
Original article

Early-life exposure to ambient fine particulate

air pollution and infant mortality: pooled

evidence from 43 low- and middle-income

countries

Nihit Goyal ,1,2* Mahesh Karra3,4 and David Canning1,4

1Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore, Singapore, 2The

Whitney and Betty MacMillan Center for International and Area Studies, Yale University, New Haven,

CT, USA, 3Frederick S Pardee School of Global Studies, Boston University, Boston, MA, USA and
4Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA,

USA

*Corresponding author. Lee Kuan Yew School of Public Policy, National University of Singapore, 469C Bukit Timah Rd,

259772 Singapore, Singapore. E-mail: nihit@u.nus.edu

Editorial decision 4 April 2019; Accepted 16 April 2019

Abstract

Background: Many low- and middle-income countries are experiencing high and increas-

ing exposure to ambient fine particulate air pollution (PM2.5). The effect of PM2.5 on infant

and child mortality is usually modelled using concentration response curves extrapo-

lated from studies conducted in settings with low ambient air pollution, which may not

capture its full effect.

Methods: We pool data on more than half a million births from 69 nationally representa-

tive Demographic and Health Surveys that were conducted in 43 low- and middle-

income countries between 1998 and 2014, and we calculate early-life exposure (exposure

in utero and post partum) to ambient PM2.5 using high-resolution calibrated satellite data

matched to the child’s place of residence. We estimate the association between the log

of early-life PM2.5 exposure, both overall and separated by type, and the odds of neonatal

and infant mortality, adjusting for child-level, parent-level and household-level character-

istics.

Results: We find little evidence that early-life exposure to overall PM2.5 is associated with

higher odds of mortality relative to low exposure to PM2.5. However, about half of PM2.5

is naturally occurring dust and sea-salt whereas half is from other sources, comprising

mainly carbon-based compounds, which are mostly due to human activity. We find a

very strong association between exposure to carbonaceous PM2.5 and infant mortality,

particularly neonatal mortality, i.e. mortality in the first 28 days after birth. We estimate

that, at the mean level of exposure in the sample to carbonaceous PM2.5—10.9 mg/m3—

the odds of neonatal mortality are over 50% higher than in the absence of pollution.

Conclusion: Our results suggest that the current World Health Organization guideline of
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limiting the overall ambient PM2.5 level to less than 10 mg/m3 should be augmented with

a lower limit for harmful carbonaceous PM2.5.

Key words: Ambient air pollution, fine particulate matter, pregnancy outcome, child mortality, infant mortality, neo-

natal mortality, Demographic and Health Survey (DHS), Geographic Information System (GIS)

Introduction

Over 2.5 million children die annually within the first

28 days of birth, with three out of four of these neonatal

deaths occurring in Southern Asia and sub-Saharan Africa.1

At the same time, many low- and middle-income countries

are becoming increasingly exposed to adverse environmen-

tal stresses, particularly ambient fine particulate air pollu-

tion (PM2.5),
2 and estimates from the World Health

Organization (WHO) find that over 4.2 million deaths

worldwide can be attributed to ambient air pollution.3

Given the evidence of the relationship between exposure to

ambient air pollution and under-5 mortality,4–10 high and

rising ambient air pollution is likely to be a key determinant

for the continuing high rate of neonatal and child mortality

in low- and middle-income countries.11

The dominant approach in the literature is to model

global mortality due to ambient air pollution, both in chil-

dren under age 5 as well as in adults, using concentration

response curves.12–16 These curves are estimated from

studies in high-income countries. Due to the scarcity of

studies in low-income settings where ambient air pollution

is very high, integrated concentration response curves are

constructed that use results from studies of active smoking

and second-hand smoke to estimate the effect of high levels

of PM2.5. This modelling approach, however, is open to

question, since not only is ambient air pollution in low-

and middle-income countries generally higher than in high-

income countries, but it also has different sources and

toxicity, and hence its effect may be different from that of

tobacco.17–20

Two studies have directly estimated the relationship be-

tween early-life exposure to ambient air pollution and

under-5 mortality at the local level in urban middle-

income settings: one in Mexico City and one in S~ao Paulo,

Brazil.21,22 Both these studies find an association between

intrauterine mortality and air pollution; moreover, the

studies find that mortality was most strongly associated

with exposure to ambient air pollution within a few days

before death, with the strongest association observed for

an increase in the average concentration 3–5 days prior to

death. In addition, the average ambient air-pollution level

has been found to be related to national child-mortality

rates in Africa.23

We improve on this evidence by compiling a global

sample of individual-level child data from a wider range of

low- and middle-income settings, from which we are able

to match child-mortality data to the local ambient PM2.5

pollution level when the children were in utero and in their

first year of birth. After we submitted this for review, a

study with a similar approach to ours was published24

finding a robust relationship between overall PM2.5 and in-

fant mortality in Africa. In comparison to that study, our

sample covers countries worldwide—for which data are

available—and not only in Africa. In addition, we focus on

results for PM2.5 pollution by type, separating naturally oc-

curring dust and sea-salt from other types of PM2.5, which

Key Messages

• A high level of early-life exposure to overall ambient fine particulate matter (PM2.5) is only weakly associated with

higher odds of neonatal mortality in children in low- and middle-income countries.

• There is a strong association between exposure to carbonaceous PM2.5 and mortality in the neonatal period.

• The association between early-life PM2.5 exposure in the form of dust and sea-salt, which make up over half of all

fine particulates, and mortality is weak; however, other types of fine particulates, which are mainly due to human ac-

tivity, are strongly associated with mortality, even at low levels of exposure.

• Reducing ambient carbonaceous PM2.5 could contribute substantially to achieving the Sustainable Development Goal

of lowering neonatal mortality to below 12 per 1000 children by 2030.

