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A B S T R A C T   

Titanium (Ti) and its alloys are attractive for a wide variety of structural and functional applications owing to excellent specific strength, toughness and stiffness, and 
corrosion resistance. However, if exposed to hydrogen sources, these alloys are susceptible to hydride formation in the form of TiHx (0 < x ≤ 2), leading to crack 
initiation and mechanical failure due to lattice deformation and stress accumulation. The kinetics of the hydriding process depends on several factors, including the 
critical saturation threshold for hydrogen within Ti, the specific interaction of hydrogen with protective surface oxide, the rates of mass transport, and the kinetics of 
nucleation and phase transformation. Unfortunately, key knowledge gaps and challenges remain regarding the details of these coupled processes, which take place 
across vast ranges of time and length scales and are often difficult to probe directly. This work reviews recent advances in multiscale characterization and modeling 
efforts in Ti hydriding. We identify unanswered questions and key challenges, propose new perspectives on how to solve these remaining issues, and close knowledge 
gaps by discussing and demonstrating specific opportunities for integrating advanced characterization and multiscale modeling to elucidate chemistry and 
composition, microstructure phenomena, and macroscale performance and testing.   

1. General overview of hydriding of Ti 

1.1. Introduction to Ti 

Titanium (Ti) and Ti-based alloys possess superior combined phys
ical and mechanical properties in addition to good corrosion resistance, 
which make them outstanding materials for a variety of structural and 
functional applications [1–8]. For instance, the high specific strength 
(strength-to-weight ratio) and corrosion resistance make Ti a widely 
used material in aerospace (such as airframe parts and jet engine 
blades), automotive, and energy applications (such as petrochemical 
and nuclear-power-generation components) [3,5,6]. Because of their 
excellent biocompatibility in vivo, Ti alloys have also become increas
ingly attractive for biomedical applications [2,9]. 

Ti exists in two allotropic crystalline forms: the high-temperature β 
phase with a body-centered cubic (bcc) structure and the low- 
temperature α phase with a hexagonal close-packed (hcp) structure 
[5,8,10]. Consequently, Ti alloys can be categorized using a nomen
clature based on the predominant phases within their microstructure at 
room temperature. Alloys consisting of mainly of the α phase are 
referred to as α-alloys (or near-α alloys if a small amount of β phase is 
present). Conversely, β-dominated Ti alloys are called β-alloys, whereas 
those featuring a mixture of α and β phases are called α/β alloys. 

Alloying elements in Ti alloys usually act as α or β stabilizers, which 
are required to achieve the desired mechanical properties, including 
tensile strength, creep, and fracture toughness, as well as resistance to 
degradation modes such as fatigue crack propagation, stress-corrosion 
cracking, and oxidation [1,3,11,12]. Further optimization of 
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mechanical properties can be achieved through thermal and mechanical 
treatments to engineer microstructures with desired sizes, shapes, 
spatial distributions, and interface coherency states of α precipitates 
within the β matrix. Although the microstructure is primarily composed 
of two simple phases, many different phase transformation pathways 
from β to α exist, providing ample opportunities for engineering and 
optimizing the microstructure towards specific applications. A 
commonly employed Ti metal is the unalloyed commercially pure (CP) 
Ti family, which is typically classified by the amount of impurities such 
as oxygen and iron [13]. A representative Ti alloy of particular interest is 
Ti-6Al-4 V, which is considered the “workhorse” among α/β Ti-alloys 
[14,15]. 

1.2. Hydriding in Ti 

Despite the general corrosion resistance, there is a major concern 
associated with hydrogen or hydride phases residing in the Ti alloy 
matrix. Historically, this has led to issues with environmentally assisted 
cracking, including hydrogen embrittlement (HE) and hydride-induced 
cracking (HIC) [5,16]. Specifically, titanium hydride in the form of 

TiHx (0 < x ≤ 2) often precipitates at the matrix surface and in the bulk 
material in application environments featuring H2 gas, atomic H, or H+

[17–21], which can eventually induce crack initiation and mechanical 
failure as the lattice deforms and stress accumulates [22,23]. Hydride 
formation can also be induced by an electrochemical process, which 
involves oxidation of Ti and reduction of H+ (proton) or atomic H 
[17–20,24,25]. Externally applied tensile loads and residual stresses 
promote ingress of hydrogen into the Ti matrix, eventually inducing 
embrittlement, with cracks preferentially propagating along phase 
boundaries or directly across matrix grains [7]. Hydrides can also play a 
role in the corrosion susceptibility of Ti and Ti alloys, either acting as a 
protective barrier on the matrix surface inhibiting corrosion attack 
[17,26] or assisting crevice corrosion and stress-induced corrosion 
cracking at local microstructural defects such as inclusions and phase 
interfaces [7,27]. 

