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Abstract

Background

The pathway from evidence generation to consumption contains many steps which can lead

to overstatement or misinformation. The proliferation of internet-based health news may

encourage selection of media and academic research articles that overstate strength of

causal inference. We investigated the state of causal inference in health research as it

appears at the end of the pathway, at the point of social media consumption.

Methods

We screened the NewsWhip Insights database for the most shared media articles on Face-

book and Twitter reporting about peer-reviewed academic studies associating an exposure

with a health outcome in 2015, extracting the 50 most-shared academic articles and media

articles covering them. We designed and utilized a review tool to systematically assess and

summarize studies’ strength of causal inference, including generalizability, potential con-

founders, and methods used. These were then compared with the strength of causal lan-

guage used to describe results in both academic and media articles. Two randomly

assigned independent reviewers and one arbitrating reviewer from a pool of 21 reviewers

assessed each article.
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Results

We accepted the most shared 64 media articles pertaining to 50 academic articles for

review, representing 68% of Facebook and 45% of Twitter shares in 2015. Thirty-four per-

cent of academic studies and 48% of media articles used language that reviewers consid-

ered too strong for their strength of causal inference. Seventy percent of academic studies

were considered low or very low strength of inference, with only 6% considered high or very

high strength of causal inference. The most severe issues with academic studies’ causal

inference were reported to be omitted confounding variables and generalizability. Fifty-eight

percent of media articles were found to have inaccurately reported the question, results,

intervention, or population of the academic study.

Conclusions

We find a large disparity between the strength of language as presented to the research

consumer and the underlying strength of causal inference among the studies most widely

shared on social media. However, because this sample was designed to be representative

of the articles selected and shared on social media, it is unlikely to be representative of all

academic and media work. More research is needed to determine how academic institu-

tions, media organizations, and social network sharing patterns impact causal inference and

language as received by the research consumer.

Introduction

Clinical practitioners, policy makers, households, and all other health decision makers make

choices based on their understanding of the evidence generated by scientific output. Many

decision makers receive that information through traditional and social media, with an esti-

mated 62% of Americans having received news through some form of social media in 2016 [1].

The pathway from research generation to consumption begins with academic research pro-

duction, followed by publication, then media reporting, and ultimately leading to distribution

on social and traditional media. Each step contains many mechanisms which could yield inac-

curate and/or overstated evidence at the point of media consumption. Because each step of

this pathway builds upon the previous one, issues with systematic selection, spin, overstate-

ment, inaccuracy, and weak evidence are likely to accumulate by the time scientific research

reaches the consumer.

Recent evidence suggests that exposure to health information in traditional and social

media may impact health behaviors [2]. An example in the UK [3] highlights the dangers of

weak and poorly-reported evidence: An estimated 200,000 patients temporarily ceased taking

statins–drugs with strong evidence for efficacy and safety for treating hypertension [4, 5]–after

press outlets reported on two studies suggesting that the medication was associated with high

rates of adverse events. The authors of both publications later made statements retracting their

conclusions, noting that they had overstated the strength of causal inference in light of the

studies’ lack of methodological rigor [3]. Further contributing to the cycle, media coverage of

specific conditions is associated with increased reporting of adverse events [6], public

announcements of celebrity illnesses are associated with surges in screening and diagnostic

tests [7, 8], and language “spin” may influence clinical decision makers’ assessment of evidence

strength [9].

Causal language and strength of inference in academic and media articles shared in social media (CLAIMS)
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We hypothesize that incidents like the example of statin use in the UK are the culmina-

tion of selection and spin at each step on the pathway from research generation to research

consumption. Scientific health studies are created in academic institutions. Some are

selected for publication in scientific, peer-reviewed journals. A subset of these are reported

on by traditional media outlets, and the most popular reports are shared on social media.

Feedback may exist where the expectation of selection and spin in later stages influences

decisions at earlier steps in the pathway. Incentives for research institutions, journals,

media outlets, and consumers may combine to create an environment where inaccurate or

overstated conclusions are elevated and amplified by the time scientific research reaches the

consumer.

A scientist’s academic success is often tied to research and publications. Producing high-

impact work is crucial for career continuity and advancement, measured primarily through

the number of times it is cited and the impact factor of the journal in which it is published.

These incentives apply across the academic spectrum, from individual researchers, to research

intuitions, to press releases [10–12], and to peer reviewed publication [13, 14]. A host of factors

can render studies inaccurate [15] or not useful in practice [16]. From a methodological per-

spective, there are many challenges to making strong causal inference in human populations.

