
Department of Computer Science

Dogfooding: Defining Responsibilities
with Internal APIs

Perry Donham   
@perrydBUCS
perryd@bu.edu

mailto:perryd@bu.edu


Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 2

▪ The term comes from either Lorne Greene’s Alpo ads (“I feed 
my own dogs Alpo), or KalKan … their president would 
famously eat the company’s dog food at shareholder meetings

Dogfooding? Really?

Source: (cc) http://www.elezea.com/2015/02/eat-your-own-dog-food



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 3

▪ In a general sense dogfooding means that we use our own 
product to do our work
- If your firm makes accounting software, that’s what the 

finance team uses
- If you’re Ford, your engineers drive Fords

▪ The goal is to give your developers a solid understanding of 
the customer experience



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 4

▪ For our discussion we’ll narrow this down to a web-based application 
that consumes its own API

▪ API: Application Programming Interface
- Used to refer just to libraries used internally
- Now hijacked by devs to mean interface to access external data
- Most web-based services have a public-facing API (Twitter, Amazon, 

Google, Spotify, etc)
- ProgrammableWeb.com lists 15,000+ public APIs

▪ We’re interested in how an internal API can be used to draw a strong 
line around the model component of an MVC (model-view-controller) 
architecture

Dogfood and APIs

http://programmableweb.com


Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 5

Here’s what we’ll implement…



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 6

▪ We’ll see that implementing MVC via dogfooding provides 
several important advantages over traditional client-server 
approaches

▪ Let’s first take a quick look at the history of web app 
architecture… how have web apps typically been designed?



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science

Traditional client-server on LAMP stack

mySQL RDB

if(conn
  SELEC
  WHERE
  print
   

Server-side 
Scripts (PHP)

Browser

Apache
Web 

Server

HTTP  GET

db Worker

mySQL RDB

if(conn
  SELEC
  WHERE
  print
   

Server-side 
Scripts (PHP)

Browser

Apache
Web 

Server

HTTP  GET

db Worker

HTML

generates

returns



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 8

▪ This is thin-client
- Work is done at the back end
- Back-end data sources (BEDS) are typically relational
- Scripting includes templating engines (Smarty, etc)

▪ LAMP-like architectures have been used since Day 1 on the 
web … I wrote such a site in PERL in 1995

▪ There are several potential performance bottlenecks, including
- RDB
- Interpreter 



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 9

▪ This is MVC (model-view-controller) for the web
- The database is the model
- Buttons and other actions on the web page are the 

controller
- The web page itself is the view

▪ It’s a fairly clean implementation of the pattern, and each 
component has well-defined roles



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science

Traditional client-server on LAMP stack

mySQL RDB

if(conn
  SELEC
  WHERE
  print
   

Server-side 
Scripts (PHP)

Browser

Apache
Web 

Server

HTTP  GET

db Worker

mySQL RDB

if(conn
  SELEC
  WHERE
  print
   

Server-side 
Scripts (PHP)

Browser

Apache
Web 

Server

HTTP  GET

db Worker

HTML

generates

returns



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 11

▪ Javascript was released around 2000 to add functionality to 
what previously were static web pages

▪ Direct access to the document object model (DOM) allowed 
programmers to provide some interactivity to the page

▪ It wasn’t really until 2004, when Google started deploying 
apps using asynchronous browser calls to the server via XML 
(AJAX) that we started getting serious about JS

▪ We got a little crazy with the AJAX stuff, and the pendulum 
swung…

Javascript on the front end



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 12

mySQL RDB

if(conn
  SELEC
  WHERE
  print
   

Thin data 
layer

Browser

Apache
Web 

Server

HTTP  GET

db Worker

HTML

generates

returns

mySQL RDB

if(conn
  SELEC
  WHERE
  print
   

Thin data 
layer

Browser

Apache
Web 

Server

HTTP  GET

db Worker

HTML

generates

returns

+
<script
 var a=
 var xl
 if(xls

JavaScript

<script
 var a=
 var xl
 if(xls

JavaScript

<script
 var a=
 var xl
 if(xls

JavaScript

<script
 var a=
 var xl
 if(xls

JavaScript

<script
 var a=
 var xl
 if(xls

JavaScript

<script
 var a=
 var xl
 if(xls

JavaScript
<script
 var a=
 var xl
 if(xls

JavaScript
<script
 var a=
 var xl
 if(xls

JavaScript

<script
 var a=
 var xl
 if(xls

JavaScript

<script
 var a=
 var xl
 if(xls

JavaScript

<script
 var a=
 var xl
 if(xls

JavaScript



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 13

▪ This is thick-client … most of the work is being done on the 
front end

▪ Is that the right place?
▪ No one seemed to care! 
▪ We were addicted to the sweet taste of AJAX interaction … 

our web pages came to life!