In the past few decades, there have been significant efforts to better 
understand the physicochemical phenomena underlying Ti hydrogena
tion, including H adsorption, transport, and hydride phase formation, as 
well as their impact on the mechanical, microstructural, and corrosion 
properties of base materials [5,17–20,23–35]. Broadly speaking, these 

Fig. 1. Schematic synopsis of the current perspective, illustrating the integration of advanced characterization, multiscale modeling, and kinetic testing to under
stand hydriding phenomena in Ti. Examples of advanced characterization include: operando XRD imaging of strain evolution during H-charging in Pd (red indicates 
higher strain), correlative-APT analysis of hydrided Ti-2wt.%Fe sample, in situ TEM snapshots of Ti-0.1O sample during heat, and in situ SKPFM potential mapping of 
steel during H-charging (dark contrast indicates more H and white lines represent grain boundaries), sourced with reuse permission from references [36,33] (© 2018 
Acta Materialia Inc. Published by Elsevier Ltd.), [35] (Published by Elsevier Ltd on behalf of Acta Materialia Inc.), and [40] (Copyright © 2011 Elsevier B.V.) 
respectively. Examples of multiscale modeling include: atomic modeling of α-Ti/hydride interface, MD modeling of edge dislocation core of Ni metal, MC modeling of 
H distribution along Ni, and PF simulated δ-hydride formation in bi-crystal grain boundaries in α-Zr, sourced from references [33,48] (Copyright © 2016 Acta 
Materialia Inc. Published by Elsevier Ltd.), [49] (Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd.), and [50] (© 2019 Acta Materialia Inc. Published 
by Elsevier Ltd.), respectively. 
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studies fall within five major categories based on the phenomenon of 
interest, as illustrated in Fig. 1: (1) the effect of surface oxide on H 
adsorption and transport; (2) the effect of Ti matrix integrity (embrit
tling species, roughness, surface treatment/residual stress, and micro
structure) on H transport and hydriding; (3) the effect of hydride 
formation on embrittlement and localized corrosion resistance; (4) 
relevant technique development based on high-resolution, ex situ, 
operando, and in situ probes, as well as cryo-methods for local structural, 
chemical, and electrochemical analysis; (5) multi-scale modeling 
ranging from atomic to continuum scale. 

1.3. Perspective synopsis 

Recent research advances in Ti hydriding phenomena have been 
driven by increasingly mature and emerging experimental character
ization tools (see Fig. 1) including, but not limited to: in operando X-ray 
diffraction (XRD) and imaging [36,37], atom probe tomography (APT) 
[33,34], in situ atomic force microscopy/scanning Kelvin probe (AFM/ 
SKP) [38,39 40–46], in situ scanning and/or transmission electron mi
croscopy (S/TEM) [24,35], and cryo-controlled characterizations [34]. 
Meanwhile, the fundamental understanding of hydriding has been 
catalyzed by progress in modeling efforts from atomistic to continuum 
scale with significantly improved computational capabilities (Fig. 1): 
density functional theory (DFT) calculations [32,33,47], molecular dy
namics (MD) [18,48], Monte Carlo (MC) [48,49], phase-fielding 
modeling (PFM) [8,15,50], and integrated models [21,51–53] that 
transcend idealized representations. However, a number of knowledge 
gaps and challenges, some of which are listed in Section 1 (Table 1) and 
will be discussed in detail in Section 2, remain at different length scales. 
In our view, tighter integration of experimental and modeling research, 
either through a validation feedback cycle or direct comparison, is 
sorely needed to form a comprehensive story of Ti hydriding phenomena 
and to resolve these remaining challenges. 

This work is intended to briefly review the recent advances in 
characterization and modeling efforts for investigating a variety of 
fundamental chemical, physical, and materials processes associated 
with Ti hydriding, as well as how these phenomena are coupled. In 
particular, we focus on how such experimental and modeling efforts 
have been applied to shed light on key identified challenges. Finally, we 
propose new perspectives on how advanced characterization and mul
tiscale modeling could be more effectively integrated to bridge 
remaining knowledge gaps, as illustrated schematically in Fig. 1. 