At the individual study level, internal validity may be weak due to uncontrolled confounding

variables, improper use of statistical methods, and use of cherry-picked data and methods to

achieve statistically significant results [17]. External validity may be threatened by the limited

generalizability of study populations to relevant populations or differences between the study

environment and real-world interventions [18, 19]. Publication bias [20, 21], lack of replicabil-

ity and replication [22], implication of a causal relationship even after stating that the evidence

is insufficient to reach causal conclusions [23–25], and related phenomena may also introduce

error into bodies of published literature.

Traditional and social media are changing the way many audiences consume science.

Media outlets may spin [26–28] and encourage dissemination of eye-catching, potentially

overstated, inaccurate [29], and/or misleading headlines in order to gain larger audience size

[28, 30, 31]. Media companies’ revenues rely on advertising [1, 32] which may put them at

odds with the journalistic values of media rigor and objectivity, and may incentivize the pro-

duction of potentially inaccurate health news that is not commensurate with the evidence. The

interaction between academia and media highlights some of these complexities, such as a

recent study finding that the results of over half of studies on an association between exposure

and outcome covered in the news are refuted by subsequent meta-analyses [33], and another

showing that those articles publicly critiqued in online media are more likely to be retracted

[34].

This study examines the state of causal inference in health research as it reaches the con-

sumer–the endpoint of the research pathway–by systematically reviewing the articles that are

most likely to have been shared on social media. We argue that the academic research publica-

tions comparing an exposure and health outcome and media articles covering them that reach

the public should at minimum have language that matches the strength of their causal infer-

ence, with a preference for studies demonstrating stronger causal inference.

Based on these principles, the objectives of this study were to identify the media articles and

related academic literature measuring the association between an exposure and a health out-

come most shared through social media in 2015 and assess 1) the strength of causal inference

in research articles from scientific journals, 2) concordance between strength of inference and

the use of causal language in those articles, and 3) the strength of causal language used in cor-

responding media articles.
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Methods

The study was designed to identify and review causal inference and language from the 50 most

shared academic articles pertaining to single studies of an exposure and a health outcome. We

used Facebook and Twitter social media sharing statistics generated from the NewsWhip

Insights platform to achieve a representative sample of the research to which the general news-

consuming public is most likely to be exposed. We reviewed the academic research articles

mentioned in the news articles for strength of causal inference followed by the appropriateness

of the causal language used in both the original academic study and the media article(s) report-

ing on that research. While this scheme generates a sample that is representative of public con-

sumption and distribution, it is neither intended nor likely to be representative of the total

literature produced by academia and media.

The final protocol for this project was developed and reported using PRISMA guidelines

for systematic review [35], and registered with PROSPERO [36] as protocol CRD42016045197

on August 5, 2016. The PROSPERO-registered protocol is attached as S2 File. The full proto-

col, which contains additional detail on the selection and review process, can be found at

https://www.metacausal.com/CLAIMS/protocol/.

Search strategy and selection criteria

We obtained a dataset of potential social media news articles for this study from the News-

Whip Insights™ platform [37]. The NewsWhip Insights platform is a privately-operated social

media crawler, which has been collecting data since 2014. The platform identifies media “sto-

ries” (article URLs) and tracks how they are distributed on social media platforms. We queried

the NewsWhip Insights dataset to generate a list of health news articles pertaining to new

research studies published in 2015 (published from January 1, 2015 to December 31, 2015),

querying the database on May 3, 2016. The search terms for this query were:

(categories:2) AND ((headline_en:"health" OR summary_en:"health") AND ((headli-

ne_en:"study" OR summary_en:"study") OR (headline_en:"research" OR

summary_en:"research")))

where categories:2 corresponds to NewsWhip’s internally curated categorization for sites con-

taining news, headline_en is the programmatically extracted headline of the article at that

URL, and summary_en is the programmatically generated content in English.

We defined the “popularity” of a media article as the number of times a URL was shared on

Twitter or Facebook, where Twitter Tweets/Retweets and Facebook posts containing the URL

are each considered a share. “Likes,” “favorites,” and comments are not considered shares for

our analysis. We generated a list of the top 1,000 most shared health article URLs in 2015 from

each social network, giving each a randomized numerical identifier, and sorting from most to

least shared on its network. We combined the Twitter and Facebook datasets into a single

merged dataset roughly equally representing each social network. We started with the most

shared media article URL on a randomly selected social network (Twitter), selecting that arti-

cle into our screening sample, and eliminating it from the Facebook list. The procedure was

then repeated starting from the remaining list of articles from Facebook (eliminating the arti-

cle from the Twitter list), and repeated, switching lists at each step.

