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Abstract—Security is a critical concern in shared spectrum
environments. In additional to degrading service, attacks can
influence the market interactions between competing service
providers (SPs). This paper investigates these interactions by con-
sidering two SPs engaged in Cournot competition while utilizing
both proprietary and shared spectrum, with shared spectrum
available in either licensed or open-access forms. Additionally,
we assume the presence of an attacker whose objective is to deny
service to one or more of the shared bands for a fraction of the
time, consequently reducing the overall total revenue. We analyze
the optimal forms of attacks under different attacker objectives
and their repercussions on the resulting market equilibrium.
Utilizing these analyses, we compare the impacts of various
spectrum sharing approaches (licensed and open access) and
differing amounts of spectrum holdings of the two providers.

Keywords—Game theory, resource allocation, network pricing.

I. INTRODUCTION

Spectrum sharing provides a way of enabling new uses
of a spectrum band without needing to relocate incumbent
users. Recent examples include the Citizens Broadband Radio
Service (CBRS) approach adopted in the 3.5 GHz band
in the U.S. [1] and the Automated Frequency Coordination
(AFC) approach used in the 6GHz band [2]. A potential issue
with shared spectrum is that it may be more vulnerable to
different security attacks compared to traditional exclusively
licensed spectrum (e.g., see [3]). Attacks may degrade the
services being offered in such a band and can also impact the
competition between service providers operating in the band.
In this paper, we seek to understand the market impacts of
such attacks.

Our approach builds on the work in [4] that adopts a
Cournot model for competition with shared spectrum that is
intermittently available due to the spectrum use of incumbent
users. In this model, wireless service providers (SPs) compete
for a mass of non-atomic users. Each SP has access to its own
proprietary spectrum that is not shared, as well as the band of
shared spectrum. The SPs then compete by determining the
quantity of customers served in each spectrum band, which
determines the delivered price for service via a given demand
function. The actual price an SP charges for service is given
by the difference between this delivered price and a congestion
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cost, reflecting the quality of service obtained from that SP.
The congestion cost, in turn, depends on the mass of customers
an SP serves, the spectrum used, and the availability of the
shared band.

We depart from the model in [4] by considering the presence
of a single attacker that can reduce the availability of the
shared spectrum through some type of denial-of-service (DoS)
attack, such as a primary emulation attack [5], a jamming
attack [6], or an attack on components of a spectrum man-
agement system [7]. The result of such an attack is to change
the availability of the shared spectrum. We initially assume
that this attacker’s objective is to minimize the total revenue
obtained in the market. It achieves this through two effects.
First, it reduces the amount of spectrum available. Second,
it can affect the competition among the SPs, for example,
by reducing the market power of an SP by attacking it. One
motivation for such attacks is financial gain for the attacker,
i.e., the attacker could seek to extort the SPs to recover their
lost revenue. If the SPs negotiate separately with the attacker,
we show that the total revenue objective may not maximize
the attacker’s potential financial gain, leading us to introduce
a second objective that better captures this.

Following [4], we explore two approaches for utilizing the
shared band: licensed sharing and open access sharing. In
licensed sharing, the band is divided into sub-bands, each
licensed to a single SP, enabling exclusive spectrum use when
the incumbent is inactive (similar to Priority Access in CBRS).
The attacker can allocate attacks across these sub-bands,
affecting spectrum availability differently for each SP. In open
access sharing, the entire band is accessible to all SPs when
not in use by the incumbent (similar to Generalized Authorized
Access in CBRS). Attacks reduce availability uniformly for all
SPs.

Our analysis is structured as a two-stage game. In the first
stage, the attacker allocates attacks across the shared spectrum
bands. In the second stage, the SPs determine user quantities to
serve. We characterize the sub-game perfect Nash equilibrium.
For licensed sharing, this involves optimizing the allocation
of attacks across SPs. We find that the attacker targets only
one SP to maximize its gain. We investigate how an SP’s
bandwidth holdings affect its vulnerability, revealing that an
SP with less proprietary and more licensed shared bandwidth
becomes a prime target for a weak attacker. In open access
sharing, increasing attacker strength can shift which SPs utilize



the open bandwidth. Numerical comparisons demonstrate that
the preferred sharing form for welfare in the face of an attack
depends on the attacker’s strength.

