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Score-based denoising for atomic
structure identification
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Vasily Bulatov 1 & Fei Zhou 1

Wepropose an effectivemethod for removing thermal vibrations that complicate the task of analyzing
complex dynamics in atomistic simulation of condensed matter. Our method iteratively subtracts
thermal noises or perturbations in atomic positions using a denoising score function trained on
synthetically noised but otherwise perfect crystal lattices. The resulting denoised structures clearly
reveal underlying crystal order while retaining disorder associated with crystal defects. Purely
geometric, agnostic to interatomic potentials, and trainedwithout inputs from explicit simulations, our
denoiser can be applied to simulation data generated from vastly different interatomic interactions.
The denoiser is shown to improve existing classificationmethods, such as common neighbor analysis
and polyhedral template matching, reaching perfect classification accuracy on a recent benchmark
dataset of thermally perturbed structures up to the melting point. Demonstrated here in a wide variety
of atomistic simulation contexts, the denoiser is general, robust, and readily extendable to delineate
order from disorder in structurally and chemically complex materials.

In molecular dynamics (MD) of condensed matter, characterization
methods for the simulated atomic configurations aim tounravelmeaningful
structural features such as crystalline phases and defects. As the simulations
are typically carried out at finite temperatures, accurate characterization of
structures and defects is complicated by perturbations in atomic positions
induced by thermal vibrations. To this end, increasingly sophisticated
methods have been proposed over the years for the identification of local
atomic motifs in simulated configurations1–9.

Existing characterization methods usually focus on either ordered
crystalline phases or crystal defects. For example, the common neighbor
analysis (CNA) algorithm2 identifies simple crystal structures such as the
body-centered cubic (BCC), face-centered cubic (FCC), and hexagonal
closed-packed (HCP). Other commonly used methods for structure
identification include bond order analysis1,10, centrosymmetry analysis11,
adaptive template analysis12, and polyhedral template matching (PTM)5.
On the other hand, the dislocation extraction algorithm (DXA)13,14

identifies dislocation defects within an a priori known ordered crystalline
environment. All of the mentioned methods rely heavily on domain
knowledge, physical intuition, and heuristics (for review, see for exam-
pleciteStukowski2012MSMSE-review). As such, they are often applica-
tion- and/or structure-specific and are not always easy to generalize
beyond their original scope of applicability. More recently, data-driven
machine-learning (ML) approaches are being developed for performing
ordered phase classification and sometimes defect detection15–22, often
employing existing tools such as Steinhardt order parameters1 for

featurization. While comparatively more straightforward to develop with
modern ML pipelines, these emerging methods require considerable
amounts of carefully curated training data and are often informed by
material-specific physics and domain knowledge, which limit the trans-
ferability of the trained models.

In this work, we take a probabilistic and physics-agnostic approach by
supplementing structure characterization tasks with a denoising model.
Consider a structure classifier C(x) where x denotes a configuration con-
sisting of atomic coordinates r and auxiliary information z regarding cell
dimensions and atom types. For a cell of N atoms, Ci(x)∈ {1,…,Ns} is a
classification of atom i (1 ≤ i ≤N) into one of the Ns candidate structure
types. Since C(x) is discrete, there exists a finite region of perturbing dis-
placements {ϵ} within which C(x+ ϵ)≡C(x). Classification is easy for
configurationswithin the ϵ-neighborhoods of the ideal candidate structures,
while thosebeyond theboundaries pose challenges toC. Rather thandirectly
improvingC, we propose to first optimize any configuration x by bringing it
towards the “closest” ideal structures (details in the section “Equivariant
graph network model (NequIP)”) before classification. This amounts to an
improved composite classifier C ∘ D, where D is a denoising function to
remove perturbations with respect to certain ideal reference structures. The
probabilistic interpretation is that iterative applications of D, or Dn, gra-
dually increase the similarity of a configuration toward the references to
improve classification accuracy. In this way, the problems of classifying
ordered crystalline phases and revealing and locating disordered crystal
defects can be unified, in analogy with determining order–disorder features
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from thermal fluctuation. It should be noted that the denoised configura-
tions obtained in our probabilistic approach are mathematical constructs
and do not necessarily have direct physical meaning.

To implement such a denoiser, we trained a graph network model,
based on the equivariant NequIP architecture23, to denoise heavily per-
turbed structures and reveal the underlying order–disorder (Fig. 1a). Given
a distribution of pairs of noiseless ideal reference topologies (e.g., BCC, FCC,
andHCP) and their noised (with independent and identically distributed or
i.i.d.Gaussian randomdisplacements, see Fig. 1b) counterparts, training our
denoiser is equivalent to learning a score function24, which in this work is a
gradient field in the atomic coordinate space converging towards points of
maximum-likelihood that correspond to the ideal reference topologies
(more details in the section “Theoretical justification of the denoising
model”). Equipped with this theoretical knowledge, our denoiser can be
considered an iterative scheme that optimizes perturbed structures toward
ideal topologies. The score function plays a central role in modern gen-
erative models such as the denoising diffusion probabilistic model
(DDPM)25–27 for sampling realistic data from a high dimensional data
distribution28. Here it is applied for denoising rather than generative
applications. Iterative denoising with score functions allows us to approach
the perfect identification of ordered crystalline phases in several case studies
with significant improvement over existing classifiers. It is interesting that
similar advantages of iterative use of score functions were observed in
DDPMwith annealed Langevin dynamics for generative purposes25–27. Our
findings support the view that iterative models break down challenging
problems into smaller, manageable steps.

Compared to other existing denoising methods, e.g., energy mini-
mization (or steepest descent mapping29) and vibration-averaging, our
method does not have an energy-based bias (details in the section “Theo-
retical justification of the denoising model”), and only requires the instan-
taneous snapshot as the input (i.e., only one timeframeof input). In contrast,
energy minimization is intrinsically biased due to the use of interatomic
potential thatmay favor certain phases over others, and vibration-averaging
requires a tuned averaging window over multiple snapshots where fast
processes may be overly smeared. Further, utilizing synthetically noised/
perturbed structures as training data, our approachdoesnot rely onphysical
knowledge other than the ideal reference structures and is a purely geo-
metric algorithm complementary to existing physics-based techniques. As
such, in contrast to data-hungry approaches, our denoiser does not need
physics simulation data for training.

