control flow with
read-only variables seems to suffer from the disadvantages of both methods
outlined in the previous sections. To verify this claim consider the con-
junctive goal

<([P, Q, R], S)

which creates the event script AND(P, Q, R). The reduction of P to
(P1, P2, P3) is represented by creating the script P=AND(PL, P2, P3).
This reduction process may be implemented by either the common counter
method or the counter tree method as previously discussed. In the
framework of read-only variables, (using the state variable transformation)
we derive the clause

P{end_P), Q(end_Q), R(end_R), S(end_P?, end 017, end_R?)

So instead of one counter we used 3 variables. When P is reduced to
(P1, P2, P3), we derive the clause

Pl{end 1), P2(end 2), P3(end 3), Complete(end 1?, end 27, end 37, end_P)

This step is analogous to the counter tree method, where the Complete
predicates act as counters. However, during the execution we may have
many simultaneous cails for Complete( ). Thus, inless the code of
procedure Complete is distributed to all processors it becomes a bottle-
neck, like the counter in the common tree method. Additionally, the state
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variable method requires a time-space overhead since these variables are
f needlessly involved in the unification process. Thus, the simulation of con-
trol fiow with data flow in the context of logic programming may cause
inefficiency.

The situation becomes more involved when the procedures are non-
deterministic andfor when shared variables are involved, though neither
% case presents a conceptual difficuity.

, The former case when there are no shared variables among the con-
J junctive goals is solved by extending the event Janguage with the script

P=OR(Pl, P2,.., Pn)

T et EE—

. p—

where the Pi's are the nondeterministic definitions of P.

In the case where the conjunctive goals share variables, the completion
of the event [ Pl, P2] is defined to be the completion of the ¢vents P1 and
P2 with consistent bindings. Recalling the operational semantics of logic
programs the completion of [ P1(x), P2(x)] is defined as:

[P1(x), P2(x)1=AND(AND(PI(x1), P2(x2)), UNIF(x!, x2})

where x1 and x2 are the two new variables created for the variable x and
UNIF is a function that guarantees the successful unification of x1 and x2.
] That is, the completion of [P1{x), P2(x)] is defined as the conjunction of
the event of completion of P1 and P2 with the event of fincing a set of con-
sistent bindings for P1 and P2.
! The approach outlined here is general and may be compiled to any
- general purpose machine. We must note that in case the interpreter is to be
. implemented on a typical Von-Neumann machine, the implementation of
PRISM nested control low may be accomplished by the same scheme that
F { supports the implementation of fork-join in conventional languages. This is
done by attaching GOTOs at the end of each parallel task.

Similar methods are possible for the implementation of read-only
i variable synchronization. In particular, with each variable that has a read-
only annotation associated with it, we attach an event queue that contains
X all the atoms awaiting the binding of the variable. The event queue
‘ represents an address list of targets to which the binding for the variable
should be sent. Additionally, with each atom we associate a counter that is
initially set to the number of read-only variables in the atom. The atom is
executable when the counter becomes zero.

6.2. Static Control Constructs

In this section we shall investigate the problem of choosing an efficient
data-structure for the representation of PRISM clauses on a computer. In

R
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principle, the syntax of PRISM allows us to define contro! dependencies
among the atoms of a clause. These dependencies may be represented as a
control graph. The nodes of the graph are defined by the atoms of a clause,
and the arcs describe the control dependencies among the atoms. For
instance, the clause

Sort(x, y) « (Split(x, x1, x2), [Sort(x1, y1), Sort(x2, y2)1,
Merge(y1, y2, y))

is represented by the graph in Fig 2. Many propertics of this class of
graphs, called series-parallel graphs, are studied in the literature, We shall
also refer to such graphs as nested control graphs. In the context of this
section we shall focus on their efficient representation on a shared memory
paralle] computer. Generally speaking, most graphs are effectively represen-
ted using an adjacency matrix, However, in our framework during the
execution of the program the control graphs are subject to many insertions
and deletions. Whenever a node is reduced, it replaced by another graph.
When the node is solved it is simply deleted from the graph. We must first
verify that during the execution PRISM goals maintain nested control flow,
Otherwise, it is not meaningful to devise an efficient data structure for
representing series-parallel graphs if this structure is not preserved in the
dynamic graphs.

Lemma 4. During the execution PRISM logic programs maintain
their nested control flow structure.