• The World Health Organization guideline for overall ambient PM2.5 to be below 10 mg/m3 should be augmented with a

guideline for ambient PM2.5 excluding dust and sea-salt at a lower level.
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we find to be more harmful. Also, we focus more on disag-

gregating the timing of death and examine the relationship

of PM2.5 exposure with death in the first month as well as

the first year after birth.

Although we focus on child mortality in this study, we

recognize that air pollution can also be linked to other

health outcomes, such as respiratory infection, low birth-

weight and child stunting.8,14,25–27 Three recent systematic

reviews and pooled cohort studies found that maternal

exposure to ambient PM2.5 is strongly, and likely causally,

associated with an increase in risk in pre-term birth and

low birthweight,28–30 whereas a third systematic review

found associations between maternal exposure and small-

for-gestational-age births,31 although all reviews reviewed

studies of samples drawn from high-income countries.

Several systematic reviews and meta-analyses have identi-

fied the significant linkages between air pollution and

mortality in adults, both in high-income settings32 as well

as in low- and middle-income settings.33 The Nashville Air

Pollution study was possibly the first to suggest that

chronic exposure to ambient air pollution was related to

neonatal death34 and similar findings have been reported

in several other studies in developed countries,6,8,16,35–40

although there is little evidence that examines the relation-

ship between exposure to ambient air pollution and child

mortality in low- and middle-income settings. Given the

evidence from the literature to date, it is likely that the link

between air pollution and perinatal outcomes (reduced

birthweight, pre-term birth, etc.) is more than an associa-

tion and tilts heavily towards causality.

Methods

In this study, we pool data on children born in the previous

5 years from 69 nationally representative surveys that were

conducted in 43 low- and middle-income countries from

1998 to 2014. We combine the pooled DHS dataset with

high-resolution spatial data on ambient PM2.5 to analyse

the relationship between exposure to ambient air pollution

and child mortality. We focus on PM2.5 because its associa-

tion with child-health outcomes has been found to be more

pronounced than other sizes of particulates.36 However,

the composition and sources of the particulates may matter

in addition to their sizes41,42 and we distinguish dust and

sea-salt, which make up over half of total exposure, from

other types of particulates.

Study population

We obtain data on children born in the last 5 years from the

Demographic and Health Surveys (DHSs), which are na-

tionally representative, cross-sectional household surveys

that cover a range of health topics.43 The DHS employs a

two-stage cluster sampling design, stratifying by region and

urban/rural residence and interviewing about 20–30 women

aged 15–49 per primary sampling unit (a DHS cluster), each

of which generally corresponds to a census enumeration

area and is randomly selected within each stratum.44 For

each woman of reproductive age (aged 15–49) in sampled

households, detailed information is recorded on each of her

births over the previous 5 years, including whether the child

has died and, if so, the age of death. In many DHS surveys,

the location of each cluster of sampled DHS households

(typically between 20 and 30 households) is recorded in the

dataset at the centroid of the sampled households, although

noise is added to the reported coordinates in order to

protect respondent privacy. Specifically, urban clusters are

randomly displaced up to a distance of 2 km from the true

cluster location, whereas rural clusters are randomly dis-

placed up to 5 km45—we account for this geographic pertur-

bation when calculating our exposure as per the DHS

recommended methodology.46 We collected data from all

104 DHS surveys conducted between 1998 and 2014 that

included global positioning system (GPS) data of DHS clus-

ter locations. Of these surveys, 69 surveys are used for the

main analysis based on availability of data on outcomes,

exposures and covariates (see Supplementary Table 2 and

Supplementary Figure 1, available as Supplementary data at

IJE online). After excluding observations with missing data,

our resulting sample consists of 534 476 children born in

34 450 clusters across 43 countries (see Supplementary

Table 3, available as Supplementary data at IJE online).

Exposure

The key explanatory variable in this study is exposure to

PM2.5 measured in micro grams per cubic meter (mg/m3).

Estimates are produced by the Atmospheric Composition

Analysis Group19,47 and are based on triangulation of

three data sources. Aerosol Optical Depth is estimated

from satellite data using both passive data and active laser

scattering. These estimates of fine particulate matter are

bias-corrected and calibrated to available ground-based

monitoring data.19,47 Additionally, they have a model of

land-use and pollution sources, particle composition, dis-

persion in the atmosphere and optical properties that is

used to further adjust the estimates. This source modelling

is also used to determine the composition of the PM2.5 par-

ticles. The data provide annual average PM2.5 overall, and

by type, for the period 1998–2016, at a resolution of

0.01� 0.01� (approximately 1� 1 km). Similar data have

been used by the Global Burden of Diseases studies to

model attributable disability-adjusted life years to ambient

air pollution.14,48
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Sources of fine particulate matter include both natural

sources, mostly desert dust and sea-salt, and anthropogenic

sources, such as emissions from industries, transportation,

residential energy use, electricity generation, biomass burn-

ing and agriculture.18,49 These sources produce different

types of particulates, which in turn may have heteroge-

neous health effects. We therefore report results that disen-

tangle exposures due to naturally occurring dust and

sea-salt from other particulate exposures that are mainly

organic carbon-based and man-made.

The data on PM2.5 are matched temporally and spa-

tially with each birth in our dataset. For infant mortality,

we estimate the exposure of the child in utero pre-birth

and the first year post birth. Given the lack of available

data on gestational age in the DHS, we assume that each

birth was carried to a full 9-month term. This exposure

therefore covers 21 months. This period will overlap with

2 or 3 years of our annual average PM2.5 data. We weight

each year of observed data by the number of months of ex-

posure of the child in that year divided by 12. Our calcula-

tion of early-life PM2.5 exposure assumes that the level of

PM2.5 is constant and uniform across months within a cal-

endar year. For example, for a child who was born in May

2016, her level of early-life PM2.5 exposure for infant mor-

tality would be calculated as the weighted average of:

1. her in utero exposure to PM2.5, which is the sum of

four-twelfths of the PM2.5 level from 2015 (the child’s

first 4 months in utero from September 2015 to

December 2015) and five-twelfths of the PM2.5 level

from 2016 (the child’s last 5 months in utero from

January 2016 to May 2016); and

2. her post-partum level of exposure to PM2.5; 1 year after

birth exposure to be the sum of the remaining seven-

twelfths of the PM2.5 level for 2016, which would cap-

ture her level of exposure from June 2016 to December

2016, and the first five-twelfths of the PM2.5 level for

2017, which would capture her level of exposure from

January 2017 to May 2017.

