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ABSTRACT: Force fields developed with machine learning
methods in tandem with quantum mechanics are beginning to
find merit, given their (i) low cost, (ii) accuracy, and (iii)
versatility. Recently, we proposed one such approach, wherein,
the vectorial force on an atom is computed directly from its
environment. Here, we discuss the multistep workflow
required for their construction, which begins with generating
diverse reference atomic environments and force data,
choosing a numerical representation for the atomic environ-
ments, down selecting a representative training set, and lastly the learning method itself, for the case of Al. The constructed force
field is then validated by simulating complex materials phenomena such as surface melting and stress−strain behavior, that truly
go beyond the realm of ab initio methods, both in length and time scales. To make such force fields truly versatile an attempt to
estimate the uncertainty in force predictions is put forth, allowing one to identify areas of poor performance and paving the way
for their continual improvement.

■ INTRODUCTION

Materials modeling approaches largely fall in two broad
categories: one based on quantum mechanical methods (e.g.,
density functional theory), and the other based on semi-
empirical analytical interatomic potentials or force fields (e.g.,
Stillinger-Weber potentials, embedded atom method, etc.).1−7

Choosing between the two approaches depends on which side
of the cost-accuracy trade-off ones wishes to be at. Quantum
mechanical methods (also referred to as ab initio or first-
principles methods) are versatile and offer the capability to
accurately model a range of chemistries and chemical
environments. However, such methods remain computationally
very demanding. Practical and routine applications of these
methods at the present time are limited to studies of
phenomena whose typical length and time scales are of the
order of nanometers and picoseconds, respectively. Semi-
empirical methods capture the essence of these interatomic
interactions in a simple manner via parametrized analytical
functional forms, and thus offer inexpensive solutions to the
materials simulation problem. However, their applicability is
severely restricted to the domain of chemistries and chemical
environments intended, or considered during parametrization.8

It is unclear whether the underlying framework allows for a
systematic and continuous improvement in the predictive
capability of newer environments.
The present contribution pertains to a data-driven approach

by which flexible and adaptive force fields may be developed,
potentially addressing the challenges posed. By using carefully
created benchmark data (say, from quantum mechanics based
materials simulations) as the starting point, nonlinear

associations between atomic configurations and potential
energies (or forces, more pertinent to the present contribution)
may be learned by induction.9−11 This data-driven paradigm,
popularly referred to as machine learning, has been shown by
many groups to lead to viable pathways for the creation of
interatomic potentials that (1) surpass conventional intera-
tomic potentials both in accuracy and versatility, (2) surpass
quantum mechanical methods in cost (by orders of magnitude),
and (3) rival quantum mechanics in accuracy,12−15 at least
within the configurational and chemical domains encompassed
by the benchmark data set used in the training of the potential.
A new recent development within the topic of machine

learning based interatomic potentials is the realization that the
vectorial force experienced by a particular atom may be learned
and predicted directly given just a configuration of atoms.16−18

This capability is particularly appealing as the atomic force is a
local quantity purely determined by its immediate environment,
in contrast to conventional methods that predict the total
potential energy, which is a global property of the system as a
whole. A large body of materials simulations, such as geometry
optimization and molecular dynamics simulations, require the
atomic force as the sole necessary input ingredient.1 Note that
partitioning the total potential energy into individual atomic
contributions, conventionally adopted in semiempirical intera-
tomic potentials, is a matter of convenience of construction,
rather than being a fundamental requirement.
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This article deals specifically with using machine learning
methods to create an atomic force prediction capability, i.e., a
force field. As recently pointed out, this force field is adaptive
(i.e., new configurational environments can be systematically
added to improve the versatility of the force field, as required),
generalizable (i.e., the scheme can be extended to any collection
of elements for which reliable reference calculations can be
performed), and neighborhood informed (i.e., a numerical
fingerprint that represents the atomic environment around the
reference atom is mapped to the atomic force with chemical
accuracy).16,17 The force field is henceforth dubbed AGNI.
The workflow in constructing AGNI force fields includes five

key steps. These include: (1) creation of a reference data set
derived from a plethora of diverse atomic environments of
interest, and the corresponding atomic forces computed using a
chosen quantum mechanical method, (2) fingerprinting every
atomic environment, in a manner that will allow the fingerprint
to be mapped to atomic force components, (3) choosing a
subset of the reference data set (the “training” set), using
clustering techniques to optimize the learning process while
ensuring that the training set represents the diversity
encompassed by the original reference data set, (4) learning
from the training set, thus leading to a nonlinear mapping
between the training set fingerprints and the forces, followed by
testing the learned model on the remainder of the data set
using best-statistical practices, and (5) finally, estimation of the
expected levels of uncertainty of each force prediction, so that
one may determine when the force field is being used outside
its domain of applicability. The entire workflow involved in the
construction of AGNI force fields is portrayed schematically in
Figure 1.
In our previous work, a preliminary version of the AGNI

