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PAIRWISE DISAGREEMENTS OF KEKULÉ, CLAR, AND FRIES
NUMBERS FOR BENZENOIDS: A MATHEMATICAL AND

COMPUTATIONAL INVESTIGATION

JAMES CHAPMAN, JUDITH FOOS, ANDREW NELSON, ELIZABETH J. HARTUNG,
AARON WILLIAMS

Abstract. The Kekulé count, Fries number, and Clar number of a benzenoid are
three measurements that are positively correlated with the stability of a benzenoid
hydrocarbon. In this paper, we show that these parameters can disagree for ben-
zenoids. That is, there exist pairs of benzenoids of the same size (same number of
hexagons and vertices) such that one benzenoid is more stable according one mea-
surement, while the other benzenoid is more stable according to another. We give
smallest examples of pairs of benzenoids that have Kekulé-Fries, Kekulé-Clar, and
Fries-Clar pairwise disagreements and show that the gaps between these disagree-
ing measurements can be arbitrarily large for each of the three pairs of parameters.
We then initiate a computational investigation of all benzenoids of the same size
on up to 13 hexagons. Among the billions of pairs of such benzenoids, we find that
the proportion of those with a Kekulé-Fries, Kekulé-Clar, or Fries-Clar pairwise
disagreement is relatively small. However, the proportions seem to rise steadily
with the size of the benzenoid, and each proportion surpasses 3% in our largest
test cases.

1. Introduction

A benzenoid, or benzenoid hydrocarbon, B, is a 2-connected plane graph which can
be embedded in the hexagonal lattice. All faces are hexagons except for one outside
face, all vertices are of degree 2 or 3 and degree-2 vertices can only occur on the
boundary of the outside face. Three classic measurements that have been used to
predict the stability of a particular benzenoid are the Kekulé count, the Fries number,
and the Clar number. These three measurements form a natural progression both
historically and in conceptual depth.

• Marckwald wrote the first paper on enumerating Kekulé structures for ben-
zenoids in 1894 [11]. A Kekulé structure is a perfect matching of the edges of
the graph, and corresponds to a double bond structure of the molecule. The
Kekulé count is the number of perfect matchings in the associated graph,
and we denote it by K(B).

1



2 CHAPMAN, FOOS, HARTUNG, NELSON, WILLIAMS

• The Fries number was introduced in 1927 by Karl Fries and is the maxi-
mum number of conjugated hexagons, or benzene rings (hexagons with 3 of
their edges in the Kekulé structure), over all possible Kekulé structures in a
benzenoid, denoted F (B) [5].
• The Clar number was introduced by Erich Clar in 1972 and is the maximum

number of independent benzene rings over all possible Kekulé structures,
and we denote it by C(B) [2].

In all cases a higher value is associated with a higher stability for the molecule.
For example, Figure 1 illustrates two benzenoids with 7 hexagonal faces and 30
vertices. The benzenoid on the right scores higher in all three measures, and so
it is predicted to be more stable. Not all benzenoids have a Kekulé structure (for
example, a benzenoid can only have a perfect matching if it has an even number of
vertices, and this criteria is not sufficient, see [17]). Benzenoids that have no Kekulé
structures have a value of zero for all three parameters, and benzenoids that have
at least one Kekulé structure are called Kekuléan benzenoids. This paper will only
consider Kekuléan benzenoids, and thus we will refer to them simply as benzenoids.
For further information on these background concepts we refer the reader to [3], [9],
[14], [19].

