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Abstract—Networks that provide agents with access to a
common database of the agents’ actions enable an agent to easily
learn by observing the actions of others, but are also susceptible
to manipulation by “fake” agents. Prior work has studied a model
for the impact of such fake agents on ordinary (rational) agents
in a sequential Bayesian observational learning framework. That
model assumes that ordinary agents do not have an ex-ante bias
in their actions and that they follow their private information in
case of an ex-post tie between actions. This paper builds on that
work to study the effect of fake agents on the welfare obtained
by ordinary agents under different ex-ante biases and different
tie-breaking rules. We show that varying either of these can
lead to cases where, unlike in the prior work, the addition of
fake agents leads to a gain in welfare. This implies that in such
cases, if fake agents are absent or are not adequately present,
an altruistic platform could artificially introduce fake actions to
effect improved learning.

Index Terms—Information cascades, herding, Bayesian opti-
mality, ex-ante bias.

I. INTRODUCTION

In many scenarios, agents seek to learn from observations of

other agents’ actions. Such learning is facilitated by networks

that enable an agent to connect to a common database for

making decisions. Examples of such networks include wireless

networks in which devices upload and share their data through

a common Access Point, on-line markets, social networks, etc.

Bayesian observation learning provides a framework for study-

ing such scenarios. In these models, Bayesian rational agents

take actions over time. Each agent updates it beliefs about

about the value of a given action based on its observations of

previous agents’ actions. Initial models for such settings in [1],

[2] considered the case where there is a common underlying

value for each of two actions, which agents take sequentially

after fully observing the prior agents’ actions. Additionally,

each agent receives an i.i.d. binary-valued signal modeling

their ex-ante beliefs about the underlying “state-of-the world”

that determines the values of the two actions. A key result is

that with probability one, agents will enter into an information

cascade in which all subsequent agents follow the majority

decision of prior agents, regardless of their own signal.

This basic observational learning model has been extended

in many directions including relaxing the assumption of i.i.d.

binary valued signals [3], assuming that every agent does not
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observe all previous agents’ actions [4], allowing for imperfect

observations [5], [6]. Other variations include [7]–[13]. This

paper, is motivated by one of these extensions in [6], which

considered a model similar to [1], [2] except that with a given

probability each agent is a “fake” agent who always reports

a favoured action regardless of the other users’ actions. This

models scenarios in which fake agents report a certain action

to encourage other non-fake agents to also adopt that action.

In [6], which was extended from [14], it was shown that

the presence of such fake agents can in some cases reduce

the likelihood of their preferred cascade. Conditioned on the

underlying state of the world, these fake agents may even

lead to improvement in the welfare, i.e., the expected pay-

off obtained by the agents. However, when averaged across

the state of the world, numerical results in [6] show that the

welfare is always reduced by the presence of fake agents.

A motivation for this paper is to understand this welfare

reduction and how it depends on both the ex-ante beliefs of

the agents and the tie-breaking rule used when agents are

indifferent between the two actions.

Fake agents degrade the information obtained in some

observations. This is reminiscent of Blackwell’s theorem on

comparing different information structures for single agent

decision problems [15], [16]. Blackwell’s result shows that if

one information structure is a garbling of a second, then the

former will result in a lower welfare for any decision problem

faced by a Bayesian rational agent. A natural question is then:

Can the welfare loss observed in [6] be explained through a

similar argument extended to this sequential decision making

setting? Our results show that this is not the case. Indeed if

Blackwell’s results directly generalized to this setting, it would

imply a welfare loss regardless of the agents’ ex-ante beliefs.

We show that this is not the case and that when agent’s have an

ex-ante bias, the presence of fake agents may lead to improved

welfare. We also show that even when agents are ex-ante

unbiased, if the tie breaking rule assumed in [6] is changed,

fake agents can again lead to improved welfare. This is in line

with other works that have shown that “better” information in

multiplayer games may not always lead to improved pay-offs

for players (see e.g. [17]).

The remainder of the paper is organized as follows. We

describe our model in Section II. We analyze this model and

identify the resulting cascade properties in Section III. In

Section IV, we characterize agents’ welfares and identify im-



portant properties exhibited by them. In Section V, we present

our Markov chain formulation and devise an iterative method

to compute cascade probabilties. Further, in Subsections V-C

and V-D, we observe the effects of varying the ex-ante bias and

the tie-breaking rule respectively, on the agents’ asymptotic

welfare. We present our conclusions in Section VI and defer

a detailed description of the iterative method to the Appendix.

II. MODEL

We consider a model similar to [1] in which there is a

countable sequence of agents, indexed i = 1, 2, . . . where the

index represents both the time and the order of actions. Each

agent i takes an action Ai of either buying (Y ) or not buying

(N) a new item that has a true value (V ), which could either

be good (G) or bad (B). We assume a non-revealing general

prior for the true value, P(V = G) = q ∈ (0, 1).
The agents are Bayes-rational utility maximizers where the

pay-off received by each agent i, denoted by πi, depends on

its action Ai and the true value V as follows. If the agent

chooses N , his payoff is 0. Whereas, if the agent chooses Y ,

he incurs a cost of C > 0 for buying the item and gains an

amount that reflects the item’s value/utility to its buyer. The

buyer gains the amount x if V = G and −y if V = B, where

x > C and y ≥ 0. Then, the net pay-off for any agent i is

πi =











x− C, if Ai = Y and V = G,

−y − C, if Ai = Y and V = B,

0, if Ai = N.

