Antibodies to Reverse Nervous System Damage
Until now, it was believed that antibodies were proteins created by the immune system to solely protect the body against viruses and bacteria. However, a new study conducted by the Stanford University School of Medicine may give insight into another function of these vital proteins – nerve repair.
In a study conducted on mice, the scientists at Stanford demonstrated that antibodies are able to repair nerve damage to the peripheral nervous system (PNS). The PNS contains all of the nervous tissue outside of the brain and spinal cord.
It has been largely unknown why nerve tissue in the PNS is able to regenerate whereas the tissue in the brain and spinal cord cannot. Perhaps antibodies provide an answer. While antibodies have access to the peripheral nervous tissue, the blood brain barrier, as well as the blood spinal barrier, does not allow antibodies to pass into these structures.
The process by which the antibodies are able to repair peripheral nervous tissue is believed to be attributed to their ability to degenerate myelin. Myelin, the fatty tissue covering the axons of neurons, remains after neuronal death in the brain and spinal cord. However, in the remainder of the nervous system, the myelin is broken down by antibodies after damage to a particular neuron. In the laboratory, researchers created mice that can’t make antibodies, and as a result, repair to peripheral nervous tissue was impeded, as was the removal of the myelin. After injecting these mice with healthy antibodies, the myelin was removed and the nervous tissue was repaired.
It is scientists’ hope that this finding will lead to a way to repair central nervous system tissue damage caused by strokes and spinal cord injury. One researcher claims, “‘One idea,” said Barres, “would be to bypass the blood-brain barrier by delivering anti-degenerating-myelin proteins directly into the spinal fluid. We’re hoping that these antibodies might then coat the myelin, signaling to microglia — macrophages’ counterparts in the central nervous system — to clear the degenerating myelin.” That might, in turn, jump-start the regeneration of damaged nervous tissue, he added.”
For the full article, click here.