Figure 1. A pair of benzenoids in KFC agreement. The benzenoid
on the left is the only (Kekuléan) benzenoid of this size that has: 8
or fewer Kekulé structures, a Fries number of 2 (or less) and a Clar
number of 1 (or less), so it is the least stable of its size in all three mea-
surements. The benzenoid B2 on the right attains the largest possible
values for its size in all three measurements as the only example with
a highest Kekulé count of 41, as one of 23 benzenoids with a largest
Fries number of 7 and one of 2 examples with a largest Clar number
of 5. Blue faces show benzene rings contributing to the Fries number,
circles show independent benzene rings contributing to the Clar num-
ber. One Kekulé structure is shown for each graph with thick edges.
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All three of the KFC values are non-negative integers which generally grow as
the number of hexagonal faces and vertices in the associated graph grows. For this
reason, we define two benzenoids as having the same size if the have an equal number
of vertices and an equal number of faces. We restrict our comparisons to benzenoids
with the same size, as is the case in Figures 1-3.

This progression of KFC values has been accompanied by the implicit assumption
that each subsequent measure has refined the previous. For example, two benzenoids
may have the same Kekulé count, but one has a higher Fries number than the other,
so it is more stable. In other words, the Fries number can be used as a tiebreaker
between two benzenoids with the same Kekulé count, and similarly, the Clar number
serves as a tiebreaker between two benzenoids with the same Fries number.

In this picture of reality the latter measurements enhance the earlier measure-
ments, and the three measurements coexist in harmony. However, this picture over-
looks the fact that the measurements can disagree or contradict each other. For
example, consider the two benzenoids in Figure 2 each with 7 hexagonal faces and
30 vertices. The molecule on the left is more stable according to the Fries number,
while the molecule on the right is more stable according to the Clar number.

Figure 2. A Fries-Clar disagreement. The benzenoid on the left has
7 and 4 for its Fries and Clar numbers, respectively. The benzenoid
on the right has 6 and 5 for its Fries and Clar numbers, respectively.

We refer to the situation given in Figure 2 as a Fries-Clar disagreement and we
similarly define a Kekulé-Fries disagreement and a Kekulé-Clar disagreement. Col-
lectively, these three types of disagreements are called pairwise disagreements. The
gap of a pairwise disagreement is the minimum difference between the two measure-
ments. In particular, the pair in Figure 2 has a gap of 1 because min{|7−6|, |4−5|} =
min{1, 1} = 1. If two benzenoids do not form a pairwise disagreement, then we say
they are in KFC agreement.

A researcher working in this field will likely be surprised that benzenoid pairs of
the same size are not always in KFC agreement, and the authors of this article are
unaware of any prior publication acknowledging this issue. However, once this reality
is presented to a researcher he or she may be able to construct a suitable example
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by hand. For example, the pair shown in Figure 2 was constructed by Ivan Gutman
shortly after learning that such disagreements can exist [8].

The authors’ own investigation of this subject began with a computer search for
the smallest benzenoids with pairwise disagreements. The outcome of this search is
shown in Figure 3 for all three pairs of measurements. We note that the Fries-Clar
disagreement in Figure 3 involves smaller benzenoids, but it is somewhat easier to
understand the Fries-Clar disagreement in Figure 2.

Figure 3. Smallest benzenoids with pairwise disagreements. Left: a
smallest Fries-Clar disagreement and smallest Kekulé-Fries disagree-
ment on 6 hexagons and 26 vertices with F (B1) = 5, C(B1) = 4,
K(B1) = 22 and F (B2) = 6, C(B2) = 3, K(B2) = 21. Right: a
smallest Kekulé-Clar disagreement on 7 hexagons and 28 vertices with
F (B3) = 5, C(B3) = 3, K(B3) = 13 and F (B4) = 4, C(B2) = 2,
K(B4) = 16. This is also a Fries-Kekulé disagreement.

For each of the disagreements in Figure 3, the gap is 1. Observe also that both
of these pairs disagree on two parameters. More generally, if there is a disagreement
between one pair of parameters, say a Fries-Clar disagreement, there also must either
be a Kekulé-Fries disagreement or a Kekulé-Clar disagreement unless the Kekulé
count for the two benzenoids is equal.

Once the existence of pairwise disagreements is established – by hand or by com-
puter search – it then becomes natural to ask two additional questions:

1) How large of a gap can be created?
2) How often do pairwise disagreements occur?