(1)

It follows from (1) that the ex ante expected pay-off for any

agent is xq−y(1−q)−C if it buys the item, and is 0 otherwise.

In the case xq−y(1−q) > C, an agent a priori prefers taking

action Y over N , and vice-versa if xq − y(1 − q) < C. The

model in such cases is said to have an ex-ante bias between

the two actions. On the other hand, if xq−y(1−q) = C, then

the ex ante expected pay-off for any agent is 0 for either of the

actions. Let q∗ ∈ (0, 1) be this unique probability of V = G,

which is q∗ := (y + C)/(x + y).1 Thus, if q = q∗, then to

begin with, an agent is indifferent to the two actions. While

previous works [1], [5], [6], [10], [12] consider this unbiased

ex-ante preference of actions, our work extends to the generic

case of a possible ex ante bias in the actions.

To incorporate agents’ private beliefs about the new

item, every agent i receives a private signal Si ∈
{H (high), L (low)}. This signal, as shown in Figure 1a, par-

tially reveals the information about the true value of the item

through a binary symmetric channel (BSC) with crossover

probability 1 − p, where 1/2 < p < 1. This implies that the

signal is informative but not revealing. Moreover, the sequence

of private signals {S1, S2, . . .} is assumed to be i.i.d. given

the true value V . Each agent i takes a rational action Ai that

depends on his private signal Si and the past observations

{O1, O2, . . . , Oi−1} of actions {A1, A2, . . . , Ai−1}. Next, we

1The condiitons x > C > 0 and y ≥ 0 assumed in (1) ensure that q∗ � 0

and � 1, as otherwise, all agents prefer a fixed action regardless of their
beliefs on the item’s true value, V.

modify the information structure in [1] by assuming that

at each time instant, an agent could either be fake with

probability (w.p.) ǫ ∈ [0, 1) or ordinary w.p. 1 − ǫ, where

ǫ is common knowledge. An ordinary agent i honestly reports

his action, i.e. Oi = Ai. On the contrary, a fake agent

always reports a Y , reflecting his intention of influencing the

successors into buying the new item, regardless of its true

value. This implies that at any time i, if Ai = N then w.p.

1−ǫ, the reported action Oi = N and w.p. ǫ, Oi = Y. Whereas,

if Ai = Y then Oi = Y w.p. 1. Refer to Figure 1b.
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Fig. 1: (a) The BSC through which agents receive private signals.
(b) The channel through which agents’ actions are corrupted.

III. OPTIMAL DECISION AND CASCADES

For the nth agent, let the history of past observations be

denoted by Hn−1 := {O1, O2, . . . , On−1}. Then, the Bayes’

optimal action for every agent n, An ∈ {Y,N} is chosen such

that it maximizes the expected pay-off given its information

set In := {Sn,Hn−1}. Let γn(Sn,Hn−1) , P(G|Sn,Hn−1)
denote the posterior probability of the item being good, i.e.,

V = G. The expected pay-off EAn
that agent n obtains by

taking action An, given {Sn,Hn−1} is then expressed by:

EAn =

{

(x− C)γn − (y +C)(1− γn) if An = Y,

0 = (x− C)q∗ − (y + C)(1− q∗) if An = N.
(2)

Here, recall that q∗ is the unique probability of V = G for

which an agent would be indifferent to the two actions. By

comparing EY with EN in (2), it follows that the Bayes’

optimal decision rule is:

An =











Y, if γn > q∗,

N, if γn < q∗,

T, if γn = q∗.

(3)

Note that when γn = q∗, EY = EN and so the agent is

indifferent between the actions. This conditon is characterized

by the two elements of set In, namely, the history Hn−1

and the private signal Sn favouring opposing actions, equally

strongly. In this case, we assume that all agents adhere to a

common tie-breaking decision rule, denoted by T . In prior

works [2], [5], [6], [10], [12], the decision rule in this case

follows the private signal Sn, i.e., the agent buys the item only

if Sn = H . Another choice in this case is to follow the history

Hn−1, which also means to oppose the private signal Sn, i.e.,

the agent buys the item only if Sn = L. In this paper, we focus

on both these choices for breaking ties, which is represented

by T ∈ {s (follow Sn), h (follow Hn−1)}.



Definition 1: An information cascade is said to occur when

an agent’s decision becomes independent of his private signal.

We first consider the rule T = s. It follows from (3)

that, agent n cascades to a Y (N) if and only if γn > q∗

(< q∗) for all Sn ∈ {H,L}. The other case being γn ≥ q∗

for Sn = H and γn ≤ q∗ for Sn = L; in which case,

agent n follows Sn. To better understand the above cascade

conditions, we encapsulate the information contained in the

history Hn−1 observed by agent n in the term gn−1(Hn−1) ,
(1−q

q
/ 1−q∗

q∗
)ln−1(Hn−1), where ln−1(·) , P(·|B)/P(·|G) is

the likelihood ratio function of the public history Hn−1.

