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ABSTRACT

Materials processing often occurs under extreme dynamic conditions leading to a multitude of unique structural environments. These structural
environments generally occur at high temperatures and/or high pressures, often under non-equilibrium conditions, which results in drastic changes
in the material’s structure over time. Computational techniques, such as molecular dynamics simulations, can probe the atomic regime under these
extreme conditions. However, characterizing the resulting diverse atomistic structures as a material undergoes extreme changes in its structure has
proved challenging due to the inherently non-linear relationship between structures as large-scale changes occur. Here, we introduce SODASþþ, a
universal graph neural network framework, that can accurately and intuitively quantify the atomistic structural evolution corresponding to the tran-
sition between any two arbitrary phases. We showcase SODASþþ for both solid– solid and solid–liquid transitions for systems of increasing geo-
metric and chemical complexity, such as colloidal systems, elemental Al, rutile and amorphous TiO2, and the non-stoichiometric ternary alloy
Ag26Au5Cu19. We show that SODASþþ can accurately quantify all transitions in a physically interpretable manner, showcasing the power of
unsupervised graph neural network encodings for capturing the complex and non-linear pathway, a material’s structure takes as it evolves.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0156682

Materials under extreme thermal, mechanical, and chemical con-
ditions often experience drastic changes in their structure.1–5 These
structural changes begin at the atomic scale and propagate upward in
length scale to ultimately affect larger-scale features, such as the mate-
rial’s microstructure.6–8 Due to conditions, such as high temperature
and pressure, these changes in the atomic structure are often non-
trivial and highly correlated, with complex atomic diffusion events act-
ing as a driving force for changes in local atomic geometries.9,10 As
these structural changes often lead to significant differences in material
properties, a thorough understanding of how atomic-level configura-
tions evolve over time is necessary. Therefore, if one aims to quantify
the changes in materials properties under such extreme conditions,
algorithmic tools that can accurately map out both subtle and signifi-
cant differences in atomic geometries is vital.

Over the last few decades, numerous developments on this front
have occurred, leading to a plethora of methods with excellent atomic
environment characterization capabilities.11–26 However, having the
ability to provide a unique geometric descriptor for a particular atomic
structure does not inherently mean that an interpretable pathway
between two random structures exists.27 Such a pathway is critical to
understanding the spatiotemporal behavior of materials under extreme
conditions because materials often undergo a cascade of subtle changes
that culminate in significant differences in their atomic structures over
time.27–29 Quantifying this process from start-to-finish, on both collec-
tive and local atomic scales, is critical to understanding the question of
why materials behave the way they do when placed in extreme external
conditions, laying the foundation for predictive modeling of such sys-
tems and their optimization.
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Recent work has shown that answering this question is non-
trivial for the majority of atomistic descriptors due to numerous chal-
lenges, such as the uniqueness of descriptors,30 their computational
cost,31 and their generality to any arbitrary material system.32 In par-
ticular, many methods employ a “bottom-up” approach when charac-
terizing structures as a whole, aiming to accurately quantify local
atomic sites and then project the collection of atomic features into a
global descriptor.32–34 This bottom-up approach often results in a loss
of information due to the inherently disconnected nature of treating
atomic environments as independent entities.30

Here, we build upon our previous work, the Structural Orderness
Degree for Atomic Systems (SODAS),35 and present SODASþþ,
which overcomes the limitations of the original SODAS algorithm by
addressing two major components: (1) extension to multicomponent
systems and (2) universal applicability to any atomic structural trans-
formation, not just those that depend on temperature. We achieve (1)
by interfacing SODAS with ALIGNN,23,36 a line-graph approach that
incorporates bonds and bond angles into the graph representation. (2)
is accomplished by mapping the ALIGNN23,36 latent space to an intui-
tive lower-dimensional manifold using a dimensionality reduction
technique called UMAP.37 Importantly, SODASþþ does not require
a training stage, instead relying purely on the unsupervised GNN
encoding. This allows for SODASþþ to be generalized to any arbi-
trary material system.