force field for Al was used to demonstrate its capability with
respect to predicting structural, transport or vibrational
properties of materials.17 Here, we further extend its scope,
by including more diverse atomic environments and its ability
to simulate even more complex phenomena, such as surface
melting and stress−strain behavior. Furthermore, although
AGNI is built to provide atomic forces, we demonstrate that
accurate total potential energies can be retrieved either during
the course of a molecular dynamics simulation or along a
reaction coordinate, through appropriate integration of atomic
forces.
Additional comments pertaining to the last step of the

workflow in Figure 1 are in order. Uncertainty quantification is
essential to recognize when the force field is operating outside
its domain of applicability. Ideally, the larger the uncertainty of

the force prediction for an atom in a given environment, the
greater is the likelihood that the environment is “new”. By
imposing a threshold and monitoring the uncertainty we may
wish to augment the training set with the corresponding new
atomic environment(s) and follow the workflow in Figure 1.
This helps build force fields that are truly adaptable. Initial steps
toward quantifying this uncertainty in force predictions are
undertaken.
The rest of the paper is organized as follows. In the first half

of the work we guide the readers through the rigors of each step
in the force field construction workflow, shown in Figure 1, to
develop a general-purpose Al force field. The applicability of
the force field is then validated by demonstrating its use in
atomistic simulations. A discussion on measures to estimate
uncertainties in force predictions made is then put forth. Lastly,
we conclude with an outlook on using machine learning force
fields in the field of atomistic materials modeling, and the
challenges that yet remain to be addressed.

■ COMPUTATIONAL DETAILS

Generating Reference Data. The construction of AGNI
force fields begins with data. We start by building several
periodical and nonperiodical equilibrium configurations (c.f.,
Figure 2), such as (i) defect free bulk, (ii) surfaces, (iii) point
defects, vacancies and adatoms, (iv) isolated clusters, (v) grain
boundaries, (vi) lattice expansion and compression, and (vii)
edge type dislocations. These configurations are so chosen to
mimic the diverse environments an atom could exist in and
forms a critical first step in constructing generalizable force
fields. It is by no means a complete list and one could
continuously add nonredundant configurations to it (methods
to identify such redundancies are discussed later). The vectorial
force components on each atom, in the equilibrium
configurations amassed, are then computed by quantum
mechanical based density functional theory (DFT) calcula-
tions.19,20 To correctly describe the nonequilibrium behavior of
an atom, in response to a perturbation due to thermal
vibrations, pressure or other sources, it is equally necessary to
construct nonequilibrium atomic environments, to learn the
complete array of forces experienced by an atom. A convenient
and quick means to sampling such nonequilibrium environ-
ments is with ab initio molecular dynamics (MD) simulations.21

Here, starting with the equilibrium configurations, MD
simulations in the micro-canonical ensemble were then carried
out with multiple initial velocity conditions (between
200−1250 K). One could equally use multiple constant
temperature MD simulations as well, to source the reference

Figure 1. Flowchart illustrating the workflow in constructing AGNI force fields: generating reference atomic configurations and forces with quantum
mechanical methods, fingerprinting atomic environments, rational selection of training and test data sets, mapping atomic fingerprints to forces using
machine learning methods, and quantifying uncertainty in predictions made.
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data. For large reference configurations, where MD simulations
are restricted, initially the atoms are randomly perturbed to
coerce the dynamics into quickly sampling nonequilibrium
environments. The combination of ab initio MD and random
perturbations resulted in a diverse set of reference atomic
environments and forces (cf., Table 1), needed to learn
(indirectly) the underlying potential energy surface.
From within the millions of reference atomic environments

collected, a subset of them are chosen as training environments
to construct the force fields. The particular choice of
environments plays a critical role in the generalizability of

such data-driven force fields. To better understand such limits
imposed by data choices, we construct four data sets, labeled as
A, B, C, and D, with increasing complexity and diversity of
atomic environments contained (cf., Table 1). For each data
set, training and test sets were created, the former used to
construct the force field and the later used to validate its
predictive prowess. Also a fifth data set, E, consisting of
configurations never used during force field construction (see
Table 1) was created, solely to demonstrate the transferability
of AGNI force fields.
All force and MD calculations were done using VASP, a

plane-wave based DFT software.22,23 The PBE functional to
treat the electronic exchange-correlation interaction, the
projector augmented wave potentials, and plane-wave basis
functions up to a kinetic energy cutoff of 520 eV were used.24,25

A 14 × 14 × 14 Γ-centered k-point mesh was used for the
primitive Al unit cell and scaled according to the unit cell size.
A time step of 0.5 fs was chosen for the MD simulations.
Methods to access the reference DFT data files used in this
work are discussed in the Supporting Information.

Fingerprinting Reference Environments. Choosing a
representation for an atom and it is environment is the most
critical step in the entire workflow. In order to learn the
vectorial force components, Fu, where u refers to any arbitrary
direction, necessitates a numerical representation that conforms
with this directional dependence. Further, it should also remain
invariant to the basic atomic transformation operations, such as
translation, rotation, or permutation. One such representation
(commonly referred to as as fingerprint) with the necessary
prerequisites is given below

Figure 2. Reference configurations used to sample atomic environments for training and testing of AGNI force fields; (i) bulk, (ii) surfaces, (iii)
defects (vacancies and adatoms), (iv) isolated clusters, (v) grain boundaries, (vi) lattice expansion and compression, and (vii) dislocation.