In terms of related work, there has been a large body of
work in addition to [4], studying market models for shared
spectrum, e.g., [8], [9], [10], [11], [12], [13], [14]. Similar
to our approach, these papers consider SPs competing using
spectrum that is modeled as a congestible resource. However,
in those works, the spectrum is always available, and there are
no attackers present. There have also been several other papers
that considered models with intermittently available shared
spectrum, such as [15], but again attackers that influence this
intermittence are not considered. There has also been a large
body of work on different attack models for spectrum, see for
example [3], [5], [6], [16], [17], [18]. Although attacks may
take different forms, they ultimately affect specific properties
of the band, such as availability or bandwidth allocation.
Instead of focusing on individual attack models, our objective
is to abstract these attacks and analyze their broader market
implications. By employing this abstraction, we can better
understand how these attacks impact the market dynamics.

II. MODEL WITH LICENSED SHARED BANDWIDTH

We begin with specifying our model for the case where the
shared bandwidth is licensed. We consider a model with two
SPs competing for a common pool of infinitesimal customers.
Each SP i (i ∈ {1, 2}) has bi units of proprietary bandwidth,
which is assigned exclusively to that provider. Additionally,
each SP i has wi units of licensed shared spectrum, which
is available with probability α due to the activity of the
incumbent user of that band. 1

Additionally, we consider an attacker that can attack one
or both of the SP’s licensed shared bands to reduce their
availability. We denote by qi the reduction imposed on SP
i’s licensed shared band so that the availability of this band
becomes α − qi. We further assume that the attacker is
constrained so that

q1 + q2 ≤ Q, (1)

where Q denotes the total attack power. This constraint could
arise due to the attacker’s desire not to be identified or due to
other technical considerations.2 Note that the attacker can only
target the shared band of spectrum and not the SPs’ proprietary
bands, modeling the fact that shared spectrum may be more
susceptible to certain attacks.

We consider a two-stage model in which the attacker moves
first and determines its allocation of attack power across the
two shared bands. In the second stage, the SPs engage in
Cournot competition, which we describe next.3

1In our analysis, we assume uniform α values for all SPs to simplify the
model. It is straightforward to extend the analysis to incorporate different α
values for each SP.

2Depending on the attack type, additional constraints could be taken into
account. For instance, the cost of an attack may vary based on the targeted
amount of shared bandwidth. We leave such considerations to future research.

3One could also view this as a model in which the attacker first announces
a threat to attack (possibly with a ransom demand to not launch this attack)
and the firms then determine the impact this threat will have on the market.

A. Cournot Competition between SPs

In the second stage, each SP i specifies a quantity of
customers it serves on its proprietary spectrum, xbi , and its
shared spectrum, xwi . The total quantity of customers served
by both SPs on both types of spectrum determines a market
delivered price for service via a downward sloping inverse
demand curve P (y) = 1−y, where y = xb1+xb2+xw1

+xw2
.

The price that an SP charges for service on a band is given
by the difference between the delivered price and a congestion
cost for that band. Each SP seeks to maximize its profit given
by the product of the price it charges and the number of
customers served.

As in [4], we model the congestion cost for the proprietary
band of SP i as

lbi(xbi , xwi
) = (α− qi)

xbi

bi
+ (1− α+ qi)

xbi + xwi

bi
.

The congestion cost for the licensed shared band of SP i is

lwi
(xbi , xw1

, xw2
)

= (α− qi)
xw1

+ xw2

wi
+ (1− α+ qi)

xbi + xwi

bi
.

These congestion costs model a situation in which customers
are sensitive to the average congestion they experience over
time and, whenever the shared spectrum is not available, the
customers allocated to that spectrum are served using the SP’s
licensed spectrum.

Similar to [4], this Cournot competition can equivalently be
viewed in terms of a model in which each SP i allocates its
total traffic of xi = xbi + xwi to a single band of Ti units of
proprietary spectrum, where

Ti = bi
bi + wi

bi + (1− (α− qi))wi
. (2)

Further, there is a unique Nash equilibrium to this competition
in which the quantity served by each SP is given by

xi =
TiT−i + 2Ti

3TiT−i + 4 + 4 (Ti + T−i)
(3)

where T−i denotes the equivalent proprietary spectrum of SP
j ̸= i. The corresponding price offered by each provider is
given by:

pi =
TiT−i + 2Ti + T−i + 2

3TiT−i + 4 + 4(Ti + T−i)
. (4)

These characterize the outcome of the 2nd stage of our model.
From these expressions, it can be seen that

∂xi

∂Ti
> 0,

∂xi

∂T−i
< 0,

∂pi
∂Ti

> 0,
∂pi
∂T−i

< 0. (5)

In other words, an increase in a SP’s equivalent bandwidth
leads to an increase in its quantity served and its price, while
an increase in its competitor’s equivalent bandwidth leads to a
reduction in both of these quantities. Note also from (2) that
increasing the attack power on SP i will lead to a decrease
in that SP’s equivalent bandwidth, and thus decrease that SP’s
profit, while increasing the profit of the other SP.