Further, we define βn(·) , P(·|B)/P(·|G) as the likelhood ratio

of the private signal Sn, where it follows from Figure 1a

that βn(H) = (1 − p)/p and βn(L) = p/(1 − p). Next,

using Bayes’ rule, we express γn in terms of gn−1 and βn

as γn = 1/
(

1 + βngn−1
1−q∗

q∗

)

. The inequality γn > q∗ can

then be simplified to the form gn−1 < 1/βn. Thus, for

T = s, the condition on γn for a Y (N) cascade translates

to gn−1 < 1/βn (> 1/βn) for all Sn. This gives bounds on

gn−1 for a cascade to occur, as stated in the next lemma.

Lemma 1: Under the tie-breaking rule T = s (T = h), agent

n cascades to a Y if gn−1 < 1−p
p

(

gn−1 ≤ 1−p
p

)

, cascades to

a N if gn−1 >
p

1−p

(

gn−1 ≥ p
1−p

)

, and otherwise follows its

private signal Sn.

For the other rule, T = h, similar techniques yields the

bounds on gn−1, also stated in Lemma 1. If agent n cascades,

then On does not provide any additional information about

the true value V to the successors over what is contained in

Hn−1. As a result, ln+i = ln−1, which implies gn+i = gn−1

for all i = 0, 1, 2, . . . and hence they remain in the cascade,

which leads us to the following property, also exhibited by

prior models, e.g. [1], [2], [5]–[7].

Property 1: Once a cascade occurs, it lasts forever.

On the other hand, if agent n does not cascade, then Property

1 and Lemma 1 imply that all the agents until and including n
follow their own private signals ignoring the observations of

their predecessors. For every such observation Oi, i ≤ n, as

Si is conditionally independent of the history Hi−1 given V ,

the likelihood ratio can be updated as: li = (1−b
a

)li−1 if Oi = Y ,

else li = ( b
1−a

)li−1 if Oi = N . Here,

a := P(Oi = Y |V = G) and b := P(Oi = N |V = B) (4)

denote the probabilities that an observation Oi follows the

true value V, given that Ai follows Si. It can be shown from

Figures 1a and 1b that in the above case,

a = p+ (1− p)ǫ and b = p(1− ǫ). (5)

Now, as a result of the updates, ln can be shown to

depend only on the number of Y ’s (denoted by nY ) and N ’s

(denoted by nN ) in the observation history Hn. Specifically,

ln =
(

1−p

p

)ηnY −nN
where the exponent is the difference

between the number of Y ’s weighted by η and the number

of N ’s. The weight η is given by

η := log
(

a

1− b

)

/ log
(

p

1− p

)

. (6)

Then, given that agent n has not cascaded, the term gn can

be expressed as: gn = ln
(

1−p

p

)h0

=
(

1−p

p

)hn
, where

hn = ηnY − nN + h0, (7)

h0 =
[

log
(

q

1− q

)

− log
(

q∗

1− q∗

)]

/ log
(

p

1− p

)

. (8)

Thus, agents that have not cascaded satisfy the next property.

Property 2: Until a cascade occurs, each agent follows its

private signal, and hn defined in (7) is a sufficient statistic of

the information contained in Hn−1.

Note in (8) that h0 = 0 only when there is no ex-ante bias

between actions, i.e., only when q = q∗. Otherwise, h0 > 0
when q > q∗, i.e., when action Y is preferred over action N
a priori; else h0 < 0 when vice-versa.

Remark 1: The term h0 in (8) reflects the ex-ante bias

between actions, where h0 = 0 implies that there is no ex-

ante bias. Otherwise, h0 > 0 implies that a priori, action Y is

preferred over action N, and h0 < 0 implies vice-versa.

The model with fake agents in [6] also exhibits Property

2, with hn as its sufficient statistic, except that it is restricted

to h0 = 0. Further, as in [6], if ǫ = 0 (no fake agents) then

a = b = p and η = 1. Whereas, if ǫ > 0 then η < 1. It

then follows from (7) that, due to the presence of fake agents,

the information conveyed by a Y in an agent’s observation

history reduces by a factor of η, whereas the information

conveyed by a N remains unaffected. This is because, unlike

a N which always comes from an honest agent, a Y incurs the

possibility that the agent could be fake. Further, this reduction

in information from a Y is exacerbated with an increase in the

possibility of fake agents, as η reduces with an increase in ǫ.

Substituting gn =
(

1−p

p

)hn
in Lemma 1, it follows that for

all times n until a cascade occurs, hn ∈ [−1, 1] for T = s,
and hn ∈ (−1, 1) for T = h, respectively. Further, it follows

from (7) that at all such times n, the update rule for hn is:

hn =

{

hn−1 + η if On = Y,

hn−1 − 1 if On = N.
(9)

Whereas, for T = s, when hn > 1 (< −1), likewise for

T = h, when hn ≥ 1 (≤ −1), a Y (N) cascade begins and

hn stops updating (Property 1). Here, h0 defined in (8), is the

fixed initial state of process {hn}, since the first agent has no

observation history. Now, if h0 > 1 (< −1) for T = s, or if

h0 ≥ 1 (≤ −1) for T = h, then a Y (N) cascade begins from

the first agent itself. In such cases, the history Hn−1 for any

agent n does not play any role in its decision; this makes the

channel in Figure 1b irrelevant. We thus state the next remark.