To determine eligibility for inclusion in our study, we screened both the media article and

academic article to identify media articles reporting on a single identifiable academic study

about the relationship between an exposure and health outcome. The full inclusion criteria are

outlined in Table 1. Two independent researchers reviewed the media article and the

Causal language and strength of inference in academic and media articles shared in social media (CLAIMS)
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corresponding academic article titles and abstracts to determine whether they met the criteria

for inclusion in the study. A third reviewer reconciled any disagreements between reviews and

made a final decision regarding inclusion or exclusion. We reviewed the articles in order of

number of shares, beginning with the most shared and continuing until there were 50 unique

academic articles eligible for inclusion in the study. Each academic article and its set of associ-

ated media articles were considered a single review unit for the next phase.

Data collection

Each article was reviewed by two independent, randomly-assigned, primary reviewers from

our study reviewer pool. The primary reviews were then given to a randomly-assigned arbi-

trating reviewer. The arbitrating reviewer created the final review, using the two indepen-

dent reviews as guidance. The arbitrating reviewer was given the opportunity to ask

clarifying questions to the primary reviewers using a standardized form. All reviewers

served as both primary and arbitrating reviewers. The identities of each reviewer were and

remain fully anonymous to each other and the public through a combination of the use of

random-digit identifiers and the study lead acting as the go-between administrator for all

between-reviewer communication. The reviews were performed under a strict policy of

independence. The study lead was not a reviewer of the articles, and did not answer ques-

tions or give advice pertaining to any particular review article. All reviewers were given

opportunity to recuse themselves from reviewing each assigned article in cases of perceived

financial or social conflicts of interest with article authors and/or for lack of sufficient meth-

odological or content area knowledge.

Reviewers

Twenty-one reviewers were recruited through peer reference and public notices. All reviewers

had completed at least a master’s degree and/or were currently enrolled in a doctoral degree in

a relevant health and/or quantitative sciences field, with documented coursework relating to

quantitative causal inference, with the large majority (n = 19/21) currently pursuing or having

completed a relevant doctoral degree. Reviewers performed work on a purely voluntary basis

with no financial incentives. The list of reviewers is published; however, the specific review

assignment for each article is confidential.

Table 1. Inclusion criteria.

Media article: Academic article:

• The URL link to media article is functional at the time of

the review, leading to the main media article.

• The news media article reports primarily about the

findings from a single academic article published in a peer-

reviewed academic journal.

• The news media article reports that the academic article:

- Has a main analysis in the form exposure (dependent

variable) vs. outcome (independent variable).

- Has a health outcome as one of its main outcomes

(independent variables).

- Has related exposures/outcomes if multiple exposures/

outcomes are equally emphasized.

- Conducted the study in a human population.

- Presents results based on primary data analysis, and not a

review or meta-analysis.

- Has main results generated from a single identifiable

statistical model.

• The academic article referred to in the media article

is identifiable through academic library sources.

• The academic article

- Has a main analysis of the form exposure (dependent

variable) vs. outcome (independent variable).

- Has a health outcome as one of its main outcomes

(independent variables).

- Has related primary exposures/outcomes if multiple

exposures/outcomes are equally emphasized.

- Conducted the study in a human population.

- Presents results based on primary data analysis, and

not a review or meta-analysis.

- Has main results generated from a single identifiable

statistical model.

https://doi.org/10.1371/journal.pone.0196346.t001
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Review tool

The authors designed, tested, and implemented a review tool for this study to systematically

assess the strength of causal inference in academic articles, the strength of causal language

used by academic study authors, the strength of causal language used by media article authors,

and the accuracy of the media article’s description of the academic article. We developed this

tool using the principles outlined by the Cochrane Handbook for Systematic Reviews of Sys-

tematic Reviews of Interventions [38] and the Oxford Centre for Evidence-Based Medicine

Levels of Evidence [39]. Existing tools typically focus on literature from randomized controlled

trials and/or seek to summarize the strength of causal inference from a body of literature on

the same subject. The review tool used for this study instead seeks to examine the strength of

causal inference in individual studies. The full review tool questionnaire items are included in

S1 File, with the original form interface used available at metacausal.com/claims/review-tool/.