For neonatal mortality, we calculate the average expo-

sure in the same way, but use data only from 1 month post

birth. For post-neonatal infant mortality, we use the same

exposure as for infant mortality.

We obtain the geographically specific PM2.5 level for

each child in our sample by matching the GPS coordinate

data for each DHS cluster with the annual average ambient

PM2.5 concentrations for that cluster. We construct an

average PM2.5 exposure over the relevant displacement

radius around the reported DHS cluster location (a 2-km

average exposure radius for urban clusters and a 5-km av-

erage exposure radius for rural clusters). The averaging of

the exposure over the displacement radius corrects for the

spatial displacement of the DHS cluster coordinates27 and

is the methodology that is recommended by the DHS.46

This procedure to construct the average PM2.5 exposure is

conducted using QGIS software (version 2.18.24; Open

Source Geospatial Foundation Project). The Zonal

Statistics Plugin of QGIS, which we use to average the

PM2.5 concentration level over the displacement radius,

includes only grid squares whose midpoint falls within the

displacement radius in this computation. On average, an

urban cluster included approximately 10 PM2.5 grid

squares whereas a rural cluster included approximately 65

grid squares.

Outcomes

We measure three outcomes—infant mortality, deaths that

occur in the first year after birth and two sub-periods, neo-

natal morality that occurs in the first 28 days post birth

and post-neonatal infant mortality. Recent global evidence

finds that 76% of all deaths among children under age 5

occur within the first year of life and that 46.2% of all

deaths among children under age 5 (and 61% of all deaths

among children under age 1) occur within the first month

of life.1 The neonatal and post-neonatal infant mortality

are mutually exclusive categories. The sample for infant

mortality comprises all births more than 1 year before the

survey so that we can observe whether infant mortality has

occurred. The sample for neonatal mortality is all births at

least 28 days before the survey so we can observe whether

neonatal mortality has occurred. The sample for post-neo-

natal infant mortality consists of children who were born

at least 1 year before the survey but survived to at least

28 days of age. A difficulty with examining under-5 mor-

tality in our sample is that we do not observe whether a

child survives to age 5, since all the children are aged less

than 5 in the survey.

Statistical analysis

We estimate the relationship between ambient early-life

PM2.5 exposure and child mortality using multivariate lo-

gistic regressions. We provide results for the overall level

of PM2.5 and separate regressions where we have two ex-

posure variables: PM2.5 with and without dust and sea-

salt.

All regressions control for child-level, parental-level and

household-level characteristics.50 The child-level variables

are whether the child was first born, the birth order of the

child, the interval from the previous birth, whether the

child was a multiple birth and the sex of the child.

Parental-level characteristics include the age of the mother,

the education level of the mother, whether the mother used
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tobacco51,52 and the education level of the mother’s part-

ner. Household-level characteristics include the place of

residence (rural or urban), the type of cooking fuel used in

the household (solid cooking fuel has been linked to indoor

air pollution),53 the type of toilet facility accessible to the

household (flush-toilet facility or not), the source of drink-

ing water available to the household (piped drinking water

or not) and the wealth quintile of the household.54–58

These covariates were selected based on existing evidence

on the key determinants of infant mortality in low- and

middle-income settings.59–61 In addition, all our regres-

sions include subnational region fixed effects and survey

dummies. Finally, we include a country-specific trend in

birth year62,63 to capture improvements in child health

over time.

Estimates from our regressions are presented as odds ra-

tios (ORs) with standard errors clustered at the DHS clus-

ter level to account for a sampling methodology and allow

for correlations between outcomes for children within a

DHS cluster.

Recent studies have calibrated the relationship between

the ambient PM2.5 level and child mortality by using either

a logarithmic concentration response curve or an inte-

grated exposure response curve.36,64 For our main model,

we estimate the association between early-life PM2.5 expo-

sure and mortality using logarithmic concentration re-

sponse curves. We test this functional form assumption by

comparing it with a linear response curve and a spline with

three knots. In addition, we run a regression of neonatal

mortality on categorical PM2.5 exposure by dividing the

sample into eight equal bins of PM2.5 level, both overall as

well as by source.

We also conduct several robustness checks of our main

specification. An important issue is that mothers and chil-

dren may have moved between conception and the time of

the survey, which would render our exposure variables in-

valid. Information on such migration is not recorded in all

surveys. We therefore give results restricting the sample to

children for whom we know the mother has not migrated.

This restricts the sample size by dropping many surveys

that do not have this information. We also give results that

drop country-specific trends in the birth year and subna-

tional region fixed effects.

As an additional analysis, we estimate the country-

specific relationships between early-life exposure to PM2.5

and neonatal mortality for each country in our sample by

separating out exposure by source and using the same fully

adjusted logarithmic response curve specification as our

main model. We then conduct a meta-analysis that relates

the country-specific estimates for a one-unit increase in the

logarithm of the PM2.5 level to the pooled global estimate

and we present these estimates using a Forest plot. In our

meta-analysis, the relative contribution (weight) of each

country-specific estimate to the pooled estimate is calcu-

lated and the 95% confidence interval (CI) from each

country-specific analysis is estimated. We include random

effects in accordance with the DerSimonian and Laird

method,65 and we conduct a test of whether the overall

pooled estimate is equal to the null as well as a test for het-

erogeneity, i.e. whether the country-specific estimates are

the same. This heterogeneity is quantified using the I-

squared measure.66

All analyses are conducted using STATA software (ver-

sion STATA/SE 14.1; StataCorp LP, College Station,

Texas, USA).