Regarding the first question, we are able to show that pairwise disagreements can
be arbitrarily large. In other words, if you provide a positive value x, then we can
produce a pair of benzenoids with an equal number of vertices and an equal number
of hexagons which achieve a gap of at least x. Moreover, this can be repeated for any
pair of the three measurements. To achieve a result of this type we construct two
pairs of infinite classes of benzenoids and calculate their KFC values. The first pair
of families Ym,t and Zn has an arbitrarily large Fries-Clar gap, and these families are
discussed in Section 2. The second pair of families Wn and Vm has an arbitrarily large
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Kekulé-Fries gap and Kekulé-Clar gap, and these families are discussed in Section 3.
All four of these families are catacondensed benzenoids, which are benzenoids without
internal vertices. A catacondensed benzenoid with h hexagons has v = 4h+2 vertices,
so pairs that have the same number of hexagons always have the same size.

Regarding the second question, we find that the proportion of Kekulé-Fries, Kekulé-
Clar, and Fries-Clar pairwise disagreements is relatively small, but seems to steadily
rise with the size of the benzenoid. This comment is the result of a computational
investigation which examined all pairs of benzenoids of the same size on up to 13
hexagons. We outline our computational approach in Sections 4 and 5, and then
provide results in the form of tables in Sections 6 and 7.

2. Arbitrarily large gap for Fries vs Clar

We achieve an arbitrarily large gap between the Fries and Clar numbers using two
classes of benzenoids, “zig-zags” and “zippers.” This Fries-Clar gap grows linearly in
terms of their numbers of hexagons. The class of zig-zags, Zn, with n hexagons are
well-known, as are their Kekulé count, Fries number and Clar number (see Figure
4).

Remark 1. For a zig-zag Zn on n hexagons, the Fries number is n and the Clar
number is dn

2
e.

Proof. In a zig-zag with n hexagons, a Kekulé structure in which every face is a
benzene ring is possible, so the Fries number is n. In this case, every other face is
an independent benzene ring, so the Clar number for a zig-zag Zn is dn

2
e. �

Figure 4. Zigzag Z10 with a Kekulé structure.

We introduce the class of zippers: The zipper Ym,t has 3m faces in a “zipper”
pattern and a tail of length t in the direction of the zipper. We can think of a
zipper as a zig-zag with an extra hexagon attached to every other face in the zig-zag,
followed by a tail of t hexagons. Figure 5 shows Y4,6.

Lemma 1. For a zipper Ym,t on 3m + t hexagons, the Fries number is 3m + 2 and
the Clar number is 2m + 1.

Proof. For each set of three hexagons before the tail, all three can be benzene rings,
and at most two of the three can be independent benzene rings. At most two of the
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faces in the tail can be benzene rings, and if there are two, they are adjacent. Thus
the Fries number of Ym,t is 3m+ 2, and the Clar number of Ym,t is 2m+ 1. A Kekulé
structure that achieves these values is shown on the right in Figure 5, and it is clear
that the values hold in the general case. �

Figure 5. Zipper Y4,6 with a Kekulé structure.

We will now utilize these results to find arbitrarily large Fries-Clar gaps. We begin
with a zig-zag Z3m+t so that the number of hexagons is the same as in the zipper
Ym,t. Then the zig-zag will have a larger Fries number, and this difference increases
as t, the length of the tail on the zipper, increases. The section of the zipper before
the tail has a higher proportion of Clar faces than the zig-zag. In order to maximize
these two differences simultaneously, we choose the length of the tail of the zipper
to be t = dm

3
e.

Theorem 1. The Fries-Clar disagreement for zig-zags Z3m+dm
3
e and zippers Ym,dm

3
e

grows linearly in terms of their numbers of hexagons, 3m + dm
3
e.