Table 1. Atomic Environment Makeup for the Five Datasets;
A, B, C, D, and Ea

data
set atomic envs from reference configurations

no. of
envs

A Defect free bulk fcc and bcc. 20385
B Data set A + (100), (110), (111), (200), and (333)

surfaces.
211255

C Data set B + Defects in bulk fcc with 1, 2, and 6 randomly
distributed vacancies and adatom on (100), (110) and
(111) surfaces.

1502856

D Data set C + Isolated clusters of 5 Å, 8 Å, 10 Å, and 12 Å. 586679
E Σ3 (111), Σ5 (210), Σ5 (310), Σ13 (320), and Σ13 (510)

grain boundaries, varying lattice vectors by ±7% of
equilibrium, edge dislocation along (112 ̅) direction.

394116

aFor each dataset we generate a training and test set (except for
dataset E, where only a test set is created), the former used to
construct the force field and the later to validate it. The number of new
environments added is indicated in the last column.
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c
is a damping function for atoms

within the cutoff distance (Rc) and is zero elsewhere. The
summation in eq 1 runs over all neighboring atoms within an
arbitrarily large Rc (8 Å, in the present work).
To better understand the fingerprint described in eq 1, one

can deconvolute it into three subcomponents (as separated by

“·”). The exponential term ( − η( )e
rij 2

) imposes a coordination
shell around an atom i with η describes the extent of the shell.
By using multiple such η values both nearby and distant
coordination information are contained within the fingerprint.
In this work, η’s were sampled on a logarithmic grid between
[0.8 Å, 16 Å], ensuring a sufficient description of the neighbor
interactions. One could also use the peak positions of a radial
distribution function as a starting point in choosing the η

values. The normalized scalar projection term (
r

r
ij
u

ij
) adds

directionality to the fingerprint by selectively resolving the
coordination information along the desired direction (u), and is
necessary to map the individual force components. Lastly, the
damping function ( fd(rij)) diminishes the influence of far away
atoms smoothly. The combination of these three features
makes this particular choice of representation suitable for
mapping atomic force components. Similar coordination based
fingerprints have been developed in the past.12,26 However,
these were tailored for the purpose of mapping the total
potential energy (a scalar quantity) for a given configuration of
atoms, unlike the vectorial force components as done here.
Further, the atomic fingerprint representation chosen

conforms with the required invariance operations, such as
permutation, translation, and rotation of atoms. For instance
consider a reference atom, i, and its neighboring atoms within a
cutoff sphere (as shown in Figure 3). Information pertaining to
atoms neighboring atom i are passed into the summand of eq 1
as pairwise distances, thereby, permutation or translation of
atoms does not alter Vi

u. In the case of rotations, both the
fingerprint and vectorial force components change in a manner
governed by the rotation matrix. For example, by rotating
atoms along the z-axis one can redefine the forces (shown here

for the force but equally applicable to the fingerprint) along the
Cartesian directions as

θ θ
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Nevertheless, the magnitude of the net force before and after
rotation remains the same, as one would expect. The
concurrence to this rotational behavior implies that both the
forces and fingerprints transform in an identical manner upon
rotation.
An added advantage of this rotational property is that one

can expand upon the pre-existing reference database beyond
the three vectorial components (i.e., the Cartesian direction)
obtained from DFT methods. By defining a grid of θ values in
eq 2, arbitrary projections of the atomic fingerprint and forces
can be computed without any additional costly ab initio
calculations. Similarly, multiple values for the azimuth angle, ϕ
(taken as 0 in eq 2), can be chosen, adding to the diversity and
completeness of possible reference atomic environments and
forces. However, this builds in extensive redundancies. Training
a force field on millions of reference atomic environments is
impractical, computationally very demanding, and might lead to
misbehaved models, therefore, further down-sampling from
within this big pool of data is an essential step in the
construction workflow, as discussed shortly.
Another important aspect of the fingerprint is that it remains

unique for the diverse atomic environment situations. Numeri-
cally this implies that identical fingerprints should map to the
same atomic force value. Here, we do this by using multiple η
values. In the limit that number of η values tends to ∞
uniqueness can be ensured, nevertheless, for all practical
purposes one can make do with a much smaller subset, as
determined by running convergence tests.