The SODAS formalism relies on a scalar order parameter, c, to
determine how far along a given structural transition a particular
atomic system is. In the original SODAS implementation,35 c was
explicitly linked to temperature, limiting its applicability to
temperature-dependent structural transitions. SODASþþ alleviates
this dependency, instead relying on the GNN latent space encoding to
produce an accurate phase space. By combining (1) and (2),

SODASþþ can quantify any arbitrary structural transformation,
under dynamic external conditions, in a universal and efficient man-
ner. Importantly, SODASþþ naturally encodes collective correlations
among local environments as it takes a “top-down” approach by build-
ing global graph of the physical system. We showcase the accuracy
and generality of SODASþþ by characterizing a multitude of struc-
tural transformations, such as the density-dependent phase changes in
colloidal particles, the compression and melting of FCC aluminum,
the amorphization of rutile TiO2, and finally the melting of the non-
stoichiometric ternary alloy Ag26Au5Cu19.

A detailed description of the SODASþþ workflow is described
in the following paragraphs, and a visual depiction can be seen in Fig.
1. We begin by leveraging the ALIGNN formulation,23,36 where two
graphs are used to encode one atomic structure: an original atomic
graph G and its corresponding line graph LðGÞ. The nodes and edges
in G represent atoms and bonds, respectively. The nodes and edges in
LðGÞ, on the other hand, represent bonds and bond angles, respec-
tively. Note that the edges in G and the nodes in LðGÞ are identical
entities and share the same embedding during GNN operation. In this
work, we extended the ALIGNN encoding to also explicitly represent
dihedral angles. We used Atomic Simulation Environment38 and
PyTorch Geometric39 to construct the graph representations and to
calculate all bond angles.

In the initial encoding, the atom type, the bond distance, and the
angular values are converted from scalars to feature vectors for subse-
quent neural network operations. The atom type z is transformed by a
learnable embedding matrix.40 The bond distance d is expanded into
the Radial Bessel basis proposed by Klicpera et al.41 The angles a are
expanded into the “standard” Gaussian basis implemented by Schnet.42

The interaction operations are also known as graph convolution,
aggregation, or message-passing. Following the ALIGNN paper,36 we

FIG. 1. Visual workflow of the SODASþþ methodology. Atomic structures are represented as graphs and then encoding with the GNN ALIGNN framework. This encoding is
then projected onto a low-dimensional manifold using UMAP. Planar graphs are then constructed from the low-dimensional manifold, and a graph pathfinding algorithm is
employed to learn the phase transition.
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also adopted the edge-gated graph convolution43,44 for the interaction
operations. The node features~h

lþ1
i of node i at the ðl þ 1Þ th layer are

updated as

~h
lþ1
i ¼~hl

i þ SiLU LayerNorm ~W
l
s
~h
l

i þ
X

j2N ðiÞ
~̂e
l

ij � ~W
l
d
~h
l

j

 ! !
;

(1)

where SiLU is the sigmoid linear unit activation function;45

LayerNorm is the layer normalization operation;46 ~Ws and ~Wd are

weight matrices; the index j denotes the neighbor node of node i;~̂e ij is
the edge gate vector for the edge from node i to node j; and� denotes

element-wise multiplication. The edge gate ~̂e
l

ij at the lth layer is
defined as

~̂e
l

ij ¼
rð~elijÞP

j02N ðiÞ rð~e
l
ij0Þ þ �

; (2)

where r is the sigmoid function,~elij is the original edge feature, and � is
a small constant for numerical stability. The edge features ~elij are
updated by

~elþ1ij ¼~e
l
ij þ SiLU LayerNorm ~W

l
g~z

l
ij

� �� �
; (3)

where ~Wg is a weight matrix and~zij is the concatenated vector from
the node features~hi; ~hj, and the edge features~eij,

~zij ¼~hi �~hj �~eij: (4)

We applied the same edge-gated convolution scheme [Eqs.
(1)–(3)] to operate on both the atomic graph G and the line graphs
LðGÞ. In the case of G, the edge-gated convolution updates nodes,
which represent atoms, and edges, which represent bonds, while
exchanging information between the two. In the case of LðGÞ, the con-
volution updates nodes, which represent bonds, and edges, which rep-
resent angles. Note that by iteratively applying the convolution
operation on both the original graph and the line graph, the angular
information stored in LðGÞ can propagate to G. Due to the nature of
the edge-gated convolution, all the feature/embedding vectors for
atoms, bonds, and angles during the interaction layers have the same
length, or the same number of channels D. Finally, the final output
layers pool (by summation) the node features of G and transform the
pooled embedding into an output vector, which preserves the dimen-
sionality of the original input layer. All model parameters can be found
in Table I. We emphasize here that the GNN encoding requires no
training process and is purely unsupervised. The GNN is simply learn-
ing the information present in the ALIGNN representation and pro-
jecting it onto a higher dimensional space.