B. Optimal attacker strategy

1) Attack on Total Revenue: As an initial attacker objective,
we assume that the attacker seeks to minimize the total revenue
earned by both SPs in the market. In other words, in the
first stage of the model, the attacker seeks to specify (q1, q2)
subject to (1) to minimize

R(x1, x2) =
∑
i

xipi (6)

where xi, pi satisfies (3),(4). Additionally, we assume that
0 ≤ qi ≤ α for each SP i so that (2) is meaningful. As qi
approaches the upper limit of α, note that Ti approaches bi,
as in this case the SP essentially has no access to the shared
spectrum.

To summarize, the problem faced by the attacker is given
by

min
qi

∑
i

xipi

s.t. (1) ,(2) ,(3) ,(4), 0 ≤ qi ≤ α,∀i.
(7)

Next, we consider solving (7). It can shown that the at-
tacker’s objective is non-decreasing in q1 and q2. Hence, at
an optimal solution, the attacker’s choices of q1 and q2 must
either satisfy q1 + q2 = Q or qi = α for all i, as otherwise,
the attacker could increase qi for some i and decrease its
objective. If Q > 2α, then the only possible such solution
is for q1 = q2 = α, in which case neither SP has access to
the shared spectrum. Hence, in the following, we focus on the
more interesting case of Q < 2α. In this case, let q1 = q.
Then, at optimality, it must be that q2 = Q − q and q must
satisfy

max(0, Q− q) ≤ q ≤ min(α,Q). (8)

Hence, we can reformulate the attacker’s problem in terms
of the single optimization variable q. The resulting one-
dimensional problem is not convex, but can be solved by a
direct search over q to find the optimum value.

2) Attack for Gain: As we noted, one motivation for an
attacker may be to seek financial gain from the SPs. The
maximum amount that the SPs would be willing to pay to
prevent an attack would be equal to the loss in total revenue
they experience due to the attack. However, if the attacker
negotiates separately with each SP, then the total revenue lost
may not be a good indicator of what that attacker may gain.
The reason for this is that the attack profile that minimizes
the total revenue may be one that increases the revenue of
one of the SPs. Essentially, making one SP more competitive
can reduce the revenue of its competitor by a larger amount. In
such a case, as we will show later, the attacker could recover
more revenue from the competitor than indicated by the total
revenue lost.

Based on the above, we next consider a different attackers
objective, which we refer to as the attacker’s gain. This directly
accounts for the revenue lost from an attack that an attacker
can recover. This is given by

G(x1, x2) =
∑
i

(R0(xi,0)−R(xi), 0). (9)

Here, R(xi) = xipi denotes the current revenue of SP i, while
R0(xi,0) = xi,0pi,0|Q=0 represents the initial revenue of SP
i in the absence of an attack, where xi,0 and pi,0 denote the
equilibrium quantity and price in the absence of an attack.
The attacker’s gain can be interpreted as the sum of only the
revenue loss experienced by the SPs without considering any
potential increase in revenue.

The problem the attacker now faces can be expressed as:

max
qi

∑
i

(R0(xi,0)−R(xi), 0)

s.t. (1) ,(2) ,(3) ,(4), 0 ≤ qi ≤ α,∀i.
(10)

This problem is also non-convex, but it remains one-
dimensional and so can still be solved through a direct search
over q. Additionally, we can use the structure of this problem
to gain additional insights, as discussed next.

