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ABSTRACT: The study of nanoscale surface phenomena is essential in understanding the physical processes that aid in
technologically relevant applications, such as catalysis, material growth, and failure nucleation. While experimental observations, such
as those based on various forms of microscopy, can be used to better understand surface diffusion mechanisms, the resulting
information is often limited in both its spatial and temporal resolution. Therefore, computational methodologies have become
critical in the study of the processes that occur in these domains. Until recently, these methodologies have fallen into two broad
categories: quantum mechanics (QM) based methods and semiempirical/classical methods. The former are computationally
demanding, but accurate and versatile, while the latter are computationally inexpensive, but are significantly limited in their
versatility. Machine learning (ML) methods have shown the potential to bridge these two domains by combining the cost of classical
methods with the accuracy of QM. In this work, we employ recently developed ML models to simulate a variety of surface
phenomena of aluminum. Adatom diffusion barriers were predicted via nudged elastic band calculations. Surface dynamics were also
considered by studying the melting temperature of Al slabs and nanoparticles, along with the epitaxial growth of the Al (110) surface.

■ INTRODUCTION

As the fabrication of materials further pushes into the nano/
atomic regime, interest in understanding the fundamental
aspects of growth/failure methods for energy storage, catalysis,
and/or biomedical applications has greatly increased.1,2

Therefore, understanding how individual atomic-level pro-
cesses aid in the observation of macroscopic phenomena is of
critical importance. Aluminum and Al-alloys are vital materials
for such applications for many reasons, for example, electrical
conductivity, recyclability to its original state, respectable
corrosion resistance, etc.3−7 Therefore, understanding how Al
is fabricated, as well as how it breaks down, are crucial pieces of
information for these applications, as their dependability
directly depends on answers to these phenomena.
Atomistic computational techniques have been instrumental

in the examination of a multitude of nanoscale materials
phenomena.8−13 These methods have often been placed in one

of two broad domains: QM based methods such as density
functional theory (DFT),14,15 and semiempirical methods such
as the embedded atom method.16−22 However, both classes
suffer from several drawbacks. QM methods, while able to
predict properties with exceptional accuracy, are computation-
ally burdensome, and considerably limit both the time and
length scales that one may probe. Semiempirical/classical
methods significantly reduce the time to predict material
properties, resulting in the study of large systems over long
time-scales. However, such methods generally suffer from
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reduced accuracy and transferability, as they are often fit to
specific regions of a potential energy surface, and are often not
generalizable to new regions.23

In an attempt to bridge these domains, data-driven machine
learning (ML) methods have become popular due to their
ability to reliably retain the accuracy of QM at the cost of
semiempirical methods.24−32 Unlike the previously mentioned
computational paradigms, ML methods rely on statistically
derived functional forms, rather than those derived from
physical intuition. Such models may encounter reduced
accuracy when extrapolating to new environments, and will
often break down more frequently than classical models.
However, these ML approaches offer a variety of advantages,
such as the cost required to construct a new model, their
accuracy when interpolating between known environments,
and their ability to be iteratively and adaptively improved in a
systematic manner.8,33−41

In this letter, we demonstrate the use of our ML platform,
AGNI (Adaptive Generlizable Neighborhood Informed), in
predicting a multitude of surface phenomena on aluminum.
MD simulations, and nudged elastic band calculations, are
utilized to predict a multitude of surface phenomena over
many time and length scales. We first begin by providing a
short synopsis of the AGNI methodology. We then discuss the
diffusion profiles of adatoms on various Al surfaces. Predictions
of the melting temperature of Al surfaces, and the size-
dependent melting temperature of Al nanoparticles are then
shown. Finally, we discuss the expitaxial growth of the Al (110)
surface. The compilation of work presented in this manuscript
aims to reveal the potential of ML schemes toward the study of
surface phenomena over time and length scales far beyond that
of QM calculations, bridging the gap between QM and
experimental regimes.