The resulting GNN latent space is used to determine a pathway
between the initial and final configurations of a given trajectory. This
is accomplished in a four step process: (1) normalization of the origi-
nal latent space, (2) projection of the normalized latent space onto a
manifold using UMAP,37 (3) conversion of the manifold space into a
planar graph, and (4) recursive graph search to determine an optimal
pathway. The following paragraphs provide more detail into each step.

We apply a normalization algorithmN to the initial GNN latent
space to ensure that all dimensions are weighted equally. Here,

N ¼ rXðmaxX �minXÞ þminX , where rX is the standard deviation
for a given dimension X, while minX and maxX are the minimum and
maximum values along dimension X. We then project the normalized
latent space onto a lower-dimensional manifold (LD) using UMAP.37

UMAP is chosen due to its algorithm being rooted in topology, mak-
ing the resulting space ideal for the construction of a planar graph.
The planar graph is generated from the UMAP manifold space via a
k-nearest neighbor (kNN) approach. For all systems studied in this
work, k was set to 15. The nearest neighbors were identified using a
Minkowski distance metric47 in the UMAP space.

From the kNN graph, a recursive graph search algorithm is
employed to discover a pathway between the initial and final configura-
tions in the original trajectory. Upon reaching any given node, we rank
its neighboring nodes and chose the closest neighbor that has a possible
pathway to the final node. No node can be visited twice during the path-
way generation. If at any point a pathway cannot be created due to lack
of suitable neighbors, the algorithm goes back one node in the path and
moves to the next suitable neighbor. This iterative process results in a
realistic pathway generation by mimicking the true oscillations in phase
space during a molecular dynamics trajectory and is a graph-analog for
damped potential energy surface exploration.48

Finally, we define a phase space order parameter, c, as the point
between two endpoints within the phase space. The purpose of c is to
project the inherently non-linear transition pathway onto an order
parameter that varies linearly within the space. Conceptually, c is the
location along a given transition, a proxy for a phase-space reaction
coordinate. For example, when considering a solid-to-liquid transfor-
mation, one can think of c as a proxy for the configurational entropy
at any arbitrary point along the trajectory. Using our graph-pathing
scheme, we can break the path into iterative segments, where c can
be calculated as the distance along the total path. Therefore, we
define c as

ck ¼

Xk
i

di

XN
j

dj

; (5)

where k defines a specific configuration of atoms, i indexes the iterative
path segments before node k, while j indexes the segments along the
total pathway, and N defines the total number of segments in the path.
Therefore, for any arbitrary phase transition, c defines how “far along”
the transition a given configuration of atoms exists at. When a new
point p is placed in the LD, its c value is determined by finding the
closest node belonging to the generated path and assigning that node’s
c to p.

TABLE I. Model parameters.

Name Notation Value

Number of interaction layers L 6
Radial Bessel basis cutoff (bond distance) cd 5 Å
Gaussian basis range (cosine and sine angles) ca (�1, 1)
Number of channels D 100
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To validate SODASþþ, we performed MD simulations on sev-
eral systems ranging from fictitious toy problems to the melting of
oxides and ternary alloys. All MD simulations were performed using
LAMMPS.49 Interatomic potentials for Al,50 TiO2 (Ref. 51), and
Ag26Au5Cu19 (Ref. 52) were used. NVT simulations were performed
for both melting and compression trajectories. For melting, tempera-
tures were initialized to 100K and culminated at 3000K, though only
snapshots within 2 ps of melting were taken from the high temperature
regime. Compression simulations were performed at 300K.

The utility of SODASþþ is also demonstrated in quantifying
entropy-driven disorder-order phase transition in 3D hard-sphere sys-
tems,53,54 which are excellent models for many colloidal systems domi-
nated by strong repulsive interactions. The transition is induced by
increasing density or packing fraction / (via compression), and the
equilibrium phase diagram possesses three branches: disordered liquid
(0 < / < 0:494), co-existence (0:494 < / < 0:545), and crystalline
solid (0:545 < / < 0:74). Here, we use event-driven molecular
dynamics55 to capture the disorder-order transition, starting from a
metastable liquid state with / ¼ 0:54. Once the density increases
beyond the freezing point (/F ¼ 0:545), the liquid becomes unstable
and undergoes a rapid collective structural re-arrangement to the crys-
talline state (with defects), which is then continuously compressed to
the maximal density.