Proof. By induction on the length of the execution one can prove
hat the nested control flow structure is preserved under insertions and
teletions of nested contro! flow structures. The proof is omitted,

Sort(x,y) «

Split{x,x1,x2)

Sort(x1,yl)  Sort{x2,y2)

Merge(y1,y2,5))

Fig. 2. A series-paraliel graph for a
sorting program.
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.A desirable property of a control construct from the efficiency point of
view, is the ability of the interpreter to determine the set of executable
procedures (nodes in our formalism) without excessive overhead. We shall
refer to a control construct as a static control construct if the set of
executable nodes may be determined in constant time. Intuitively, this
definition implies that most processing may be done in compile time -+ ad-
ditional small overhead during execution. A typical example of a construct
that is not static is a selection strategy based on the number of instantiated
variables.? In some cases the choice of a data structure determines
whether the construct is static or not. For example, if we choose the
adjacency matrix representation for control graphs the set of executable
nodes cannot be determined in constant time, since it involves scanning the
matrix. An alternative representation for this class of graphs is a linked list
of contrel groups. With each control group we associate a descriptor, s or g
depending on whether it is a parallel or a sequential group. For simplicity,
assume the descriptor is the first element of each group. If a group consists
of a single atom we shall omit the descriptor. For example, the Sort
procedure may be represented as

Sort(x, y) « (s Split( ), (p Sort( ), Sort( )), Merge( ))

In this representation we still cannot determine the set of executable atoms
in constant time. This follows from the following examples.

(p(s P1, P2), (s P3, P4))
(p(s{p P1 P2), P3), P6)

In the first example the executable atoms are P1 and P3, but the detection
of this set involves scanning the list horizontaliy, i.e., across the list. In the
second example P1, P2 and P6 are executable, but the detection of Pl
involves scanning the list vertically, ie., down the list. To aileviate this
problem, with each control group we associate an auxiliary list of pointers
to the immediately executable atoms in the group. Once these atoms have
been executed we replace them with the group they precede in the linked
list representation, The linked list is assumed to be a doubly linked list (to
allow constant time insertions and deletions). In the next proposition we
show that the doubly linked list with the auxiliary list of immediately
executable atoms is adequate to support constant time detection of
executable atoms.

Proposition 5. PRISM nested control flow is a static control con-
struct.

Proof. At compile time a control flow graph that represents the con-
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trol dependencies may be compiled. With each clause we associate a direc-
ted control graph that represents these dependencies and a list of atoms
that have no other atoms in the control graph that precede them. In graph
theoretic terminology these nodes are called sources. We shail refer to this
list as an OPEN list. The control graph is assumed to be represented as a
doubly linked list of control groups. We shall prove our claim by induction
on the length of the execution .

For =0 (immediately preceding the beginning of processing) the list
of executable nodes is equivalent to OPEN.

For 1>0, we shall prove that OPEN either contains the list of
executable nodes or may be updated in constant time. Clearly, the OPEN
list cannot be perfectly up-to-date at any instance during the execution,
since during any update some new events may happen. We therefore must
prove that any time during the execution the OPEN list may be updated in
constant time. If some node in OPEN has been replaced with a nonempty
procedure, then the only new nodes that could be added to OPEN are
nodes in the body of the procedure. This body is represented as a control
group. and therefore has a list of immediately executable atoms associated
with it. We just add this list to OPEN.

Thus, we have to show that once some procedure completes its control
successors may be added in constant time. We shall assume the check for
completion of an atom L is achieved by the counter associated with the
event of its completion as explained previously. We recall that the counter
is incremented for each new subgoal that the atom L spans, and decremen-
ted for each completion of such subgoal. Similarly, the completion of con-
trol groups

(P1, P2,.., Pn)
and
[P1, P2,., Pn]
are associated with the events scripts
(P1, P2,..., Pn)=Pn
and
[P, P2,., Pn] =AND(P1, P2,.., Pn)
respectively. Consequently, the completion of these compound events may
also be tested using a counter. Thus, the test of each event may be accom-
plished in constant time after the occurrence of the event itself.