Assuming a small enough value for Q, we argue next that
the attacker would target only one of the service providers
(SPs), unless both SPs share identical parameters. In the
latter case, the attack distribution does not impact the optimal
attacker gain. As observed through 5, an attack on SP i results
in a reduction of the equivalent bandwidth Ti, leading to a
decline in consumer quantity and price. Consequently, this
decreases the revenue for the targeted SP while increasing
the revenue of the other SP. This outcome is intuitive, as it
renders the attacked SP less competitive within the market.
Thus, the optimal strategy for the attacker involves targeting
only one of the SPs until its shared bandwidth is jammed, as
any alternative strategy could be improved upon to achieve
greater gains. This holds for any value of Q < α; when
the total attack power exceeds this, then the attacker may or
may not benefit from attacking both SPs as we will show in
Sect. IV.

To summarize, to solve (10) when Q < α, the attacker’s
solution is simple: it uses all of its power to attack only one
of the SPs.

III. MODEL WITH OPEN ACCESS SHARING

In this section we turn to the case where the shared spectrum
is open access, meaning that both SPs can utilize the entire
shared spectrum with a bandwidth of W = w1+w2. Again we
assume that this band is available with probability α. In this
case, we assume that the attacker can only attack the entire
open shared band using its total attack power of Q so that
the open bands’ availability becomes α − Q. This models a
case in which the two SPs are either given access to the entire
shared band or no access (e.g., this could be determined by a
spectrum management system).4

Given an attack, the two SPs compete as in the previous
section. The only difference here is how the congestion costs
are determined for the traffic the SPs allocate to the open
shared band, which we denote by xW,i for SP i. As in [4], we

4An extension of this that we leave for future work would be to consider
models in which the shared band is divided into sub-bands, each of which
is open access, and the attacker can then allocate its attacks across these
sub-bands as in the licensed case.



model the congestion experienced by these customers when
the open shared band is available by xW,1+xW,2

W . Note that
in this case, each SP’s customers experience congestion that
depends on the aggregate traffic in the band, reflecting the
open access. Using this, one can again determine average
congestion costs accounting for the spectrum availability and
traffic offloading when the shared spectrum is unavailable as
in the licensed shared case.

We do not have a closed-form solution to the resulting
Cournot competition with open spectrum. However, following
[4], it can be shown that this model is a potential game, so the
equilibrium among the SPs can be found by solving a system
of linear equations that correspond to the first-order optimality
conditions for the potential function. Adapting this to the case
where the spectrum is attacked, we can numerically determine
the equilibrium with open access shared spectrum.

Additionally, it can be shown that only SP 2 will utilize the
open spectrum if and only if the following condition holds:

b1 ≥ 2W + 2b2 + 2 +
4 (1− α+Q)W

b2
. (11)

In other words, if SP 1 has a large enough amount of
proprietary spectrum, it will not allocate any traffic to the open
shared spectrum in equilibrium. In the case that (11) holds, let

γ =

[
4

(
1 +

1

b1

)(
1 +

1

b2

)
− 1

](
1 +

b2
W

)
− 4(α−Q)

b2

(
1 +

1

b1

)
.

(12)

The resulting equilibrium can then be written as

xW,1 = 0,

xW,2 =
1 + 2

b1

γ
,

xb1 =
1 + 2(1−α+W )

b2
+ b2

W + 2
W

γ
,

xb2 =
b2
W

xW,2.

(13)

From (12), it can be seen that γ is increasing in Q and so
from (13), it follows that in such an equilibrium, the traffic
served by the weaker SP (SP 2) will decrease as Q increases,
while the traffic served by the stronger SP (SP 1) can be
shown to be increasing in Q. Hence, in this case, an attack
on the open spectrum will increase the market share of the
stronger SP. Intuitively, since this SP is not using the shared
spectrum, an attack on the shared spectrum makes its service
more desirable to customers compared to SP 2. Also note that
the right-hand side of (11) has a term that is linearly increasing
in Q. Hence, in some cases, the presence of an attacker can
cause the stronger SP to begin using the open spectrum when
in the absence of an attack, it would not.

IV. NUMERICAL RESULTS

Next, we show some numerical examples with different
amounts of bandwidth and total attack power.

(a) (b)

Fig. 1. Total revenue versus Q for (a) different values of b1 when b2 =
1, w1 = w2 = 0.5 and (b) different values of w1, when w2 = 1, b1 = b2 =
0.5, attacking on total revenue.

(a)

(b)

Fig. 2. The revenue of each SP versus Q for (a) different values of b1 when
b2 = 1, w1 = w2 = 0.5 and (b) different values of w1 when w2 = 1, b1 =
b2 = 0.5, attacking on total revenue.

