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▪ The term comes from either Lorne Greene’s Alpo ads (“I feed 
my own dogs Alpo), or KalKan … their president would 
famously eat the company’s dog food at shareholder meetings

Dogfooding? Really?

Source: (cc) http://www.elezea.com/2015/02/eat-your-own-dog-food
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▪ In a general sense dogfooding means that we use our own 
product to do our work
- If your firm makes accounting software, that’s what the 

finance team uses
- If you’re Ford, your engineers drive Fords

▪ The goal is to give your developers a solid understanding of 
the customer experience
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▪ For our discussion we’ll narrow this down to a web-based application 
that consumes its own API

▪ API: Application Programming Interface
- Used to refer just to libraries used internally
- Now hijacked by devs to mean interface to access external data
- Most web-based services have a public-facing API (Twitter, Amazon, 

Google, Spotify, etc)
- ProgrammableWeb.com lists 15,000+ public APIs

▪ We’re interested in how an internal API can be used to draw a strong 
line around the model component of an MVC (model-view-controller) 
architecture

Dogfood and APIs

http://programmableweb.com
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Here’s what we’ll implement…
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▪ We’ll see that implementing MVC via dogfooding provides 
several important advantages over traditional client-server 
approaches

▪ Let’s first take a quick look at the history of web app 
architecture… how have web apps typically been designed?
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▪ This is thin-client
- Work is done at the back end
- Back-end data sources (BEDS) are typically relational
- Scripting includes templating engines (Smarty, etc)

▪ LAMP-like architectures have been used since Day 1 on the 
web … I wrote such a site in PERL in 1995

▪ There are several potential performance bottlenecks, including
- RDB
- Interpreter 
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▪ This is MVC (model-view-controller) for the web
- The database is the model
- Buttons and other actions on the web page are the 

controller
- The web page itself is the view

▪ It’s a fairly clean implementation of the pattern, and each 
component has well-defined roles
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▪ Javascript was released around 2000 to add functionality to 
what previously were static web pages

▪ Direct access to the document object model (DOM) allowed 
programmers to provide some interactivity to the page

▪ It wasn’t really until 2004, when Google started deploying 
apps using asynchronous browser calls to the server via XML 
(AJAX) that we started getting serious about JS

▪ We got a little crazy with the AJAX stuff, and the pendulum 
swung…

Javascript on the front end
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▪ This is thick-client … most of the work is being done on the 
front end

▪ Is that the right place?
▪ No one seemed to care! 
▪ We were addicted to the sweet taste of AJAX interaction … 

our web pages came to life!
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▪ Even though JS is compiled to machine language by the 
browser, it is compiled to machine language in the browser

▪ To accomplish this, we have to send the source to the browser
▪ We can obfuscate and minify all we want, but those are 

reversible functions
▪ Any actions taken by the front-end code are exposed
▪ What if your page is making calls to third-party services?
▪ Once the code hits the browser, it’s pretty much out of your 

control

The trouble with front-end Javascript
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If you’re doing this in the browser…

passport.use(new TwitterStrategy({ 
        consumerKey: 'xT0JrIMSWVc2XX4kZDXXXXDE3',  
        consumerSecret: '1FXydshtl0xRF1P6vXXXXXXXXUZdcW69P2kY0WFAVZJpn0Px1Q',  
        callbackURL: "http://" + serverParams.server.host + ":"  
                     + serverParams.server.port + "/todo/auth/callback" 
    },  
    function (token, tokenSecret, profile, done) { 
        console.log("Got Twitter user: " + profile.displayName);  
        //create new user record 
        var theUser = new models.Users({name: profile.displayName, isLoggedIn: true}); 
        //and add to db 
        db.insert(theUser, function (err, theUser) { 
            if (err) { 
                return done(err); 
            } 
        }); 
    next(); 
    } 
)); 

…those secrets won’t be secret for long!
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▪ If we consider the page to be the view component, and its 
buttons, forms, and events to be the controller, where is the 
model?

▪ The short answer: It ends up being spread around
- State is held in the page itself
- Changes in state end up being initiated by view code
- The lines between the components are quite blurry

▪ This divergence from a clean architectural model ends up 
being difficult to test, difficult to maintain, and difficult to 
secure

Breaking MVC
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▪ In 2010 a fascinating thing happened: A new framework was 
released for server-side execution of Javascript

▪ The capability had been around since at least 2000, but it wasn’t 
widely used

▪ It worked with Google’s V8 Javascript engine, the same engine 
deployed in browsers, and provided a built-in web server

▪ In that moment, developers could write Javascript on both the front 
end and the back end

▪ It was now possible to move much of the work from the front end to 
the back end

Node.js
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▪ It gets better…
▪ Javascript uses a lightweight key-value string representation 

for serialization of objects called JSON (Javascript Object 
Notation)