■ COMPUTATIONAL DETAILS

AGNI Workflow. The AGNI methodology consists of four
key steps: (1) construction of a diverse and representative set
of reference data, (2) decomposition of local/structural
geometric information to numerical descriptors, (3) training
of a ML model given some partition of the aforementioned
reference data, and (4) interfacing of the final ML models to a
MD engine, capable of simulating the time-evolution of
atomistic phenomena. In the following sections we provide a
brief synopsis of steps (1), (2), and (3), and we refer the
reader to our previous works for a more detailed
description.33−35,40−42

Atomic-Level Descriptors. An atom’s local geometry is
decomposed into numerical descriptors that are then mapped
to a corresponding property, such as the total potential energy,
or atomic forces. These descriptors aim to capture unique
aspects of an atom’s local atomic environment with features
resembling scalar, vector, and tensor quantities. The functional
forms of the atomic-level descriptors are defined as42,43
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with ri and rj being the Cartesian coordinates of atoms i and j,
and rij = |rj − ri|. α and β represent any of the three x, y, or z
directions. The σk values define the width of the Gaussian
function.35 The cutoff function
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smoothly decays an atom’s contribution toward zero within a
cutoff radius Rcut, which was chosen to be 8 Å. ck is a

normalization constant defined as
σ π( )1

2

3

k
.

These descriptors are, however, not invariant under all
appropriate transformations, and are therefore not suitable for
mapping to a property such as energy. To alleviate this
deficiency, a separate step is required which maps the atomic
descriptors to a set of structural descriptors, which are defined
as41,42
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″ = α β{ }T Tdet( )i k i k, , , , (6)

In this work, the potential energy is learned using this
procedure. Table 1 indicates the final functional forms of all

descriptors for energy, and forces. Here the function M1(X)
represents the 1st moment of the descriptor components and
represents the average value of the atomic environments
contained within the system.

Kernel Ridge Regression. After the descriptors have been
constructed, we employ Kernel Ridge Regression (KRR) to
map them to both the atomic forces, and potential energy as
two independent ML models.41 KRR uses a similarity-based
nonlinear kernel to establish a connection between the
supplied descriptors and the desired property described
as8,33−36,41
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Here the summation iterates over the number of reference
descriptors Y supplied to the model’s training set. P represents

Table 1. Final Fingerprint Forms Utilized to Learn Energy
or Atomic Forcesa

property
type

no.
σk

σk range
(Å) final fingerprint form

forces (Fi
α) 8 (1.0, 8.0) Vi,α;k

energy (EI) 20 (1.5, 8.0) {M1(∑i = 1
N Si,k), M

1(∑i = 1
N Vi,k), M

1(∑i = 1
N

Ti,k)}
aFor the property type, the subscripts i and I represent a per-atom or
per-structure quantity, respectively, and the superscripts α,β represent
two possible Cartesian directions.
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the property being predicted (total potential energy or atomic
forces), with X representing the descriptor, the properties of
which are being predicted. dXY represents the euclidean
distance between descriptors X and Y, calculated within its
hyperspace, and is weighted by a length scale parameter σ.
During the model optimization phase, the regression weights
αY and the length scale σ are calculated through a regularized
objective function, which is optimized using a 5-fold cross
validation process. The ML-AGNI models used in the
remainder of this work were not created here, but were
generated as part of previous studies.35,42 We would like to
emphasize that while the cost to generate a single ML model
takes no more than a day, the cost to generate a representative
data set to train such a model may take many months.
Therefore, as ML models grow in popularity over the next
decade, the need for diverse sets of data will grow
exponentially.
Other Computational Details. Density Functional

Theory Details. All DFT calculations performed in this work
employed the Vienna Ab Initio Simulation Package
(VASP).44,45 The PBE functional46 was used to predict the
electronic exchange-correlation interaction. PAW potentials
and plane-wave basis functions, taken up to a kinetic energy of
500 eV, were used,47 with all projection operators being
evaluated in the reciprocal space.
Embedded Atom Method Potentials. Three EAM

potentials were used in this work (created by Voter, Liu, and
Mishin),48−50 and are referred to as EAM-V, EAM-L, and
EAM-M. EAM-V was chosen because of its previous use in the
calculation of several potential energy barriers studied in this
work.51,52 EAM-M was chosen due to its reliability in
predicting a plethora of mechanical and thermal properties of
Al.50,53,54 However, the reliability of the model’s surface
predictions has rarely been studied.55 Similarly, EAM-L was
chosen due to its success in reproducing complex behavior in
good agreement with both DFT and experiments.48−50

