CVGIP: IMAGE UNDERSTANDING
Vol. 59, No. 3, May, pp. 281-285, 1994

Optimal Parallel Algorithms for Quadtree Problems

SiMoN KASIF

Computer Science Department, The Johns Hopkins University, Baltimore, Maryland 21218

Received November 9, 1990; accepted September 24, 1993

In this paper we describe optimal processor-time parallel algo-
rithms for set operations such as union, intersection, comparison
on quadtrees. The algorithms presented in this paper run in O(log
N) time using N/log N processors on a shared memory model of
computation that allows concurrent reads or writes. Consequently
they allow us to achieve optimal speedups using any number of
processors up to N/log N. The approach can also be used to derive
optimal processor-time parallel algorithms for weaker models of
parallel computation. © 1994 Academic Press, Inc.

1. INTRODUCTION

In this paper we address the problem of designing effi-
cient parallel algorithms for computing set operations
such as union, intersection, comparison, and matching
on digital images represented by region quadtrees. These
operations have wide applicability in computer vision,
e.g., for image matching and image morphology. A region
quadtree is a data structure for storing digital binary im-
ages. The structure is generated by a recursive decompo-
sition of a nonhomogeneous image quadrant (block) of
size 2" by 2™ into four quadrants each of size 2"~! by
27!, The decomposition continues until all quadrants are
either all black or all white homogeneous regions. The
quadtree has numerous applications in computer vision,
image processing, and computer graphics, where they use
octrees. There is a substantial amount of literature on
efficient processing of quadtrees on sequential machines
(see [S84] for a comprehensive survey of the field). Sev-
eral parallel algorithms for quadtree problems have been
developed for various models of computation such as
PRAMS, meshes, and hypercubes [BRW88, ES835]). Pre-
vious parallel algorithms for the problems considered in
this paper (see references in [BRW88]) compute in time
linear in the depth of the tree and thus, in the worst case
do not improve on the sequential time complexity. In
this paper we describe optimal logarithmic-time parallel
algorithms for the standard tree representation of the
quadtree. Several previous papers have considered linear
quadtrees. Our approach yields O(log N) time complexity
with N/log N processors (where N is the size of the quad-

281

tree). Therefore, the algorithms exhibit optimal speedup
for any number of processors P, P = N/log N by the
standard use of Brent’s theorem [Bre74].

The algorithms described can be implemented on a
CRCW PRAM (concurrent read concurrent write parallel
RAM). This is a shared memory model that allows simul-
taneous reads and writes to the same memory location.
When two or more processors attempt to write to the
same location, only one of the write requests succeeds.
This model of computation can be simulated in logarithmic
time on weaker models such as EREW PRAM (exclusive
read, exclusive write model) which prohibits concurrent
reads or writes. Our algorithms can also be implemented
with optimal speedup on the EREW PRAM (see discus-
sion in Section $).

2. PRELIMINARIES

For completeness, we give a brief introduction to region
quadtrees in this section (see [S84] for a complete descrip-
tion of region quadtrees). A quadtree is an ordered tree,
such that each internal node has four children. Leaf nodes
are labelled with a binary label from the set {black, white}
and each internal node is assumed to have the label grey.
We also associate a label with each edge. Edge labels are
chosen from the set {0, 1, 2, 3}. In standard quadtree
literature edges are usually labelled with labels such as
NE, where NE refers to the upper right quadrant. As
mentioned before, a quadtree is a data structure used
for efficient manipulation of binary images. Informally, a
quadtree is created by a recursive decomposition of a
binary image { defined as follows. If the image I is homoge-
neous, i.e., either entirely black or white then the quadtree
is a tree that consists of a single node with a label that
corresponds to the binary value of the image, black or
white. If the image [is nonhomogeneous, we decompose
the image into four equal size quadrants {/,, /,, I, /;} and
recursively compute the quadtrees for each {Q,, O, 0,
Q-}. The quadtree of [is a tree with root R connected to
Q; with an edge labelled i. The root is labelled with
G. In this paper we address parallel algorithms for set
theoretical operations on images represented by quad-

1049-9660/94 $6.00
Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.

282

trees. In the next section we define a fundamental opera-
tion on trees that allows us to compute set operations
efficiently.