Prioritizing single-element systems in this work, the denoising cap-
abilities of our model are demonstrated in several challenging applications,
including identification of transient crystal phases during Cu solidification
from melt, and characterization of dislocations and point defect debris in
BCC Ta undergoing plastic deformation. Importantly, our denoiser does
not overzealously denoise the disorderedmelt into ordered phases. Further,

it is shown to help reveal and locate point defects, dislocations, and grain
boundaries at high temperatures (approachingmelting point), where, again
the model is observed not to denoise or rearrange crystal defects into ideal
latticemotifs. Additional demonstrations on two-element SiO2 polymorphs
are also provided. Besides denoising, the underlying neural network
architecture of the denoiser can be extended to classify the denoised atomic
environments. At this stage of development we mainly rely instead on
existing methods such as CNA, PTM, and DXA to perform the final
characterization. With appropriate optimization, we envision that our
denoising algorithm would be a robust and highly efficient filter integrated
into theworkflows ofmassiveMD simulations for the purpose of on-the-fly
data compression and post-processing analyses.

Results
In our approach, denoising a thermally perturbed configuration x entails
iteratively subtracting the perturbation predicted by a graph networkmodel
ϵθwith parameters θ (Algorithm 1). In code implementation, x is expressed
in terms of the atomic coordinates r and auxiliary information z regarding
cell dimensions and atom types. Our denoiser is an optimization algorithm
that modifies input noisy structures towards maximal data likelihood
(further explained in the section “Theoretical justification of the denoising
model”, with toy visualization in Supplementary Fig. 1). By including the
ideal FCC, HCP, and BCC lattices in the training data, our model attempts
to evolve an input perturbed structure towards one of the three ideal lattices
depending on which lattice type it most resembles geometrically. Impor-
tantly, as demonstrated in the results that follow, our denoiser does not
excessively alter the topology of disordered structures, including liquid/melt
phase, point defects, dislocations, and grain boundaries far removed from
the ideal lattice topologies. This property renders our method safe against
overzealous denoising, thus retaining meaningful disordered features in
input structures.

Algorithm 1. Denoising process
Require:DenoiserD(⋅), perturbed structure xwith atomic coordinates

r and auxiliary information z, and a pre-defined number of iterations k
repeat
r←D(x): = r−ϵθ(r, z)
until convergence or k is reached.

Trained with purely synthetic data, our denoiser is applied to a wide
variety of MD-perturbed systems: (1) BCC, FCC, and HCP Cu simulated
above themelting pointTm, as well as liquid/melt Cu perturbed aroundTm;
(2) the recently published “DC3” benchmark dataset for crystal structure
identification20 containing BCC, FCC, HCP, cubic diamond, simple cubic,
andhexagonal diamondstructuresperturbedover awide temperature range
from zero Kelvin to above melting; (3) hard-to-detect transient crystal
phasesmomentarily formingduring solidificationofCu frommelt; (4) FCC,

Fig. 1 | Schematics of the denoising model and the atomic displacements con-
sidered. a The denoising model involves a graph neural network that predicts the
noise to be subtracted from an input structure (this operation is applied over mul-
tiple iterations); b The atomic displacements include the artificial i.i.d. Gaussian

noise for training and physical correlated thermal perturbations expected inMD for
inference. Contours of the respective uncorrelated and correlated distributions are
shown for clarity.
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HCP, and BCC Cu containing point defects; (5) BCC Ta-containing com-
plex dislocation networks and point defect clusters; (6) BCC Ta-containing
grain boundaries; and finally (7) SiO2 polymorphs β-quartz, α-cristobalite,
and β-cristobalite. In (1) and (3)–(6), the denoiser is shown to reduce or
eliminate thermal perturbation, making it trivial to identify the underlying
crystal structures while not destroyingmeaningful disordered features such
as point defects, dislocations, and grain boundaries. In (2), followed by
classifiers such as a-CNA and PTM, the denoiser achieves perfect classifi-
cation accuracies in all systems at Tm. In (7), the generalizability of the
denoiser to multi-element complex materials is validated. The results for
each case study are detailed below.

Denoising FCC, HCP, BCC, and liquid/melt Cu
The first demonstration focuses on denoising solid BCC, FCC, and HCP
crystals perturbed by thermal vibrations above the melting point (3400K),
and liquid/melt Cu at around the melting point (3000 K), as shown in
Fig. 2a. Before denoising, the popular adaptive CNA (a-CNA) algorithm3

classifies most of the solid atoms (82%, 77%, and 77% in BCC, FCC, and
HCP, respectively) as disordered, i.e. not belonging to anyof the three crystal
lattice types. After just one iteration of denoising, the number of mis-
classified atoms is significantly reduced (to 14%, 5%, and 3% for BCC, FCC,
and HCP, respectively). The following iterations, typically within 5–8 steps,
remove the remaining minor perturbations. The denoised solids resemble
perfect FCC, HCP, and BCC lattices, thus trivializing subsequent phase
classification. The Steinhardt order parameters �q4 and�q6

10 computed before
and after denoising confirm that virtually all thermal perturbations
imparted on the solids are removed (Fig. 2b). Note that after denoising, the
Steinhardt quantities for BCC/FCC/HCP appear to be a single point, but are
in fact about 1000 points (each point corresponds to an atom) overlapped
together.

Interestingly, denoising the Cu melt phase leaves nearly all atoms to
remain disordered, as indicated by a-CNA labeling all such atoms as other

or unknown (Fig. 2a), even though the atomic displacements over the
denoising iterations are roughly the same as that for the solid phases
(Supplementary Fig. 2). Additionally, the very first peak of the radial pair
distribution function (RDF) becomes sharper and splits after denoising,
and the peaks at the medium-range distances also become slightly sharper
(Fig. 2c). In short, how the denoiser precisely impacts the disordered
structure is not yet fully understood (further details in Supplementary
Fig. 3), and should be more thoroughly investigated in future work. The
fact that the Cumelt phase remains disordered even after denoising can be
a useful property of ourmodel not explicitly learned from its training data,
which consists of only perfect and randomly distorted but otherwise
ordered crystal lattices. In simulations involving solid–liquid coexistence,
an example of which will be shown later (see the section “Denoising Cu
solidification trajectory”), we certainly wish ourmodel to denoise only the
thermally distorted crystal lattices while leaving truly disordered phases
disordered.