Nudged Elastic Band Calculation Details. The energy
barriers of adatom diffusion mechanisms on Al surfaces were
calculated using nudged elastic band56,57 calculations, along
with the climbing image method.58 DFT, EAM, and ML-AGNI

are used to allow for a systematic and consistent comparison
between the mechanisms. NEB calculations were performed on
five-layer and four-layer slabs, for the (111) and (110) and the
(100) surfaces, respectively (though it should be mentioned
that both EAM and DFT calculations are performed only for
the (111) and (110) surfaces in this work, and all (100) NEB
calculcations for DFT and EAM were performed in a previous
work). The bottom layer remained fixed in all cases. The NEB
routine in the Transition State Tools package was used for
DFT calculations. Ionic relaxations were terminated at an
energy difference of 10−2 eV, and the electronic convergence
was considered converged at an energy difference of 10−5 eV.
All EAM and ML-AGNI NEB calculations were performed
using LAMMPS.59 Owing to the low computational cost of
both methods, convergence criteria of 10−5 eV/Å for forces
and 10−8 eV for energy were used. All NEB predictions were
calculated with respect to the global (largest) barrier height.

Molecular Dynamics Details. All MD simulations were
performed in the canonical ensemble using LAMMPS.59 The
melting temperatures of the (111), (110), and (100) surfaces
were calculated using a 2 × 2 × 20 supercell, in which neither
the top nor the bottom of the slab was fixed. These sizes allow
for thermal effects to dissipate between surface regions, to
avoid having such oscillations affect the melting point. The
size-dependent melting temperature of (111)−(100) Wulff
nanoparticles was also calculated using particles between 1 and
10 nm in diameter.
To study the epitaxial growth of the Al (110) surface, MD

simulations were performed, using an initial system size of
224 872 atoms, at 300 K for 25 ns, with deposition occurring
for the first 10 ns, and equilibration of the deposited atoms
occurring over the final 15 ns. Deposited atoms were randomly
spawned from a region approximately 20 Å above the surface,
and given random initial velocities, though their velocity
component, in the direction normal to the surface, ensured
that the atom migrated toward the surface, and not away from
it. Atoms were deposited at a rate of 1 ML

ns
, which corresponds

to approximately 1 new atom being spawned in the “spawn
region” every 100 fs. This deposition rate ensures that atoms
will not interact with each other prior to reaching the surface.

Table 2. Al Surface Diffusion Energy Barriers on the (111), (110), and (100) Surfaces, as Computed Using DFT, ML-AGNI,
and EAM-V, EAM-L, and EAM-Ma

mechanism type DFT (eV) ML-AGNI (eV) EAM-V (eV) EAM-L (eV) EAM-M (eV)

(111)
3-fold hop hop 0.05 0.03 0.06 0.03 0.03
adatom exchange exchange 0.72 1.09 0.74 1.05 1.02
(110)
4-fold hop hop 0.47 0.33 0.19 0.36 0.30
adatom exchange exchange 0.53 0.52 0.13 0.25 0.27
(100)
a exchange 0.2755 0.31 0.3055 0.6355 0.8155

b exchange 0.6355 0.63 0.6355 1.0055 1.0455

c hop 0.6355 0.42 0.4655 0.5255 0.5355

d exchange 0.6855 0.67 0.6655 1.2055 1.1655

e exchange 0.7555 0.72 0.8455 1.4255 1.6055

f vacancy 0.8155 1.25 0.8855 1.1955 1.0555

g vacancy 0.8955 1.03 0.9055 1.0555 0.9555

h exchange 1.0355 0.94 0.9455 1.3355 1.3455

i exchange 1.2255 1.24 1.0455 1.3855 1.4955

aThe barriers shown below are broken up according to the surface on which the reaction occurs. The letters designating the mechanisms for the
(100) surface correspond to the descriptions provided in the Supporting Information.
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While this restriction may leave out important physics, the
ML-AGNI models cannot simulate gas-phase interactions, and
therefore such a limitation is necessary.