3. CORRESPONDENCE OF QUADTREES

In order to perform operations such as unions or inter-
sections of images represented by quadtrees, we must
determine the overlapping regions in the images, namely,
determine the corresponding quadrants. In this section
we describe a general approach that allows us to compute
efficiently the correspondence of nodes in trees. Corre-
spondence of nodes in two trees 7, and 7, is defined
recursively as follows:

1. The roots of T, and T, correspond.
2. Two nodes correspond if they are both the ith child
of two corresponding nodes.

Correspondence is a fundamental operation on trees
and has been addressed in many papers (see {DK90] for
references). In [DK90] we show how to compute corre-
spondence in O(log N) time using N/log N processors on
CRCW PRAM. Correspondence can also be computed
in O(log®> N) time using N/log> N processors on EREW
PRAM. See details in [DK90]. Both algorithms achieve
optimal speedup by the standard use of Brent’s theorem.
Here we review the algorithm for CRCW PRAM.

We first give an approximation of the parallel algorithm
for computing correspondence of two quadtrees. The total
size of both trees is assumed to be less than or equal to
N. Both trees represent images of the same size. We
assume that each tree is stored in a standard contiguous
representation and each node has an additional pointer
to its direct parent. We associate a processor with each
of the nodes in the tree. At termination, each node will
have a pointer to the corresponding node in the other tree
if such a node exists. In Algorithm Correspondence we
sketch a first approximation.

ALGORITHM 1. first

mation).

(Correspondence, approxi-

Step 1. For each node compute the path, i.e., the se-
quence of edge labels from the root to the node (e.g., (111,
112, etc.) that determines a unique path-name name(;)
associated with the node i.

Step 2. For each tree create an array indexed by path
names and put the pointer to node i in the array location
that corresponds to name(?).

Step 3. Two nodes correspond iff they have the same
path name. Let name(i) be the path-name to node i. The
processor associated with node i reads the contents of
location name(i) of the array that corresponds to the other
tree. Thus, each node finds its corresponding node in the
other tree.

SIMON KASIF

The key problem with the approach as described above
is in Steps 1-2. Since the depth of the tree could be O(N)
we may need N bits to describe some paths, that is, 2V
locations in the array. The approach above only works
for trees whose depth is logarithmic in the size of the tree
since we need only log N bits to describe each path. For
clarity, we first describe the algorithm that ignores this
difficulty and subsequently add a step that resolves the
problem.

Step 1 is computed using the standard technique of
doubling. Let F(node) denote the link of a node to its
parent and let Path(node) denote the current path com-
puted to the ancestor. Initially, Path(node) contains the
label of the edge to the parent,i.e., I, 2,3, 4. We associate
a processor with each node and repeat the following sim-
ple sequence of steps. For each node in the tree:

1. Path(node) Path
(F(node)).

2. F(node) < F(F(node).

« Concatenate (Path(node),

Intuitively, each node computes a one-length path up,
then paths of length 2, 4, and so on. In general, in parallel
step i each node computes its path to its 27 ancestor.

Steps 2 and 3 are constant time steps. Clearly, if we
can index an array of size N by the paths computed in
this fashion the algorithm terminates in O(log N) time.
However, the depth of trees is not necessarily logarithmic
in the size of the tree and the path descriptors quickly
become too long. It is generally assumed in a RAM mode!
of computation that we can operate in constant time only
on log N bits. Below we describe a modification to the
algorithm that solves the problem. This adds a factor of
log N to the complexity of the algorithm on an EREW
PRAM. However, it can be implemented on a CRCW in
constant time. The simple technique for the CRCW
PRAM model of computation has been used in this context
in several previous papers [DK90, KP88].

The technique we use relies on the power of concurrent
writes and is based on the following simple observation.
We assume, inductively, that each path identifier is an
integer in the range [0, N] (this clearly holds initially).
Therefore, after each doubling (concatenation) step of the
algorithm in Step 1, there are at most N paths descriptors
in the range [0, N?], i.e., each 2 log N bits long. Each
path corresponds to a node in a tree. We must find a
scheme to generate N unique identifiers in the range [0,
N1 corresponding to these path names, such that two
paths have the same name iff they correspond to the same
path. However, paths described by 2 log N bits can be
condensed into log N bit descriptors by a variety of meth-
ods. Here we describe one standard technique. We use
a linear array of size [0, N?]. Each processor writes its
own processor-identifier in a location that corresponds to
the path identifier the processor has currently computed.