Clustering Reference Data. The next step in the
construction workflow is to select a representative set of
atomic environments for training purposes. To do so, it is
necessary to identify the redundant and noncontributing data
points from within the millions sampled. An obvious place to
start is by comparing among the individual atomic fingerprints.
However, given its high-dimensionality understanding or
unraveling the fingerprint directly is nontrivial. Therefore, we
rely on dimensionality reduction techniques such as principal
component analysis (PCA) to project Vi

u onto a lower
dimension space.27

Figure 3. Schematic demonstrating the scalar projection for an atom i (the reference atom) and one of its neighbor (1) along a direction u. To
generate the final fingerprint for atom i, a summation over the atoms within the cutoff sphere, as indicated by the dashed line, is considered.
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In PCA the original atomic fingerprint is linearly transformed
into uncorrelated and orthogonal pseudo variables, also known
as principal components (PCs). Often times the information
content contained within the original fingerprint can be
captured by a few such PCs. To demonstrate this, here, for
all the reference atomic environments we compute and
transform an 8-dimensional fingerprint (the rationale for
which shall be discussed shortly). Two such PCs captured
more than 99% of the information content of the original
fingerprint, allowing us to visualize the atomic environments on
a two-dimensional manifold known as a scores plot (cf., Figure
4). Immediately, we observe clustering of the atomic finger-

prints that correspond to similar neighborhood environments.
For clarity environments corresponding to a few such cases,
e.g., adatoms, surfaces, vacancies, etc., are labeled. Further, by
color coding atoms according to the data set they were sampled
from, i.e., A, B, C, D, or E, we qualitatively observe their extent
of diversity. For instance, data set D (cf., Figure 4) spans a
diverse set of atomic environments as it populates majority of
the space, suggesting that isolated cluster configurations are a
good starting point to sample reference data from. Interestingly,
atomic environments from data set E lie within the domain of
data set D. This suggests that a force field trained on data set D
should accurately predict the forces for environments in data
set E, though they were never explicitly included during
training.
Thus, far, the dimensionality reductions methods used

provided a visual means to identifying redundancies, but for
an efficient force field construction an automated sampling of
the nonredundant training environments is necessary. One way
of doing so is to choose the data randomly. Unfortunately, this
biases sampling according to the underlying probability
distribution of the data set and fails to sample sparsely
populated regions. To avoid such irregularities, here we adopt a
simple grid-based sampling on the PCA space. The PCA
transformed data is split into uniform subgrids, the bounds of
which are determined by the minimum and maximum of the
relevant PCs (which can be more than 2). Training points are
then randomly sampled from within each subgrid. By using a

fine grid one can ensure uniform and diverse sampling from all
regions of the PC space. Note that in the limit the grid size
becomes large this approach is equivalent to the random
sampling approach. Also, the test sets for validation purposes
are generated in a similar manner from the remaining
nonsampled data. Other dimensionality reduction algorithms,
such as kernel-PCA28 or multidimensional scaling,29 could
similarly be adopted to sample for a representative data set.
Irrespective of the choice, such clustering methods are critical
as the learning and prediction cost scales as n( )3 and n( ),
respectively (where n is the training data set size).

Learning Algorithm. The next vital ingredient required in
putting together a predictive framework is the learning
algorithm itself. Deep learning neural networks30 and nonlinear
regression processes13 have been the methods of choice for
models describing atomic interactions. Their capability to
handle highly nonlinear relations, as is in the case of mapping
an atom’s environment to the force it experiences, makes them
a suitable choice here as well. Here, we choose nonlinear kernel
ridge regression (KRR) method as the machine learning
workhorse.11,31 KRR works on the principle of (dis)similarity,
wherein, by comparing an atom’s fingerprint (Vi

u(η)) with a set
of reference cases, an interpolative prediction of the uth
component of the force (Fi

u) can be made

∑ α= · −
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥F

d
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exp
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u

t
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Here, t labels each reference atomic environment, and Vt
u(η)

is its corresponding fingerprint. Nt is the total number of
reference environments considered. di,t

u = ∥Vi
u(η) − Vt

u(η)∥ is
the Euclidean distance between the two atomic fingerprints,
though other distance metrics can be used. αts and l are the
weight coefficients and length scale parameter, respectively.
The optimal values for αts and l are determined during the
training phase, with the help of cross-validation and
regularization methods. For further details concerning the
learning algorithm the reader is directed to these sources.10,32,33

Finally, in order to evaluate the performance of a developed
force field, three error metricsmean absolute error (MAE),
maximum absolute error (MAX), and the standard deviation
(in particular 2σ)were chosen. Relying on multiple metrics
reduces any bias, unknowingly, introduced during model
selection as shall be discussed shortly.

■ RESULTS AND DISCUSSION

Constructing the Force Field. At this stage all the pieces
required to construct AGNI force fields, as illustrated by the
flowchart in Figure 1, have been laid out. In the upcoming
sections we discuss how one chooses the appropriate number
of η values to adequately describe an atomic environment, and
the minimum number of training environments to use, as
needed to construct accurate force fields. The accepted force
field is then put to the test by predicting forces on atoms
outside the domain of training environments used, to ensure its
generalizability.