Classification accuracy on the DC3 benchmark dataset
Recently Chung et al.20 proposed a machine-learned crystal classification
method, the data-centric crystal classifier (DC3). The authors provided a
benchmark dataset that spans a wide variety of chemical compositions,
crystal structure types, and temperatures ranging from 0K to melting.
Compared toother existingmethods2,5–9,DC3was shown to achieve the best
accuracy on most systems in the dataset. Since the dataset includes three
more crystal types, cubic diamond (cd), hexagonal diamond (hd), and
simple cubic (sc), in addition to FCC, BCC, andHCP, we trained a separate
denoiser on all six reference structures available in the DC3 dataset. This
denoiser accepts systems of at most 2 elements to accommodate the NaCl
binary system (hydrogens are absent in the H2O structures in the bench-
mark).We summarize inTable 1 the improved classification accuracy at the
melting Tm from classifying denoised structures with a-CNA and PTM, as
well as the performance of DC320 and other existing methods2,5–9 tested in

Fig. 2 | Iterative application of the denoiser to small cells of BCC, FCC,HCP, and
liquid/melt Cu. a Visualization of the structures along the denoising iterations.
b Steinhardt features �q4 and �q6

10 before and after the denoising. c Radial distribution
function of the melt phase before and after the denoising. In a the structures are
shown in orthogonal views along densely packed crystallographic directions, with

additional perspective 3Dviews for steps 0 and 8. The atoms are colored according to
a-CNA prediction implemented in OVITO56. The solid phases and the melt have
been annealed at 3400 K (1.1Tm) for 400 ps and 3000 K (1.0Tm) for 600 ps,
respectively. ICO stands for icosahedral coordination.
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the DC3 paper. The most dramatic improvement can be seen in a-CNA,
rising fromnear-bottom15–57% accuracy to on parwithDC3 after just one
single denoising step. With eight denoising iterations, the accuracy of
a-CNA and PTMconverges to the perfect classification score of 100% on all
but Fe snapshots (Supplementary Fig. 6). Confirmed by communications
with the DC3 authors, some of the Fe snapshots contain Frenkel pairs that
formed spontaneously from intense thermal fluctuations at Tm. Therefore
our denoising approach indeed reaches perfect classification accuracy for
BCC iron by revealing the unsuspected point defects. The difference
between the performance from the a-CNA backend classifier and that from
PTMonBCCFe, namely 99.7% and99.9%, can be attributed to the different
ways the classifiers define atoms as defective or unknown.

While Table 1 lists the performances of various methods only at the
melting point, Fig. 3a, b, d, e shows, over a wide temperature range, sig-
nificant improvement in classification accuracy of a-CNA and PTM before
and after denoising. Importantly, after denoising, both a-CNA, a common,
ubiquitous classifier that is noticeably less performant, and the more
updatedand sophisticatedPTMhave essentially the same ideal performance
up to the melting point, and close to perfect performance even at tem-
peratures far aboveTm.A non-exhaustive inspection of structures aboveTm
reveals increasing defects, which explain the ostensible dip in accuracy
beyond melting. Overall, the results shown so far demonstrate the utility of
the denoiser for further improving existing phase classifiers andminimizing
a wide range of thermal perturbations.

We performed further tests to assess how much of the improvement
could be attributed to the classifier method or to the score-based denoising
idea. Using the same NequIP architecture, we trained a separate classifier
based on the DC3 dataset (training details in the Methods section). What
differentiates the Nequip-based denoiser and classifier is their training
labels. The former was trained to predict the applied displacement vectors,
which are continuous, unlimited, and information-rich targets. In com-
parison, the classifier had to match the structure class labels, which are
discrete, far less informative, and limited to the training set. As shown in
Fig. 3c, the classifier alone is reasonably accurate and retainsmore than 90%
accuracy even abovemelting,which is very similar to the performance of the
DC3 method20. Figure 3f shows that even this high accuracy can be further
improved to a “perfect”100%well abovemelting bydenoising.Weconclude
fromFig. 3 that score-baseddenoisingdoesplay adecisive role in achieving a
very high level of accuracy for classifiers of various sophistication: the
classification task was made almost trivial by denoising. Here we make a
cautionary note about data-driven ML classifiers trained with labels. The
NequIP classifier is obviously overconfident by predicting perfectly ordered

solids well above melting in Fig. 3f, as point defects increasingly emerge at
high temperatures as discussed previously (and shown in Supplementary
Fig. 6). Such defects represent rare but incorrect labels that can mislead
classifiers to ignore the defects during training. Mislabeling is a major
headache for supervised learning methods and is hard to systematically
detect and correct in large training sets. In contrast, our self-supervised
denoiser does not rely on class labels, and was able to reveal, combined with
non-data-driven a-CNA or PTM, increasing existence of defects, as seen in
Fig. 3d, e.

Denoising Cu solidification trajectory
Our denoiser is further tested here on an MD trajectory of Cu solidifi-
cation from melt. Previously studied by Sadigh et al.30, solid nuclei
appearing in the initial transient stages of Cu solidification are poly-
morphic, containing BCC, FCC, HCP, and disordered melt phases
simultaneously. Characterization of such a complex transient behavior is
challenging and presents a useful test case for our method. As shown in
Fig. 4a, denoising four transient configurations of the trajectory results in
drastic improvement in subsequent phase classification by the a-CNA
algorithm. This improvement is manifested in much denser, correctly
classified labels (FCC, HCP, and BCC) on the atoms within the ordered
solid nucleus, as well as in considerably sharper boundaries between the
phases. Here again the atoms in the disordered melt remain disordered as
their a-CNA labels remain largely unchanged. Notably, a few atoms
labeled as other (i.e., unknown) are observed within the sharply defined
crystal phases even after denoising. These “unknown” atomic motifs turn
out to be point defects, e.g. vacancies and interstitials, as will be discussed
in greater detail in the next section. Also, they appear mostly in the BCC
phase likely due to the metastability of the BCC phase in Cu entropically
stabilized under the high pressure (70 GPa) of the simulation. Otherwise,
the same BCC phase of Cu is onlymarginally metastable, as manifested in
the appearance of soft modes in its phonon spectrum. At high tempera-
tures close to melting, such soft modes may well result in some of the
atoms within the BCC phase to significantly deviating from their ideal
lattice positions, resulting in the formation of point defects.

It can be informative to compare denoising to steepest descent energy
minimization (EM), another common method for filtering out thermal
vibrations. In stark contrast to denoising, EM not only reduces the thermal
perturbation but also greatly changes the nucleus structure beyond recog-
nition (third row of Fig. 4a). Namely, under EM the solid nucleus grows
considerably larger, and the transient BCC phase disappears in favor of the
more stable FCC andHCPphases. The striking difference between EM and

Table 1 | DC3 benchmark dataset accuracy comparison between our classification approach and the methods tested in the
DC3 work

Al (fcc) Fe (bcc) Ti (hcp) Si (cd) H2O (hd) NaCl (sc) Ar (fcc) Li (bcc) Mg (hcp) Ge (cd)

a-CNA 50.3 39.9 15.7 57.1 34.4 47.3

PTMa 95.9 84.3 82.8 99.9 100.0 94.6 96.9 83.1 95.7 99.2

Denoiser (1 step)+ a-CNA 98.5 96.9 81.7 98.6 96.9 97.1

Denoiser (1 step)+PTM 100.0 99.5 98.7 100.0 100.0 99.3 100.0 99.6 99.9 100.0

Denoiser (8 steps)+ a-CNA 100.0 99.7b 100.0 100.0 100.0 100.0

Denoiser (8 steps)+ PTM 100.0 99.9b 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