Results

Table 1 presents descriptive statistics of the key outcome

variables in our analysis. For neonatal mortality, our pri-

mary outcome of interest, we find that 2.8% of children in

the sample of 529 974 children who were potentially ex-

posed to mortality in the first month of life died in the neo-

natal period. Similarly, 2.8% of children of a sample of

413 397 potentially exposed children died in the post-neo-

natal infant period (between 1 month and 1 year post par-

tum). Finally, we find that 5.6% of children in our global

sample died within the first year of life.

Figure 1 presents the geographical distribution of an-

nual average ambient PM2.5 concentrations in 1998 and

2014 and shows that the highest concentrations in low-

and middle-income countries occur in desert regions, such

as the Sahara, the Arabian Gobi and the Thar deserts, due

to dust. Figure 2 shows the distribution of PM2.5 concen-

trations excluding dust and sea-salt in 1998 and 2014.

Based on the figure, we observe high concentrations in the

Eastern USA, parts of the Western USA (the Californian

central valley and the South Coast Air Basin, in particular),

Europe and in South and Eastern Asia, due to human in-

dustrial and transportation activities, as well as in the

Amazon and sub-Saharan Africa due to biomass burning.

Table 1. Descriptive statistics: outcomes

Number of

observations

Number

of cases

Proportion

Neonatal death 529 874 15 042 0.028

Post-neonatal infant death 413 397 11 730 0.028

Infant death 425 440 23 773 0.056

The number of observations differ for the three outcomes because the sam-

ple for neonatal mortality consists of children who were born at least 1 month

before the survey date, whereas the samples for post-neonatal infant mortality

and infant mortality consist of children who were born at least 1 year before

the survey date.
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Table 2 presents descriptive statistics of early-life PM2.5

exposure for the neonatal sample, both in absolute levels

as well as in logged levels, the latter of which are used for

our main logarithmic concentration response analysis.

Descriptive statistics for exposures for the post-neonatal

infant and infant samples are presented in Supplementary

Tables 4 and 5, available as Supplementary data at IJE on-

line. The mean exposure to overall PM2.5 in the sample is

24.43mg/m3 and a majority of children in our sample are

exposed to PM2.5 levels that exceed the WHO guideline of

10mg/m3 (Table 2). The mean exposure to PM2.5 without

dust and sea-salt was 10.88mg/m3, whereas the mean expo-

sure to PM2.5 from dust and sea-salt was 13.55mg/m3.

Figure 3 presents box plots of early-life exposure to

PM2.5 without dust and sea-salt in our sample by country.

We find that Nepal suffers from the worst pollution in our

sample, due to an inflow of pollution from India on the

prevailing south-westerly winds and the bowl-shaped to-

pography of the Kathmandu valley, which can lead to pol-

lutants being trapped in the area.67,68 Some sub-Saharan

African countries, such as the Democratic Republic of

Congo, also report a high level of ambient air pollution

from non-dust and sea-salt sources, which may be due to

high levels of biomass burning.47

Descriptive statistics for the selected covariates for our

neonatal-mortality sample are presented in Table 3. We

find that 82% of households of children in our neonatal

sample use solid cooking fuel, while 16% of households

for the sample have access to a flush toilet and 31% of

households have access to piped water. Almost 30% of

children in our neonatal sample are from urban house-

holds, whereas 72% of children are born to mothers who

have a primary education or less. Roughly half of the sam-

ple is female, while 44% of children in the sample are born

following a short birth interval (within 3 years of the previ-

ous birth). Descriptive statistics for covariates for the post-

neonatal infant and infant samples are presented in

Supplementary Tables 4 and 5, available as Supplementary

data at IJE online.

Our main analysis estimates the relationship between

exposure to ambient PM2.5 and mortality using logarith-

mic concentration responses. We find the association be-

tween early-life exposure to overall PM2.5 and neonatal,

post-neonatal infant and infant mortality to be inconclu-

sive (Table 4, columns 1–3). On the other hand, the esti-

mated associations between our selected covariates and

mortality are in the expected direction. Being a female

child, having a mother or a mother’s partner with higher

Figure 1. Geographic distribution of overall annual ambient PM2.5 concentration in 1998 (top) and 2014 (below). Observations above 100 lg/m3 in the

data have been capped at 100 lg/m3 in the figure for visualization.
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educational attainment and having access to a flush-toilet

facility are associated with lower odds of mortality,

whereas shorter birth intervals, being a multiple birth and

maternal use of tobacco are associated with higher odds of

child mortality. The estimated coefficients on maternal age

depict a U-shaped association with mortality, with ages in

the interval 30–34 being associated with the lowest odds.

Use of solid cooking fuel is not associated with mortality,

possibly due to the correlation between the use of solid

cooking fuel and ambient PM2.5 in low- and middle-

income countries (see Supplementary Tables 6–8, available

as Supplementary data at IJE online).69

When disaggregating PM2.5 exposure by source type,

i.e. from dust and sea-salt vs from other, mainly anthropo-

genic, sources, as shown in Table 5, we find that the odds

of neonatal mortality strongly increase with increase in ex-

posure to early-life PM2.5 without dust and sea-salt (OR:

1.22; 95% CI: 1.11, 1.35). In particular, our estimated OR

of 1.22 on the log PM2.5 exposure variable implies that a

doubling in the level of PM2.5 without dust and sea-salt is

associated with a 14.9% increase in the odds of neonatal

mortality. While we do not find any relationship between

ambient PM2.5 without dust and sea-salt and post-neonatal

infant mortality, we also find a strong association between

exposure to early-life PM2.5 without dust and sea-salt and

infant mortality, which includes neonatal deaths (OR:

1.13; 95% CI: 1.04, 1.23); here, a doubling of the level of

PM2.5 without dust and sea-salt is associated with a 8.8%

increase in the odds of mortality before age 1. In contrast,

Table 2. Descriptive statistics: exposures for the neonatal-

mortality sample

Variable, statistic Mean SD

Early-life all source PM2.5 level 24.43 14.56

Early-life PM2.5 level without dust and sea-salt 10.88 7.47

Early-life dust and sea-salt level 13.55 14.80

Log (1 þ early-life all source PM2.5 level) 3.05 0.65

Log (1 þ early-life PM2.5 level without dust

and sea-salt)

2.29 0.63

Log (1 þ early-life dust and sea-salt level) 2.05 1.20

Number of observations 529 874

The sample for neonatal mortality is different from the post-neonatal in-

fant-mortality and infant-mortality samples. Descriptive statistics for expo-

sure for the post-neonatal infant-mortality sample and the infant-mortality

sample are shown in an online appendix, available as Supplementary data at

IJE online.