Serialization

{  
    "_id": "571d11662dc89227e6d982c0",  
    "name": "Perry",  
    "UID": "U123456",  
    "department": "BUCS",  
    "__v": 0  
} 
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▪ JSON quickly became the transport encoding of choice for 
moving data back and forth between the front end and the 
back end

▪ It wasn’t long before someone asked…
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▪ The answer to that was a flood of non-relational, document-
based data stores that offer CRUD (create, read, update, 
delete) operations on objects

▪ The blanket term for this class of store is noSQL 
▪ One of the more popular is mongoDB
▪ Another is an in-memory database, redis, that provides 

constant-time CRUD
▪ These are fully denormalized document stores … all relational 

structures are held in the document

…why can’t we just store data in JSON?
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var Schema = mongoose.Schema;  
var personSchema = new Schema ({ 
  name: String, 
  UID: String, 
  department: String 
}); 
var people = mongoose.model('people', personSchema); 
 
aPerson = new people(  
    { 
      name: 'Perry',  
      UID:  'U123456789',  
      department: 'BUCS' 
    }  
);  
aPerson.save(function(err) { 
  if (err) {res.send(err);} 
  else {res.send ({message: 'success'})} 
}); 

var foundPerson;  
people.find({name: 'Perry'}, function(err, result) { 
  if (!err) { foundPerson = result;} 
}) 

object prototype

object instantiation

store document

retrieve document
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▪ The V8 Javascript engine main function is single-threaded and non-
blocking (it’s equivalent to a listen() method)

▪ I/O is handled asynchronously by worker threads that take a 
callback function as an argument

▪ When the I/O is complete, the callback function is passed back to 
the main thread in a call stack that includes results as parameters of 
the callback function 

▪ This is similar to the continuation-passing style of programming in 
languages like Scheme.

About those lambdas…

people.find({name: 'Perry'}, function(err, result) { ... }) 



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 23

▪ This makes sense when you recall that Javascript started life 
as a way to add functionality to things like buttons on a web 
page, which fire events asynchronously

▪ It does mean that Javascript programmers must take 
asynchronicity into account when designing applications

▪ Scope especially becomes important, since functions are 
being run asynchronously in different contexts

▪ We typically use closures — portable scope — to manage this
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▪ This confluence of front- and back-end Javascript, coupled 
with databases that speak JSON, created a class of 
programmer that could move fluidly across the entire stack

▪ Further, it simplified the interfaces; for example, when an 
HTML form POSTs a JSON string, and the database uses 
JSON natively, there are no transformations needed

2010: JS transitions to mainstream

status = new people(httpRequest.body)  
    .save(function(err, result) { ... } 
    ); 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▪ This full-stack cohesion, along with a highly performant and 
horizontally scalable platform, has made Javascript extremely 
popular for web application development

▪ Large corporate deployments include
- GoDaddy
- Groupon
- IBM
- Netflix
- PayPal
- Walmart
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Source: Stackoverflow 2016 survey n=50,000
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▪ We’re close to having all of the plumbing necessary to 
construct a fully decoupled, API based app

▪ We have:
- Serialization using JSON
- JSON based data stores
- A back-end web server (Node.js)

▪ We still need:
1. A way to call the API from the front end
2. A way to implement an API on the back end

Regroup!
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▪ Representational State Transfer was described in 2000 by 
Roy Fielding in his PhD dissertation

▪ It provides a simple way to map HTTP semantics onto CRUD 
data operations

▪ This is the decoupling mechanism
- The client interface is through a URL
- The client doesn’t know where requests are being satisfied, 

just that they are
▪ REST isn’t a standard, just a style, but is in wide use
▪ While HTTP provides a dozen or so verbs, we’ll only use four

1. REST: Calling the API
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URI HTTP GET HTTP PUT HTTP POST HTTP DELETE

Collection 

//my.com/people

List all people 
in db

Replace entire 
collection

Create a new 
person

Delete the entire 
collection

Record  
 
//my.com/people/perryd

Fetch details of 
specified 
person

Replace/update 
specified person

Not typically used Delete the 
specified person

Create:     POST
Read:       GET
Update:    PUT 
Delete:     DELETE

http://my.com/people
http://my.com/people/perryd
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▪ Angular.js is a front-end framework that extends both HTML 
and Javascript

▪ We’ll see a full example in a moment, but to make an HTTP 
request, we just need to instantiate the $http object and fill in 
the method and any parameters

▪ If, for example, we had an HTML form to create a new person 
in our application, we’d bind this function to the ‘Create User’ 
button click event…