Proof. The Fries number for the zig-zag Z3m+dm
3
e is 3m+dm

3
e while the Fries number

for the zipper is 3m + 2, giving a difference of dm
3
e − 2 in favor of the zig-zags. The

Clar number for the zig-zag Z3m+m
3

is d3m+dm
3
e

2
e ≤ 5m

3
+2 and the Clar number for the

zipper Ym,t is 2m+ 1, giving a difference of at least m
3
− 1 in favor of the zippers. So

the Fries-Clar disagreement gap is at least dm
3
e − 2. Thus the gap for the Fries-Clar

disagreement grows linearly in terms of m (and also linearly in terms of the number
of hexagons and the number of vertices for each benzenoid).

�

3. Arbitrarily large gap for Clar vs Kekulé and Fries vs Kekulé

We use two classes of graphs, zig-zags with tails, Wn,t, and chains with one kink,
Vm, to find arbitrarily large gaps between the Kekulé count and the Fries number
and between the Kekulé count and the Clar number. In these cases, the growth is
quadratic in terms of the number of their numbers of hexagons.

Let Wn,t be a zig-zag of n hexagons followed by a tail of t hexagons. Figure 6
shows W7,6.
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Figure 6. Zigzag with tail, W7,6, with a Kekulé structure.

Remark 2. The Fries number of Wn,t is n + 2, the Clar number is bn+3
2
c, and

the Kekulé count is tFn+2 + Fn+1, where Fn denotes the nth term in the Fibonacci
sequence.

Proof. Every face of the zig-zag can be a benzene ring while at most two faces
of the tail can be, and these faces must be adjacent. Thus the Fries number of
Wn,t is n + 2 and the Clar number is bn+3

2
c. Gordon and Davison [6] showed that

the Kekulé count of a zig-zag with n hexagons is Fn+2, the (n + 2)nd term in the
Fibonacci sequence (where F1 = F2 = 1 and Fn+2 = Fn +Fn+1). Using their general
algorithm for unbranched chains, it can be shown that the Kekulé count of Wn,t is
tFn+2 + Fn+1. �

Define the class of benzenoids Vm to be a path of m hexagons followed by a path
of m− 1 hexagons after a turn. Figure 7 shows V7.

Figure 7. V7 with a Kekulé structure.

Remark 3. Let Vm be a path of m hexagons followed by a path of m − 1 hexagons
after a turn. Then the number of Kekulé structures is m2 + 1, the Fries number is
4, and the Clar number is 2.

Proof. For any linear chain, at most two faces can be benzene rings, and these faces
must be adjacent. Thus for a benzenoid Vm, the Fries number is 4 and the Clar
number is 2 (see Figure 7). Gordon and Davison’s algorithm [6] allows us to calculate
the Kekulé count to be m2 + 1.
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�

Clearly, as n increases, the Clar and Fries numbers for Wn are arbitrarily larger
than the Clar and Fries numbers for Vm. We want to show that for choices of t and
m as functions of n, the Kekulé count for Vm is arbitrarily larger than the Kekulé
count for Wn,t.

Theorem 2. Let n be odd and define Wn = Wn,2n. Let m = 2n+n+1
2

. Then Wn and
Vm have both Kekulé-Fries and Kekulé-Clar disagreements, and growth of the gap is
quadratic on h = 2n + n, their numbers of hexagons.

Proof. Define Wn = Wn,2n where n is odd. Then Wn has 2n + n hexagons, and

K(Wn) = 2nFn+2 + Fn+1. Let m =
2n + n + 1

2
. Then Vm also has 2n + n hexagons,

and its Kekulé count is
(
2n+n+1

2

)2
> 22n−2.

Consider K(Wn) = 2nFn+2 + Fn+1

=
1√
5

2n

(1 +
√

5

2

)n+2

−

(
1−
√

5

2

)n+2
+

(
1 +
√

5

2

)n+1

−

(
1−
√

5

2

)n+1


<
1√
5

((
2n
(
2ϕn+2

))
+ ϕn+1

)
<

2√
5

((
2n
(
ϕn+2

))
+ ϕn+1

)
< 2nϕn+2 + ϕn+2, where ϕ = 1+

√
5

2
= 1.618..., the golden ratio.