OPTIMAL PARALLEL ALGORITHMS

One of the concurrent writes succeeds. Then each proces-
sor reads the location it attempted to write into. Each
processor now has obtained a unique identifier (in the
range [0, N]) for the path descriptors (in the range [0,
NZ2]). We note that the space complexity of this algorithm
is quadratic but it can be brought down to almost linear
by a variety of methods [MV90].

A different approach has been used by Ramesh et al.
[RVKRS87]. They observe that the conversion from path
identifiers described by 2 log N bits into path identifiers
that use log N bits can be solved using sorting. Sorting
can be performed in O(log)N time with N processors
[Col86] on EREW. The sorting process will add O(log
N) time complexity for the unique identifier generation
process, which will slow down the algorithm by a factor
of O(log N). Now we give the modified algorithm for
correspondence in quadtrees.

ALGORITHM 2. (Correspondence, refined).

Step 1. Computing path sequences to nodes using dou-
bling.

Repeat log N times:
For each node in both trees:
Path(node) = Concatenate (Path(node),
Path (F(node)).
F(node) = F(F(node).
Compress all Path identifiers of length
greater than log N.

Step 2. For each tree create an array indexed by path
names and put the pointer to node / in the array location
that corresponds to name(i).

Step 3. Two nodes correspond iff they have the same
path name. Let name(i) be the path name to node i. The
processor associated with node i reads the contents of
location name(i) of the array that corresponds to the other
tree. Thus, each node finds its corresponding node in the
other tree.

Note that in Step 1 we must perform the path concatena-
tion and compression in both trees simultaneously. Other-
wise, it is generally not possible to give unique structural
encoding to trees with N nodes using less than N bits per
path. The algorithm described above gives us an O(log
N) algorithm for computing corresponding nodes in quad-
trees (assuming compression of path-identifiers can be
done in constant time as outlined above). The number of
processors used is N. Thus, the processor-time product
is O(N log N) which is not optimal. The node correspon-
dence algorithm as outlined in Algorithm 2 has been de-
scribed in [RVKR87]. They implement the compression
using sorting and therefore obtain a parallel algorithm that
runs in O(log® N) time using N processors. We implement
the compression in constant time using the power of con-
current writes. In the next section we describe a tree

283

reduction technique to achieve optimal speedup. This
technique has been first introduced in [DK90] in the con-
text of term matching problems in artificial intelligence.

3.1

In this section we show how to attain an optimal
speedup. Given P processors, where P = N/log N, we
achieve N/P running time on an CRCW PRAM. The
method is described in detail in [DK90]. Here we give an
informal description. The idea is to preprocess the original
trees P and G to reduce their sizes by a factor of log V.
We then apply the procedure described in the previous
section to the reduced trees. Finally we add a postpro-
cessing step to complete the correspondence process for
all nodes in the original trees.

For simplicity assume the depth and size of the trees
are 2/ for some i = 1. We start by marking every node u
in the original trees P and G that has the following proper-
ties: (1) « is on level £ log N, for some positive integer
k; and (2) the subtree rooted at « contains at least log N
nodes. Such nodes can be determined with O(N/log N)
processors in O(log N) time. Level information and the
size of the tree below any node can be done using standard
techniques. The reader should verify that the number of
nodes marked by the above procedure is at most
Nllog N.

We now generate trees P’ and G’ from P and G by
removing all unmarked nodes and connecting the marked
nodes as children of their nearest marked ancestors in the
original tree. Clearly, the new trees, consisting of only
the marked nodes are of size at most N/log N. We can
label each edge (1, v) in P' and G’ with an integer label
in the range 1 - - -+ N as determined by the sequence of
labels on the path connecting « and v in the original tree
P or G. These labels can be computed on an O(N/log
N)-processor CRCW PRAM in O(log N) time by simply
scanning the nodes on each level from top-to-bottom,
since there are exactly log N levels involved. Now we
compute the correspondence of the trees P and G'. We
utilize the algorithm we described in Algorithm 2 which
computes the correspondence of two trees of size N in
time log N with N processors. Since the trees are reduced
to be of size at most N/log N, our algorithm needs only
Nl/log N processors.