Figure 2. Geographic distribution of annual ambient PM2.5 concentration without dust and sea-salt in 1998 (top) and 2014 (below). Observations

above 60 lg/m3 in the data have been capped at 60 lg/m3 in the figure for visualization.
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we do not find strong associations between exposure to

PM2.5 from dust and sea-salt and either overall or age-

specific mortality.

Based on the model results in column 1 of Tables 4 and

5, we plot the ORs of neonatal mortality together with

their 95% CIs at different levels of early-life exposure to

PM2.5, both overall as well as with and without dust and

sea-salt (Figures 4 and 5). These figures confirm our find-

ings from the tables, where we find strong associations be-

tween exposure to PM2.5 without dust and sea-salt and

neonatal mortality but only a weak association between

neonatal mortality and either early-life exposure to overall

PM2.5 or exposure to PM2.5 from only dust and sea-salt.

We also examine the robustness of our results to differ-

ent specifications of the functional form of the exposure ef-

fect on mortality. Instead of a log of PM2.5 exposure, we

estimate models with a linear response and with a spline

with three knots. Findings from these analyses are pre-

sented in Supplementary Tables 13 and 14, available as

Supplementary data at IJE online. The corresponding pre-

dicted probabilities of neonatal mortality that are derived

from these estimates across levels of exposure to PM2.5

without dust and sea-salt are plotted in Figure 6; these are

based on the same models as Figure 5 but with different

functional forms. We also show the 95% CI for the spline

with three knots. The predicted probabilities of neonatal

mortality under our preferred logarithmic specification all

lie within the 95% CI for the spline with three knots. The

linear model, however, is outside this CI for a part of the

range.

We conduct several robustness checks to confirm our

main findings; tabular results from our robustness checks

are presented in the Supplementary Materials section,

available as Supplementary data at IJE online. First, we

limit the sample to children for whom we are certain that

their place of birth matches the place of interview, which is

not recorded in all DHS surveys (column 1 of

Supplementary Tables 10–12, available as Supplementary

Figure 3. Box plot of early-life PM2.5 level without dust and sea-salt by country for the neonatal-mortality sample (in lg/m3). The data across countries

are not strictly comparable, as different countries may have been surveyed in different years.
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data at IJE online). We find that our results for neonatal

mortality are robust. In running models that exclude

country-specific trends in the birth year (column 2 of

Supplementary Tables 10–12, available as Supplementary

data at IJE online) and subnational region fixed effects

(column 3 of Supplementary Tables 10–12, available as

Supplementary data at IJE online), we similarly find our

results for neonatal mortality to be robust to these sensitiv-

ity checks.

Finally, we estimate the relationship between exposure

without dust and sea-salt and neonatal mortality for each

country in our sample using the main, fully adjusted log

specification and then conduct a meta-analysis to compare

the country-specific results against the summary estimate

of the meta-analysis. The results from the country-specific

regressions and the meta-analysis are presented in a Forest

plot (Figure 7). Findings from this analysis suggest that the

estimates of the association from individual countries vary

modestly. This is confirmed by the I-squared statistic of

23.3% (p¼ 0.09), which suggests modest but not substan-

tial heterogeneity across the country-specific coefficients.

Given the large CIs around the countries, the results from

the meta-analysis suggest that individual country-level

studies using DHS data may not have sufficient power to

be able to detect a relationship due to the small sample size

within each country dataset.

Discussion

In this study, we combine child-level health data from 43

low- and middle-income countries with high-resolution

spatial data on ambient fine particulate matter (PM2.5) to

analyse the relationship between exposure to ambient air

pollution and child mortality. We find early-life exposure

to overall PM2.5 does not have a strong association with in-

fant mortality. When we disaggregate PM2.5 exposure by

source, however, we find a strong association between

Table 3. Descriptive statistics: covariates for the neonatal-

mortality sample

Variable, statistic Mean SD Number

of cases

Birth order (number) 3.64 2.40

Household uses solid cooking fuel

No 0.18 93 382

Yes 0.82 436 492

Mother uses tobacco

No 0.96 511 123

Yes 0.04 18 751

Short birth interval

No 0.57 299 899

Birth interval <18 months 0.06 30 432

Birth interval 18–35 months 0.38 199 543

Multiple birth

No 0.97 513 376

Yes 0.03 16 498

Female

No 0.51 269 179

Yes 0.49 260 695

First child

No 0.79 419 662

Yes 0.21 110 212

Age band of mother (in years)

15–19 0.05 25 253

20–24 0.22 116 138

25–29 0.28 149 224

30–34 0.21 112 207

35–39 0.15 77 946

40–44 0.07 37 002

45–49 0.02 12 104

Education level of mother

None 0.38 203 756

Primary 0.34 181 335

Secondary 0.23 120 507

Higher 0.05 24 276

Education level of mother’s partner

None 0.32 169 323

Primary 0.32 168 513

Secondary 0.29 154 810

Higher 0.07 37 228

Household has access to flush toilet

No 0.84 442 777

Yes 0.16 87 097

Household has access to piped water

No 0.69 368 011

Yes 0.31 161 863

Urban residence

No 0.71 375 082

Yes 0.29 154 792

Wealth quintile of household

Poorest 0.26 136 738

Poor 0.22 117 026

Middle 0.20 106 898

(Continued)