Therefore, the difference K(Vm)−K(Wn) > 22n−2 − 2nϕn+2 − ϕn+2.

The number of hexagons in each Vm and Wn is h = 2n + n ≈ 2n, so n ≈ log2 h.
Substituting gives

K(Vm)−K(Wn) > 1
4
22 log2 h − 2log2 hϕ2ϕlog2 h − ϕ2ϕlog2 h

=
1

4
(2log2 h)2 − hϕ2ϕlog2 h − ϕ2ϕlog2 h

=
1

4
h2 − hϕ2ϕ

logϕ h

logϕ 2 − ϕ2ϕ
logϕ h

logϕ 2

=
1

4
h2 − hϕ2h

1
logϕ 2 − ϕ2h

1
logϕ 2
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>
1

4
h2 − ϕ2h1.69424 − ϕ2h.69424

∈ O(h2) = O(v2)

So the growth of this difference is quadratic on the number of hexagons (as well
as the number of vertices) of each benzenoid in the pair.

Since F (Vm) = 4 and C(Vm) = 2 while F (Wn) = n + 2 and C(Wn) = bn+3
2
c, the

Fries and Clar values are arbitrarily larger for Wn than Vm. Therefore, the gap for
the Kekulé-Clar and Kekulé Fries disagreements is quadratic.

�

4. Computational Investigation of Pairwise Disagreements

We now address our second question of how often pairwise disagreements occur.
This section outlines the methodology and results of a computer search that consid-
ered all 4,047,541 benzenoids with at most 13 hexagonal faces [13]. Results of this
type give empirical insight into the validity of these three classic measurements. In
particular, if a large percentage of benzenoid pairs are in pairwise disagreement, then
it would be impractical for those two measurements to accurately determine relative
stability for a given pair benzenoids. On the other hand, if pairwise disagreements
are relatively rare, then perhaps they can be safely ignored in the aggregate.

We continue to limit ourselves to pairs of the benzenoids with the same number of
vertices and number of hexagons. When referring to our statistics we do not “double
count” isomorphic graphs. For example, Figure 8 gives one specific pair with a
Fries-Clar disagreement, and rotating one of the benzenoids in the figure would not
produce a “different” pair with a Fries-Clar disagreement.

When restricted to Kekuléan benzenoids of the same size, our study finds that the
percentage of pairwise disagreements reaches as high as 3.62%. More specifically, the
percentage of Kekuléan benzenoid pairs with 13 hexagons and 46 vertices that have
a Kekulé-Fries disagreement is just over 3.62%. Similarly, the largest percentages for
Kekulé-Clar and Fries-Clar disagreements are around 3.4%. Full results of this type
appear in Tables 5, 6, and 7.

Although the percentage of pairwise disagreements is relatively small, the data
does suggest that the percentage grows as the size of the benzenoid increases. In
other words, pairwise disagreements seem to be more frequent for larger benzenoids.
The number of pairwise disagreements with a gap larger than 1 also appears to
be non-trivial. Figure 8 illustrates a pair of benzenoids with a Fries-Clar gap of 2
and a Kekulé-Fries gap of 2. There are 22,083 different pairs of benzenoids over 12
hexagonal faces and 50 vertices in which the first has a Fries number of 10 and a
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Figure 8. Fries-Clar gap of 2 and Kekulé-Fries gap of 2. The ben-
zenoid on the left has a Fries number of 10, a Clar number of 8, and
466 Kekulé structures. The benzenoid on the right has Fries number
12 and Clar number 6 and 377 Kekulé structures.

Clar number of 8 while the second has a Fries number of 12 and a Clar number
of 6. Furthermore, the same Fries and Clar numbers are obtained by over 500,000
additional pairs with 13 hexagonal faces. In other words, the pair shown in Figure 8
is not particularly special or strange.