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 14

▪ Even though JS is compiled to machine language by the 
browser, it is compiled to machine language in the browser

▪ To accomplish this, we have to send the source to the browser
▪ We can obfuscate and minify all we want, but those are 

reversible functions
▪ Any actions taken by the front-end code are exposed
▪ What if your page is making calls to third-party services?
▪ Once the code hits the browser, it’s pretty much out of your 

control

The trouble with front-end Javascript



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science

If you’re doing this in the browser…

passport.use(new TwitterStrategy({ 
        consumerKey: 'xT0JrIMSWVc2XX4kZDXXXXDE3',  
        consumerSecret: '1FXydshtl0xRF1P6vXXXXXXXXUZdcW69P2kY0WFAVZJpn0Px1Q',  
        callbackURL: "http://" + serverParams.server.host + ":"  
                     + serverParams.server.port + "/todo/auth/callback" 
    },  
    function (token, tokenSecret, profile, done) { 
        console.log("Got Twitter user: " + profile.displayName);  
        //create new user record 
        var theUser = new models.Users({name: profile.displayName, isLoggedIn: true}); 
        //and add to db 
        db.insert(theUser, function (err, theUser) { 
            if (err) { 
                return done(err); 
            } 
        }); 
    next(); 
    } 
)); 

…those secrets won’t be secret for long!



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 16

▪ If we consider the page to be the view component, and its 
buttons, forms, and events to be the controller, where is the 
model?

▪ The short answer: It ends up being spread around
- State is held in the page itself
- Changes in state end up being initiated by view code
- The lines between the components are quite blurry

▪ This divergence from a clean architectural model ends up 
being difficult to test, difficult to maintain, and difficult to 
secure

Breaking MVC



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 17

▪ In 2010 a fascinating thing happened: A new framework was 
released for server-side execution of Javascript

▪ The capability had been around since at least 2000, but it wasn’t 
widely used

▪ It worked with Google’s V8 Javascript engine, the same engine 
deployed in browsers, and provided a built-in web server

▪ In that moment, developers could write Javascript on both the front 
end and the back end

▪ It was now possible to move much of the work from the front end to 
the back end

Node.js



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 18

▪ It gets better…
▪ Javascript uses a lightweight key-value string representation 

for serialization of objects called JSON (Javascript Object 
Notation)

Serialization

{  
    "_id": "571d11662dc89227e6d982c0",  
    "name": "Perry",  
    "UID": "U123456",  
    "department": "BUCS",  
    "__v": 0  
} 



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 19

▪ JSON quickly became the transport encoding of choice for 
moving data back and forth between the front end and the 
back end

▪ It wasn’t long before someone asked…



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 20

▪ The answer to that was a flood of non-relational, document-
based data stores that offer CRUD (create, read, update, 
delete) operations on objects

▪ The blanket term for this class of store is noSQL 
▪ One of the more popular is mongoDB
▪ Another is an in-memory database, redis, that provides 

constant-time CRUD
▪ These are fully denormalized document stores … all relational 

structures are held in the document

…why can’t we just store data in JSON?



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 21

var Schema = mongoose.Schema;  
var personSchema = new Schema ({ 
  name: String, 
  UID: String, 
  department: String 
}); 
var people = mongoose.model('people', personSchema); 
 
aPerson = new people(  
    { 
      name: 'Perry',  
      UID:  'U123456789',  
      department: 'BUCS' 
    }  
);  
aPerson.save(function(err) { 
  if (err) {res.send(err);} 
  else {res.send ({message: 'success'})} 
}); 

var foundPerson;  
people.find({name: 'Perry'}, function(err, result) { 
  if (!err) { foundPerson = result;} 
}) 

object prototype

object instantiation

store document

retrieve document



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 22

▪ The V8 Javascript engine main function is single-threaded and non-
blocking (it’s equivalent to a listen() method)

▪ I/O is handled asynchronously by worker threads that take a 
callback function as an argument

▪ When the I/O is complete, the callback function is passed back to 
the main thread in a call stack that includes results as parameters of 
the callback function 

▪ This is similar to the continuation-passing style of programming in 
languages like Scheme.