Remark 2: We assume h0 ∈ (−1, 1) as otherwise, for either

or both values of T, the presence of fake agents has no effect

on rational agents.

Lastly, given the true value V , we denote the probability

that a Y (N) cascade begins for process {hn} by PV
Y -cas

(

PV
N -cas

)

. Here, PV
N -cas = 1 − PV

Y -cas as it can be shown that

{hn} eventually enters a cascade w.p. 1.



IV. AGENT WELFARE

Let the nth agent’s welfare refer to its pay-off averaged (in

expectation) over V ∈ {G,B}, denoted by E[πn]. It can be

shown that the asymptotic welfare, denoted by ΠT for rule T,
relates to the cascade probabilities of process {hn} as:

ΠT := lim
n→∞

E[πn] = (x− C)qPG
Y -cas− (y + C)(1 − q)PB

Y -cas. (10)

Now, the bounds on h0 (in Remark 2) ensure that it takes at

least one time-step, starting from state h0, to begin a cascade.

This implies that the first agent always follow its private signal,

and hence obtains the welfare:

E[π1] = F := (x− C)qp− (y + C)(1− q)(1 − p). (11)

In fact, F defined in (11) refers to the welfare for any agent

n, if An always follows Sn disregarding the optimal decision

rule in (3), i.e., E[πn|An always follows Sn] = F, for all

n. The next property shows that E[πn] is monotonic in the

agents’ indices.

Property 3: Given any T and h0, the welfare of each agent

is at least equal or greater than the welfare of its predecessors.

Thus, E[πn] ≥ F and is non-decreasing in n.

Proof: Consider two consecutive agents, n − 1 and n
with their respective information sets In and In−1. Under

the informational equivalance of their private signals: Sn−1

and Sn, we have In−1 ⊂ In. Property 3 is then proved by

applying the celebrated Blackwell’s Theorem on comparing

information structures [15], which implies that it is sufficient

to show that the signals from observing the smaller set In−1

are obtained as a stochastic mapping (garbling) of the signals

from the larger set In. Let Īn and Īn−1 be the n and (n− 1)-
length random vectors corresponding to the observations sets

In and In−1 respectively, such that the two vectors share the

first n − 1 elements. Then, the desired mapping is given by

Īn−1 = GĪn, where G is a (n− 1)×n diagonal matrix. Then,

Blackwell’s result for the corresponding optimal welfares

states that E[πn] ≥ E[πn−1]; and E[πn] ≥ F for all n follows

from (11).

V. MARKOVIAN ANALYSIS OF CASCADES

In this section, we analyse the process {hn}, given V, for the

probability of cascades. We consider the tie-breaking rule T =
s for the sake of analysis. Now, it follows from Section III that

conditioned on V , the process {hn} is a discrete-time Markov

process taking values in [−1, 1] before getting absorbed into

the N cascade region (< −1) or the Y cascade region (> 1).
Specifically, eq. (9) shows that, given V, {hn} is a random

walk (r.w.) that starts from state h0 and moves to the right by

η w.p. P(On = Y |V ) or to the left by 1 w.p. P(On = N |V )
until a cascade occurs, where these probabilities are defined

in terms of a and b in (4). Figure 2 depicts this random walk,

where pf , P(On = Y |V ) denotes the probability of a Y
being observed given V , when any agent n follows Sn. We

have from (4): pf = a for V = G, whereas pf = 1 − b for

V = B.

Note that in special cases such as when h0 and η satisfy

(1−|h0|)/η = t, |h0|/η = v for some t, v ∈ {0, 1, 2, . . .}, the

process {hn} is equivalent to a Markov chain with finite state-

space A = {−r − 1,−r, . . . ,−1, 0, 1, . . . , r, r + 1}, where r :=
t+v and −r−1 and r+1 are absorption states corresponding

to N and Y cascades, respectively. In this case, absorption

probabilities can be obtained by solving a system of linear

equations. In this paper, our main focus is on the more generic

case of non-integer values of (1−|h0|)/η and |h0|/η resulting

in {hn} possibly taking countably infinite values in [−1, 1].2

−1 0 1h0

pf

h0+η−1+h0

1− pf

Fig. 2: Partial transition diagram of random walk {hn} given V .

Consider the special case where fake agents are absent (ǫ =
0). Then, for the r.w. depicted in Fig. 2, it follows that η = 1,

and pf = p if V = G, else pf = 1− p if V = B. Fig. 2 then

implies that {hn} occupies an equivalent finite state-space A,

and thereby has a closed-form expression for PV
Y -cas which for

varying values of h0 and T ∈ {s, h} are tabulated below.

h0 T A PV
Y -cas

(0, 1) s, h {−2,−1, 0, 1} pf/[ pf + (1− pf )
2 ]

(−1, 0) s, h {−1, 0, 1, 2} p2f/[ p
2
f + (1− pf ) ]

0 s {−2,−1, 0, 1, 2} p2f/[ p
2
f + (1− pf )

2 ]

0 h {−1, 0, 1} pf

TABLE I: Equivalent state-space A and PV
Y -cas of r.w. {hn} under

ǫ = 0 for varying values of ex-ante bias h0 and tie-breaking rule T .