Table 3. Continued

Variable, statistic Mean SD Number

of cases

Rich 0.18 92 894

Richest 0.14 76 318

Number of observations 529 874

The sample for neonatal mortality is different from the post-neonatal in-

fant-mortality and infant-mortality samples. Descriptive statistics for the

covariates for the post-neonatal infant-mortality sample and the infant-mor-

tality sample are shown in an online appendix, available as Supplementary

data at IJE online. For continuous variables, the mean and standard deviation

are presented. For discrete (categorical, binary) variables, the mean (propor-

tion of cases) as well as the number of cases for that category are presented.
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exposure excluding dust and sea-salt and infant mortality,

with almost all the burden falling on mortality in the neo-

natal period. Our findings indicate that exposure to partic-

ulates due to human activity may be particularly harmful

to child health and development. Our results suggest that

the mechanism responsible for the association between am-

bient air-pollution exposure and neonatal mortality may

depend on the composition and toxicity of particulate

matter.

Two other studies are similar to our study in that they

examine the association of ambient PM2.5 on infant or

child mortality using evidence from Africa.23,24 The first

focuses on the association of national average level of ex-

posure with national average under-5 mortality rate. We

improve on this by using more detailed spatial matching of

exposure and infant mortality. The study closest to ours

uses the same data and a very similar method, matching in-

dividual infant deaths from the DHS to cluster-level PM2.5

exposure. However, several key differences exist. First, the

sample for that study is limited to countries in Africa,

whereas we include all countries for which GPS data are

available in the DHS and spatial matching can be con-

ducted. Second, they focus on the relationship between in-

fant mortality with overall PM2.5 exposure, whereas we

focus on the disaggregated relationship by type of PM2.5.

We find a much stronger association for PM2.5 without

dust and sea-salt with mortality than for PM2.5 due to dust

and sea-salt. Third, whereas they focus on the association

of PM2.5 exposure with infant mortality, we also

disaggregate the time of death between the neonatal and

post-neonatal periods. We find that, in our sample, the as-

sociation of infant mortality with ambient PM2.5 exposure

is driven primarily by deaths during the neonatal period

rather than during the post-neonatal period. Whereas they

estimate that an increase of 10 mg/m3 in overall PM2.5 level

is associated with a 9% (95% CI: 4, 14%) increase in

Table 4. The association of log of early-life overall PM2.5 level on neonatal, post-neonatal infant and infant mortality

(1) (2) (3)

Neonatal death Post-neonatal infant death Infant death

Log(1 þ neonatal early-life overall PM2.5 level) 1.08 [0.95, 1.23] – –

Log(1 þ infant early-life overall PM2.5 level) – 0.89 [0.76, 1.05] 0.99 [0.89, 1.12]

Household uses solid cooking fuel (1 ¼ yes) 0.99 [0.91, 1.08] 1.01 [0.90, 1.13] 1.02 [0.94, 1.10]

Mother uses tobacco (1 ¼ yes) 1.21*** [1.10, 1.32] 1.25*** [1.14, 1.38] 1.24*** [1.16, 1.34]

Birth interval: <18 months 3.38*** [3.17, 3.61] 2.75*** [2.56, 2.96] 3.24*** [3.07, 3.41]

Birth interval: 18–35 months 1.40*** [1.34, 1.46] 1.51*** [1.44, 1.58] 1.52*** [1.47, 1.58]

Multiple birth: (1 ¼ yes) 6.82*** [6.42, 7.24] 3.20*** [2.95, 3.48] 5.19*** [4.92, 5.48]

Female (1 ¼ yes) 0.75*** [0.73, 0.78] 0.92*** [0.89, 0.95] 0.83*** [0.81, 0.85]

First child (1 ¼ yes) 2.35*** [2.20, 2.50] 1.49*** [1.39, 1.60] 1.94*** [1.85, 2.04]

Age of mother: 15–19 years 1.17*** [1.09, 1.27] 1.34*** [1.21, 1.48] 1.29*** [1.20, 1.38]

Age of mother: 25–29 years 0.86*** [0.82, 0.91] 0.92** [0.87, 0.98] 0.88*** [0.84, 0.92]

Age of mother: 30–34 years 0.91** [0.85, 0.98] 0.85*** [0.79, 0.91] 0.87*** [0.82, 0.92]

Age of mother: 35–39 years 1.04 [0.96, 1.13] 0.88** [0.80, 0.96] 0.93* [0.87, 0.99]

Age of mother: 40–44 years 1.20*** [1.08, 1.33] 0.83** [0.74, 0.93] 0.98 [0.91, 1.07]

Age of mother: 45–49 years 1.53*** [1.34, 1.75] 0.89 [0.77, 1.04] 1.14* [1.02, 1.27]

Education level of mother: primary 1.01 [0.96, 1.07] 0.96 [0.90, 1.01] 0.99 [0.95, 1.03]

Education level of mother: secondary 0.95 [0.89, 1.02] 0.86*** [0.79, 0.93] 0.89*** [0.84, 0.95]

Education level of mother: higher 0.88 [0.76, 1.01] 0.61*** [0.50, 0.74] 0.74*** [0.65, 0.83]

Education level of mother’s partner: primary 0.99 [0.94, 1.05] 0.93* [0.88, 0.99] 0.96* [0.92, 1.00]

Education level of mother’s partner: secondary 0.92** [0.87, 0.98] 0.90** [0.84, 0.96] 0.90*** [0.85, 0.94]

Education level of mother’s partner: higher 0.80*** [0.72, 0.88] 0.83** [0.73, 0.94] 0.80*** [0.73, 0.87]

Household has access to flush toilet (1 ¼ yes) 0.92 [0.85, 1.00] 0.85** [0.77, 0.94] 0.89** [0.84, 0.96]