DC3a 96.9 86.8 89.4 99.0 99.2 95.6 97.5 85.8 97.4 100.0

i-CNAa 68.5 56.6 27.9 75.7 51.6 64.9

AJAa 66.9 35.6 42.4 74.0 34.1 67.0

VoroTopa 24.0 61.2 57.5 23.1 57.2 57.4

Chill+a 99.8 98.8 100.0

The accuracy valuemeasured at themelting point, computed as the fraction of correctly labeled atoms, is shown in percentage. Ourmethods are shown in bold font. In our denoising approach, the RMSD
(root-mean-square-deviation) cutoff for PTM is 0.1. Missing entries imply non-applicable structure types for the chosen classifier.
aTaken from the DC3 paper20.
bThere is some trace amount of point defects in the BCC Fe snapshots at T = Tm (Supplementary Fig. 6b).
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denoising can be attributed to their contrasting assumptions. The EM
mapping clearly favors solid phases of lowest ground state energy and may
overzealously nudge atoms towards such phases, exactly as it happens in the
considered example. The denoising process, from a complementary and
purely geometric perspective, relies on less biased, equal prior probabilities
of the reference phases included in the training.

To further investigate whether denoising introduces unwanted or
unphysical artifacts, in Fig. 4b we plot the RDF of the last snapshot from
Fig. 4a. The RDF of the denoised structure generally matches that of the
original. Having been trained to reduce thermal perturbations, the
denoiser likely has also learned not to bring atoms to excessively short
distances from each other (that would be unphysical). The sharper peaks
of the denoised RDF are attributed to the three ordered crystal phases,
each of which contributes its own discrete set of sharply defined
interatomic distances.

Note that the denoiser does in fact “denoise” some atoms within the
melt phase into local environments regarded as crystalline (BCC/FCC/HCP)
by the a-CNA classification, as evidenced by the increased number of solid

labels in the melt region after denoising (Fig. 4a). The appearance of such
“crystalline” atoms reflects that even in fully disordered liquid, statistically a
small fraction of the atomic motifs may momentarily resemble a crystal
phase. Our denoiser then acts locally and further enhances such resem-
blance, thus making a-CNA (a strictly local classifier itself) recognize such
atoms as crystalline.Observing that thesemisclassified atoms are few and far
isolated, we accept this minor artifact as a worthwhile trade-off. We
emphasize that our current denoiser model has been exclusively trained on
randomly displaced solid reference structures and no liquid structure
informationhas been included. Therefore the denoised configurations in the
melt phase do not bear direct physical significance. Future probabilistic
models informed with liquid physics may be useful, but they are beyond the
scope of this work, which is about proving the principle that pre-processing
thermally excited atomic configurations via iterative denoising can drama-
tically improve the performance of downstream classifiers, which we illus-
trate by identifying polymorphic solid phase distributions obtained during
rapid phase transformation from the melt, and by locating defect (non-
crystalline) atoms in plastically deformed crystals at elevated temperatures.

Fig. 3 | Classification performances of a-CNA,
PTM, and an in-house NequIP classifier on the
DC3 benchmark dataset over a wide temperature
range are significantly improved after denoising.
a–c a-CNA, PTM, and NequIP classification
accuracies from nearly 0 K to above melting. d–f
Classification accuracies of the samemodels over the
same temperature range, after denoising is applied.
The melting point (T = Tm) is indicated by the
dashed line.
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Denoising FCC, HCP, and BCC Cu containing point defects
As an example of point defect characterization, the denoiser is applied to
FCC, HCP, and BCC Cu, each containing an intentionally inserted extra
atom followed by annealing in MD at 3400K (1.1Tm) for 400 ps. These
structures were denoised into ideal lattices with local regions of disorder
unknown to a-CNA (Fig. 5). The Wigner–Seitz defect analysis (OVITO)
confirms that these regions of disorder indeed correspond to point defects.
Notably, for the FCCcrystal, the thermal vibrationswere sufficiently intense

to spontaneously generate two more point defects, a Frenkel pair of one
vacancy and one interstitial.

The example in Fig. 5 demonstrates the desirable outcomes of
denoising crystal structures containing point defects. Although the denoiser
aims to modify local atomic motifs towards ideal topology, it cannot do so
on regions of point defects simply due to extra or missing atoms. In such a
case, themodel appears to not significantly alter the local topologies around
the defects while denoising the rest of the bulk into an ideal lattice.

Fig. 4 | Denoising a dynamic trajectory of Cu solidification (314,926 atoms)
significantly improves (a-CNA) phase classification without introducing
unreasonably short interatomic distances. a Four consecutive snapshots along the
trajectory, in original, denoised, and energy-minimized states, are shown in

orthogonal views with an additional perspective view for the fourth snapshot. bRDF
of the fourth snapshot before and after denoising. In the perspective view, the atoms
classified as other by a-CNA are rendered transparent.

Fig. 5 | Denoising facilitates point defect identi-
fication in thermally perturbed FCC, HCP, and
BCCCu crystals. Point defects completely obscured
by thermal vibrations are cleanly revealed after
denoising (circled in black). When applied to the
denoised structures, the Wigner–Seitz defect ana-
lysis (OVITO) correctly assigns mass content to
each crystal defect: site occupancies 0, 1, and 2 cor-
respond to a vacancy, a regular atom, and an inter-
stitial, respectively. After denoising, the regular
atoms in the FCC crystal (top row) are rendered
semi-transparent to more clearly reveal the point
defects.
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Denoising BCC Ta-containing dislocations
Our model is similarly effective for denoising structures containing lattice
dislocations. For a toy example, a hexagon-shaped dislocation loop inserted
into BCC Ta was annealed at 2500 K (0.8Tm) and subsequently denoised
(Fig. 6a). Again, satisfyingly, the denoiser does not significantly alter local
atomic configurations near the dislocation loop while cleanly denoising the
surrounding crystal bulk.

Note that although the denoiser was trained on ideal and synthetically
noised Cu lattices, it is applicable to Ta or any other elemental crystal of
FCC, BCC, or HCP lattice structure. This transferability is achieved by
simply scaling the input structure to match the interatomic distance of the
correspondingCuphase. The output structurewould then be re-scaled back
to its original dimensions.

As a more realistic and difficult test, the denoiser was applied to help
reveal a complexdislocationnetwork in aBCCTa crystal subjected to plastic
deformation at 2000 K or 0.6Tm (Fig. 6b). Similar to the case of the single
dislocation loop, the dislocation network (as colored by a-CNA) is more
sharply defined after denoising. Subsequent application of the DXA
algorithm14 to the original and the denoised configurations results in nearly
identical dislocation networks, which testifies to the exceptional robustness
ofDXAagainst thermal perturbation, and confirms that the dislocations are
better captured by a-CNA after denoising.