Convergence Tests. The first step to attaining an optimal
force field is to ensure convergence with respect two
parameters: (i) the number of η values used for the atomic
fingerprint and (ii) the training data set size. As mentioned
earlier the number of η values governs the resolution with
which an atom’s local coordination environment is described,

Figure 4. Projection of an 8 dimensional (i.e., 8 η values) atomic
fingerprint for all entries within data sets A, B, C, D, and E onto a 2-
dimensional manifold, transformed by principal component analysis.
Identical atomic environments cluster together and highlights the
extent of redundancies within the reference data set.
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while the size (and choice, as shall be elaborated in the next
section) of training data governs AGNI’s interpolative
predictive capability. In order to identify this optimal parameter
set, we systematically increase the fingerprint resolution from 2
to 16 η values and the training data set size from 100 to 2000
atomic environments, while monitoring test set error (in this
case the chosen error metric was the MAE). To remind the
reader, η values were sampled on a logarithmic grid between
[0.8 Å, 16 Å], while training data environments were sampled
using the PCA projection followed by a grid-based sampling.
For each of the four training data sets (A, B, C, and D),

partitioned in the data generation stage, and for all
combinations of the convergence parameters an AGNI force
field was constructed. Each force field is then validated on the
respective test data sets (A, B, C, D, and E). The force fields are
denoted as Mi

j, where i and j label the training and test
environments used, respectively (the superscript is omitted
when referring to the training environments only). Figure 5
illustrates heat maps of the error for different training and test
data sets, and convergence parameter combinations. Two key
findings stand out: (i) by increasing the fingerprint resolution
the error drops and quickly converges below ∼0.05 eV/Å

(expected chemical accuracy) and (ii) increasing the training
data set size reduces error only beyond a reasonable fingerprint
resolution. For example, in MC

A increasing the training data set
size for a fingerprint with 2 or 4 η values has no effect on the
predictive capability. Such a manifestation implies that 8 or
more η values are required to “uniquely” discern among the
atomic environments, in order for the learning algorithm to
work. Nevertheless, this relation only holds for force fields used
in an interpolative manner, as seen in the failure of MA

B, MA
C,

MA
D, or MA

E. Here, the diversity in the training data chosen plays
a more prominent role in governing performance, as shall be
elaborated in the next section. Overall, we find that a fingerprint
of 8 η values and a training size of 1000 atomic environments is
sufficient, beyond which the models exhibit diminishing
returns, i.e., increased model training costs with no significant
drop in model error, and are the parameters chosen for all
subsequent discussions. The computational burden of each
AGNI prediction is ∼0.1 ms/atom/core, while DFT costs ∼1
ks/atom/core.

Training Data Choice. The particular choice of atomic
environments included during training is a crucial factor, as
briefly alluded to earlier. Given that the learning algorithm is

Figure 5. Heat maps illustrating model error (mean absolute error) as a function of number of eta values and the training data set size. The
fingerprint was varied from 2 to 16 η values, while the training data set size was varied from 100 to 2000 environments. We report the MAE for
models trained on data sets A, B, C, and D and tested on data sets A, B, C, D, and E. For example the top row corresponds to models trained on data
set A, while each column corresponds to a test data sets of the five cases. The errors quickly converge for a fingerprint with 8 η values and a training
size of 1000 diverse environments.
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interpolative by nature, a force field trained say only on bulk
type environments (MA) cannot predict the forces correspond-
ing to other environments types, e.g., data sets with surfaces
and other featuresMA

B, MA
C, MA

D, or MA
E. By increasing the

diversity in training environments, MB, MC, and MD, we make
the force fields more generalizable once the optimal parameters
are chosen, as given by their low test error in Figure 5.
Surprisingly, it appears as though predictions made with MB are
equally as good as MC or MD. However, this is purely a
manifestation of using the MAE as the error metric. Along with
the MAE, we report test set errors computed with two other
metrics: MAX and 2σ, as illustrated in Figure 6 (shown only for
the optimal 8-component fingerprint and 1000 training atomic
environments). For MB, with MAX as the metric, the prediction
error is high outside its domain of applicability (test set C, D, or
E), and a similar behavior is observed for MC. It should be
recognized that MAX reports the worst prediction made, while
MAE reports a mean error skewed by test set size. By
combining the two metrics with the actual variance in the
errors, as measured by the 2σ metric, we can ensure that the
error is indeed under control. We observe that in MD, by
sampling atomic environments from a very diverse set of
configurations, all the error metrics are low, and the force field
is highly generalizable and is the force field used in subsequent
discussions.
Testing out of domain configurations. The configurations

contained in data set E, grain boundaries, lattice expansion and
compression, and dislocations, were never “observed” during
the training phase. Being able to accurately predict the forces
will further demonstrate the fidelity in using a local-
neighborhood based force predictive capability. The PCA
scores plot, shown in Figure 4, provided a glimpse of what one
could expect. Given that the transformed atomic fingerprints
for data set E lie within the domain of environments from data
set D, one can expect the force predictions made by MD to be

interpolative and thus accurate. However, a more stringent test
is to predict forces on all the atoms in data set E and compare
them to those obtained by DFT methods, as is done and shown
in Figure 7. For all three cases, the AGNI predicted forces are
in excellent agreement with DFT. This demonstrates the
intended goal of AGNI force fields, i.e., to retain quantum
mechanical accuracy, be computationally inexpensive, and
remain generalizable. The last feature in particular, general-
izability, is often lacking with traditional semiempirical
methods. For comparison, we recompute the forces for atoms
in data set E using traditional semiempirical potentials. Here,
we particularly use an Al EAM potential,34 as it accurately
captures interactions in close-packed metallic type systems. As
with AGNI force field, EAM methods equally predict forces
accurately for grain boundaries and lattice expansion/
compression but fails for dislocation type of environments.8