In Table I, for A in each case, 0 is the initial state and the

leftmost and the rightmost states are the N and Y cascade

absorption states, respectively. Note that for cases where h0 6=
0, the tie-breaking rule T does not matter since {hn} for any

n never equals 1 or −1, which are the only values at which

a tie could occur. Lastly, the asymptotic welfare ΠT (0, h0) is

obtained by using the expression for PV
Y -cas from Table I, for

the corresponding values of h0 and T , in equation (10).

A. Thresholds {ǫt} under a non-negative ex-ante bias

In the case h0 = 0 and ǫ = 0 as in [1], η = 1 and so

a Y cascade requires at least two consecutive Y ’s. However,

when h0 > 0, then starting from h0, only a single Y triggers a

Y cascade. However, sequences having one or more N ’s, but

have not cascaded, still require at least two consecutive Y ’s

for a Y cascade to begin. Now, as ǫ increases and reduces

η, a greater number of consecutive Y ’s (≥ 1 for h0 > 0 and

≥ 2 for h0 = 0) may be required to cause a Y cascade. This

2For example, if η was chosen uniformly at random, then almost surely
(w.p.1) it would fall into this case.



is characterized by first defining an increasing sequence of

ǫ-thresholds {ǫt}
∞

t=0, for a fixed signal quality p.

ǫt =
α− α

1−h0

t

α
1−h0

t
+1 − 1

, for t = 1, 2, . . . , (12)

and ǫ0 = 0, with α := p
1−p

. Here, for t ≥ 1, ǫt is such that

at ǫ = ǫt,
1−h0

η
= t. Now, starting from state h0, t + 1

consecutive Y ’s would be needed to begin a Y cascade only

when 1−h0

t+1 < η ≤ 1−h0

t
. This inequality when simplified in

terms of ǫ implies that ǫ ∈ [ǫt, ǫt+1) where ǫt is the tth

threshold, defined in (12).

Remark 3: For an ex-ante bias of h0 ≥ 0, if ǫ ∈ [ǫt, ǫt+1),
then starting from state h0, t + 1 consecutive Y ’s start a Y

cascade. Here, integer t satisfies t =
⌊

1−h0

η

⌋

.

The thresholds {ǫr}
∞

r=1 derived in [6], which does not

consider any ex-ante bias, then become a special case of the

thresholds {ǫt} in (12) when h0 = 0.

B. Y cascade probability, PV
Y -cas

As depicted in Figure 2, the r.w. {hn} typically occupies

a countably infinite state-space and does not readily allow

for a closed-form solution to PV
Y -cas. So instead, we develop

recursive equations that can compute PV
Y -cas with arbitrary

precision. These equations are motivated by the construction of

an iterative method, which enumerates all possible observation

sequences that would lead to Y cascade. This method, first

developed in [6] for h0 = 0 and T = s, is modified in this

paper to also account for a possible ex-ante bias in actions

(h0 6= 0). Refer to Appendix A for a detailed description of

this iterative method. Later, in Appendix C, the case of T = h
is also considered. We use the iterative method to compute

PV
Y -cas(ǫ, h0) for V ∈ {G,B}. Then, substituting these values

in eq. (10) yields the asymptotic welfare, ΠT (ǫ, h0).

C. Improved learning due to fake agents in the presence of

ex-ante bias

In [6], it has been numerically shown that with T = s,

when there is no ex-ante bias (h0 = 0), agents’ asymptotic

welfare deteriorates for any ǫ > 0. Interestingly, when ex-

ante bias between actions does exist (h0 6= 0), we observe

that in certain cases, the presence of fake agents improves

agents’ asymptotic welfare. To demonstrate this, Figure 3 plots

Πs(ǫ, h0) with respect to ǫ ∈ (0, 1) for two cases, namely,

h0 = 0 and h0 = 0.047 (Y preferred over N a priori) under

fixed signal quality p = 0.7 and cost structure: x = 1, y =
0, C = 1/2. Thus, q∗ = 1/2 and we vary the value of h0

by only varying the prior q in (8). Figure 3 also contrasts

these welfares with the corresponding welfares in the absence

of fake agents (computed by using PV
Y -cas from Table I in eq.

(10) ), indicated as baselines. Observe that Πs(ǫ, 0) < Πs(0, 0)
for all ǫ ∈ (0, 1), in line with the results in [6]. However, with

ex-ante bias h0 = 0.047, we see that there exist a range of

values of ǫ at which Πs(ǫ, h0) > Πs(0, h0). An important

reason for this ordering is the drop in the baseline welfare

Πs(0, h0) when h0 is increased from 0 to 0.047. This drop
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Fig. 3: Asymptotic welfare as a function of ǫ for p = 0.7, T = s
and indicated values of h0. Πs at thresholds {ǫt} for h0 = 0.047
are marked by ◦, and for h0 = 0 are marked by ×.

in turn occurs due to a change in the state-space A and the

corresponding expression for PV
Y -cas in Table I, when under

T = s, the value of h0 is changed from 0 to any value in

(0, 1).