Despite DXA’s already high performance in dislocation char-
acterization, the denoiser still benefits or complements DXA by facil-
itating the characterization of the point defect clusters that were either
left as debris in the wake of dislocation motion or produced by dragging
jogs formed at dislocation intersections31. Focusing on non-BCC atoms
clusteredwithin a cutoff distance of 3.2Å, a large cluster (corresponding
to the dislocation network) and a high concentration of small clusters
are observed. Without denoising, the small clusters may simply be
manifestations of perturbation based on visual interpretation. However,
after denoising, the small clusters resemble and likely capture the point
defect debris. This is unlikely a case of the denoiser failing to denoise
non-dislocation regions into perfect lattice for two reasons: (1) the
presence of the point defect debris is known a priori, and (2) the
denoiser clearly denoises the non-dislocation region in the toy case of
the single dislocation loop, with virtually no point defects left (Fig. 6a).

Denoising BCC Ta-containing grain boundaries
To test how our method performs on crystals containing grain boundaries,
the denoiser was applied to a Ta bi-crystal containing two tilt boundaries.
Prior to denoising, the bi-crystal was annealed at a high temperature of
2500 K (0.8Tm) for 50 ps. As shown in Fig. 7a, denoising does not alter the
topology of the defects and results in two near-perfect BCC crystals sepa-
rated by two perfectly planar grain boundaries, with a trace amount of point
defects likely emitted from the boundaries into the bi-crystal interior. A
more complex test case is shown in Fig. 7b, where a polycrystal consisting of
12grainsofBCCTahadbeensimilarly annealed at 2500 K(0.8Tm) for 50 ps.
Here again, denoising removes thermal perturbation while still revealing a
few point defects in the grain interiors.

Denoising SiO2 polymorphs
Finally, to validate the generalizability of our approach,we trained a separate
denoiser for minimizing thermal perturbation in SiO2 systems. Similar to
the demonstration shown in Fig. 2, the denoiser was applied to MD-
perturbed high-temperature silica polymorphs β-quartz, α-cristobalite, and
β-cristobalite (Fig. 8). Although we also trained the denoiser with reference
α-quartz topology, the inherent similarity between α- and β-quartz com-
plicates the task of generating stable and distinctive MD-perturbed snap-
shots of α-quartz compared to β-quartz. Therefore α-quartz is not included
in this preliminary result. Regardless, the denoiser removes virtually all
thermal perturbation in the silica polymorphs. Future work may include
extending to larger multi-element systems in the presence of disordered
features.

Discussion
In developing our method, we have taken a geometric and statistical per-
spective on delineating order–disorder features inMDsimulations of solids,
a problem particularly difficult at elevated temperatures approaching the
melting point.We regard two seemingly distinct tasks of classifying ordered
phases and locating disordered defects as fundamentally the same problem,
which is addressed by denoising. Based on a statistical score function, the
denoiser presentedand tested in thiswork effectively reducesandminimizes
thermal perturbation in ordered solids without impacting isolated dis-
ordered defects and the liquid/melt phase. Combined with various crystal

Fig. 6 | Denoising BCC single crystal Ta-containing dislocations (and point
defects). a A single dislocation loop annealed at 2500 K (0.8Tm) for 50 ps. b A
snapshot of a relatively largeMD simulation (1.97million atoms) of single crystal Ta
undergoing deformation at 2000 K (0.6Tm), which results in a network of entangled
dislocation lines and a large number of point defect clusters. The DXA method for

dislocation analysis (OVITO) confirms the presence of dislocations and delineates
the dislocation network topology. The cluster analysis (OVITO) aims to separate the
point defect clusters from the dislocations. The atoms are normally colored by
a-CNA prediction except for the cluster/dislocation analysis, in which the BCC
atoms are rendered transparent.
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classifiers, it was able to achieve perfect classification accuracy in a public
benchmark dataset over existingmethods. Further tests against no or single-
step denoising, as well as a supervised classifier based on the same network
architecture, provided more evidence for the effectiveness of our approach.
To support our conclusions, in the preceding sections, we applied denoising
as a pre-processor to reveal the underlying “anomaly” structures across the
entire spectrum of crystal disorder, namely (0D) point defects, (1D) dis-
location lines, (2D) grain boundary, and (3D) liquid phases, all distinct from
theorderedphases that thedenoiserwas trainedwith. For futurework,more
comprehensive and quantitative effort is necessary to validate the merit of
the denoiser as a pre-processor for defect characterization methods. For
denoising BCC/FCC/HCP, our model was trained only once and only on
the three ordered structures but then shown to successfully but not exces-
sively denoise themuchmore complex structures used for testing.We relate
this useful ability of not overly denoising defective atoms to the inductive

bias of our graph network model with its limited number of message-
passing steps. Trained entirely on synthetic data, our model is not derived
from any deep physical insights about the topology and geometry of the
reference structures and, as such, does not require careful data curation.
Thus, its extension to other ordered structures should be straightforward.

Our method holds unique advantages and disadvantages over two
other methods widely used for reducing thermal perturbation: energy
minimization (EM) and vibration-averaging (VA). With the right para-
meters and done over a small number of iterations, EM can lead to similar
results as that of the denoiser.However, overmany iterations, EMmay grow
or shrink certain phases due to the intrinsic bias associated with the use of
interatomic potential. An example of EM being overzealous and distorting
configurations beyond recognition with respect to the original state is in the
section “Denoising Cu solidification trajectory”. The purely geometric
denoiser, on the other hand, does not require a known or developed
interatomic potential. Further, the denoiser is unbiased in the sense that the
reference lattices used in training have equal prior probability. Although the
denoising graph model is more expensive than VA (which entails simply
averaging operations), VA can potentially smear out atomic motion by
averaging over a time interval. Such distortion can be fairly significant since,
to average out thermal vibrations, VA requires time-averaging intervals of
hundreds or even thousands of time steps. Our denoising method, on the
other hand, treats every time snapshot separately and does not coarse-grain
over time. As is often the case, no one method used for denoising is sin-
gularly superior to all other existing methods. We hope that our approach
finds its own place among existing and emergingmethods for structure and
defect classification and can serve as an accurate and efficient pre-processing
filter to facilitate the application of more computationally demanding
methods of structural analysis such as DXA.

Based on an equivariant graph network model architecture, our
denoisingmodel is readily extendable tomore complex reference structures
and materials by incorporating additional information, such as atom types
into the graph embedding. In addition to extending the method to chemi-
cally complex systems, our ongoing and future efforts may also focus on its
computational efficiency and scalability. Finally, beyond atomic structures,
the ability of our model to achieve state-of-the-art classification accuracy
through iterative denoising score functions suggests the idea may be useful
in other disciplines for enhanced accuracy and/or robustness against
fluctuations.