Validating the Force Field. Having demonstrated a robust
scheme that allows accurate atomic force predictions for a
diverse set of situations, in the subsequent sections, we
demonstrate the true prowess of such AGNI force fields in
facilitating atomistic simulations. Our previous work provided a
glimpse of such simulations, whereby, structural optimization,
vibrational property estimation, and simple MD simulations of
materials were undertaken.17 Here, we extend the realm of such
force fields to simulate more complex atomistic phenomena,
such as surface melting and stress−strain behavior. These are
particularly challenging as the atoms traverse through a
multitude of environments, and an accurate prediction of the
forces requires undertaking the rigorous construction workflow
discussed thus far.
The simulations were carried out using the LAMMPS

molecular dynamics code.35 The source code and force field
files required to carry out the simulations are provided as
supplemental files.

Figure 6. (a) Mean absolute error, (b) maximum absolute error, and (c) 2* standard deviation error metric, for models trained on A, B, C, and D
and tested on data set A, B, C, D, and E. The errors are reported for an 8 dimensional fingerprint vector (i.e., 8 η values) chosen to represent the
environment around an atom, and a training set size of 1000 environments obtained from the PCA grid-based sampling.

Figure 7. Parity plots comparing force predictions, for test environments in data set E, made with the AGNI model, MD, EAM interatomic potential,
and DFT. The plots have been further separated according to the configuration they were sampled from, (a) grain boundaries, (b) lattice expansion/
compression, and (c) edge dislocation, respectively.
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Melting Behavior of an Al (111) Surface. The melting
temperature of condensed matter is a property often estimated
by MD simulations. Here, starting with a surface model with
over 1000 atoms and dimensions of 19 Å × 17 Å (cf., Figure
8a), constant temperature MD simulations were carried out for
over 50 ps and across a temperature range of 300−1300 K, to
estimate the melting temperature. In traditional MD simu-
lations energy is used as the metric to distinguish between a
solid and liquid state. Since this metric is not at our disposal we
rely on the Lindemann Index (LI) order parameter instead.
The LI measures the thermal perturbations of atoms: for solids
this value is around ∼0.03 while for liquids it is ∼0.13. A
sudden increase in the LI as a function of temperature is
attributed to a solid−liquid phase transition and can thus be
utilized in MD simulations to estimate the melting temper-
ature.36−38 The LI is defined as

∑ ∑=
−

⟨ ⟩ − ⟨ ⟩

⟨ ⟩≠N N

r r

r
LI

1 1
1i j i

ij ij

ij

2 2

(4)

where rij is the distance between atom i and j, N is the total
number of atoms, and ⟨..⟩ indicate time averaged quantities.39

For the range of temperatures considered, the LI was computed
using eq 4 and reported in Figure 8b (red lines). Further, we
distinguish between the surface and bulk LI values (cf., 8a) as it

is well-known that the melt front initiates at the surface and
propagates inward. Starting at 300 K, the LI rises due to a
systematic increase in thermal vibrations up to 900 K. Between
900−1000 K, the sudden increase in LI signifies the onset of
surface melting, which then propagates into the bulk by 1200 K.
With AGNI force fields this onset of melting is observed at
∼950 K, similar to the known experimental value at ∼933 K for
Al.40 Even though the training environments used in building
the force field did not explicitly contain Al in a liquid state, by
including high temperature MD reference data we were able to
predict forces for environments in such extreme conditions.
Similar LI curves computed by an EAM force field, as pure ab
initio studies of this size and time scale are intractable, yielded
an overestimated melting temperature of ∼1100 K.

Stress−Strain Behavior of an Al (001) Surface. Another
important material property determined by atomistic simu-
lations is the stress−strain behavior. Beginning with a (001) fcc
Al surface, of dimensions 8 Å × 8 Å × 80 Å, the surface atoms
(fixed in their position) are displaced, Δl, resulting in a uniaxial
strain along the surface normal [001] as illustrated in Figure 9a.
Atoms within the strained region are then relaxed to minimize
the forces acting upon them. This imposes a net force (Fs) on
the fixed surface atoms toward the bulk (cf., Figure 9a). Using

the stress tensor relation, σ =s p
F
A,

s

p
, for a plane p with an area

Figure 8. (a) Schematic of the (111) Al surface model and the regions classified as surface or bulk atoms. (b) The Lindemann index (LI) as a
function of temperature simulated with both the AGNI and EAM force fields. Melting occurs once the LI transitions from a slow linear increase to a
sudden spike. With the AGNI force field the surface begins to melt ∼950 K, and propagates to the bulk by ∼1100 K.