A. Licensed Shared Bandwidth

First, we present a set of examples where the shared
bandwidth is licensed. In all these examples, the availability
of the licensed bandwidth is set to α = 1. In this section, we
give results for two scenarios: one where the attacker aims
to minimize the total revenue and another where it seeks to
optimize its gain.

1) Attack on Total Revenue: In Fig. 1, we show the impact
of varying Q on the total SP revenue (summed across the two
SPs). In Fig. 1(a), this is shown for different values of b1,
where b2 = 1 and w1 = w2 = 0.5.

As expected, the total revenue in each case is decreasing in



(a) (b)

Fig. 3. The total gain versus Q for (a) different values of b1 when b2 =
1, w1 = w2 = 0.5 and (b) different values of w1 when w2 = 1, b1 = b2 =
0.5, attacking on total revenue.

the attack power and revenue is larger when the proprietary
spectrum allocated to SP 1 increases.

In Fig. 1(b), we show curves for different values of w1,
when w2 = 1 and b1 = b2 = 0.5. Again, these curves are
decreasing in the attack power and increase in the amount of
shared spectrum allocated in SP 1. One distinct feature to note
is that when b1 = 0.1 (or w1 = 0.1) so that SP 1 has much
less proprietary (shared) spectrum than SP 2, then as shown in
Fig. 1, the total revenue decreases more quickly compared to
the more balanced cases. To better understand this, in Fig. 2,
we plot the individual revenues of the two SPs under the same
parameters. As be seen in Fig. 2(a) for b1 = 0.1, the revenue
of the larger SP (SP 2) initially improves for small values of
Q, compensating for the loss from SP 1, which keeps the total
revenue from dropping too much. Also, we note from Fig. 2(b)
that when the SPs have different amounts of licensed shared
spectrum, which SP obtains the largest revenue can depend
on the total attack power. For example, when w1 = 0.1 and
w2 = 1, SP 2 obtains more revenue than SP 1 when Q is
small but less revenue when Q is large. Intuitively, when Q
is small, SP 2 benefits from having more spectrum, but when
Q is large, it suffers due to attracting more spectrum attacks,
as we will show next.

In Fig. 3 and Fig. 4, we plot the gain from (9), still assuming
that the attacker is targeting the total revenue. We observe
that the gain from the attack generally increases with the total
power Q. Note that for the case of b1 = 0.1 in Fig. 3 that
the gain for small values of Q is clearly larger than the drop
in total revenue as shown in Fig. 1. Also note that, the rate
of increase in the gain may vary as the distribution of attack
power differs depending on the specific situation. Additionally,
we note that further attacks when Q > α can result in even
lower gains, suggesting that the attacker may not be inclined
to continue the attack once one of the SP’s shared bandwidths
becomes entirely unusable.

In Fig. 5, we show the optimal attack parameters for the
same settings as in the previous figures. Namely, we plot the
fraction q/Q of attack power allocated to SP 1’s licensed
shared spectrum. Note that from Fig. 5(a), when Q is small
enough, the attacker will allocate 100% of its attack power
to the smaller SP. However, in some cases, when Q is large

(a)

(b)

Fig. 4. The gain from each SP versus Q for (a) different values of b1 when
b2 = 1, w1 = w2 = 0.5 and (b) different values of w1 when w2 = 1, b1 =
b2 = 0.5, attacking on total revenue.

(a) (b)

Fig. 5. The fraction q/Q of attack power allocated to SP 1 versus Q for (a)
different value of b1 when b2 = 1, w1 = w2 = 0.5 and (b) different values
of w1 when w2 = 1, b1 = b2 = 0.5, attacking on total revenue.

enough it may allocate more of its power to the larger SP. This
is consistent with the individual revenue shown in Fig. 2(a).

From Fig. 5(b), it can be seen that when Q is small, the
attacker will allocate all of its power to the larger SP, and in
this case, will always allocate a larger percentage of its power
to that SP, which is consistent with our explanation of the
individual revenue in Fig. 2(b).

In Fig. 7, we show the consumer welfare versus the total
attack power Q, for the same settings as in Fig. 1. Here,
consumer welfare is given by (1/2)y2, where y is the total
amount of customers served in the market. Note that the trends
in total consumer welfare are very similar to those for revenue.