The largest section of the review tool assessed the scientific article’s strength of causal infer-

ence, focusing on risk of bias, considering both internal and external validity. The tool was

divided into several domains which assessed the primary study question(s), primary study

result(s), generalizability to a relevant population, selection bias/missing data, exposure and

outcome assessment, treatment of covariates and identification of confounders, assessment of

statistical methods, and a summary assessment. The summary assessments asked whether the

study was likely to approximate hypothetical results from an “ideal” randomized controlled

trial which would result in perfectly estimated and generalizable causal effects without practical

and ethical constraints [40]. After completing each of the previous sections, reviewers assessed

a summary measure of the severity of threats to causal inference in each of the above-listed

subsections on a 5-point scale (Very low, Low, Moderate, High, Very high severity), as well as

the expected direction of bias. The final assessment of this section summarizes the reviewer’s

overall evaluation for the strength of causal inference on the same 5-point scale (Very low,

Low, Moderate, High, Very high strength) with detailed prompts on which to base a decision.

We assessed the strength of causal language in the scientific article on a 3-point scale (Weak,

Moderate, Strong) based on the degree of certainty of causal inference implied, similar to the

scale used in Brown, et al., 2013 [41] and Sumner et al., 2014 [12]. Two elements of language

were assessed using this scale: how the authors framed their question of interest and how the

authors discussed their results. The prompts for both summary sections are shown in Fig 1. In

the media article assessment, reviewers assessed whether the media article accurately described

the same relationship as the scientific article and the strength of causal language used, using

the same research question as in the scientific article. For both academic and media articles,

reviewers were asked whether they believed the strength of causal language was too weak,

accurately descriptive, or too strong given the strength of causal inference.

The user interface for the review tool was developed using Google Forms (www.google.

com/forms) and was implemented as an online survey.

Statistical analysis

Statistical analysis is performed by descriptive statistics of the proportion of articles reaching

each category for summary measures. Statistical analysis and data management was performed

in R [42]. Two-tailed t-tests were used for statistical significance for differences in means.

Publicly available data

The review dataset (S4 File) and review tool (S1 File) are provided as supplementary attach-

ments to this study. In addition, the full protocol, review tool, screening process summary, full

dataset collected from both primary and arbitrating reviewers, R code used to generate the

Causal language and strength of inference in academic and media articles shared in social media (CLAIMS)
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dataset and analyses, and data visualization tools to explore the dataset are publicly available at

metacausal.com/CLAIMS.

Results

We identified 11,349 unique URLs in the NewsWhip database, which represented 1,375,152

shares on Facebook and 423,996 shares (Tweets) on Twitter. We extracted the 1,000 most

shared articles from both platforms (n = 2,000) and consolidated them into a master article list

comprised of 1,418 non-duplicate links to articles. Two independent reviewers screened the

master list, starting from the most popular articles and continuing until 50 unique academic

articles and associated media articles were identified, which occurred on the 231st media arti-

cle. The cumulative number of shares among the 231 screened articles screened represents

68% (938,596/1,375,152) of Facebook shares and 45% (189,777/423,996) of Twitter shares (S1

Fig), suggesting that our sample is strongly representative of the articles most shared on social

media. Reviewers disagreed on whether to accept or reject in 29/231 cases, and the arbitrator

included 16 of these cases. In total, reviewers identified 50 review sets, consisting of 50 aca-

demic articles with 64 unique media articles associated with them (S2 Fig, S2 and S3 Tables).

Reviewers were randomly assigned as a primary reviewer or arbitrator to an average of 7.1

articles each, and review work was completed between August and October, 2016. Reviewers

opted to recuse themselves in nine instances; five recusals were due to conflicts of interest and

four were due to lack of familiarity with the methods used in the academic article. Arbitrators

made comments or asked for clarification from primary reviewers for 22 article sets. All results

below, unless otherwise noted, are generated from the final arbitrator reviews alone.

Of the 50 academic articles reviewed, 49 listed at least one author affiliation with at least

one primarily academic institution, 30% with a health service provider, 28% with a

Fig 1. Results of summary measures for strength of causal inference and language. Language for categories of strength of causal inference has been lightly edited for

this publication to better reflect the instructions given to the reviewers and for consistency with the rest of the manuscript. Reviewers were instructed to consider only

the causal inference aspect of the study for these measures. The original language referred to the “study” and “results,” which has been edited in the figure to “causal

inference” where appropriate for clarity. The original language and instructions are available in the attached review tool and on metacausal.com.

https://doi.org/10.1371/journal.pone.0196346.g001
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government agency, 24% with a non-profit organization, and 8% with a for-profit affiliation,

as determined by the study authors. Authors from 192 unique institutions contributed to these

50 academic articles, with researchers from Harvard University (n = 8, 16%) and Johns Hop-

kins University (n = 4, 8%) being the most common, where n refers to the number of academic

articles in which at least one author was listed as an affiliate. Academic journals in our sample

consisted of many of the highest impact factor medical journals for 2015, with impact factors

ranging from 2–60 [43]. The most commonly shared media URL domains were CBS News

(n = 6), The Guardian (n = 6), and the New York Times (n = 6) (S1 Table).