The remainder of this article is organized as follows. In Section 5 we describe
our computational approach and the associated computational challenges. Section 6
provides the number of Kekuléan benzenoid pairs based on the number of vertices
and hexagonal faces. Section 7 gives our main results in the form of tables containing
the percentage of benzenoid pairs that have a pairwise disagreement.

5. Computational Approach

In this section we describe our computational approach including our resources and
the computational issues that arose. All programs were written using a combination
of C, Python, and awk and are available upon request. All references to time are
with respect to a single 2015 Macbook Pro with 16 GB of RAM running an Intel i7
processor at 3.1 GHz.

5.1. Generating Benzenoid Graphs and Duals. We began by generating ben-
zenoids using the benzene package from SageMath [18]. More precisely, we separated
the benzene.c file from the benzene package and ran this program independently
for the sake of efficiency. The benzene.c file was originally written by Gunnar
Brinkmann and Gilles Caporossi and was based on a paper by Brinkmann, Ca-
porossi, and Hansen [1]. The version of the file we accessed had subsequently been
adapted for use with Grinvin [7] by Gunnar Brinkmann and Nicolas Van Cleemput.
We used this program to generate the planar codes for all of the benzenoids with a
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given number of hexagonal faces. This step was not a bottleneck in our investigation.
For example, the command ./benzene 14 p b could generate 3 gigabytes of data
containing all 15,367,577 benzenoids with 14 hexagonal faces in under a minute. For
further information on the planar code format refer to the House of Graphs [10].

We then converted each planar code into a dual representation of the graph.1 For
this dual representation we used the labeling of the hexagonal grid in which each face
is assigned (x, y) in such a way that y values are incremented by moving vertically,
and x values are incremented by moving up and right at a 60 degree angle. For further
information on this labeling see the leftmost image in Figure 9 of [15]. For example,
a benzenoid with three hexagonal faces in the shape of an ‘r’ can be represented by
labeled faces (0, 0), (0, 1), and (1, 1). Again this step of the computation was not a
bottleneck.

5.2. Computing KFC Values. Once we had each benzenoid in a suitable repre-
sentation we computed number of Kekulé structures. We did this in a standard
recursive fashion by choosing an edge e, and then recursively generating all perfect
matchings that contain e, and all the perfect matchings that do not contain e. For
the sake of efficiency we represented each Kekulé structure using an incidence vector
of edges that was stored as a bit array. We also stored each face in the same way, and
this allowed us to use bitwise operations to determine the benzene rings and hence
the Fries numbers. A Python recipe by Mike Sweeney [16] simplified these bitwise
tasks. The dual representation also allowed us to compute the Clar numbers more
efficiently.

At the end of this stage we had a one-line description of each benzenoid that in-
cluded its number of vertices and hexagonal faces, along with its Kekulé, Fries, and
Clar numbers, and a unique index which linked to its dual representation. How-
ever, computing the KFC values was the biggest bottleneck in our investigation, and
optimizing this step could allow for comparisons well beyond 13 hexagonal faces.

5.3. Pairwise Comparisons and Buckets. We next counted and dismissed all
those benzenoids with no Kekulé structures since these cannot be involved in a
pairwise disagreement. Then we used command-line tools to separate the benzenoids
based on the number of faces and the number of vertices.

Restricting the investigation to benzenoids of the same size has the computational
advantage of limiting the number of benzenoids that need to be compared. However,
the combinatorial explosion associated with pairwise comparisons still must be ad-
dressed. For example, there are 589,703 benzenoids that have 13 hexagonal faces and

1It is possible that this dual representation could be obtained more directly from benzene.c.
One issue is that benzene.c can also generate a generalization of benzenoids called fusenes, which
are not necessarily embeddable in the hexagonal grid and hence do not have such a representation.
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Fries Number

Clar Number 2 3 4 5 6 7 8 9 10 11 12

1 1
2 1 13
3 3 83 301
4 1 218 1996 2502
5 1 299 5436 13302 6034
6 231 6675 20094 11872 1299
7 86 3022 5878 1591
8 17 115 41

Table 1. The size of the Fries-Clar buckets for benzenoids with
12 hexagons and 50 vertices. The (12, 6) and (10, 8) buckets provide
17× 1299 = 22, 083 pairs that have a Fries-Clar gap of 2.