Finally, in Fig. 6, we plot the total welfare in the market,



(a) (b)

Fig. 6. Total Welfare versus Q for (a) different values of b1 when b2 =
1, w1 = w2 = 0.5 and (b) different values of w1 when w2 = 1, b1 = b2 =
0.5, attacking on total revenue.

(a) (b)

Fig. 7. Consumer welfare versus Q for (a) different values of b1 when b2 =
1, w1 = w2 = 0.5 and (b) different values of w1 when w2 = 1, b1 = b2 =
0.5, attacking on total revenue.

given by the sum of the consumer welfare and the total
revenue, for the same sets of parameters. The behavior here is
again very similar to the revenue and consumer welfare plots.

2) Attack for Gain: In the previous section, we argued that
a single targeted attack is optimal for achieving the greatest
gain before one of the SPs exhausts all shared bandwidth.
In this section, we show the impact of such attacks and
also consider cases where the attacker has sufficient power
to jam both SPs to determine whether this is a viable strategy.
Namely, in Fig. 8(a), we plot the attacker gain from each SP
when it first allocates all attack power to SP 1 and then begins
attacking SP 2, once Q > 1. Fig. 8(b) show an analogous plot
when attacking SP 2 first. This shows that when Q is slightly
greater than 1, attacking the other SP leads to a loss in the
total gain. Also by comparing these two plots, one can see
that for Q < 1, attacking the smaller SP (SP 2) first gives the
attacker the larger gain.

Next, in Fig. (9) we illustrate the contrast between a single
attack and the optimal total revenue attack. As shown in
Fig. (9)(b), it is possible for the single attack to yield either
better or worse gains based on the choice of the target. When
the weaker SP (SP 2) is the target, then this single attack
leads to a larger gain than that obtained with the optimal total
revenue attack, consistent with our previous observations.

Next we consider the attack for the optimal gain as in (10),
which we find through using a direct line search. As we will
see, for Q < 1, this is consistent with our earlier claim that
attacker should focus its attack only on the weaker SP.

(a) (b)

Fig. 8. Comparison of attack gains for single attacks when b1 = b2 =
0.5, w1 = 0.7, w2 = 1; attack power is first allocated entirely to (a) SP 1 or
(b) SP 2

(a) (b)

Fig. 9. (a) Gain from both SPs during the optimal total revenue attack (b)
Comparison between the optimal attack and the single attacks when b1 =
b2 = 0.5, w1 = 0.7, w2 = 1

In Fig. 10, we show the total gain versus Q for the same
set of parameters as in Fig. 3. Compared to Fig. 3, the curves
in this figure rise smoothly before reaching Q = α. Upon
surpassing this threshold, we observe a marked decrease in the
gain, as the attacker requires additional power to counteract the
previous increase brought on by the less competitive market.
Once a certain point is reached, at Q ≈ 1.5, the curve under
the w1 = 0.1 and w1 = 1.5 cases in Fig.(10)(b) begins to
rise again. This suggests that the attacker is sufficiently strong
to reduce the other SP’s revenue. We can see this trend more
clearly in Fig. 11, which shows the gain obtained from each
SP separately for the same scenarios.

In Fig. 12, we present the optimal attack parameters for

(a) (b)

Fig. 10. The total gain versus Q for (a) different values of b1 when b2 =
1, w1 = w2 = 0.5 and (b) different values of w1 when w2 = 1, b1 = b2 =
0.5, attacking for gain.



(a)

(b)

Fig. 11. The gain from each SP versus Q for (a) different values of b1 when
b2 = 1, w1 = w2 = 0.5 and (b) different values of w1 when w2 = 1, b1 =
b2 = 0.5, attacking for gain.

(a) (b)

Fig. 12. The fraction q/Q of attack power allocated to SP 1 versus Q for (a)
different value of b1 when b2 = 1, w1 = w2 = 0.5 and (b) different values
of w1 when w2 = 1, b1 = b2 = 0.5, attacking for gain.

the same settings as in Fig. 10. The results corroborate our
earlier analysis and observations, indicating that the attacker
will choose to target only one of the SPs with a single attack.
This holds true for all tested parameters until Q > α. After
depleting one SP’s shared bandwidth, we set the attacker to
target the other SP. However, as we observed in Fig. 11, the
attacker may not have an incentive to pursue this course of
action as it may lead to a lower gain.