Descriptive statistics of included academic studies are shown in Table 2. 14% (n = 7) of

studies were randomized trials, while 44% (n = 22) were prospective cohorts, 26% (n = 13)

cross sectional, and 12% (n = 6) other observations designs. The median sample size was

5,143.5. The most common exposures of interest were the built urban/rural environment

(n = 5, 10%), diet (n = 5, 10%), coffee/caffeine (n = 4, 8%), medical device/treatment (n = 4,

8%), and pregnancy/childbirth (n = 4, 8%). The most common outcomes of interest were

mood or mental health (n = 10, 20%), cardiovascular disease (n = 7, 14%), cognitive function-

ing or schooling (n = 5, 10%), and mortality (n = 5, 10%).

Table 2. Academic article descriptive statistics.

Panel a: Study properties
Study type % (n) Methods % (n)

Randomized controlled trial 14% (7) Standard correlation 80% (40)

Standard RCT 86% (6) Hierarchical/longitudinal 20% (10)

Crossover trial 14 (1) Instrumental variable 2% (1)

Observational 82% (41) Marginal structural model 2% (1)

Prospective cohort 54% (22) Can’t be determined 2% (1)

Cross-sectional 31% (13) Other 10% (5)

Case-control 5% (2)

Retrospective cohort 2% (1) Sample size n

Ecological 2% (1) 25th percentile 326.5

Other 5% (2) Median 5,143.5

Other 4% (2) 75th percentile 34,849

Panel b: Exposures and outcomes
Exposures % (n) Outcomes % (n)

Built environment 10% (5) Mood / Mental health 20% (10)

Diet 10% (5) CVD 14% (7)

Coffee / Caffeine 8% (4) Cognitive function / Schooling 10% (5)

Medical device / Treatment 8% (4) Mortality 10% (5)

Pregnancy / Delivery 8% (4) Self-rated Health 8% (4)

Pet / Animal-related 6% (3) Weight/BMI 8% (4)

Race / Ethnicity / Sex / Gender 6% (3) Blood biomarkers (multiple) 4% (2)

Air pollution 4% (2) Cancer 4% (2)

Marriage / Partnership / Children 4% (2) HIV 4% (2)

Mindfulness / Meditation / Yoga 4% (2)

Other 32% (16) Other 18% (9)

Data from panel a directly reflects the categorizations of study types and methods reviewers were given in the review tool, where the results shown are the arbitrator-

determined categorizations. Additional details on the categories are available in the review tool itself, provided as a supplement, and in the Review Tool section of this

manuscript. Panel b reflects categories determined post-hoc by the study authors, given the arbitrator-reported exposures and outcomes. The uncategorized reviewer-

listed outcomes and exposures are provided in the publicly available datasets.

https://doi.org/10.1371/journal.pone.0196346.t002
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More than half of the studies (n = 27, 54%) were rated as having “Low” strength of causal

inference, and eight studies (16%) were classified as “Very low” strength of causal inference.

Only three studies (6%) were classified as having “High” or “Very high” strength of causal

inference (Fig 1). Nearly half of the media articles (n = 28, 44%) were rated as having used

“Strong” strength of causal language compared with 20% (n = 10) of the academic articles.

Half (n = 25) of the academic articles used were rates as having “Weak” strength of causal lan-

guage, compared with only 17% (n = 11) of the media articles.

Reviewers generally gave qualitatively similar ratings for each article. Primary reviewers dif-

fered in their rating of strength of causal inference by at most one or zero categories in 96% of

cases, with 58% of all pairs of primary reviews answering with the exact same category. Mean

arbitrator reviews, treating each category as consecutive integers from 1:5, where 1 = “Very

low” and 5 = “Very high”, were only slightly lower than the mean arbitrator reviews (2.24 vs.

2.30, p-value = 0.71). 93% of primary reviewers chose within one category of each other for

strength of causal language in the academic studies, with 47% having exact matches, noting

there were only three categories for this measure.