Figure 9. (a) Schematic of the surface model and procedure adopted to extract stress−strain behavior. (b) Stress vs strain behavior of uniaxially
strained Al as computed using forces predicted by the AGNI and an EAM force field. The inset shows stress at low strain (<0.35%).
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Ap, across varying values of strain, ϵ = Δ
s p

l
l,
0
, one can deduce the

stress−strain behavior of the material. In Figure 9b we report
the computed stress for varying strain deformations. The slope
of this curve, for the direction considered, yields the C11 elastic
coefficient, a property that can be compared with atomistic
theories. Using the AGNI force field we report a C11 value of
107 GPa, which is in good agreement with a past ab initio result
of 105 GPa.41 Clearly, this suggests that besides forces the force
field can predict their derivatives, i.e., the stresses, at quantum
mechanical accuracy as well. Further, we recomputed the C11
value with an EAM potential, resulting in a value of 106 GPa.
Though, the combination of AGNI force prediction and stress
relation result in quantum mechanically accurate elastic
coefficients, the procedure laid out can only describe the stress
along nonperiodical directions, a limitation of the force based
implementation.
Energy Prediction. We now briefly touch upon the topic of

energy. Energy is a unique, and important, global quantity
describing the state of a configuration of atoms. It is often used
to ensure stable MD simulations, estimate phase diagrams,
compute minimum energy reaction pathways, etc. Given the
principium of AGNI, whereby, the force on an atom is learnt
based on its environment deprives the means to predicting
energy directly. Nevertheless, we now discuss some alternative
strategies to estimating energy, be it in dynamic or static
simulations.
During a Molecular Dynamics Simulation. The rate of

change of the total potential energy, in an MD simulation, can
be expressed as a function of the individual atomic forces and
velocities by invoking the chain rule

∑ ∑= ∂
∂

∂
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= −E
t

E
r

r
t

F v
d
d i u i

u
i
u
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E is the total potential energy of the system, ri
u and vi

u are the
position and velocity of atom i along one of the three
coordinates, u ⊂ (x, y, z). In the limit that ∂t → 0, in eq 5, an
analytical expression for the rate of change in energy for
infinitesimally small time difference (Δt), albeit from the initial
configuration, can be expressed as

∑= − Δ−ΔE E t F v( )t t t
i u

i
u

i
u

, (6)

In MD simulations this translates to choosing a small time
step to ensure accurate force integrations and minimize
numerical noise propagation, providing a pathway to indirectly

monitor the energy evolution during the course of the
simulation.
To validate this scheme, constant temperature MD

simulations of bulk fcc Al (∼250 atoms) were carried out at
different temperatures using the MD AGNI force field. A time
step of 0.5 fs was chosen. Using the reference forces and
velocities, along with eq 6, the rate of change in energy was
computed as a function of time. The results are plotted in
Figure 10a. Clearly, the computed energies (from AGNI
predicted forces) are conserved in time and maintain the
correct ordering as a function of temperature. Note that the
change in energy is reported with reference to the starting
configuration. For comparison DFT energies (and scaled with
respect to the starting configuration) for snapshots of atomic
configurations along the dynamic trajectory are also reported.
The error between the computed and ab initio predicted
energies is ∼4 meV/atom, close to the order of numerical noise
that one can expect in such simulations. For completeness, we
also report the change in energy for MD simulations run with
an EAM force field (Figure 10b). All three methods display
similar trends suggesting that the dynamics undertaken with an
AGNI force field does indeed concur with the thermodynamic
driving forces in a system.

During a Static Simulation. A second, and equally simple,
approach to estimating the potential energy directly from forces
is by integrating them using a Taylor series approximation of
the potential energy
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Here, E is once again the total potential energy, which to a first
order approximation can be derived from the atomic forces. ri

u

is once again the atomic position. A discretization along the
atomic positions governs the accuracy by which we can predict
the energy. For these reasons eq 7 is particularly more suited
for static simulations, e.g., computing reaction barriers along a
reaction coordinate, when the velocities are zero. The validity
of this approach was demonstrated to be consistent with the
underlying potential energy surface in our previous work,

Figure 10. Evolution of energy of bulk fcc Al using the (a) AGNI with eq 6 and (b) EAM potential. DFT computed energies of a few configurations
are also marked in (a) for validation. In all the cases, the energy is in reference to that of the perfect fcc Al. The energy is conserved with time and
maintains the correct ordering with temperature.
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whereby, the migration energy for a vacancy in bulk Al was
within 3% of the DFT predicted value.17

Equations 6 and 7 both provide a restricted means to
computing the energy, whereby, it is necessary that a pathway
connecting the different configurations in phase space (either in
time or along a reaction coordinate) exists, in order to
accurately carry out force integration. This is a limitation of
using a truly force based force field, wherein, one cannot
predict energies by simply choosing two arbitrary points in the
phase space. Nevertheless, these findings ascertain that eqs 6
and 7 can indeed be used to compute change in the total
potential energy as a function of time or reaction coordinate, as
needed by a majority of atomistic simulations.
Uncertainty Quantification. The final component to a

successful predictive model is to be able to quantify the error
(ε) in the force predictions made. If this uncertainty can be
estimated, a priori, confidence estimates for the force
predictions given a new atomic environment can be provided.
At the same time, it allows one to understand the force field’s
domain of applicability, providing a pathway for their
subsequent and continual improvement. Below is one such
attempt to quantify these uncertainties.
To compute the force on an atom, within the learning

framework (cf., eq 3), begins by calculating the distance
between its fingerprint and the reference training fingerprints,
resulting in a total of Nt distances. The final prediction is then a
weighted sum of these distances, making them an important
metric on predictive accuracy. Among the list of distances the
minimum distance, dmin = min {d1, d2, ..., dNt