About those lambdas…

people.find({name: 'Perry'}, function(err, result) { ... }) 



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 23

▪ This makes sense when you recall that Javascript started life 
as a way to add functionality to things like buttons on a web 
page, which fire events asynchronously

▪ It does mean that Javascript programmers must take 
asynchronicity into account when designing applications

▪ Scope especially becomes important, since functions are 
being run asynchronously in different contexts

▪ We typically use closures — portable scope — to manage this



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 24

▪ This confluence of front- and back-end Javascript, coupled 
with databases that speak JSON, created a class of 
programmer that could move fluidly across the entire stack

▪ Further, it simplified the interfaces; for example, when an 
HTML form POSTs a JSON string, and the database uses 
JSON natively, there are no transformations needed

2010: JS transitions to mainstream

status = new people(httpRequest.body)  
    .save(function(err, result) { ... } 
    ); 



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 25

▪ This full-stack cohesion, along with a highly performant and 
horizontally scalable platform, has made Javascript extremely 
popular for web application development

▪ Large corporate deployments include
- GoDaddy
- Groupon
- IBM
- Netflix
- PayPal
- Walmart



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science

Source: Stackoverflow 2016 survey n=50,000



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 27

▪ We’re close to having all of the plumbing necessary to 
construct a fully decoupled, API based app

▪ We have:
- Serialization using JSON
- JSON based data stores
- A back-end web server (Node.js)

▪ We still need:
1. A way to call the API from the front end
2. A way to implement an API on the back end

Regroup!



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 28

▪ Representational State Transfer was described in 2000 by 
Roy Fielding in his PhD dissertation

▪ It provides a simple way to map HTTP semantics onto CRUD 
data operations

▪ This is the decoupling mechanism
- The client interface is through a URL
- The client doesn’t know where requests are being satisfied, 

just that they are
▪ REST isn’t a standard, just a style, but is in wide use
▪ While HTTP provides a dozen or so verbs, we’ll only use four

1. REST: Calling the API



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 29

URI HTTP GET HTTP PUT HTTP POST HTTP DELETE

Collection 

//my.com/people

List all people 
in db

Replace entire 
collection

Create a new 
person

Delete the entire 
collection

Record  
 
//my.com/people/perryd

Fetch details of 
specified 
person

Replace/update 
specified person

Not typically used Delete the 
specified person

Create:     POST
Read:       GET
Update:    PUT 
Delete:     DELETE

http://my.com/people
http://my.com/people/perryd


Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 30

▪ Angular.js is a front-end framework that extends both HTML 
and Javascript

▪ We’ll see a full example in a moment, but to make an HTTP 
request, we just need to instantiate the $http object and fill in 
the method and any parameters

▪ If, for example, we had an HTML form to create a new person 
in our application, we’d bind this function to the ‘Create User’ 
button click event…

$http in Angular

<button ng-click=“createUser()”>



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 31

angular.module('csdemo', []) 
    .controller('csdemoctrl', function($scope, $http){ 
        $scope.createUser = function() { 
            var request = { 
                method: 'post',  
                url: 'http://localhost:3000/api/db',  
                data: { 
                    name: $scope.name,  
                    UID: $scope.UID,  
                    department: $scope.department 
                }  
            }; 
            $http(request)  
                .then(function(response){ 
                    $scope.showUser(); 
                }) 
 
        } 
    }); 



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 32

▪ Now that we’ve defined a RESTful API we need a way to map 
it to methods on the back end

▪ Routing must take both the URL and the HTTP verb into 
account

▪ Most languages with web frameworks provide this, either 
natively or as a library
- Python: Flask, Bottle in Django framework
- Javascript: Express.js in Node.js framework
- Ruby: Rails

▪ Routing is done with regexp-like pattern matching

2. URL routing / dispatching



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 33

//Express routing in Node.js 

var express = require('express'); 
var router = express.Router(); 
 
router.get('/db', function (req, res, next) { 
  people.find({}, function (err, results) { 
    res.json(results); 
  }) 
 