Reviewers most commonly listed covariates, particularly failure to account for confounding

variables, as the most severe source of bias in academic articles, listing high or very high sever-

ity of issues related to covariates for 54% (n = 27) of articles, followed by generalizability for

52% (n = 26) and statistical methods for 32% (n = 16) (Fig 2). Exposure assessment, outcome

assessment, and missing data were found to be relatively minor sources of error in academic

articles.

Reviewers directly indicated that 34% (n = 17) of academic studies used causal language

which was too strong for the assessed causal inference. 48% (n = 31) of media articles were

written using causal language that was too strong given the language used in the academic

study, which were themselves rated as being overstated on average given the strength of causal

Fig 2. Summary of severity of issues in causal estimate in academic article by category.

https://doi.org/10.1371/journal.pone.0196346.g002
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inference. As a cross-check, we further examined overstatement by comparing reviewers’ rat-

ings of strength of causal language with their ratings of strength of causal inference. The top

panels of Fig 3 show an assumed set of theoretically preferred regions where language is com-

mensurate with strength of causal inference, and darker shades represent more preferred

regions. The bottom panels show the distribution of results of our study, with darker regions

indicating more articles. Using the definition in the theoretical figure regions, 42% (n = 21) of

academic studies and 67% (n = 43) of media articles were found to have language which was

stronger than the causal inference. There were 46 media articles linked to academic articles

rated as “Low” or “Very low” strength of causal inference; the large majority (n = 38, 83%) of

these studies were written about using moderate or strong causal language by the media.

Among the 35 academic articles rated as “Low” or “Very low” strength of causal inference,

45% (n = 16) were written with strong or moderate causal language. More than half of the

media articles (n = 35, 55%) had causal language that was stronger than the causal language

used in the academic article. In 39% of cases (n = 25), the strength of causal language in the

academic article matched the strength of causal language in the media article. In 6% (n = 4)

media articles, the strength of causal language was weaker than the language in the academic

article.

Discussion

This study found that among the 50 health-related academic studies assessing the relationship

between an exposure and outcome most shared in social media and their corresponding

shared media articles, 1) only a small fraction of studies demonstrated strong causal inference

Fig 3. Strength of causal inference vs. strength of causal language in academic and media articles. The upper charts represent an assumed set of theoretically

preferred regions, where we would prefer studies of the form exposure vs. outcome which reach the public to have language matching the strength of causal

inference, a slight preference towards stronger causal inference, media language matching the academic language, and a preference for understated vs. overstated

strength of causal language. The lower charts represent the empirical results of the study, where darker regions have more articles. The raw number of articles in

each box is available in supplemental S4 Table.

https://doi.org/10.1371/journal.pone.0196346.g003
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between the exposure and outcome, even among those published in high-impact journals, 2)

the language used in academic articles tended to slightly overstate their strength of causal

inference, and 3) the media articles about them were likely to overstate strength of causal infer-

ence and inaccurately report key study characteristics and/or results. Previous studies examin-

ing overstatement of causal language utilize either language comparison and/or assumed

strength of causal inference exclusively from very broad study design characteristics [12, 23,

25, 31]. This study presents two major additions to this literature: 1) a novel review tool

designed to independently assess strength of causal inference, and 2) a sampling frame devel-

oped to identify the articles most likely to be consumed in social media.

The pathway to misrepresentation of evidence has components across the research produc-

tion and dissemination spectrum, many of which we are unable to isolate in this study. We

selected articles among those that are popularly shared in social media in order to assess the

research behind popular articles that are most consumed by public audiences, and therefore

this sample is unlikely to be representative of the broader work in both academia and media.

While we can conclude that the majority of health research to which audiences are frequently

exposed does not have strong causal inference, we cannot isolate the specific roles played by

academic institutions, traditional media, social media platforms, and the public in producing

this result. Review of the strength of causal inference and language in work published by

authors at the top medical institutions as well as reviews of media articles across a range of

popularity levels is needed to better understand where and why issues occur in the research

production and dissemination pathway. While this study cannot determine whether the intent

of the academic article authors was to develop strong and highly generalizable causal inference,

we can examine to what degree they describe their question and/or results as such. Many of

the academic article authors did not intend to make a generalizable causal argument between

exposure and outcome, but in such cases our study assesses whether the language matches the

strength of the causal inference.

The practical limitations of this study most likely biased our results towards finding higher

strength of causal inference for the academic studies. We examined only the published article

itself in the review process, and did not attempt to replicate or check calculations, data, or

code, nor did we assess all possible sources of error, including cherry-picking data and results.