$http in Angular

<button ng-click=“createUser()”>
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angular.module('csdemo', []) 
    .controller('csdemoctrl', function($scope, $http){ 
        $scope.createUser = function() { 
            var request = { 
                method: 'post',  
                url: 'http://localhost:3000/api/db',  
                data: { 
                    name: $scope.name,  
                    UID: $scope.UID,  
                    department: $scope.department 
                }  
            }; 
            $http(request)  
                .then(function(response){ 
                    $scope.showUser(); 
                }) 
 
        } 
    }); 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▪ Now that we’ve defined a RESTful API we need a way to map 
it to methods on the back end

▪ Routing must take both the URL and the HTTP verb into 
account

▪ Most languages with web frameworks provide this, either 
natively or as a library
- Python: Flask, Bottle in Django framework
- Javascript: Express.js in Node.js framework
- Ruby: Rails

▪ Routing is done with regexp-like pattern matching

2. URL routing / dispatching
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//Express routing in Node.js 

var express = require('express'); 
var router = express.Router(); 
 
router.get('/db', function (req, res, next) { 
  people.find({}, function (err, results) { 
    res.json(results); 
  }) 
 
}); 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▪ We now have all of the pieces to decouple the front end and 
back end 

▪ State is held in the model
▪ Changes in state are initiated by the controller
▪ The view is strictly representational (with some decoration)
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▪ Three files are of interest:
- api.js - back-end API implementation and routing
- index.html - front-end web page
- controller.js - front-end functionality

Let’s look at some code
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▪ This sort of RESTful architecture isn’t all puppies and rainbows
▪ We’ve severed the link between the view and model
- In the implementation we’ve just seen the controller is 

responsible for initiating state changes in the model
- However, the controller is also responsible for updating the 

view
- In classical MVC the view can be independent of the 

controller
- In fact, there might be many views, not necessarily all in the 

same application instance

Consequences
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▪ This might not matter, depending on the use case
▪ If it does matter, i.e. a distributed securities trading app, we 

can use a Observer pattern (publish-subscribe)
- With pub-sub, the view would register with the model an be 

notified immediately when state changes
- This might be a push of new model data or a notification so 

that the view’s controller can decide what to do
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▪ For web apps an appropriate implementation is through a web 
socket
- These are full-duplex connections over port TCP:80 (or 

whatever port the HTTP server listens to
- They are handled as a URI in the form ws://localhost/…

▪ It’s fair to argue that if you are using web sockets, REST isn’t 
necessary

▪ However, using web socket connections to connect the view/
controller directly to the model tightly couples them, which is 
what we’re trying to avoid
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▪ Sensitive data, including keys and tokens, are held on the 
back end

▪ We have full control over third-party API calls
▪ We can fully validate inputs passed from the front end

What have we gained? Security
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▪ The back end is just CRUD across one or more data sets
▪ We can reuse these capabilities over and over in new 

applications

What have we gained? Reusability
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▪ From the controller and client view, the model is abstracted
- We can place whatever intermediate steps we want in 

between them
▪ Further, the model itself is abstracted into JSON
- We can use any data store, either with native JSON or an 

adapter
▪ Since the model publishes in a standard form (JSON) it is 

agnostic of its clients

What have we gained? Abstraction
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▪ Data operations are typically hotspots resulting in degraded 
performance as load increases

▪ By moving to denormalized non-relational data stores we 
remove much of the overhead required by more traditional 
RDBs

▪ Additionally, noSQL DBs such as mongoDB are designed to 
easily scale horizontally (via sharding and clustering)
- We can use several low-cost data servers instead of a few 

high-cost vertically scaled ones

What have we gained? Performance
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▪ The V8 Javascript engine is optimized to handle small 
requests at a high level of concurrency

▪ To further improve performance, the site can be configured to 
use a separate server, such as nginX, to serve static content 
such as images, leaving Node.js to handle dynamic requests



Dogfooding: Defining Reposibilities with Internal APIs

Boston University Slideshow Title Goes Here

Department of Computer Science 46

▪ The strong division 
of responsibility 
means that we 
readily test the 
internal API without 
use of a front end

▪ We reduce the 
universe of inputs 
by rigidly 
specifying the 
interface

What have we gained? Testability

Using Postman to perform API tests
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▪ Since the front end is completely decoupled from the back 
end, we can work on them simultaneously

▪ The front end can use stubbed API calls while the back end is 
being completed

▪ Note that this requires firm requirements

What have we gained?  Concurrent development
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▪ The most important advantage is that we’ve shifted from a muddled 
architecture with loosely defined responsibilities to a strict MVC 
framework in which roles are clearly delineated
- All model operations take place on the back end
- All view and controller operations take place on the front end
- By using a RESTful API with JSON as the transport, we remove 

platform dependencies … the application might have Python on the 
back end and JS on the front, for example

- The model is also treated as an abstraction (using JSON) and so the 
data store is decoupled

True MVC
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Dogfooding really is good for you!