2. Recent advances and key challenges 

2.1. Chemistry and composition 

2.1.1. Hydrogen uptake 
There are three methods reported in the literature for charging H into 

the Ti matrix, namely, electrochemical charging, gaseous charging, and 
H ion irradiation. The first two are the most frequently used. Here the 
mechanisms of these methods are briefly introduced, and their advan
tages and disadvantages are discussed. 

2.1.1.1. Electrochemical charging. In the electrochemical charging 
method, TiHx formation can occur in Ti metals/alloys via corrosion 
processes in acidic or deaerated aqueous environments. In these pro
cesses, H adsorption is readily accessible from cathodic discharge of 
H+—i.e., cathodic galvanostatic or potentiostatic polarization or by 
interfacing Ti with a more galvanic metal [7,17,18,26,27,54–58]. 
Further penetration through the outer oxide film into the alloy matrix 
involves coupled processes of additional hydrogen absorption and redox 
chemistry, which are generalized in equation (1):  

TiO2 + xH+ + xe- → (TiIV)(1-x) (TiIII)xO(2-x) (OH)x (1).                               Ta
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Experimental observations demonstrate that H absorption through 
intact TiO2 films into Ti becomes efficient at a cathodic potential range 
around –0.6 to –1 VSCE [18,56]. The resulting TiHx composition varies 
depending on values of the cathodic charging current densities and/or 
charging potential [17]. Notably, defects can aid hydrogen permeation 
through the oxide film, for example via the weak points associated with 
structural defects including oxygen vacancies, grain boundaries and 
triple junctions in polycrystalline oxides, and lower-density regions 
associated with amorphous oxides or porosity; in such cases, the 
required cathodic potential for penetration can be less negative, e.g., 
~− 0.35 VSCE [18,28]. External stress also introduces defects in the oxide 
film and matrix that eventually lead to less negative cathodic potentials 
for H charging [7,57]. Accordingly, Ti hydrides formed on Ti metal 
surfaces have been shown to be unevenly distributed, and preferentially 
located at intermetallics and grain boundaries [58]. As another strategy 
to avoid the oxide-induced impedance, Abul-Hamid and Latanision 
removed the oxide surface layer and coated the underlying Ti metal with 
palladium prior to electrochemical charging [59]. 

2.1.1.2. Gaseous charging. Gaseous hydrogenation is usually performed 
at elevated temperatures with a typical range of 480 ◦C to 650 ◦C, and 
under gas environments of pure H2 or H2 mixed with inert gases (e.g., N2 
or Ar) at typical pressures of 1 atm [60–64]. Occasionally, much higher 
pressures (e.g., from a few atm to 100 atm) are used for fast charging, 
which easily leads to surface and subsurface cracking. The charging 
process involves the dissociation of H2 gas molecules, surface adsorption 
of H, and subsequent incorporation into the metal/alloy matrix. As in 
electrochemical charging, incorporation requires that the adsorbed H 
atoms first penetrate through the surface oxide film. The typical 
hydrogen concentration usually spans from a couple hundred weight 
part per million (wppm) to several thousand wppm for complete 
hydriding before the samples break into pieces. Note that the amount of 
gaseous charged hydrogen that can be incorporated is not restricted by 
the terminal solid solubility (TSS) [65] of hydrogen in the alloy matrix. 
The TSS of hydrogen is an important parameter in hydride-forming 
metal alloys and increases with temperature. If this solubility is excee
ded, it can make the metal and alloys susceptible to hydride-induced 
cracking. Another concern is the microstructure evolution during 
gaseous hydrogen charging at elevated temperature, which is a con
current process that is coupled to hydrogenation. 

2.1.1.3. Ion implantation. Ion implantation is a powerful method that 
has been frequently adopted to modify material chemical, mechanical, 
or electrical properties [66–71]. Although less common than electro
chemical or gaseous charging, it has been used to implant H ions into the 
Ti matrix to study hydriding behavior [67–69]. The average penetration 
depth of ions is usually in the range of nanometers to a few micrometers. 
Therefore, ion implantation is particularly powerful for studying 
hydriding in the near-surface domain. However, the major concern with 
ion implantation is the irradiation damage that is transferred to the 
matrix due to the need to accelerate the implanting ions for entry. 
During this process, the accelerated ions transfer their kinetic energy 
and momentum to the electrons and nuclei of the target atoms and 
generate a significant fraction of defects, such as atom vacancies or ion 
interstitials [69]. Relevant research [67–69] on Ti hydriding has 
confirmed that the major defects generated by ion implantation were 
near the target material surface, and that the implanted hydrogen ions 
were mostly trapped at these defects. 