■ RESULTS

Adatom Diffusion on the Al (111) and Al (110)
Surfaces. Adatom diffusion on the Al (111) surface is an
important surface science phenomena to understand as the Al
(111) surface will exist more frequently in nature due to it
being the lowest energy surface.60 However, because the
surface is a close-packed surface, the number of unique adatom
diffusion mechanisms that can occur is limited due to the
energy required to move substrate atoms. The Al (110)
surface, while occurring with less frequency than the (111)
surface, is still an important surface when it comes to adatom
diffusion due to the low packing density between rows,
allowing for several competing adatom diffusion pathways.61

The physical nature of adatom diffusion on the Al (111)
surface paints a very simplistic picture, as only a hop to an
adjacent site occurs with any real frequency. That being said,
the exchange of the adatom with a substrate atom, pushing the
substrate atom up above the surface layer, is also considered.
The physical nature of adatom diffusion on the Al (110)
surface is more complex,61 with the reduction in packing
density allowing for more potential mechanisms to occur.
However, in this work, only two mechanisms are considered:
(1) a hop along a row, from one four-fold site to the next, and
(2) the exchange between rows, in which an adatom replaces
the position of a substrate atom, pushing this atom into the
next row to serve as a new adatom.
The potential energy barriers for these mechanisms were

studied with three EAM potentials and our ML-AGNI models.
All potential energy barriers calculated in this subsection can
be found in Table 2. For the simple (111) hop, all potentials
show good agreement with both DFT and the experimental

result, with values ranging from 0.03 to 0.06 eV. However, for
the case of exchange on the (111) surface, some disagreement
exists. EAM-M, EAM-L, and our ML-AGNI models predict a
barrier of around 1 eV, while EAM-V and DFT predict a
barrier of roughly 0.72. That being said, the take-away from
this is that all potentials predict that the exchange on the (111)
surface is significantly higher in energy than that of the simple
hop.
For the Al (110) surface, a slightly more complex picture

exists. For both the exchange and the hop, our calculated DFT
results are in good agreement with experimentally observed
values. However, for both cases, EAM-V significantly under-
estimates the potential energy barriers. While both EAM-L and
EAM-M show decent agreement with the DFT predicted value
of the hop mechanisms, they both significantly underestimate
the barrier for the exchange mechanism. For both cases, our
ML-AGNI models show the same level of agreement for the
hop mechanisms that EAM-M and EAM-L show, but perform
much better when estimating the barrier for the exchange
mechanism, predicting a nearly identical result.

Adatom Diffusion on the Al (100) Surface.While the Al
(111) and (110) surfaces are relatively simplistic in terms of
the physical complexity of the pathways in which adatom
diffusion can take, self-diffusion on the (100) surface is not as
restricted.62,63 For a variety of metals, such as Al, Pt, and Pd,
the adatom’s lowest-energy diffusion pathway is that of an
atomic exchange mechanism64 in which an adatom takes the
place of a surface atom, thereby pushing the surface atom onto
the surface. This is in stark contrast to metals such as Cu and
Rh, in which the adatom diffuses through a simple (and
intuitive) hop between 4-fold sites.65 This is in stark contrast
to both the Al (111) in which an adatom hop is universally
lower in energy than an exchange process, as well as the Al
(110) surface in which only a few diffusion pathways are even
possible, due to the physical structure of the surface.

Figure 1.Minimum energy profiles for the Al (100) adatom diffusion mechanisms studied in this work using DFT, ML-AGNI-AGNI, and EAM-V,
EAM-C, and EAM-M. All DFT and EAM calculations are taken from the author’s previous work.55 Mechanisms are organized in the order of
increasing DFT potential energy barriers.
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Furthermore, a variety of nontrivial low-energy diffusion
mechanisms exist in the case of the Al (100) surface, many
with unique physical differences.51,52,55,64,66,67 Previous studies
have also shown that many vacancy-based mechanisms51,52,55

have similar energy barriers to that of the intuitive hop.
Here we validate our ML-AGNI force and energy models on

nine previously studied Al (100) adatom diffusion mecha-
nisms.55 These diffusion pathways involve processes such as
atomic exchange, hopping, and vacancy-formation, all employ-
ing the same initial geometry of a single adatom on an
otherwise clean surface. The physical nature of these nine
mechanisms is described in detail both in our previous work55

and in the Supporting Information. Detailed illustrations of all
mechanisms can be found in the Supporting Information.
The ML-AGNI force and energy models were used to

predict the MEPs of all nine (100) mechanisms. The calculated
diffusion barriers can be found in both Table 2 and Figure 1,
while statistical metrics used to judge a given model’s
performance can be found in Table 3. Overall, the ML-