Methods
Theoretical justification of the denoising model
Our approach to denoising builds on the theory of statistical learning of
score functions24 that establishes equivalence between denoising and score
matching. Consider a probability distribution function q(x) that exists in

Fig. 8 | A separately trained denoiser effectively removes thermal perturbations
(simulated at 1000 K or roughly 0.5Tm) in SiO2 β-quartz, α-cristobalite, and β-
cristobalite polymorphs. The denoised structures match the ideal references used

during training. 16 iterations were used for denoising. The silicon atoms are colored
in beige and the oxygens in red.

Fig. 7 | The denoising process helps reveal grain boundaries obscured by thermal
perturbation. aA bi-crystal of BCC Ta (64,000 atoms) containing two planar grain
boundaries. b A polycrystal of BCC Ta (187,921 atoms) containing a network of
grain boundaries. Both crystals were annealed inMD simulations at 2500 K (0.8Tm)
for 50 ps which caused minor coarsening in the polycrystal. After denoising, a trace
amount of point defects becomes visible in both examples. The atoms are classified
by a-CNA. The BCC atoms are rendered slightly semi-transparent.
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principle but is analytically intractable due to the high dimensionality of the
data space x 2 Rd ðd≫1Þ. Focusing on approximating the gradient of the
log-probability density ∇x log qðxÞ—also known as the score function32—
rather than q(x) itself circumvents the often intractable problem of finding
the normalization constant for q(x). Score matching then amounts to
finding an approximatingmodel sθ(x) with parameters θ tomatch the score
function, with the score matching loss32

LSM ¼
1
2
EqðxÞ sθðxÞ � ∇x log qðxÞ

�� ��2h i
: ð1Þ

Nevertheless, the term ∇x log qðxÞ is still unknown. To address this, con-
sider approximating q(x) by adding isotropic Gaussian noises of variance σ2

to the clean data samples x, resulting in noised samples x0 ¼ x þ σϵ, where
ϵ ∼ N ð0; IÞ, and the approximating distribution

qσ ðx0jxÞ ¼ Ze�kx
0�xk2=2σ2 ; ð2Þ

where Z is a normalization constant. This way, instead of the original loss,
weminimize the denoising scorematching loss based on the key insight from
ref. 24 to train with pairs of clean and corrupted data points:

LDSM ¼
1
2
Eqσ ðx0;xÞ sθðx0Þ � ∇x0 log qσ ðx0jxÞ

�� ��2h i
; ð3Þ

where the new score function ∇x0 log qσ ðx0jxÞ can be computed via

log qσðx0jxÞ ¼ logðZÞ � 1
2σ2 kx0 � xk2;

∇x0 log qσðx0jxÞ ¼ � 1
σ2 ðx0 � xÞ ¼ � ϵ

σ ;
ð4Þ

revealing that the score function points from noisy samples x0 to clean ones
x. This observation also implies that learning the score function is equivalent
to training a denoising model. To better see this, note that the denoising
score-matching loss can now be simplified into

LDSM ¼
1
2
Eqσ ðx0 jxÞ sθðx0Þ þ

ϵ
σ

���
���
2

� �
: ð5Þ

After scaling Eq. (5) by a factor of σ and incorporating a noise prediction
modelϵθðx0Þ ¼ �σsθðx0Þ that aims topredict the appliednoise, then the loss
function can be written as

LDSM ¼
1
2
Eqσ ðx0 jxÞ ϵ� ϵθðx0Þ

�� ��2h i
; ð6Þ

finally establishing the connection between the score function model sθðx0Þ
and the denoising model ϵθðx0Þ by ϵθðx0Þ ¼ �σsθðx0Þ. This clarifies the
meaning of ϵθ in Algorithm 1: it is the scaled score function defining the
noise added to cleandata.While the noise amplitude σ is a hyper-parameter,
it can be estimated by a fitted/trained denoising model itself from a noisy
input. Hereafter, we refer to ϵθ as a score function for brevity. Along the
above steps for connecting between score matching and denoising, we have
omitted certain details for brevity. For a rigorous formulation, see ref. 24.

The ideal score function is a gradient field in the data space that con-
verges to clean data points used to train the denoiser. For better intuition, a
toy score function is visualized in Supplementary Fig. 1, which illustrates
that following the score function is the same as denoising. In our context,
where ideal FCC,HCP, and BCC latticeswere used for training, a perturbed
(noised) input configuration may be denoised into one of the three ideal
structures that it resembles the most. At the same time, a highly perturbed
input configuration bearing no resemblance to any of the three ideal
reference configurations is unlikely to bemeaningfully denoised resulting in
unknownordivergent values of predictednoise. The case studies considered
in this work all suggest that our denoisingmodel does not significantly alter
such disordered structures, including melt, point defects, dislocations, and

grain boundaries. This property is instrumental in allowing the denoising
model to reveal underlying crystalline order without impacting meaningful
disordered features in thermally perturbed configurations.

The score function plays a central role in modern likelihood-based
generative models such as the denoising diffusion probabilistic model
(DDPM)25,26 and score-based generative model27, which can be unified under
the same framework27. Among its numerous recent achievements28, DDPM
has been applied to crystal and molecular structure generations33,34. In this
work,however,weapply the score-matchingmethod fordenoisingrather than
generative applications and focus on a limited number of reference crystal
structures instead ofmany (thousands ormillions) training images/structures.

Now the similarity and distinction between our score-based denoiser
and energy minimization are clear from a statistical point of view. Con-
ceptually and heuristically both move atoms to make a structure more
“reasonable” or “likely” with regard to a pre-defined probability. Quanti-
tatively, both are driven by a vector field proportional to ∇x log PðxÞ, i.e. a
score. Our denoiser is unbiased towards any specific structure type x(i) since
the probability P /P

iN ðxðiÞ; σ2Þ, a kernel density estimation using
Gaussiankernel, is unbiasedwith equalprobability at any structureP(x(i)). In
contrast, for energy minimization, the Boltzmann distribution P /
exp½�UðxÞ=kBT� always favors low-energy structures.

Model training
Our clean data samples are reference crystal structures of interest repre-
sented by the atomic coordinates r and the auxiliary information z:
x(i)→ (r(i), z(i)). The noise prediction model ϵθ was trained with entirely
synthetic data (Algorithm 2), which is generated by adding Gaussian
noises to the atomic coordinates r0 ¼ rþ σϵ, with σ ∼Uð0; σmaxÞ drawn
uniformly up to σmax≈13% of the shortest interatomic distance, adhering
to Lindemann’s law on mean-squared thermal displacement of solids
before melting35. Since the denoising method is always applied iteratively
to remove thermal fluctuation in structures and each time there is a
decreasing amount of fluctuation remaining, we trained the score model
with different levels of noise for better generalizability. In spite of the
vibrational degrees of freedom being strongly coupled in solids, as sche-
matically depicted in Fig. 1b, it nevertheless suffices for the denoising
model to be trained solely on artificial i.i.d. Gaussian random displace-
ments, so-called Einstein vibrational modes. It is reasonable to argue that
so long as the chosen displacement amplitude σmax contains the thermal
displacements observed in MD, no matter how correlated they might be,
the denoiser shouldbe able to converge to correct reference structures.Our
implemented loss function, which scales Eq. (6) by 2σ2, is

L ¼ Er;z;σ;ϵ kσϵ� Δθðrþ σϵ; zÞk2� �
; ð7Þ

where Δθ = σϵθ predicts not only the perturbation direction ϵ but ampli-
tude σ.