Further, observe in Figure 3 that an abrupt and significant

increase in Πs occurs for h0 = 0 (marked by ×) and for h0 =
0.047 (marked by ◦) at their respective ǫ-threshold values:

{ǫt}
∞

t=1, which are defined by (12). In both cases, the abrupt

increase in asymptotic welfare at each of the thresholds can

be attributed to a sudden increment (by 1) of the number of

consecutive Y ’s required to trigger a Y cascade, starting from

h0 (Remark 3).

The next theorem shows that even when a priori, action Y
is marginally preferred over action N , there exists an interval

of ǫ-values in (0, 1) such that the presence of fake agents w.p.

ǫ improves the asymptotic welfare.

Theorem 1: Given an infinitesimal ex-ante bias towards

action Y , i.e. h0 = 0+, and a fixed private signal quality

p ∈ (0.5, 1), there exists some ǫ = f(p) > 0 for some function

f , such that

Πs(ǫ, 0+) > Πs(0, 0+), ∀ ǫ ∈ (0, ǫ). (13)

Proof: We prove this theorem by showing that the limiting

value of the function Πs(ǫ, 0+) as ǫ → 0 exceeds it’s value

when ǫ = 0. For this, we first find the limiting value of PV
Y -cas

at h0 = 0+ and ǫ → 0+, which is done in Lemma 2 in

Appendix C and is restated here for convenience.

lim
ǫ→0

PV
Y -cas(ǫ, 0

+) = p2f
1 + (1 − pf )pf
1− (1 − pf )pf

. (14)

Next, the value of PV
Y -cas as h0 = 0+ and ǫ = 0 can be obtained

from Table I as follows.

PV
Y -cas(0, 0

+) =
pf

pf + (1− pf )2
. (15)

Now, note that at h0 = 0+, q = q∗ which implies that (x −



C)q = (y +C)(1− q). Thus, eq. (10) for h0 = 0+ and any ǫ
simplifies to:

Πs(ǫ, 0+) = (x− C)q
[

PG
Y -cas(ǫ, 0

+)− PB
Y -cas(ǫ, 0

+)
]

. (16)

Then, the difference in the asymptotic welfares as ǫ → 0 and

at ǫ = 0 can be expressed as:

lim
ǫ→0

Πs(ǫ, 0+)−Πs(0, 0+) = (x − C)q[∆G −∆B], (17)

where ∆V for V ∈ {G,B} is defined as:

∆V := lim
ǫ→0

PV
Y -cas(ǫ, 0

+)− PV
Y -cas(0, 0

+), (18)

(a)
=

−pf(1− pf )(1− p2f)

1− pf (1 − pf)
. (19)

Step (a) follows by substituting the expressions obtained in

eq. (14) and (15) in eq. (18). Now, with pf = p for V = G
and pf = 1− p for V = B, we substitute (19) in (17), which

simplfies to give:

lim
ǫ→0

Πs(ǫ, 0+)−Πs(0, 0+) = (x− C)q
p(1− p)(2p− 1)

1− p(1− p)
, (20)

> 0, ∀ p ∈ (0.5, 1). (21)

The inequality in (21) follows from the fact x > C and p >
0.5. Thus, there exists some ǫ > 0 such that (13) holds true.

D. Improved learning due to fake agents when rational agents

follow the history to break ties

In this subsection, we investigate agents’ welfare for the

case: T = h and h0 = 0. To compute PV
Y -cas for this case, the

iterative method in Appendix A requires a few modifications

to account for the change in tie-breaking rule, i.e., for T =
h. Appendix B describes them in detail. Now, equipped with

these modifications, the iterative method computes PV
Y -cas, and

welfare ΠT (ǫ, 0). Figure 4 plots ΠT (ǫ, 0) with respect to ǫ ∈
(0, 1) for T = s and T = h, given p = 0.7 and cost structure:

x = 1, y = 0, C = 1/2. Here, as h0 = 0 in (8), q = q∗ =
1/2. Figure 4 also contrasts these welfares with the respective

welfares in the absence of fake agents, indicated as baselines.

As in Figure 3, we observe that when T = s, Πs(ǫ, 0) <
Πs(0, 0) for all ǫ ∈ (0, 1). However, when T = h, we see

that the inequality gets reversed, i.e., Πh(ǫ, 0) > Πh(0, 0),
for all ǫ ∈ (0, 1). This implies that if agents prefer to follow

their history to break ties, then presence of fake agents in any

amount ǫ ∈ (0, 1) improves agents’ asymptotic welfare. The

next theorem formalizes this property for any p, and more

specifically shows that such an improvement in welfare due

to any ǫ ∈ (0, 1) occurs not only as n → ∞ but also occurs

for every agent n.

Theorem 2: Given T = h, h0 = 0 and a fixed private signal

quality p ∈ (0.5, 1), agent n’s welfare πh
n satisfies:

πh
n(ǫ, 0) ≥ πh

n(0, 0) = F, ∀ ǫ ∈ (0, 1), n ∈ N, (22)

and the improvement in welfare, ∆n(ǫ) := πh
n(ǫ, 0)−πh

n(0, 0)
is monotonic and non-decreasing in n. F is defined in (11).
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Fig. 4: Asymptotic welfare as a function of ǫ for p = 0.7, h0 = 0
and indicated values of T .