Causal inference is weakened by any data or methodological factor unaccounted for, and any

issues which were not discovered and documented by the reviewers would be more likely to

weaken causal identification than strengthen it. One further practical limitation is that only 50

article sets were reviewed, though noting that these articles most likely represent over half of

all social media shares in 2015.

The strength of causal inference review tool developed for this study creates a useful frame-

work for researchers and research consumers, while also highlighting the need for additional

tool development. While similar tools and frameworks have recently been proposed, most

notably the ROBINS-I [44] and related Risk of Bias 2.0 [45] tools, the CLAIMS tool differs in

several key respects in order to be most useful for research consumers and reviewers. Firstly, it

attempts to be study design-agnostic through its frame of reference. We anchored our highest

strength of causal inference on utility for decision-making by whether it approximates an

often unobtainable “ideal” scenario, setting strength of causal inference as unconditional on

study feasibility. Secondly, it attempts to incorporate both internal and external validity into

final summary measures. Finally, it attempts to review strength of causal inference in individ-

ual studies, rather than bodies of literature.

These flexibilities come at several important costs, most notably subjectivity of resulting

reviews, reduced replicability, and required resource intensity. While the former items may be

mitigated in part by multiple reviews and arbitration, the latter remains a large concern. We
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estimate that each reviewer took 3–6 hours to complete review for each study, with three

highly skilled reviewers per study. Further, while reviewers generally agreed with each other,

exact agreement was far from perfect, highlighting the inherent difficulty in review of causal

inference and language. Immediate improvements to the tool presented here will be focused

on clarity of language among multi-disciplinary reviewers, improvements in delineations

between study types and methods. Further larger scale review efforts of academic and media

articles can help yield data which can be used to develop review tools with lower resource

intensity requirements and greater accuracy and replicability per review, which in turn

increases the feasibility and variety of potential applications.

As popular viewership and citations are tied increasingly to measuring the success of

research and researchers, the pressure on scientists and journalists to select overstated, inaccu-

rate and/or low evidence for production and/or dissemination are likely to become stronger.

We speculate that the proliferation of social media and open access to research may increase

ties from popular preferences to research production and selection, and that increased compe-

tition for stagnant research funding [46] is likely to exacerbate incentives to have research that

stands out over that addressing areas with the highest burden of disease [47] or strength of

causal inference.

Finally, we acknowledge that the results of this study are likely to be prone to misinterpreta-

tion, following popular narratives that place fault primarily on academia, media, and/or the

public. In order to attempt to prevent this misinterpretation, we have provided Table 3, which

lists both the main study conclusions and several potential misinterperetations and overstate-

ments that those exposed to this study may have. We urge researchers to examine, critique and

replicate this work in order to better understand both the state of causal inference and methods

of examining it.

Table 3. Hypotheses supported and not assessed or supported by this study.

Study finds support for these hypotheses

Justification: Hypotheses supported by this study:

Primary study conclusions drawn from the main

objectives, design, and results of this study. Replication,

validation, and critical review of the methods and

conclusions by independent parties are still necessary

before results should be considered conclusive.

- The academic articles assessing the relationship

between an exposure and health outcome that were most

shared on social media in 2015 have, on average:

- Relatively low strength of causal inference

- Slightly overstated strength of causal language

- The media articles that were most shared on social

media in 2015 reporting on academic articles assessing

the relationship between an exposure and health

outcome have, on average:

- Overstated strength of causal language relative to both

the language used in the academic article and

independently-assessed strength of causal inference in

that article

- Inaccurate reporting on key properties of the study.

Study DOES NOT assess or find support for these hypotheses

Justification: Hypotheses not assessed/supported by this study:

This study DOES NOT assess these hypotheses.

Reporting any of these conclusions as a result of this

study is inaccurate and a misrepresenting the results and

conclusions of this study. At most, these hypotheses

remain plausible given the results of this study, and could

be considered hypothesis-generating. However,

additional review studies specifically designed to assess

these questions are necessary in order to add any

substantial weight to these hypotheses.

- Academic institutions, including researchers,

universities, and journals, produce mostly weak and/or

overstated evidence.

- Media institutions systematically misreport and

overstate findings and/or select low strength studies on

which to report.