Algorithm 2. Denoiser training
Require: Ideal reference dataset D, initial model parameters θ, max-

imum noise amplitude σmax, gradient descent optimizer Optim, and
learning rate η

repeat
Sample x~D
Sample σ ∼Uð0; σmaxÞ
Sample ϵ ∼ N ð0; IÞ
(r, z)← x
L Er;z;σ;ϵ k σϵ� Δθðrþ σϵ; zÞk2� �
θ OptimðL; θ; ηÞ
until convergence

The idea of mixing training data with random noises is not new in
either general-purpose or scientific machine learning. Adding a small
amount of noise to the training data, sometimes known as the “noise trick”,
is a well-established data augmentation or regularization technique in
general-purposemachine learning to reduce overfitting and increasemodel
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robustness36. For example, Zhou et al.37,38 adopted a hybrid training data
pipeline of MD trajectories and Gaussian noise displacements to fit the
potential energy surface of crystalline solids. A similar method was used by
Chung et al. citeChung2022PRM to identify ordered solid phases. The noise
trick was also adopted to train GNN surrogate models for physical
simulations39,40. This work, however, makes denoising perturbed inputs the
centerpiece rather than merely a regularization technique.

The model was trained with randomly drawn x∈ {FCC, BCC,HCP},
using the AdamW optimizer41 and a learning rate of 2 × 10−4, over 20,000
weight updates in minibatches of 32 samples. Each FCC/HCP/BCC cell
consists of roughly 1000 atoms. The training was carried out using
PyTorch42 and PyTorch-Geometric43. All other training parameters, if
unspecified in this work, default to values per PyTorch 1.11.0 and PyTorch
Geometric 2.0.4.

Equivariant graph network model (NequIP)
The development of a scoring model is entirely similar to that of an
interatomic potential, as both are taskedwith predicting a vector field (score
vs. force) as the gradient of a scalar quantity (logarithmic probability vs. total
energy) with respect to atomic coordinates. Before delving into the details of
the adopted graph neural network (GNN) model, we provide a generic
overview of the GNN architecture. We start with a neighbor or edge list {ij}
based on a distance cutoff, as well as atomic or node features hi (an array of
atomic attributes such as partial charge and atomic number). For each edge
ij, the effects of j on i, called a message of the edge, is calculated
mij =M(hi, hj, rj−ri). Then the messages are aggregated, typically through
summation, intonode i:mi =∑jmij, and thenode features are updatedusing
its current values and the aggregatedmessageh0i ¼ Uðhi;miÞ. This so-called
message-passing step is similar toand a generalizationof theEAMpotential,
which models the charge contribution from j to i, aggregates the con-
tributions to i, and describes the aggregated effects with an embedding
function. The difference is that GNN adopts machine-learned message
function M and update function U and applies multiple message-passing
operators iteratively. Afterward, GNN computes per-node contributions
through a decoder D(hi).

The denoising model output is a vector (on each atom) that should be
equivariant under translation, rotation, and mirror operations—the same
requirements for force fields or interatomic potentials. We adopted a cus-
tomized version of the E(3)-equivariant NequIP model23, which guarantees
such equivariance.NequIP is primarily built upon the idea of an equivariant
tensor product between two inputs of irreducible representations, or irreps,
resulting in another irrep as the output. Unlike regular tensor products, the

tensor products in NequIP are parametrized by learnable weights and are,
therefore, termed WeightedTP in this work. Since the exact mathematical
details of the equivariant tensor product can be dense and complex, we refer
to the original work for their precise description23. We chose to directly
predict vector outputs (noising displacements) rather than a scalar output.

The main components of our NequIP variant consist of the initial
embedding, the interaction layers, and the final self-interaction layer to
produce the noise output (Fig. 9).

In the initial embedding, the structure input is converted to an
atomic graph, with hi as some attributes for node or atom i; ~hi as another
set of attributes for the same node i; and eij as the vector for the directed
edge from node i to node j. Transformed from atom-type information by
a trainable embedding matrix, hi initially only holds scalar information
(l = 0, where l is the tensor rank or the degree of representation) but is
typically expanded to hold information of higher tensor ranks
(l = 1, 2,…) in subsequent layers. ~hi, also transformed from atom-type
information by a trainable embedding matrix, holds only scalar infor-
mation, and does not change throughout the model layers. The embed-
ding matrix is not needed for the single-element systems but is necessary
for the SiO2 polymorphs. We used Atomic Simulation Environment44

and PyTorch-Geometric43 for the conversion to graphs.
Each interaction layer consists of several sub-operations: the self-

interaction, the convolution, SkipInit45, and the gate activation. The self-
interaction updates the attributes of each node hi via the WeightedTP
operationwith ~hi and does not aggregate information fromneighbor nodes:

h0i ¼WeightedTP hi; ~hi
� � ð8Þ

The convolution updates the attributes of each node hi as the sum of the
WeightedTPoperations between theneighboring nodeshj and the spherical
harmonics of neighboring edges YðêijÞ, with the weights learned from the
edge distances ∥eij∥ via a multilayer perceptron (MLP):

h0i ¼
1
Z

X
j2NðiÞ

WeightedTPkeijkðhj;YðêijÞÞ ð9Þ

where êij is the normalized version of eij and is, therefore, a unit vector
pointing from node i to node j, N(i) denotes the neighbor nodes of node i,
andZ is a normalization constant. TheMLP contains one hidden layer. The
initial layer of theMLP is the basis function values expanded from the edge
distance. For the SkipInit mechanism45, the scalar multipliers α are learned
from yet another WeightedTP operation between hi and ~hi (similar to the

Fig. 9 | The NequIP model architecture.
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self-interaction operation). The gate activation applies equivariant
nonlinearities46 to the node attributes.