After the correspondence of the reduced trees has been
determined we can determine the correspondence of the
nodes in the dropped subtrees by a simple top down paral-
lel traversal of the subtrees from each one of the corre-
sponding nodes. This can be done since the depth of trees
that got dropped during the reduction step is at most O(log
N). The implementation of this step can be done using
standard algorithms such as list ranking and Euler tours
(see [CV86] for details). The technique described above

Achieving Optimal Speedup

284

allows us to compute the correspondence of two trees in
optimal log N time with N/log N processors.

In the next section we show how to apply the technique
to compute intersection, union, and subtree operations
on gquadtrees.

4. UNIONS OF QUADTREES

The parallel algorithm for computing the union of two
images represented by quadtrees 7, and 7T, consists of
three basic steps:

1. Identification of corresponding nodes.
2. An OR operation on the corresponding leaves of the
two trees:
(a) OR(black,anything) = black.
(b) OR(anything,black) = black.
(c) OR(white,white) = white.
3. Merging of black nodes.

I

it

The algorithm described in the previous section solves
the node correspondence problem. Note that many nodes
will not have corresponding nodes in the other tree. Once
the corresponding nodes have been determined, we sim-
ply perform a local *“OR’’ operation on the corresponding
nodes. We mark all the nodes that have found a corre-
sponding node in the other tree. Note that the marked
subtrees in T, and T, are identical. We now create a new
tree which is a copy of the marked subtrees. This is a
constant step operation (in practice we can actually use
one of the original subtrees to save storage). Each node
in the new tree has two corresponding nodes in the input
trees. The label associated with each node in the new tree
is an OR of the labels associated with the two correspond-
ing nodes in the input trees. Each node u« in the new tree
checks whether it is a leaf. This could occur iff one or
both of the nodes, that « was generated from in the input
trees, are leaves. If this occurs, then the node copies the
pointers to the successors of the nonleaf node that it
corresponds to (if both are leaves the new node becomes
a leaf as well). The new tree is basically a union of the
two trees, but it may contain unmerged nodes.

The only remaining work to be done is to merge the
black nodes (step 3 above) in the new tree. This operation
can be accomplished by a variety of methods. One simple
method is to use the arithmetic expression evaluation
technique. The arithmetic expression evaluation problem
is a fundamental problem in paraliel computing. Given an
arithmetic expression represented as a tree where the
internal nodes are arithmetic operators (e.g., addition)
and the leafs are operands (e.g., integers), we compute a
partial value for each node as determined by the arithmetic
expression associated with the subtree that starts at this
node.

SIMON KASIF

We associate with each internal node an equation of
the form:

value(node) = AND(childl, child2, child3, child4).

The AND of the four nodes is black if all of them are black,
and it is gray otherwise. Since AND is an associative and
distributive operation, we can view this problem as a
special case of arithmetic operation evaluation on trees,
which can be solved in O(log N) parallel time with N/log
N processors (see [MR85, KD88]). After the completion
of this operation we perform two operations.

I. If the value computed by the arithmetic expression
is black replace the previous label with black.

2. Check for each node if it has a black parent. If it
does, disconnect (discard) the subtree rooted at the node
from its parent.

Other methods for merging black nodes are possible.
The steps for computing a union of two quadtrees are
summarized in Algorithm 3.

ALGORITHM 3. (Union of quadtrees).

Step 1. Call Correspondence to solve the node identi-
fication problem; that is, for each node find its correspond-
ing node in the other tree.

Step 2. Compute an ‘*OR’’ of the nodes in correspond-
ing locations in the two arrays.

1. OR(black,anything) = black.
2. OR(anything,black) = black.
3. OR(white,white) = white.

Step 3. Using the results of Step 2 and copying the
appropriate pointers we create a new tree which is an
extended union of the two trees (but contains unmerged
black nodes).

Step 4. Merge black nodes.

Step 5. For each node in the new tree, check whether
the father is black. If the father is black disconnect the
pointer to the node in the tree. The resulting tree is the
union of the two quadtrees.