52 vertices, and a brute force comparison would involve 173,874,519,253 pairs of ben-
zenoids. To avoid this computational problem we used an approach from computer
science called ‘bucketing’ which is most commonly associated with the well-known
bucket sort algorithm.

To employ this approach we put each benzenoid into a ‘bucket’ based on two of the
KFC values. For example, all benzenoids with Fries number 10 and Clar number 8
would be placed into the same bucket. This allows us to find pairwise disagreements
by comparing pairs of buckets instead of comparing pairs of benzenoids. In other
words, we reduce the cost of making O(n2) comparisons by changing n from the
number of benzenoids to the number of buckets.

To make this description more tangible, Table 1 contains the Fries-Clar buckets
for benzenoids with 12 hexagons and 50 vertices. From the table we can see that
there are a several different pairs of buckets that can be used to create pairwise
disagreements. In particular, there are 17 such benzenoids with Fries number 10
and Clar number 8, and 1299 such benzenoids with Fries value 12 and Clar number
6. Therefore, we obtain a Fries-Clar disagreement with gap 2 by taking any single
benzenoid from the (10, 8) bucket and any single benzenoid form the (12, 6) bucket.
The product of these two bucket sizes, namely 17 and 1299, gives the total of 22,083
that was previously mentioned in Section 1. Similarly, the 500,000 figure mentioned
in Section 1 comes from the sum of 15 × 8480 (13 hexagons and 52 vertices) and
33× 12178 (13 hexagons and 54 vertices).

6. Number of Kekuléan Benzenoid Pairs

This section provides tables containing the number of benzenoids, the number
of Kekuléan bezenoids, and the number of pairs of Kekuléan benzenoids. In each
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case the numbers are computed based on a fixed number of vertices and hexagonal
faces. Tables 3 and 4 in this section are restricted to Kekuléan benzenoids since
non-Kekuléan benzenoids cannot belong to a pairwise disagreement.

As discussed in Section 2, our data was generated based on the number of hexag-
onal faces. For this reason we only have complete data on benzenoids with up to 40
vertices.

7. Percentage of Pairwise Disagreements

In this section we provide tables that show the percentage of benzenoid pairs that
have are in disagreement. More specifically, Tables 5, 6, and 7 are focused on Kekulé-
Fries, Kekulé-Clar, and Fries-Clar disagreements. In each case the table is organized
by the number of hexagons and the number of vertices, and each entry shows the
percentage of such pairs which are in disagreement.

The data shows that pairwise disagreements are relatively rare with the maximum
percentage being 3.62%. However, the data also shows that the proportion of dis-
agreements appears to be increasing with the size of benzenoids. The proportion
generally increases as the row values (number of hexagons) and column values (num-
ber of vertices) increases. In particular, in all three tables the maximum values along
each row steadily increase starting at 7 hexagons. In other words, the greater the
number of hexagonal faces, the greater the percentage of disagreements for all pairs
of measurements.

8. Final Remarks

This paper introduces several open problems. Can one find infinite classes of
benzenoids with larger or faster growing gaps? Given that these parameters can
disagree, which of the three is a better measure of stability? With improved methods
for computing the KFC values we are certain that other researchers would be able to
extend these results well beyond benzenoids with 13 hexagonal faces. As the size of
benzenoids increases, what proportion of benzenoids have KFC disagreements, and
how large do the gaps tend to be? This approach for finding pairwise disagreements
could be applied to any number of parameters for benzenoids or other molecules.
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Number of Benzenoids

22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54

6 3 14 36
7 1 10 68 118
8 9 67 329 411
9 4 55 396 1601 1489
10 1 42 416 2340 7652 5572
11 26 333 2811 13415 36109 21115
12 13 279 2713 18306 74985 168318 81121
13 4 187 2459 20119 114326 408785 776452 314075

Table 2. Number of Benzenoids by hexagonal faces (rows) and number of vertices (columns). Only benzenoids with an even
number of vertices are considered.