It can be seen in Figs. 2(a) and 3 that the disorder-to-order transi-
tion of the colloidal system is clearly captured by SODASþþ. The
metastable liquid states are clustered and separated from the crystalline
states (connected via a continuous path); and a sharp, discontinuous-
like transition between the two phases can be seen in both Figs. 2(a)
and 3(a). Particularly, from Fig. 2(a), one can see two distinct sub-
graphs connected via a single edge. The two subgraphs represent the

disordered and ordered states with the single graph edge representing
the transition from order-to-disorder. One can also see from Fig. 2(a)
that the subgraph representing the ordered states can be broken into
two further subgraphs by examining the average edge connections to
each node. This further breakdown represents the transition of the
ordered region from one phase to a second ordered phase. This transi-
tion can also be seen in Fig. 3(a) with a second discrete jump around
(0, 10) in (L1, L2) coordinates. The coloring of nodes in Figs. 3(b) and
2(a), which again is determined via Fig. 5, follows the trend observed
in Fig. 3(a), indicating that the unsupervised determination of c is
accurate.

Figure 4 depicts the SODASþþ characterization of (a, b) the
compression of Al at 100K and (c, d) the melting of Al via superheat-
ing. From Fig. 4(a), the continuous compression of Al is captured well
via the latent space projection, with a continuous pathway from low-
to-high density observed in Fig. 4(b). One important note regarding
Fig. 4(b) is that the blue and orange points seem to overlap in the 2D
view; however, in 3D, they do not overlap. From Fig. 4(c), one can see
that SODASþþ also captures the continuous heating of Al from per-
fect crystal to liquid phase extremely well. Similar to the compression
case, an intuitive pathway is found between the initial and final config-
urations in Fig. 4(d). It is important to note that the compression and
melting scenarios present wildly different transition types, with one
depending on a continuous disordering of the structure and another
the slow change in interatomic distances but without breaking the
symmetry of the crystal. SODASþþ quantitatively captures both of
these structural transitions in a way that is interpretable.

Figure 5 focuses on order-to-disorder transitions but for more
complex structural systems, with (a)–(d) capturing the amorphization
of TiO2 and (e)–(i) predicting the melting of a randomly distributed

FIG. 2. Graph representation of the SODASþþ learned phase transition. Colors represent the c calculated from the graph pathfinding algorithm, with a colorbar found in (b).
(a) The density-based transition of the colloidal system. (b) The melting of Al. (c) The compression of bulk Al. (d) The melting of Ag26Au5Cu19. Inserted images show represen-
tative snapshots of the atomic structures during specific points along the trajectory.
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FIG. 3. SODASþþ UMAP latent space projection for a colloidal system’s density-based structural transition. (a) The latent space projection color-coded based on the density
of the structure. Inserted images show representative points along the trajectory. (b) The latent space color-coded based on the predicted c values. A path through the graph
shows the result of the graph pathfinding algorithm, color coded based on the edge’s c.

FIG. 4. SODASþþ UMAP latent space projection for [(a) and (b)] compression and [(c) and (d)] melting of Al. (a) The latent space projection color-coded based on the
change in volume relative to the perfect ground-state crystal volume. (c) The latent space projection color-coded based on the temperature of the system. Inserted images
show representative points along the trajectory. (b) and (d) The latent space color-coded based on the predicted c values. A path through the graph shows the result of the
graph pathfinding algorithm, color coded based on the edge’s c.
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non-stoichiometric ternary alloy. For the amorphization of TiO2 in
Figs. 5(a)–5(d), we again see that SODASþþ provides an intuitive
characterization a function of temperature. The amorphization of
TiO2 proceeds in two stages: (1) disordering the crystal into an amor-
phous state and (2) transition of the amorphous system to a liquid.
We can see from Fig. 5(d) that c predicts a continuous transition path-
way from the crystal to the liquid. From the radial distribution func-
tions (RDF) shown in Figs. 5(a)–5(c), one can see the two-stage
transition process as a function of c. At small c values, crystalline rutile
is still observed. At approximately the halfway point (c ¼ 0:5), we can
see the first two peaks of Ti–Ti combine into a single peak, along with
a broadening of the peaks after 4 Å. This long-range broadening is also
present in the O–O distribution after 3 Å. These RDF changes corre-
spond to the transition from crystalline rutile to amorphous TiO2.
Finally, we observe further broadening of the peaks, especially the first
peak, which corresponds to the transition from an amorphous state to
a liquid. Again, we emphasize the ability of SODASþþ to not only
uniquely characterize these three atomic systems but also connect
them in a way that is physically justified and intuitive.