Household has access to piped water (1 ¼ yes) 0.98 [0.94, 1.03] 0.97 [0.91, 1.03] 0.97 [0.93, 1.01]

Urban residence (1 ¼ yes) 0.98 [0.93, 1.04] 1.03 [0.97, 1.10] 1.02 [0.97, 1.06]

Wealth quintile: poor 1.00 [0.95, 1.06] 0.98 [0.93, 1.04] 0.98 [0.94, 1.02]

Wealth quintile: middle 1.01 [0.96, 1.07] 0.95 [0.90, 1.01] 0.97 [0.93, 1.02]

Wealth quintile: rich 1.02 [0.96, 1.09] 0.90** [0.84, 0.97] 0.95* [0.90, 1.00]

Wealth quintile: richest 0.96 [0.88, 1.05] 0.78*** [0.71, 0.86] 0.86*** [0.80, 0.93]

Observations 528 889 411 164 425 100

*p< 0.05; **p< 0.01; ***p< 0.001.

The unit of observation is the child. Odds ratios are presented with 95% confidence intervals in the square brackets. All regressions include country-specific

time trends with survey and subnational region fixed effects, and standard errors are clustered at the primary sampling unit (DHS cluster) level.
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infant mortality, we find almost no association between

overall PM2.5 level and infant mortality (OR: 1.00, 95%

CI: 0.99, 1.00) for the linear specification (Supplementary

Table 9, column 3, available as Supplementary data at IJE

online). However, we use somewhat different covariates

from that study and control for subnational region fixed

effects, survey fixed effects and country-specific birth-year

trend whereas they control for cluster fixed effects, birth-

year fixed effects and country-month effects.

There are several important limitations to this study and

its findings. Our study does not identify the biological mecha-

nism through which exposure to PM2.5 may affect child mor-

tality. Exposure to pollution after birth is likely to lead to

inflammation and oxidative stress. However, there may also

be an in utero effect of maternal exposure to air pollution due

to particles that enter the mother’s bloodstream and interfere

with uterine growth during pregnancy due to decreased ex-

change of oxygen and nutrients across the placenta.70

The issue of the key period of exposure, in utero or

shortly after birth, might be addressed if we had greater

temporal specificity of exposure, rather than our annual

average exposure levels. Since our annual PM2.5 concentra-

tion data are not measured at a sufficiently high frequency

(e.g. daily or monthly) for us to identify the extent to

which the association between air pollution and mortality

is driven by in utero exposure or by post-partum exposure,

we have therefore defined early-life exposure to ambient

PM2.5 to cover the in utero and first-month post-partum

periods for neonatal mortality and the in utero and

first-year post-partum periods for infant mortality. We are

unable to specifically disentangle the in utero impact of ex-

posure to PM2.5 from the post-partum impact.

Table 5. The association of log of early-life PM2.5 level, by source, on neonatal, post-neonatal infant, and infant mortality

(1) (2) (3)

Neonatal death Post-neonatal infant death Infant death

Log (1 þ neonatal early-life PM2.5 level without dust and sea-salt) 1.22*** [1.11, 1.35] – –

Log (1 þ neonatal early-life dust and sea-salt level) 0.98 [0.89, 1.08] – –

Log (1 þ infant early-life PM2.5 level without dust and sea-salt) – 1.07 [0.96, 1.20] 1.13** [1.04, 1.23]

Log (1 þ infant early-life dust and sea-salt level) – 0.87* [0.76, 0.99] 0.96 [0.87, 1.05]

Household uses solid cooking fuel 0.99 [0.91, 1.08] 1.01 [0.90, 1.13] 1.02 [0.94, 1.10]

Mother uses tobacco 1.21*** [1.10, 1.33] 1.26*** [1.14, 1.38] 1.25*** [1.16, 1.34]

Birth interval, < 18 months 3.39*** [3.18, 3.61] 2.75*** [2.56, 2.96] 3.24*** [3.07, 3.42]

Birth interval, 18–35 months 1.40*** [1.34, 1.47] 1.51*** [1.44, 1.58] 1.52*** [1.47, 1.58]

Multiple birth 6.81*** [6.41, 7.24] 3.20*** [2.95, 3.48] 5.19*** [4.92, 5.48]

Female 0.75*** [0.73, 0.78] 0.92*** [0.89, 0.95] 0.83*** [0.81, 0.85]

First child 2.35*** [2.21, 2.50] 1.49*** [1.39, 1.60] 1.94*** [1.85, 2.04]

Age of mother, 15–19 years 1.17*** [1.09, 1.27] 1.34*** [1.21, 1.48] 1.29*** [1.20, 1.38]

Age of mother, 25–29 years 0.86*** [0.82, 0.91] 0.92** [0.87, 0.98] 0.88*** [0.84, 0.92]

Age of mother, 30–34 years 0.91** [0.85, 0.98] 0.85*** [0.79, 0.91] 0.87*** [0.82, 0.92]

Age of mother, 35–39 years 1.04 [0.96, 1.13] 0.88** [0.80, 0.96] 0.93* [0.87, 0.99]

Age of mother, 40–44 years 1.20*** [1.08, 1.32] 0.83** [0.74, 0.93] 0.98 [0.90, 1.07]

Age of mother, 45–49 years 1.53*** [1.33, 1.75] 0.89 [0.77, 1.04] 1.14* [1.02, 1.27]

Education level of mother, primary 1.01 [0.96, 1.06] 0.95 [0.90, 1.01] 0.98 [0.94, 1.02]

Education level of mother, secondary 0.95 [0.88, 1.02] 0.85*** [0.79, 0.92] 0.89*** [0.84, 0.94]

Education level of mother, higher 0.88 [0.76, 1.01] 0.61*** [0.50, 0.74] 0.73*** [0.65, 0.83]