}); 



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 34

▪ We now have all of the pieces to decouple the front end and 
back end 

▪ State is held in the model
▪ Changes in state are initiated by the controller
▪ The view is strictly representational (with some decoration)



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science

Angular  
+  

HTTP

Angular  
Controllers

Node  
+ 

Express

mongoDB

Data Abstraction 
Layer

front endback end

JSON

API 
on  

Routes 
(REST)



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 36

▪ Three files are of interest:
- api.js - back-end API implementation and routing
- index.html - front-end web page
- controller.js - front-end functionality

Let’s look at some code



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science

Angular  
+  

HTTP

Angular  
Controllers

Node  
+ 

Express

mongoDB

Data Abstraction 
Layer

front endback end

JSON

API 
on  

Routes 
(REST)



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 38

▪ This sort of RESTful architecture isn’t all puppies and rainbows
▪ We’ve severed the link between the view and model
- In the implementation we’ve just seen the controller is 

responsible for initiating state changes in the model
- However, the controller is also responsible for updating the 

view
- In classical MVC the view can be independent of the 

controller
- In fact, there might be many views, not necessarily all in the 

same application instance

Consequences



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 39

▪ This might not matter, depending on the use case
▪ If it does matter, i.e. a distributed securities trading app, we 

can use a Observer pattern (publish-subscribe)
- With pub-sub, the view would register with the model an be 

notified immediately when state changes
- This might be a push of new model data or a notification so 

that the view’s controller can decide what to do



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 40

▪ For web apps an appropriate implementation is through a web 
socket
- These are full-duplex connections over port TCP:80 (or 

whatever port the HTTP server listens to
- They are handled as a URI in the form ws://localhost/…

▪ It’s fair to argue that if you are using web sockets, REST isn’t 
necessary

▪ However, using web socket connections to connect the view/
controller directly to the model tightly couples them, which is 
what we’re trying to avoid



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 41

▪ Sensitive data, including keys and tokens, are held on the 
back end

▪ We have full control over third-party API calls
▪ We can fully validate inputs passed from the front end

What have we gained? Security



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 42

▪ The back end is just CRUD across one or more data sets
▪ We can reuse these capabilities over and over in new 

applications

What have we gained? Reusability



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 43

▪ From the controller and client view, the model is abstracted
- We can place whatever intermediate steps we want in 

between them
▪ Further, the model itself is abstracted into JSON
- We can use any data store, either with native JSON or an 

adapter
▪ Since the model publishes in a standard form (JSON) it is 

agnostic of its clients

What have we gained? Abstraction



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 44

▪ Data operations are typically hotspots resulting in degraded 
performance as load increases

▪ By moving to denormalized non-relational data stores we 
remove much of the overhead required by more traditional 
RDBs

▪ Additionally, noSQL DBs such as mongoDB are designed to 
easily scale horizontally (via sharding and clustering)
- We can use several low-cost data servers instead of a few 

high-cost vertically scaled ones

What have we gained? Performance



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 45

▪ The V8 Javascript engine is optimized to handle small 
requests at a high level of concurrency

▪ To further improve performance, the site can be configured to 
use a separate server, such as nginX, to serve static content 
such as images, leaving Node.js to handle dynamic requests



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 46

▪ The strong division 
of responsibility 
means that we 
readily test the 
internal API without 
use of a front end

▪ We reduce the 
universe of inputs 
by rigidly 
specifying the 
interface

What have we gained? Testability

Using Postman to perform API tests



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 47

▪ Since the front end is completely decoupled from the back 
end, we can work on them simultaneously

▪ The front end can use stubbed API calls while the back end is 
being completed

▪ Note that this requires firm requirements

What have we gained?  Concurrent development



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 48

▪ The most important advantage is that we’ve shifted from a muddled 
architecture with loosely defined responsibilities to a strict MVC 
framework in which roles are clearly delineated
- All model operations take place on the back end
- All view and controller operations take place on the front end
- By using a RESTful API with JSON as the transport, we remove 

platform dependencies … the application might have Python on the 
back end and JS on the front, for example

- The model is also treated as an abstraction (using JSON) and so the 
data store is decoupled

True MVC



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 49

Dogfooding really is good for you!