Proof: First, note that for T = h, h0 = 0, the state-space

A in Table I implies that a cascade begins immediately after

the first agent follows its private signal. That is, An = Y (N)
for all n, if S1 = H(L), which is informationally equivalent

to every agent following its private signal. Thus, πh
n(0, 0) =

F , for all n. Second, by Property 3, πh
n(ǫ, 0) ≥ F and is

monotonic and non-decreasing in n. This concludes the proof.

VI. CONCLUSIONS

We revisited the model for observational learning with fake

agents from [6]. We showed that while in [6], fake agents

reduced the welfare of rational agents or equivalently caused

poorer learning, this conclusion may not hold when rational

agents either have an ex-ante bias or employ a different tie-

breaking rule. In particular, we proved that when there is no

ex-ante bias as in [6], if rational agents follow their history

to break ties, then the presence of fake agents in any amount

always leads to improved learning, and thus a higher welfare.

On the other hand, under an ex-ante bias, when rational agents

follow their private signals to break ties, we show that there

exists a range for the amount of fake agents, in which better

learning occurs. These cases are other examples of a game

setting in which better quality information may lead to lower

pay-offs for the players of that game.

In future work, we plan on determining sharp characteriza-

tions of when degraded observations lead to lower welfare.

Other potential future directions include considering other

forms for noisy observations such as those considered in [5],

non-Bayesian rationality and random tie-breaking rules.
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APPENDIX A

ITERATIVE METHOD TO COMPUTE THE Y CASCADE

PROBABILITY PV
Y -CAS

, UNDER T = s AND EX-ANTE BIAS h0

The iterative method presented here computes PV
Y -cas for r.w.

{hn}, given T = s, h0 ∈ (−1, 1), by enumerating all possible

sequences that can lead to a Y cascade. The enumeration of all

such sequences is depicted in a stage-wise manner in Figure

5. First, consider the case h0 ≥ 0, for which Stage 0 does not

contain any sequence, i.e., r0 is set to 0. The iterative method

thus begins from Stage 1, with the process {hn} starting from

state h0. We initialize Stage 1 with r1 = t + 1. As a result,

The first sequence of r1 consecutive Y ’s, denoted by Y r1 ,

clearly enters the Y cascade region (Remark 3), and so r1η ∈
[1, 1+η]. The rest of the sequences, each of length r1+1, are

simply permutations of each other that contain only a single

N . This is because two N ’s or more are not possible without

entering the N cascade region. Now, each of these r1 distinct

sequences results in the same net shift of r1η− 1, which ends

in the region [0, η] as we know that r1η ∈ [1, 1 + η]. This

completes Stage 1. For each Stage n that follows, we define

rn in a manner similar to r1, as follows:

Definition 2: The integer rn, for n = 1, 2, . . . is the number

of consecutive Y ’s required to enter the Y cascade region in

Stage n of Figure 5.

The sequences in Stage n are then enumerated exactly as in

Stage 1, except that rn now replaces r1. This ensures that

at the end of each Stage j = 1, 2, . . ., any sequence that of

length nj =
∑j

i=1(1 + ri) that has not yet begun a cascade

satisifies: hnj
∈ [0, η]. This resets the r.w. for the next stage.

In this manner, all sequences that lead to a Y cascade are

enumerated.

Y v

Stage (0)

Y cascade

Y r1

N Y r1

Y N Y r1−1

Y 2 N Y r1−2

Y r1−1 N Y

Stage (1)

Y cascade

Y r2

N Y r2

Y N Y r2−1

Y 2 N Y r2−2

Y r2−1 N Y

Stage (2)

. . .

Fig. 5: An enumeration of all possible sequences that would lead
to a Y cascade. The term Y t represents a sequence of t consecutive
Y ’s. The sequence {rn} is defined as per (23) for h0 ≥ 0, and as
per (24) for h0 < 0. Stage (0) is only applicable when h0 < 0.

To obtain the values of {rn}, we first initialize r1 = t+ 1.

Now, at the end of each Stage j, given that a Y cascade has

not yet begun, we know that hnj
∈ [0, η]. From here, it would

take either r or r+ 1 consecutive Y ’s to enter the Y cascade

region, where integer r := ⌊1/η⌋. Therefore, rn ∈ {r, r + 1}
for n = 2, 3, . . .. Then, with r1 = t + 1, successive values

of rn for n = 2, 3, . . . are obtained by applying Definition 2,

which can be expressed as follows:

rn =

{

r, if h0 +
∑n−1

i=1 (riη − 1) + rη > 1,

r + 1, o.w.
(23)

For the other case: h0 < 0, the only change to the

enumerations in Figure 5 is the inclusion of Stage 0, which is

the sequence Y r0 . Here, r0 = v := ⌊h0/η⌋, is the least number

of consecutive Y ’s such that hv ∈ [0, η]. This is because a

N cannot occur at any i ≤ v without causing a N cascade.