2.1.1.4. Comparison and discussion. Although electrochemical 
charging, gaseous charging, and ion implantation for hydrogen share 
some similarities (e.g., hydrogen adsorption, penetration through the 
oxide film, hydride formation, as well as coupling of these processes to 
defects) [72,73], datasets collected using different methods should not 
necessarily be interpreted in the same way. This is mainly because the 

driving forces and associated mechanisms differ across the three 
methods: electrochemical potential/current for electrochemical 
charging, temperature and pressure for gaseous charging, and irradia
tive damage for ion implantation. 

Electrochemical charging usually develops a much higher hydrogen 
partial pressure (e.g., on the order of 100 atm or higher at the metal- 
liquid interface [72]), which leads to the amount of absorbed 
hydrogen in the Ti surface region being significantly higher. However, 
unlike gaseous charging, the amount of hydrogen electrochemically 
charged into the matrix is limited by the TSS of hydrogen in that matrix 
[73], which means hydrogen diffusion and hydriding kinetics in the 
subsurface are usually limited by the ambient charging temperature 
(<100 ◦C). Another difference is that electrochemical charging often 
induces a highly hydroxylated surface due to the abundance of water, 
leading to fundamentally different surface processes. In addition, 
because of its much higher temperature range (480–650 ◦C) and 
sometimes high H2 partial pressure, gaseous hydrogenation can pene
trate the surface oxide rapidly and crack the surface. The higher tem
peratures for gaseous charging can also lead to microstructural 
evolution of the matrix due to an annealing effect, which is a concurrent 
process with hydrogenation. Ion implantation adds the factor of irradi
ation damage to the hydrogenation layer and matrix by introducing a 
significant amount of microstructural and point defects, including va
cancies and cation interstitials. The hydriding layer in this case is also 
usually limited by a short implantation depth range of nanometers to a 
few micrometers. 

For all three charging modes, the exposure times and resulting 
hydrogen concentration gradients can also introduce additional com
plexities. In particular, the nature of the surface oxides (e.g., thickness 
and composition) changes as a function of charging time, so the uptake 
behavior is rarely uniform. Moreover, the time required for complete 
hydrogen penetration and dissipation of intrinsic hydrogen concentra
tion gradients in Ti depends on the specimen size and can be limited by 
the continual accumulation of near-surface hydrogen and hydrides. Such 
accumulation can impede diffusion of hydrogen and promote additional 
steep concentration gradients between sample surface and center. 

For the reasons stated above, a direct comparison between the three 
methodologies is not straightforward. Accordingly, development of 
models that represent these three methods should take in to account the 
different physical and chemical phenomena that govern hydrogen up
take in each case. In addition, the following efforts towards more sys
tematic and reliable comparisons across different charging methods are 
suggested: 1) use a readily accessible pseudo reference material, such as 
a single crystal, that can be used by different researchers to minimize the 
effects of individual materials properties on charging behavior; 2) 
explicitly specify the charging method and strictly control and report 
charging parameters to ensure repeatability and reproducibility; 3) 
develop proper analysis protocols that can eventually be published as 
“standard or gold” rules for certain standard alloys or pseudo reference 
materials, such as a standard protocol for TDS measurement. 

Table 2 
Representative hydrogen diffusion coefficients in Ti oxide, Ti matrix, and Ti 
grain boundaries based on experimental measurements.  

Materials or features Diffusion coefficient, cm2 s− 1 Reference 

Single crystal rutile 7.5 × 10-20 [76] 
10-11 − 10-13 [85] 

Polycrystal rutile thin film 2.9 × 10-20 [77] 
Polycrystal anatase thin film 4 × 10-15 [80] 
Amorphous TiO2 thin film 1 × 10-15 [80] 

10-18 − 10-17 [28] 
a-Ti matrix 2.6 × 10-10 [86] 
β-Ti matrix ~ 5 × 10− 9 [87] 
Grain boundary in pure Ti matrix 9.1 × 10-5 [59]  
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2.1.2. Hydrogen transport through oxide surface layers 
The surface Ti oxide film can exist in either a crystalline (typically 

anatase and/or rutile) or a noncrystalline form, or else as a mixture of 
the two. This surface oxide layer acts as a robust barrier layer that 
protects the Ti matrix from H ingress [74,75], significantly slowing 
down the hydrogen diffusion rate. As summarized in Table 2, an 
apparent hydrogen diffusion coefficient was reported in the range of 10- 

18-10-15 cm2 s-1 in amorphous TiO2 thin films [28,76] and around 2.9 ×
10-20 in rutile thin films [77]. In bulk TiO2, a H diffusion coefficient was 
estimated around 5.3 × 10-16 cm2 s− 1 at ambient temperature, based on 
experimental measurements on single-crystal rutile [76]; a similar 
diffusion coefficient of 2.84 × 10-16 cm2 s− 1 at 373 K was found for 
oxides covering pure α-Ti metal [78]. 