Whenever an event occurs all the atoms that await its completion
must be added to the OPEN list. If there is only one successor to the event,
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the successor may be added to the OPEN list in constant time. The
ptoblem arises when there are many successors to an event. However, the
successor list for any event must be some control group G. This follows
from the fact that PRISM execution preserves the nested control flow
structure (Lemma 3). Thus, we may add the whole list of immediately
exccutable atoms in G to OPEN. |

The next lemma shows that the data structure proposed in this section is
not adequate support sequencing based on read-only variables.

Lemma 6. The read-only variable does not preserve the nested con-
trol flow structure.

Proof. The proof is by construction. Consider the Concurrent Prolog
goal « P(x, ), Q(x?, »?) and the program

P(x, y) « P1(x), P2(y).

Q(x, y} = QUx, y), Q2 y).

The execution of this program derives the following goal « PL(x), P2(y),
Q1(x?, ¥y, Q2(y?) which induces the control graph given in Fig. 3. which
does not preserve a nested control flow structure. |

6.3. Scheduling Partially Ordered Logic Programs

One of the most important problems in the domain of concurrent
system programming is related to the scheduling of parallel tasks to com-
puting resources, €.g., allocating processes to processors. In general, the
scheduling problem is complex and involves solving difficult combinatorial
optimization problems. In this section we briefly compare the relative dif-
ficulty of scheduling PRISM tasks vs. Concurrent Prolog processes.
Intuitively, one suspects that the complexity of scheduling is proportional
to the structural complexity of the control structures that may be created
by the control constructs available in the language. This section supports
this intuitive conjecture for PRISM and Concurrent Prolog. In fact, we
show that the complexity of scheduling for Concurrent Prolog is exponen-
tially more difficult.

P1 P2
Ql Q2
Fig. 3. A control graph not
representable in PRISM.
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Lemma 7. Let T be a set of tasks of duration (length) one unit
each, and < be a partial order on T. Given a set of m homogeneous mul-
tiprocessors the problem of finding an optimal schedule for T that does not
violate the precedence constraints is NP-hard.

Proof. This follows from the NP-completeness of the following
problem. Given an integer k, 0<k, find a schedule for T for which the
completion time is less than k.12

We observe that given a partially ordered tasks, we can define a Con-
current Prolog goal that contains » literals with an equivalent partial order
among the literals. This is accomplished by the following simple construc-
tion,

Set GOAL to nil.

2. For each pair of partially ordered tasks A < B do:
if A or B do not appear in GOAL we add A(x), B(x?) to GOAL.
if 4 or B appear in GOAL, we modify GOAL by creating a new
variable x and adding it to 4 and B. For instance if A(x), B(y)
was already in GOAL we modify GOAL to be A(x, z), B(y, 27),....

Example. Consider the partial order
{A<B B<C, A<D}

The goal created by this procedure is
+A(x, y), B(x?, 2), C(2?), D(»?)

We note that the scheduling problem defined here has a polynomial
solution if the partial order is restricted to be scries-parallel.*®

7. SUMMARY

In this paper we examined two methods for controlling the execution
of parallel logic programs. We briefly summarize the main results reported
in the paper.

We investigated control flow and data flow driven execution of logic
programs. It is clear that data-flow primitives such as the read-only
variable are more flexible since they allow arbitrary partial orders to be
specified (see Section 6.3). Additionally, they allow to specify flexible com-
munication schemes such as stream-parallelism and communicating par-
tially instantiated data-structures. However, the relative complexity of
scheduling an arbitrary partial order vs. a structured one favors the latter
in terms of efficiency of implementation. Intuitively, we also feel that struc-
tured control constructs derive more readable and verifiable programs.
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The main conclusion that may be drawn from the analysis presented
in Section 5 is that in the framework of logic programming it is difficult to
simulate control flow naturally by a general transformation using commit
or read-only variables. In specific cases we may be able to write very
natural specifications based on read-only variables. This statement is also
supported by Ref. 19. Thus, it seems that both data-flow and control flow
facilities are desirabie for a general purpose paraliel logic programming
language.

We proposed a simple low level language to implement both PRISM
nested conirol flow and Concurrent Prolog read-only variables. The main
idea was to convert the control/data dependencies into simple event scripts
and then use existing methods to implement these scripts efficiently. Sub-
sequently, we proposed a data structure that allows the efficient implemen-
tation of PRISM nested control flow.

As mentioned before, this paper focused on control-driven and data-
driven execution of parallel logic programs. In Ref. 1, we examined other
facilities for execution control such as communication control and event
based sequencing.
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