AGNI results align extremely well with DFT. The ML-AGNI
transition state energies yield an RMSE of 0.21 eV, compared
to an RMSE of 0.33 and 0.35 eV for EAM-L and EAM-M,
respectively. While this 0.21 eV RMSE is higher than the 0.1
eV of EAM-V, this difference can be attributed to the ML-
AGNI prediction on mechanism f, which is 0.44 eV off
compared to the DFT prediction. The ML-AGNI RMSE,
compared to that of DFT, on all mechanisms not including
mechanism f, is 0.08, which is 0.02 eV lower than the RMSE of
0.1 of EAM-V on all mechanisms not including mechanism f.
Kolmogorov−Smirnov p-values68 were also calculated using

all potential energy barriers studied in this work, and can be
found in Table 3. Both AGNI and EAM-V produce a p-value of
0.88, indicating good agreement with the corresponding DFT
values. EAM-L and EAM-M yield p-values of 0.13 and 0.12,
respectively, further highlighting their struggles to accurately
predict the diffusion barriers. These results, combined with the
other statistical metrics discussed previously indicate that the

ML-AGNI models can reliably predict the kinetics of adatom/
vacancy diffusion profiles on the Al (100) surface.

Predicting the Melting Temperature of Al Surfaces
and Nanoparticles. The melting behavior of aluminum
surfaces varies greatly, as the difference in packing densities
leads to a wide range of melting temperatures.69,70 Exper-
imental observations indicate that, between the low-index
(111), (110), and (100) surfaces, a difference in melting
temperature of nearly 300 K exists.71 The (111) and (100)
surfaces exhibit melting at the bulk melting temperature of
between 900 and 950 K. However, due to the packing density,
the (110) surface has a melting temperature of between 600
and 800 K.72 This disparity becomes more complex when one
moves from a slab to a nanoparticle, with small particles
showing melting temperatures around 400 K lower than that of
the bulk melting temperature. These temperatures vary
drastically as a function of the small particle size.70,73

Recently, ML methods have been used to accurately predict
the structures of liquids,74 as well as correctly reproduce the
bulk melting temperatures of metals.75 However, ML methods
have not been widely used to study how various surface
environments affect the melting temperature. To this end, the
melting temperature of the Al (111), (110), and (100) surfaces
was calculated using three EAM potentials, and our ML-AGNI
models. The calculated melting temperatures from this work
can be found in Figure 4, and the statistical metrics used to
judge a given model’s performance can be found in Table 3.
Figure 2 shows, in the top row, the potential energy as a
function of time at different temperatures for each case
considered. The bottom row corresponds to the Lindemann
index, calculated for all cases considered. From the EAM
potential’s perspective, there is no consensus among the
potentials. EAM-V underestimates all melting temperatures,
sometimes by several hundred degrees Kelvin, while EAM-M
generally overestimates all melting temperatures, though is
often closer to the experimentally observed melting temper-
ature. EAM-L seems to be the robust EAM potential when
predicting the melting temperature of clean Al surfaces,
showing excellent agreement with respect to experiments.
The ML-AGNI models predict a melting temperature of
approximately 950, 850, and 750 K for the (111), (100), and
(110) surfaces, respectively. These results are in good overall
agreement with experiments, and are only out-performed, on
the whole, by EAM-L.
The melting temperature of several Al nanoparticles was also

considered in this work. It has been observed experimentally
that the melting temperature of Al nanoparticles changes
dramatically as a function of nanoparticle size, with particles 1
nm in diameter showing a melting temperature nearly 400 K
less than that of a 10 nm particle, which has a melting
temperature close to that of bulk Al. To this end, MD
simulations were performed, using all three EAM potentials
and our ML-AGNI models. Figure 3 details the calculated
Lindemann index for four nanoparticles, all of different sizes.
As was the case with the clean surfaces, there is no

consensus among the EAM potentials, with dramatic differ-
ences in the melting temperatures being observed. Interest-
ingly, the same trend exists, with EAM-M overestimating the
melting temperature, and EAM-V generally underestimating
(expect for the 1 nm case in which it slightly overestimates the
melting temperature). While EAM-V performs well for small
particles, it performs poorly for larger ones, with the opposite
being true for EAM-M and EAM-L. Therefore, there is no