The hydrogen barrier efficacy of Ti oxides strongly depends on the 
oxide structure and composition [55,79]. Structural defects such as 
vacancies, grain boundaries, and triple junctions at the Ti surface, as 
well as chemical heterogeneities such as cathodic intermetallic com
pounds (e.g., Ti-Pd) can significantly impact hydrogen transport [13]. In 
general, faster H diffusion is expected in amorphous or polycrystalline 
TiO2 than in single-crystal TiO2 considering the structural and chemical 
defects in the former. However, the existing data is not always consistent 
with this notion. For example, a recent study reported a much higher 
apparent H diffusion coefficient of 10− 15 cm2⋅s− 1 that was similar in 
both amorphous and amorphous/anatase mixed oxide films [80]. This 
discrepancy is likely due to porosity in their column structure contrib
uting to the fast diffusion, which renders the amorphous and partially 
crystalline samples indistinguishable. 

Moreover, the H-charging process itself can lead to concurrent 
compositional, structural, and electronic changes in the surface oxides, 
which in turn can influence H transport and trapping in the oxides and 
the underlying matrix metal as the reaction proceeds. Hannula et al. 
[81] recently indicated that atomic H treatment of deposited TiO2 (at 
300 ◦C in UHV chamber) created an electronically “leaky” and photo
electrochemically unstable film due to the formation of O vacancies and 
TiO2 dissociation. This “leaky” phenomenon, which signals a change in 
electronic structure, should be heeded during routine hydrogen 
charging of the Ti oxide surface and subsequent analysis. 

In parallel with the experimental work, computational studies based 
on first-principles DFT calculations have been carried out to investigate 
the mechanism of hydrogen transport in Ti oxides. These studies have 
largely focused on crystalline systems with specific orientations; 
nevertheless, several important findings have been reported. Specif
ically, H migration from surface to subsurface sites in anatase has a 
lower kinetic barrier than that of H2 desorption, which indicates that H 
likely preferentially diffuses to the subsurface and further transports into 
the bulk [82,83]. In addition, subsurface oxygen vacancies can favorably 
accommodate H [82,83], and preexisting atomic H in the oxides en
hances H diffusion into the subsurface while simultaneously preventing 
the escape of H [84]. 

Collectively, these studies not only provide a detailed understanding 
of hydrogen transport in the oxide, but also suggest a possible strategy to 
enhance the hydrogen storage capability of the material. Nevertheless, 
given that H diffusion data are inconsistent, and that the specific 
connection to structural and compositional complexities in TiO2 are not 
well established, much remains to be understood regarding the mech
anism and degree to which the Ti oxide film can act as a hydrogen 
barrier. Approaches to precisely predict hydrogen transport through the 
oxide and its potential interaction with specific heterogeneities within 
the oxide are particularly needed. 

2.1.3. Hydrogen transport and trapping in Ti 
Following surface oxide permeation, H can be transported, redis

tributed, and/or trapped within the Ti matrix. H transport in Ti usually 
occurs via three pathways: short-circuit transport via lattice defects, 
dislocation movement, and diffusion along grain boundaries. It was re
ported that for the pure Ti matrix, the effective diffusion coefficient of H 

along grain boundaries is around 9.1 × 10-5 cm2 s− 1 [59] (Table 2) - 
significantly higher than the H transport within the grain lattice (e.g., 
2.6 × 10-10 cm2 s− 1 in CP α -Ti grains [86]). 

Compared to the Ti matrix, the diffusion kinetics in the hydride layer 
are reported to be about two orders of magnitude slower than in the Ti 
matrix, around 4x10-12 cm2 s− 1 at room temperature [28,88]. This is in 
general agreement with extrapolations from first principles [89]. Once 
the hydride forms near the Ti surface due to continuous H adsorption, 
further H ingress into the metal would therefore be significantly 
inhibited. In addition, the H diffusion coefficient in the hydride further 
decreases with increasing content of H in Ti hydride [87]. 