Moreover, this ensures that at the end of Stage 0, hv ∈ [0, η],
which as stated earlier, is required to reset the r.w. for the

next stage. Now, we apply Definition 2 to obtain the values of

{rn}, . Then, having obtained the values: {ri}
n−1
i=1 , rn as per

Definition 2 is given by:

rn =

{

r, if h0 + vη +
∑n−1

i=1 (riη − 1) + rη > 1,

r + 1, o.w.
(24)

We now proceed to compute PV
Y -cas as follows. Let Pn

denote the probability that a sequence in Fig. 5 terminates

in a Y cascade, but not before the nth stage. The following

recursion then holds.

Pn = prnf
[

1 + rn(1− pf )Pn+1

]

, for n = 1, 2, . . . (25)

and the probability of a Y cascade, denoted by PV
Y -cas is:

PV
Y -cas(ǫ, h0) =

{

P1, for h0 ≥ 0,

pvfP1, for h0 < 0.
(26)



Note that the factor pvf for h0 < 0 corresponds to Stage 0 being

included as a prefix to sequences in the subsequent stages.

Since (25) is an infinite recursion, to compute PV
Y -cas in prac-

tice, we truncate the process to a finite number of iterations

M , as done in [6]. To this end, we first assume that PM+1 = 1.

Next, we use (25) to successively compute Pk while k counts

down from M to 1, performing a total of M iterations. We

denote the obtained value as (M)PV
Y -cas. The analysis in [6]

shows that for h0 = 0, (M)PV
Y -cas is in fact a tight upper bound

to PV
Y -cas as M → ∞ for any p ∈ (0.5, 1) and ǫ ∈ [0, 1).

Moreover, the difference (M)PV
Y -cas − PV

Y -cas decays to zero at

least as fast as {0.5M}, in the number of iterations M . With

minor modifications to this analysis, it can be shown that the

same result extends to the more general case of h0 ∈ [−1, 1]
considered here. For the plots presented in this paper, we use

M = 10 to compute PV
Y -cas(ǫ, h0) for V ∈ {G,B} using

the above recursive method, which gives an error of less than

10−3. Then, substituting these obtained values in equation (10)

yields the asymptotic welfare, Πs(ǫ, h0).

APPENDIX B

MODIFICATIONS TO THE ITERATIVE METHOD FOR T = h

In this section, we discuss how the iterative method for

computing PV
Y -cas, outlined in Appendix A, can be modified

for T = h, but with h0 = 0. Now, the first modification is

in (23), which computes the values {ri}. Here, the inequality

condition to be satisfied for rn = r changes from > 1 to ≥ 1.

This reflects the change in the Y cascade region from > 1
for T = s to ≥ 1 for T = h. The second modification is

in the enumerations depicted in Figure 5, which is to discard

the sub-sequence NY r1 from Stage (1). This is because, with

T = h, starting from state 0, an N would trigger a N cascade.

To reflect this change, the recursion in (25) which computes

the values {Sn} has to be modified for n = 1 as follows:

P1 = pr1f
[

1 + (r1 − 1)(1− pf )P2

]

= PV
Y -cas. (27)

Now, we assume ǫ ∈ {ǫ : 1/η ∈ Q} to avoid the case of

rational values of 1/η. This ensures that at the start of any

later stage, hn 6= 0. This in turn ensures that the N in the sub-

sequence NY rj in Stage (j), for any j > 1 does not trigger

a N cascade. Else the sub-sequence would also have to be

discarded. As a result, recursion in (25) remains unchanged

for all n > 1. Equipped with the above modifications, the

iterative method in Appendix A can now compute PV
Y -cas, for

V ∈ {G,B}, when T = h and h0 = 0.

APPENDIX C

Lemma 2: Given the ex-ante bias h0 and the fraction of

fake agents ǫ, the limiting value of the Y cascade probability,

PV
Y -cas at h0 = 0+ and ǫ → 0+ is given by

lim
ǫ→0

PV
Y -cas(ǫ, 0

+) = p2f
1 + (1− pf )pf
1− (1− pf )pf

. (28)

Proof: To find the limiting value of PV
Y -cas at h0 = 0+

and ǫ → 0+, we first show that in this limiting regime, for

all i ≥ 2, ri in (23) satisfies: ri → 1 as ǫ → 0. To prove

this, assume rj = 1 for all 2 ≤ j ≤ i − 1 and note that

r1 = t+1 = 2 as t = 1. Then it follows from (23) that ri = 1
only if η >

(

1+ 1
i

)

−1
. Now as ǫ → 0+, η → 1 and hence this

condition is satisfied. Using this argument inductively shows

that ri = 1 for all i ≥ 2.

Now, with ri → 1 for all i ≥ 2 as ǫ → 0, it thus follows that

the recursion in (25) results in the same infinite computation

to obtain Pn as for Pn+1, for all i ≥ 2. Thus, all Pn for n ≥ 2
have the same value which satisfies: Pn = pf

[

1 + (1 − pf )Pn

]

.

Solving this equation for n = 2 gives the value for P2. Using

this value in equation (25) for n = 1 yields P1, which from

(26) is in fact PV
Y -cas and is as follows

lim
ǫ→0

PV
Y -cas(ǫ, 0

+) = p2f
1 + (1 − pf )pf
1− (1 − pf )pf

.