B. Open Access Shared Bandwidth

Next, we consider the open shared bandwidth case and
compare it to the case with licensed shared bandwidth. The

(a) (b)

(c) (d)

Fig. 13. Comparison of consumer welfare (a), total revenue (b), total welfare
(c), and gain (d) for different values of b1 when b2 = 1, w1 = w2 = 0.5.

availability of the shared bandwidth is again set to be α = 1.
The attacker’s objective in the licensed shared bandwidth case
is set to maximize its gain.

In Fig. 13, we compare the consumer welfare, total revenue,
total welfare and attacker gain between open access sharing
and licensed sharing for two different values of b1. Here, we
choose large enough values of bi so that the condition in (11)
is satisfied when Q = 0. As seen in Fig. 13(a), for small values
of Q, increasing Q can improve consumer welfare with open
access (while it always leads to lower consumer welfare with
licensed shared access). These are exactly the cases in which
the larger SP is not using the open shared band for small Q,
and so larger Q values lead to it serving more customers. From
Fig. 13(b), it can be seen that in this range, total revenue with
open access is decreasing, and from Fig. 13(c), this decrease
is enough so that the total welfare also decreases. It can also
be seen that with open spectrum, these trends can abruptly
change. This corresponds to the point where (11) no longer
holds so that both SPs are using the open band. In Fig. 13(d),
it is evident that an open shared bandwidth scenario yields
a larger gain for the attacker. Additionally, we can observe a
decrease in the gain as Q increases, which is again attributable
to the condition in (11) no longer holding.

It is also worth noting that the plot in Fig. 13 suggests
that an optimal attack for maximizing other objectives with
open shared spectrum may not necessarily utilize the entire
attack budget Q as depicted in these plots. In instances where
attacking with q = Q results in increased consumer welfare,
a counter-intuitive outcome arises: to minimize consumer
welfare, the optimal attack would involve setting q = 0. In
other words, the open spectrum would deter a sufficiently weak
attacker from initiating an attack in these cases.
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Fig. 14. Comparison of individual revenue between licensed shared spectrum
(a) and open shared spectrum (b) for different choices of b1 when b2 =
1, w1 = w2 = 0.5.

Comparing the open access and licensed cases, in Fig. 13,
it can be seen that for small values of Q, open access leads to
greater consumer welfare and greater total welfare compared
to licensed shared access. However, for large values of Q,
licensed shared access has higher consumer welfare and total
welfare. Total revenue is always greater with licensed shared
access, and hence the gain for the attacker is worse. Intuitively,
open access increases competition, which benefits consumer
welfare and total welfare. However, open access also increases
the attacker’s ability by enabling it to attack both firms, which
increases its gain.

Finally, in Fig. 14, we compare the individual revenues
between licensed and open sharing for the same two values
of b1 as in Fig. 13. Comparing the two cases, note that the
large SP (SP 1) always obtains more revenue with licensed
sharing. However, the smaller SP (SP 2) may benefit when
the spectrum is open access, especially for small values of Q.
Also note that with licensed sharing, SP 1 always has a large
revenue with the larger values of b1. However, this may not be
the case with open access sharing, depending upon the attack
power Q. And at a certain time point, as depicted in Fig. 14(b),
an attacker may not benefit from increasing its attack power
(after Q = 0.7).

V. CONCLUSIONS

We studied the market implications of attacks on the shared
spectrum in a basic model where an attacker seeks to disrupt
the market and minimize total revenue. Two service providers
(SPs) compete for customers via Cournot competition, consid-
ering the attacker’s decisions. We determined the optimal at-
tack allocation for licensed shared spectrum and characterized
the impact of an attack with open access shared spectrum. We
then numerically compared the impact of different bandwidth
allocations and access regimes for shared spectrum.

Our results demonstrated that for licensed shared spectrum,
an attacker tends to target the SP with more shared and less
proprietary spectrum to achieve the best gain. However, this
may not hold with sufficient attack power. The attacker’s
gain can be better when the bandwidth is open access, while
consumer welfare may also be higher, suggesting that the
choice of access regimes may involve a balance between
deterring attacks and improving consumer welfare.

Future extensions to these models include considering ad-
ditional objectives for the attacker, such as consumer welfare,
and exploring scenarios with faster decision-making time
scales, requiring proactive anticipation and response from
service providers. Incorporating scenarios where the attacker
lacks complete market information and examining mixed set-
tings of licensed and open access shared spectrum are also of
interest. Finally, considering potential defense strategies for
the SPs is another potential direction.
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