- Social media and the public systematically select and

share misreported, exaggerated, and/or low strength of

causal inference findings

https://doi.org/10.1371/journal.pone.0196346.t003
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Supporting information

S1 Fig. Summary of social media shares in sample. The x-axis shows the rank order of media

articles in the combined Facebook and Twitter popularity lists by social media shares, where

the first item (rank = 1) is the most popularly shared article, the second is the second most

popularly shared article, etc. The y-axis shows the proportion of total shares of all URLs gener-

ated from the NewsWhip Insights search for each social media network, shown on the dark

blue and red lines, respectively, where 100% is the total shares of all URLs meeting our search

criteria. The lines indicate the cumulative proportion of shares reached by each rank (i.e. the

proportion on the y axis at x = 3 for Facebook is the total proportion of Facebook shares

reached from rank 1, 2, and 3). Number of shares is generated from sharing statistics, using

the algorithm described in the Methods section to generate a popularity list order with approx-

imately equal contribution of Facebook and Twitter. The blue area represents the 231 media

articles in the combined list which were screened in order to generate the 64 media articles

(and corresponding 50 academic studies) which were entered into this study. This area

searched represents 68% of all Facebook shares and 45% of all Tweets of URLs meeting our

search criteria.

(PNG)

S2 Fig. Screening and review process summary. This diagram shows the procedure for sys-

tematically generating the review media articles and academic studies for this systematic

review, as per PRISMA guidelines. Reason(s) for rejection was assessed at each level of review

(media article title, article text, or academic article abstract, in that order), but were not

assessed comprehensively.

(PNG)

S1 Table. Domains, institutions, and journals associated with articles in sample. This table

shows the URL domains, listed academic institutions, and academic journals associated with

the media articles and academic studies in our sample. Each n represents one article with the

associated domain/institution/journal, where the percent is out of the total # of media/aca-

demic articles, respectively. For academic institutions, the n indicates the number of studies

with at least one author listed as affiliated with each institution. Affiliations were curated by

authors to be aggregated at the highest level reasonable, such as at the university, hospital, or

company level, so that multiple departments from the same university, for example, would

count as at least one affiliation with that university.

(PDF)

S2 Table. Academic articles reviewed. This table contains the citation of each academic study

reviewed in our sample, and key final summary measures generated by the arbitrator of each

article. Please note that the review process represents the subjective opinions of the randomly

selected reviewers from our pool using an experimental review tool and process. They should

be not be considered conclusive or universal rankings of any individual publication. The full

comments from reviewers of each article are included in the attached full dataset. These data,

as well as additional data including inter-reviewer communication, are available at metacausal.

com/CLAIMS.

(PDF)

S3 Table. Media articles reviewed. This table contains the authors, titles, and URL domain of

each media article reviewed in our sample, the number of shares on each social media platform

within a month of publication as determined by NewsWhip, and a summary measure of

whether the causal language in the media article matched that of the associated academic
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article as generated by the arbitrator. Please note that the review process represents the subjec-

tive opinions of the randomly selected reviewers from our pool using an experimental review

tool and process. They should be not be considered conclusive or universal rankings of any

individual article. The full comments from reviewers of each article are included in the

attached full dataset. These data, as well as additional data including inter-reviewer communi-

cation, are available at metacausal.com/CLAIMS.

(PDF)

S4 Table. Number of articles in each category, by summary measures. This table corre-

sponds to each panel in Fig 3, showing the number of articles/studies in each stratum, as deter-

mined by the arbitrating reviewers.

(PDF)

S1 File. CLAIMS review tool. This file contains the full questionnaire from this study, as

described in the methods section, condensed to a PDF. The full questionnaire is also available

in its original form as a Google Forms survey on metacausal.com/CLAIMS.

(PDF)

S2 File. Protocol brief registered with PROSPERO. This document contains the pre-regis-

tered protocol as registered with PROSPERO on August 5, 2016. The PROSPERO registration

can be found at http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=

CRD42016045197. The full, detailed protocol is available on metacausal.com/CLAIMS/

protocol.

(PDF)

S3 File. PRISMA checklist. This document contains a checklist of items as suggested by the

PRISMA guidelines. The page numbers in the document refer to the pdf of the full protocol,

available at metacausal.com/CLAIMS/protocol.

(PDF)

S4 File. Review dataset. This dataset contains the full results from the review process, includ-

ing both primary and arbitrator reviews of all articles selected into the sample of this study.

Additional data, including the full results from the NewsWhip Insights search, selection

screening process results, inter-reviewer communications during the review process, and man-

ually coded / author curated data are publicly available at metacausal.com/CLAIMS.

(ZIP)
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