This completes the computation of union of two quad-
trees. Intersection of two trees can be computed in a
similar fashion by modifying the local operation. We can
solve additional problems on quadtrees using the tech-
niques described above. It is easy to use the tree corre-
spondence algorithm to test whether two trees are identi-
cal, i.e., testing for equality. Equality testing can also be
performed optimally in parallel using depth-first number-
ing and the degree of each node. Unions and equality can
be used to perform other set operations. Consider the
problem of checking whether an image X is a subimage

OPTIMAL PARALLEL ALGORITHMS

of Y. Clearly, this can be checked by performing a union
of X and Y and then checking whether the union is equal
to Y.

5. DISCUSSION

To summarize, we have described several basic parallel
quadtree algorithms. In the sequential model of computa-
tion the problems addressed in this paper can be solved
optimally by tree traversal techniques. This is no longer
true in the context of parallel computation. In this paper
we tried to draw attention to the variety of parallel tech-
niques that can be used to achieve asymptotically optimal
performance for spatial data-structures. The algorithms
utilize a wide range of fundamental parallel techniques
such as parallel doubling, Euler tours, tree reduction,
unique identifier generation, path compression, and arith-
metic expression evaluation. These techniques were es-
sential in achieving processor-time optimal algorithms.
We established that node correspondence is the major
bottleneck in the parallel computation of set operations on
quadtrees. Once this correspondence has been computed,
the remaining computations are relatively easy and can
be accomplished using standard techniques. Additional
techniques for tree correspondence can be found in
[DK90]. There we describe N/log® N processor, O(log?
N)-time algorithms for a shared memory model that pro-
hibits simultaneous reads and writes (EREW PRAM). The
space complexity of the algorithms is linear in the size of
the tree. The techniques are simple and can be imple-
mented on a mesh used to achieve optimal algorithms for
set operations on region quadtrees in optimal O(V'N) time
[DK89].

[Bre74]

[BRW8S]

[ColB6]

[CV86]

{DK8g9]

{DK90}

[ES85]

{KD88)

[KP88]

{MR85]

{MV90)

{RVKR87]}

[S84])

285

REFERENCES

R. P. Brent, The parallel evaluation of general arithmetic
expressions, J. Assoc. Comput. Mach. 21, 1974, 201-208.
A.S.Bhaskar, A. Rosenfeld, and A. Wu, Parallel processing
of regions represented by linear quadtrees, Comput. Vision
Graphics Image Process. 42, 1988, 371-380.

R. Cole, Parallel merge sort, in Proceedings, 27th Sympo-
sium on the Foundations of Computer Science, 1986, pp.
S11-516.

R. Cole and U. Vishkin, Deterministic coin tossing with
applications to optimal parallel list ranking, Inform. and
Control 70, 1986.

A. L. Delcher and S. Kasif, Term matching on a mesh-
connected parallel computer, in Israeli Symposium on Arti-
ficial Intelligence, Vision and Pattern Recognition, 1989.
A. L. Delcher and S. Kasif, Efficient parallel term matching,
in Proceedings, 1990 International Conf. on Logic Program-
ming, 1990.

A. S. Edelman and E. Shapiro, Quadtrees in concurrent
prolog, in Proceedings, Int. Conf. Parallel Processing, 1985.
pp. 544-551.

S. R. Kosaraju and A. L. Delcher, Optimal evaluation of
tree-structured computations by raking, in Proceedings,
AWOC, 1988.

Z. M. Kedem and K. V. Palem, Optimal Paralle! Algorithms
for Forest and Term Matching, Technical report, IBM
Thomas J. Watson Research Center, June 1988.

G. L. Miller and J. Reif, Paraliel tree contraction and its
applications, in Proceedings, 26th Symp. on Foundations
of Computer Science, 1985.

Y. Matias and U. Vishkin, Paralle! hashing and integer sort-
ing, in Proceedings, 17th ICALP, 1990, pp. 729-743.

R. Ramesh, R. M. Verma, T. Krishnaprasad, and 1. V.
Ramakrishnan, Term matching on parallel computers, in
Proceedings, 14th International Conference on ALP, 1987.
H. Samet, The quadtree and related hierarchical data struc-
tures, ACM Comput. Surveys 16, 1984, 187-260.