Education level of mother’s partner, primary 0.99 [0.94, 1.04] 0.93* [0.88, 0.98] 0.95* [0.91, 0.99]

Education level of mother’s partner, secondary 0.92** [0.86, 0.97] 0.89*** [0.83, 0.95] 0.89*** [0.85, 0.94]

Education level of mother’s partner, higher 0.79*** [0.71, 0.88] 0.83** [0.73, 0.93] 0.79*** [0.73, 0.87]

Household has access to flush toilet 0.92 [0.85, 1.00] 0.85** [0.77, 0.94] 0.90** [0.84, 0.96]

Household has access to piped water 0.99 [0.94, 1.04] 0.97 [0.92, 1.03] 0.97 [0.93, 1.01]

Urban residence 0.98 [0.93, 1.04] 1.03 [0.97, 1.10] 1.02 [0.97, 1.06]

Wealth quintile, Poor 1.00 [0.95, 1.06] 0.98 [0.93, 1.04] 0.98 [0.94, 1.02]

Wealth quintile, Middle 1.01 [0.95, 1.07] 0.95 [0.89, 1.01] 0.97 [0.93, 1.01]

Wealth quintile, Rich 1.02 [0.96, 1.09] 0.90** [0.84, 0.96] 0.95* [0.90, 1.00]

Wealth quintile, Richest 0.95 [0.87, 1.04] 0.78*** [0.70, 0.86] 0.86*** [0.80, 0.92]

Observations 528 889 411 164 425 100

*p< 0.05; **p< 0.01; ***p< 0.001.

The unit of observation is the child. Odds ratios are presented with 95% confidence intervals in the square brackets. All regressions include country-specific

time trends with survey and subnational region fixed effects, and standard errors are clustered at the primary sampling unit (DHS cluster) level.
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Our exposure assessment is subject to misclassification

as we lack information on the exact DHS cluster location

and also our averaging of the PM2.5 concentration level

over the displacement radius of the DHS cluster excludes

some grid squares in case of a partial overlap. However,

our data exhibit high spatial homogeneity in the PM2.5

concentration level over small distances and the point esti-

mate of the PM2.5 concentration level at the reported DHS

cluster location has more than 99% correlation with the

average PM2.5 concentration level over the DHS cluster

displacement radius. Our data on PM2.5 exposure by type

are based on the modelling of sources of pollution and

how it disperses rather than direct observation of the type

of pollution. It may therefore be less reliable than the over-

all PM2.5 data.

Also important to the discussion of the relationship be-

tween exposure to PM2.5 and mortality is the role of gesta-

tional age and pre-term birth. Due to limitations in our

dataset, we are unable to measure a child’s gestational age

and, therefore, assume that each child in our sample is car-

ried to term, which is reflected in our calculation of a

child’s level of in utero exposure to PM2.5. More generally,

however, it may be that gestational age and pre-term birth

mediate the relationship between exposure to ambient air

pollution and child-mortality outcomes. Given the

literature on (i) the relationship between air pollution and

gestational age and (ii) the relationship between gestational

age and child mortality, it would then seem that control-

ling for gestational age, as a likely mediator, would lead to

bias in our analysis.

Our key explanatory variable, early-life exposure to

ambient PM2.5, is subject to measurement error due to

the paucity of ground-based air-quality monitoring

data in low- and middle-income countries. Estimates

that are based on satellite data are calibrated to match

these ground-based measures, but this may not work

well in regions that lack dense monitoring networks. In

addition, diurnal and seasonal variability in the PM2.5

concentrations may also influence child-health out-

comes, but we do not have this information in our

dataset.

Furthermore, we are unable to control for the more de-

tailed composition of ambient PM2.5 or the level of other

air pollutants, which may bias our estimates of the mortal-

ity effects of PM2.5.71 More specifically, we are unable to

account for the level of ultrafine particles from traffic pol-

lution and from other pollutants such as O3 and NO2,

which together represent a range of pollutants for which

we do not have global data and which are also likely to be

correlated with PM2.5. As a result, our estimates may be

Figure 4. Odds ratios and corresponding 95% confidence intervals of neonatal death for early-life overall PM2.5 level based on a logarithmic concen-

tration response curve. The graph was created based on the regression result in Table 4, column 1.
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Figure 6. Predicted probability of neonatal death across alternative model specifications.

Figure 5. Odds ratios and corresponding 95% confidence intervals of neonatal death for exposure to early-life PM2.5 level without dust and sea-salt

and exposure to early-life dust and sea-salt based on a logarithmic concentration response curve. The graph was created based on the regression re-

sult in Table 5, column 1.
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capturing a more general association of pollution with

mortality rather than a specific association from PM2.5.

Our global sample pools together data on all births over

the 5 years preceding the survey date for women of repro-

ductive age (ages 15–49) who lived in the sampled house-

holds. Since these data on births are reported by mothers,

however, we may be missing data on children in the house-

hold whose mothers have died or who were not present at

the time of the survey. Finally, our findings may suffer

from residual confounding from omitted variables that

are correlated with PM2.5 exposure as well as child

mortality.

Conclusion

Children in our sample experienced an average PM2.5

level nearly two and a half times the WHO-recommended

guideline of 10 lg/m3. About half of this exposure was due

to dust and sea-salt whereas half was from other, mainly

anthropogenic, sources. Our results indicate that children

with higher exposure to ambient PM2.5 without dust and

sea-salt face substantially higher odds of neonatal mortal-

ity, even at levels well below the WHO-recommended

guideline of 10 lg/m3. Policies that aim to reduce ambient

air pollution in low- and middle-income countries could

contribute significantly to reducing neonatal mortality

from the level of 28 per 1000 births observed in our sample

and meeting the Sustainable Development Goal of lower-

ing neonatal mortality below 12 per 1000 children by

2030.

Supplementary data

Supplementary data are available at IJE online.

Figure 7. Country-specific analysis of the association of early-life PM2.5 level without dust and sea-salt with neonatal death.
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