Table 3. Statistical Metrics Used to Judged All Force Field’s
Performance on the Various Diffusion Profile Barriers, as
Well as the Melting Temperatures Calculated in This
Worka

statistical metrics ML-AGNI EAM-V EAM-L EAM-M

Ea (eV)
RMSE 0.18 0.16 0.33 0.38
σ 0.17 0.14 0.26 0.30
r2 0.88 0.89 0.82 0.71
pKS 0.88 0.88 0.13 0.12
Tm (K)
RMSE 66.8 173.34 158.31 198.07
σ 58.2 132.90 97.88 79.15
r2 0.94 0.81 0.97 0.91
pKS 0.96 0.05 0.21 0.05

apKS is used to designate the p-value from the Kolmogorov−Smirnov
test. Each block corresponds to a specific property. The units of each
value presented here correspond to the units used for each property
(eV for the MEPs, and K for the melting temperature). Activation
energies statistics are calculated with respect to DFT, and melting
temperature statistics are calculated with respect to the experimental
values.
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single EAM potential one can use to accurately capture the
trend correctly, with respect to experiments.
Our ML-AGNI models outperform all considered EAM

potentials on average, accurately capturing the trend in which

the nanoparticle size affects the melting temperature by up to
500 K. The ML-AGNI models accurately predict the melting
temperature of the 1 nm particle to be approximately 450 K.
The ML-AGNI models predict roughly the same temperature

Figure 2. (Top) Potential energy, as a function of time step during an MD simulation, for (a) Al (111) surface, (b) Al (110) surface, (c) Al (100)
surface. Colors correspond to a particular temperature, and are the same throughout all top-row plots. (Bottom) Lindemann index, used to study
the structural order of each system, calculated for the (d) Al (111) surface, (e) Al (110) surface, (f) Al (100) surface. Vertical red, dotted lines
correspond to the experimentally predicted melting temperature.

Figure 3. Lindemann index, used to study the structural order of each system, calculated for the (a) Al 1 nm particle, (b) 2 nm particle, (c) 4 nm
particle, and (d) 10 nm particle. Vertical red, dotted lines correspond to the experimentally predicted melting temperature.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://dx.doi.org/10.1021/acs.jpcc.0c05512
J. Phys. Chem. C 2020, 124, 22127−22136

22132

https://pubs.acs.org/doi/10.1021/acs.jpcc.0c05512?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c05512?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c05512?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c05512?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c05512?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c05512?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c05512?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c05512?fig=fig3&ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://dx.doi.org/10.1021/acs.jpcc.0c05512?ref=pdf


Figure 4. Melting temperatures for all configurations studied in this work. Colors correspond to the prediction method. Error bars correspond to
the assumed error in a given calculation (experimental results are given as zero error, as the error is unknown, whereas the MD simulation error is
given as 50 K, as this is the error assumed given the Lindemann index calculations.)

Figure 5. (Top) A 2 × 2 replicated top-down view, shown on the left, and a 3 × 3 replicated perspective view, shown on the right, of the epitaxial
growth of the Al (110 surface. Colors corresponding to the z-position of an atom, with red representing smaller, and blue representing a larger z-
position. (Bottom) Normalized histograms for the (a) width, (b) length, and (c) height, of the deposited clusters on the surface after both
deposition and equilibration had occurred.) The red dashed lines in histograms a, b, and c represent normalized Gaussian functions fit to the
underlying histogram data and are used to calculate the values shown above each plot.
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for the 2 and 4 nm particle of 650 K, even though the
experimentally observed melting temperatures are 575 and 750
K, respectively. However, the best-performing EAM potential
for the smaller nanoparticles, EAM-V, predicts a nearly
identical melting temperature for both particles. Finally, the
ML-AGNI models predict a melting temperature of roughly
850 K for the 10 nm particle, approximately 75 K lower than
the experimentally observed melting temperature. Over the
spectrum of nanoparticle sizes, our ML-AGNI models provide
the most reliable melting temperature predictions compared to
several popular EAM potentials for Al.
Statistical metrics used to compare the various model’s