In the end, the final self-interaction layer serves to transform the node
attributes hðL�1Þi from the second to last layer L−1, which may hold scalar,
vectorial, and tensorial features at node i, into a single vector describing the
noise output:

hðLÞi ¼ ðϵθÞi ¼WeightedTP hðL�1Þi ; ~h
ðL�1Þ
i

	 

; ð10Þ

The complexity of the model is largely determined by the specified irreps
format for the node and edge attributes. For example, an array of 4 scalars
and 8 vectors can be written as 4 × 0e+ 8 × 1o, with the numbers 4 and 8
describing themultiplicities, thenumbers 0 and1describing the tensor rank,
and the letters e (even) and o (odd) describing the parity. Higher multi-
plicities and tensor ranks can often result in better performance but also
larger memory and computational requirements.We intentionally kept the
model complexity small in favor of scalability to structures of millions of
atoms. Here we provide rough estimates of the runtime numbers of the
NequIP-based denoiser. However, we caution that compute speed is not a
major focus of this preliminary work, especially since there can be speed
limitations with NequIP. We have since focused on optimizing for speed
with efforts such as parallelizing the workload across multiple GPUs, but
such efforts are perhaps better suited for a future report. Also, the same
denoiser formulation canbe implementedwith othermore optimized graph
network models. For 1000 atoms or less, the current denoiser model takes
sub-second to run on a typical modern CPU. For 1000–100,000 atoms it
takes a sub-minute. For 1–10million atoms it can take 1–20min. Again, we
expect that these runtimes can be much further optimized. The model
settings are listed in Supplementary Table 1.

NequIP classifier
The NequIP-based classifier was trained on 90% of the Al, Fe, Ti, Si, H2O,
and NaCl snapshots from the DC3 benchmark dataset, with the rest being
the validation dataset. Specifically, for each of the Al, Fe, Ti, Si, H2O, and
NaCl systems, there are ten snapshot files per temperature increment, and
nine were taken for training, with the remaining one for validation. In other
words, this classifier was not trained on any of the Ar, Li, Mg, and Ge
structure data from the DC3 dataset. Applying the classifier to Ar, Li, Mg,
and Ge amounts to scaling the unit cell dimensions to match that of the
corresponding trainingdatawith the same structure type.For example,Ge is
slightly larger than Si, and, therefore, is scaled down (roughly 90%) before
feeding to the classifier. The model parameters of the NequIP classifier are
listed in Supplementary Table 1.

Molecular dynamics simulations
This section describes the MD simulations used to demonstrate the cap-
abilities of our denoising method. These are simulations of (1) BCC, FCC,
and HCP Cu structures, both defect-free and with point defects; (2) a solid
crystal nucleus growing inside melted Cu; (3) crystal plasticity in a single
crystal of Ta in the BCC phase; (4) Ta grain boundaries; and (5) SiO2 in β-
quartz and cristobalite polymorphs. All simulations were performed with
periodic boundary conditions using LAMMPS47.

TheMDsimulations forCuusing the embedded-atommethod (EAM)
potential by Mishin et al.48 were performed in BCC, FCC, and HCP cells
containing 1024, 1372, and 1152 atoms respectively. Since the bulk BCC
phase is dynamically unstable in Cu with imaginary phonon frequencies at
ambient conditions, the calculations were performed at a pressure of
60 GPa, where the BCC phase becomes metastable.

Melting points of the three phases at 60 GPa have been calculated to be
3030 K for BCC, 3066K for HCP, and 3073 K for FCC30. Although FCC
remains the thermodynamically stable and thus preferred phase below
3073 K, free energies of the three phases are very close under these pressure
and temperature conditions. At slightly higher pressures (71.6 and 85 GPa),
the phase diagramof themodel ofCu contains triple pointswhere twoof the

three solid phases and the liquidphase coexist30.Wehave taken advantage of
the thermodynamic proximity of three crystal phases and themelt to set up
an MD simulation of a polymorphic critical solid nucleus simultaneously
containing all three solid phases surrounded by melt. The simulation con-
tained 314,928 Cu atoms and was initiated in an isobaric-isoenthalpic
(NPH) ensemble at 70 GPa from a small near-equilibrium nucleus with
coexisting FCC andHCP ordered regions containing about 200 FCC atoms
and300HCPatoms, respectively.Upon switching to an isobaric–isothermal
(NPT) ensemble at the same pressure and temperature of 2800 K, the solid
nucleus grows and partially transforms to the BCC phase.

Interatomic interactions in tantalum were modeled using a well-
known EAM potential developed by Li et al.49. For simulations of crystal
plasticity in Ta described in the section “Denoising BCC Ta-containing
dislocations”, the crystals were created by arranging atoms in a BCC
lattice within a cubic or an orthorhombic periodic supercell with repeat
vectors aligned along the cube axes of the BCC lattice. Dislocations were
seeded into the crystals in the form of one or several hexagon-shaped
prismatic loops of the vacancy type, following the procedure introduced
in ref. 50. For the configuration in Fig. 6a, a single dislocation loop was
introduced at the center of a cube-shaped simulation box made of
101,853 atoms and annealed at a temperature of 2000 K. The complex
network of dislocations shown In Fig. 6b was generated by initially
introducing 12 randomly positioned dislocation loops into a ~2 million
atoms box, annealing the model at 2500 K and zero pressure, and then
subjecting the crystal to uniaxial compression along the [001] crystal-
lographic axis at a “true” strain rate of 2 × 108/s for 2 ns while main-
taining pressure near zero in an NPH ensemble.

For Ta grain boundaries in the section “Denoising BCC
Ta-containing grain boundaries”, the periodic bi-crystal containing two
Σ5(310) symmetric tilt grain boundaries was created by joining two
crystal blocks of different lattice orientations obtained by rotating
two half-crystals in opposite directions along the common 〈100〉 tilt axis.
The Ta polycrystal was assembled using atomsk51 from 12 randomly
seeded grains. Both the bi-crystal and the polycrystal were annealed at
2500 K and zero pressure.

For silica, the Tersoff potential developed by Munetoh et al.52 was
adopted. Simulations were performed in the NVT ensemble with unit cell
parameters taken from theEncyclopedia ofCrystallographicPrototypes53–55,
and with temperature ramping from 600 to 2000 K in steps of 200 K every
10 ps. 5 × 5 × 5, 5 × 5 × 5, and 4 × 4 × 4 supercells were used for theβ-quartz
(space group 181), α-cristobalite (92), and β-cristobalite (227), respectively.

Computational details for the DC3 dataset can be found in ref. 20.

Data availability
All data required to reproduce this work, namely the molecular dynamics
snapshots (ideal reference, thermally perturbed, and denoised) can be
requested from T.H. and F.Z. Some small, simple structure data for
demonstrationpurposes are included in the code repositoryof thiswork (see
the section “Code availability”). The DC3 dataset used for benchmarking
can be found at https://github.com/freitas-rodrigo/DC3.

Code availability
The source code, the trained denoiser and classifier models, and a demo for
denoising simple structures are available at http://www.github.com/llnl/
graphite.
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