}, in particular
provides a measure of “closeness” of the new observation
compared to the reference cases and can be thought of as a
descriptor in estimating ε. To capture this hypothesis, the dmin
and ε for every observation in the test data set was computed
with the constructed AGNI force field, MD. The results are
summarized in the scatter plot of Figure 11. Clearly, as dmin
increases the variance in ε increases, suggesting that for
instances far away from reference training environments the
interpolative performance fails. By binning the range of dmin’s
observed into uniform and smaller subgroups, a standard
normal distribution is fit to the observed ε. The histogram

insets in Figure 11 demonstrate this for three such bins. During
the binning process, dmin < 10−3 and >10−1 were ignored due
data scarcity and large predictive errors, respectively (cf., gray-
shaded regions in Figure 11). Collecting statistics across the
range dmin’s allowed us to fit a polynomial relation between
standard deviation (s) and dmin, providing an analytical form to
quickly estimating uncertainties. The exact functional form is s
= 49.1dmin

2 − 0.9dmin + 0.05. This is illustrated by the red circle
markers and the blue dashed line in Figure 12. Note that by

using s the confidence level in the uncertainties provided is at
68.2%, though one can use higher confidence levels such as 2s
and beyond, a call that the user needs to make depending on
the need and availability of computational resources.
Now to demonstrate this uncertainty model, for each atom in

the validation configurations (grain boundaries, lattice
expansion/compression, and dislocation), we estimate the
uncertainty in the force predictions made. In Figure 13 we
replot the reference DFT and ML force predictions, along with
the corresponding uncertainty in each prediction as highlighted
by the error bars (color coded according to the configuration
subclass marker). Immediately, those atomic environments with
high uncertainties is evident and can now be flagged. These
environments can be accumulated and used to retrain the force

Figure 11. Top panel: a scatter plot of the minimum distance (dmin) vs the predicted force error (ε). The range of dmin is further subdivided into
small groups for statistical analysis. The gray regions were not considered for any statistical purposes, due to the lack of sufficient data (left) and high
errors (right). Bottom panel: a standard normal distribution fit for each subgroup (though only shown for three such bins), used to estimate the
variance in model errors.

Figure 12. Uncertainty model, created for force field MD, whereby dmin
is used as a descriptor to measure the expected variance in the
prediction made. The markers show the actual behavior, while the blue
dashed line indicates a polynomial fit to the uncertainty.
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field. The preliminary steps undertaken here allow for
identifying regions of poor force field performance in a
systematic manner and are integral to the continual improve-
ment in accuracy and generalizability of AGNI force fields,
making them truly adaptive.

■ CONCLUSIONS
A new machine learning framework to circumvent the accuracy,
cost, and generalizability issues facing current atomistic models
has been proposed. By directly mapping quantum mechanical
derived force components to the numerical representation of an
atom’s local environment, accurate and computationally
inexpensive force fields, herein called AGNI, were developed.
In this manuscript a workflow for their systematic construction,
which includes generating reference data, representing the
atomic environments with a numerical fingerprint, sampling
nonredundant data, learning the forces, were all demonstrated
for the example of elemental Al. Further, methods to quantify
uncertainties in the force predictions are proposed. This is
crucial to understanding the domain of applicability of such
data-driven methods, in turn paving the way for their adaptive
refinement.
Nevertheless, to make such methods a mainstream tool for

atomistic simulations a few challenges yet remain that need to
be addressed. First, to explore diverse chemistries it is necessary
to come up with AGNI force fields for multielemental systems
in an equally quick and rational manner. Though the
framework discussed here was for an elemental system, the
recipe is directly transferable to multielemental situations.
Second, as materials science or chemical systems become ever
increasingly complex, the configuration space to be explored
will increase exponentially. This poses a challenge for the
nonlinear regression learning algorithm proposed here, and for
a continued realization of machine learning force fields
adopting methodologies, wherein, large quantities of data can
be handled will be required.
Irrespective of these challenges, the prospect of using AGNI

force fields as a tool to accelerate atomistic simulations is

indeed very promising. Access to such high fidelity force
predictions at a fraction of the cost has already made significant
in roads to studying materials and chemical phenomena. Our
previous work demonstrated an expose of some atomistic
simulations, such as geometry optimization of atomic structures
with several 100s of atoms, dynamical evolution of defects over
long time scales (vacancies and adatoms) to determine
diffusion barriers, computing vibrational properties of materials,
and estimating reaction energy barriers, all using AGNI force
fields.17 Here, we further extended the scope of such force fields
by simulating even more complex phenomena, estimating the
melting and stress−strain behavior of Al surfaces. Also,
methods to reconstruct energies entirely from forces were
proposed. The force field construction workflow put in place
here allowed us to study these more complex materials and
chemical phenomena, and such strategies are only going to
become increasingly important in pushing the envelope of
atomistic simulations.
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