predicted melting temperatures can be found in Table 3. All
three EAM potentials yield an RMSE of at least 150 K, when
compared to experiments, while our AGNI models have an
RMSE of only 66 K. This implies that our AGNI models are
nearly 200−300% more accurate when compared to the EAM
models, when predicting the melting temperature of many
complex surface/particle environments. This difference in
predicted melting temperature is further exemplified when one
looks at the p-values calculated via the Kolmogorov−Smirnov
test. All three EAM potentials have p-values smaller than 0.25,
with two potentials yielding values lower than 0.06 (the typical
threshold for statistical significance is generally between 0.01
and 0.05). Our AGNI models have a calculated p-value of 0.96
when compared to the experimental melting temperatures,
indicating that the AGNI values share significant statistical
relevance with the experimentally observed melting temper-
atures.
Expitaxial Growth on the Al (110) Surface. AFM

images of epitaxial growth on the Al (110) surface,76 via
atomic-layer deposition, provides us with quantitative values in
which to benchmark our ML-AGNI models against. At 300 K
pyramidal clusters form on the surface with lengths and heights
approximately three and six times smaller than their width,
respectively. While the MD simulations performed in this
section will still not reach the time and length scales observed
in experiments, the time and length-scales used can provide
exact qualitative measurements; the size of the pyramidal
clusters may be an order of magnitude smaller via MD, but the
height−width−length relationship can match experimental
observations.
It can be seen from Figure 5 that the height−width−length

relationship obtained from the ML-AGNI MD simulations
match extremely well with experimental observations. The
width, height, and length of clusters were calculated as the
average of all clusters present at the end of the MD simulation.
The height, specifically, was calculated as the distance from the
nearest monolayer atom to the top of a given cluster. The
measured average cluster width was measured as 22.31 Å,
almost exactly three times smaller than the 68.72 Å width. The
average cluster height was calculated to be 10.92 Å, in near
perfect agreement with the experimental observation of the
cluster height to width ratio of 6:1.76

To build upon the agreement with experiments, Figure 5
shows the top-down and perspective views of the Al (110)
surface at the end of the MD simulation. AFM images indicate
long, tube-shaped clusters spread throughout the surface, with
small clusters and valleys filling the remaining space.76 Figure 5
indicates similar surface features, obtained via the MD
simulations, being present. The perspective view of the final
ML-AGNI simulated structure also clearly shows pyramidal

structures being present, the width−length ratio of which
resembles the long tube-like shape observed in experiments.

■ CONCLUSION
In this work, ML-AGNI force and energy models were used to
study a multitude of surface phenomena of aluminum. Here,
we further extend the scope of previous ML-AGNI works by
tackling simulations of increasingly complex physical systems,
and significantly larger time and length scales than had been
previously considered. The various ML-AGNI models were
validated by accurately reproducing the MEPs of a plethora of
defect diffusion mechanisms on several low-index Al surfaces,
accurately reproducing the correct melting temperatures of Al
surfaces and predicting the size-dependent melting temper-
ature of Al nanoparticles, as well as accurately reproducing
experimental observations of the cluster shapes and sizes
during epitaxial growth, via atomic-layer deposition, of the
Al(110) surface.
The ML-AGNI calculations presented in this chapter show a

clear improvement in the prediction of surface phenomena
over many commonly used EAM potentials. The ML-AGNI
models presented here also, purposefully, do not contain
reference data for all of the environments studied, indicating
their extrapolative power. Using ML models, with the accuracy
of DFT and the speed of classical/semiempirical models,
allows us to reliably study phenomena that are impractical to
be computed using DFT. This work adds another layer of
validation that ML models can make reliable predictions over
multiple length and time scales and solidifies ML as a
important tool in the study of atomic and nanoscale surface
problems.
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