Number of Kekuléan Benzenoids

22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54

6 2 13 36
7 1 9 62 118
8 8 58 287 411
9 3 46 333 1352 1489
10 1 34 337 1907 6256 5572
11 20 264 2191 10552 28737 21115
12 10 213 2085 13805 57019 130665 81121
13 3 139 1836 14896 83376 300833 589703 314075

Table 3. Number of Kekuléan Benzenoids by hexagonal faces (rows) and number of vertices (columns).

Number of Pairs of Kekuléan Benzenoids

22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54

6 1 78 630

7 0 36 1891 6903

8 28 1653 41041 84255

9 3 1035 55270 913270 1107816

10 0 561 56616 1817371 19565640 15520806

11 190 34716 2399145 55667076 412893216 222911055

12 45 22578 2172570 95282110 1625554671 8536605780 3290267760

13 3 9591 1684530 110937960 3475737000 45250096528 173874519253 49321395775

Table 4. Number of pairs of Kekuléan Benzenoids based on the number of hexagonal faces (rows) and number of vertices (columns).
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Percentage of Kekuléan Benzenoid Pairs with a Kekulé-Fries Disagreement

22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54

6 0 0 0.7937
7 0 0.4231 0.7823
8 0 0.7864 2.2051 1.2510
9 0 0.2899 1.8018 2.6405 1.7018
10 0.1783 1.2117 2.0903 2.8834 2.0266
11 0 1.6793 2.3524 2.7828 3.1496 2.3987
12 0 1.5502 2.6534 3.0411 3.2546 3.4197 2.7182
13 0 0.9801 2.1809 2.9869 3.3601 3.5472 3.6221 3.0133

Table 5. Percentage of Kekuléan Benzenoid pairs that have a Kekulé-Fries disagreement. The maximum value for each row
(number of hexagons) is shaded.

Percentage of Kekuléan Benzenoid Pairs with a Kekulé-Clar Disagreement

22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54

6 0 0 0
7 0 0.5288 0.6084
8 0 0.7864 0.9551 0.9697
9 0 0.8696 1.1198 1.6891 1.7100
10 0.7130 1.2011 2.0677 2.1438 2.0059
11 1.0526 1.1753 2.1374 2.4258 02.6834 2.6431
12 0 1.2800 1.9355 2.6678 1.1954 1.4259 2.9599
13 0 1.1365 1.8611 2.6344 3.2429 3.4480 3.4565 3.4024

Table 6. Percentage of Kekuléan Benzenoid pairs that have a Kekulé-Clar disagreement. The maximum value for each row
(number of hexagons) is shaded.

Percentage of Kekuléan Benzenoid Pairs with a Fries-Clar Disagreement

22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54

6 0 0 1.2698
7 0 0 0.6953
8 0 0 0 1.5548
9 0 0.5797 0.7598 1.1212 1.9359
10 0 0.3886 0.7962 0.9315 2.1281
11 0 0.1498 0.2573 0.6802 1.1918 2.6567
12 0 0.5669 0.6682 0.8878 1.1954 1.4259 2.9599
13 0 0.4379 0.5346 0.8717 1.1252 1.3220 1.6247 3.3702

Table 7. Percentage of Kekuléan Benzenoid pairs that have a Fries-Clar disagreement. The maximum value for each row (number
of hexagons) is shaded.



16 CHAPMAN, FOOS, HARTUNG, NELSON, WILLIAMS

References

[1] G. Brinkmann, G. Caporossi, P. Hansen, A constructive enumeration of fusenes and benzenoids,
Journal of Algorithms 45 (2002) 155-166.

[2] E. Clar, The Aromatic Sextet, Wiley, London, 1972.
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