Figures 5(e)–5(i) show the melting of Ag26Au5Cu19 via continu-
ous heating simulations. Again, SODASþþ does an excellent job of
capturing the continuous order-to-disorder transition as the thermo-
stat temperature is increasingly ramped up. Here, an interesting

solid–solid transition occurs priors to the melting of the system. At
around 1000K, the phase space breaks into two distinct regions, as evi-
denced by Fig. 5(i). Interestingly, this transition can be explained by
observing the RDF as a function of temperature, as shown in Figs.
5(e)–5(h). At lower temperatures, Cu–Au distances (h) are the second
most common peak at interatomic distances smaller than 2.5 Å.
However, at approximately 1000K Ag–Cu distances become equiva-
lent in likelihood at those distances, with Au–Au distances becoming
more likely as temperature increases as well. This indicates that the
atomic structure changes from a Cu–Au dominant geometry to one in
which Ag plays a larger role as the system becomes more disordered.
Figure 5(i) captures this transition well by predicting a “bridge” region
between the two distinct clusters, one representing low-temperature
motifs and the other higher-temperature ones. The c characterization
in Fig. 5(i) quantifies this transition extremely well, further signifying
that the SODASþþ latent space can quantify the structural changes in
a material in a unique and interpretable manner.

In this work, we showcased an improvement over the SODAS
methodology, SODASþþ, that alleviates the pitfalls of SODAS by
generalizing the framework to any class of structural transition and
any class of material. Using SODASþþ, we quantified structural tran-
sitions of colloidal systems of increasing density, the low-temperature
compression and melting of bulk Al, the amorphization of TiO2, and

FIG. 5. SODASþþ UMAP latent space projection for [(a) and (d)] amorphization of TiO2 and [(e)–(i)] melting of Ag26Au5Cu19. Legend to the right of (c) pertains to all subplots
[(a)–(c), (e)–(h)]. (a)–(c) The radial distribution function for TiO2, decomposed into the three pairwise chemical interactions. (d) The latent space projection color-coded based
on the predicted c value. (e)–(h) The radial distribution function for Ag26Au5Cu19, decomposed into four chosen pairwise chemical interactions. (i) The latent space color-coded
based on the predicted c values. A path through the graphs in (d) and (i) shows the result of the graph pathfinding algorithm, color coded based on the edge’s c.
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the melting of Ag26Au5Cu19. These systems represent a wide spectrum
of materials classes and changes in atomic structure. In all cases,
SODASþþ quantified these structural transitions in a manner that
was not only accurate but was, more importantly, interpretable. This
interpretability is a critical piece of machine learning methodologies
for physical systems, as it is not sufficient to simply apply black-box
models to systems without understanding the underlying mechanisms
at play.

SODASþþ also does not require training a model on reference
data, as the characterizations shown in this work are created via the
GNN encoding, which simply operates on the information contained
within the initial graph. In this way, SODASþþ is an unsupervised
technique that can encode any structural transition in a physically
interpretable manner. This process makes SODASþþ generalizable to
any material system that can be appropriately encoded as a graph.
Based on this, we speculate that SODASþþ could be used as a foun-
dation for generative modeling of atomistic trajectories, in which a
path can be generated between known endpoints, alleviating the need
for complex and expensive simulations. We do note the inherently
non-linear pathways found between endpoints in this work, however,
implying that further work is needed to interpolate between points
within the latent space using sparse datasets. We hope that methods,
such as SODASþþ, can help to alleviate the current bottlenecks with
characterizing atomistic structures and provide a pathway to accurate,
unique, and interpretable atomistic descriptors.
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