H transport can also be inhibited by irreversible trapping, for 
instance at various types of matrix defects (e.g., dislocations, pre
cipitates, and grain boundaries). In principle, the concentration of 
trapped H, as well as the associated binding energies at trapping sites, 
can be deduced through relevant calculations and analysis of adsorp
tion/desorption profiles [90,91]. Section 2.2 provides a more complete 
discussion of defect interactions with H. In addition to the specific 
connection between these defects and hydrogen trapping in Ti metal and 
Ti-based alloys [91], insights may be gleaned from analogous studies on 
various steels. For instance, several trapping energies (0.14, 0.11, 0.27 
and 0.54 eV) corresponding to different peaks in the thermal desorption 
spectra of H have been reported for martensitic steel. These values of 
trapping energy are comparable to those reported for other tempered 
martensite (0.15 and 0.68 eV) [92], pure iron (0.17, 0.35, 0.60 eV) 
[93,94], and low-carbon steel (0.13, 0.24 and 0.50 eV) [95] samples. 
The consistency among these independent reports suggests that H is 
preferentially trapped in the same types of trapping sites with compa
rable trapping energies. These trapping energies from low to high are 
associated respectively with interstitial sites (energy of − 0.16 eV) [93], 
reversible trapping sites (-0.29 eV) related to elastic field near-edge 
dislocations [90,94] or to semi-coherent precipitates [90,96,97], and 
irreversible trapping sites (-0.59 eV) related to dislocation cores [98]. 

2.2. Microstructure phenomena 

2.2.1. H-dislocation interaction 
When H concentrates around dislocations in metals, it impacts the 

interactions between these dislocations and other dislocations/defects 
and can eventually lead to local plasticity, with impacts similar to 
macroscopic brittle fracture. Whereas the nature of hydrogen- 
dislocation interactions has been extensively studied in BCC metals, 
there have been far fewer relevant studies in HCP metals such as Ti. It is 
often supposed that hydrogen affects dislocation mobility via the kink- 
pair nucleation and migration mechanism [99–102]. Low concentra
tions of hydrogen (e.g., 0.1 atom ppm) enhance dislocation mobility by 
promoting kink-pair nucleation whereas high concentrations of 
hydrogen (e.g., 10 atom ppm) decrease dislocation mobility by 
impeding kink-pair migration [102]. Note that mobility of screw dislo
cations is much lower than edge dislocations, so plasticity is majorly 
limited by the former in bcc metals [103]; however, the relevant reports 
of hydrogen-dislocation interaction in HCP metals are very limited 
[99–102]. The impact of hydrogen on dislocation mobility has also been 
discussed in the context of the hydrogen-enhanced local plasticity 
(HELP) mechanism on local hydrogen-dislocation interactions [48]. 
Within HELP, the movement of hydrogen clouds around dislocations 
follows the movement of the dislocations during plastic deformation, 
and HE is largely determined by the H-dislocation interactions via the 
population of free electrons in the hydrogen clouds [91]. 

To reveal these linkages, advances have consistently been made both 
experimentally and theoretically on the quantification of H concentra
tion and dislocation interactions in various HE-sensitive metals, 
inlcuding Ti alloys [29,30,32,48,49,89,104–120]. From the experi
mental side, attempts to link local H-dislocation interactions to micro
scopic embrittlement in Ti could benefit from more detailed studies of H 
in other metal alloys using advanced techniques. For example, the series 
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of works on Ni and steel HE reported by Barnoush et al. 
[105–107,111,118] using the in situ electrochemical nanoindentation 
(ECNI) method falls within the category of nanometer-to-micro-scale 
examination of both H-defect interactions and mechanical responses. 
Quantitative in situ TEM nanomechanical characterization could like
wise provide key insights, as utilized by Zhu et al. [110] in a pioneering 
study on local H-dislocation interactions at free metal nanowire sur
faces, which reported hydrogen-induced suppression of dislocation 
nucleation, contrary to the well-reported hydrogen-induced promotion 
of such nucleation in many bulk metals. Note these most other in
vestigations of H-defect interactions (e.g., with vacancies, dislocations, 
grain boundaries, or intermetallics) have relied on macroscopic testing 
[113,114,117,121,122], which normally combines effects of multiple 
defects with different length scales. The challenge remains to separate 
the intrinsic impact of dislocations from other defects, such as twinning 
nucleation and stacking faults, on hydriding behavior. 

Ab initio simulations based upon DFT can provide a reliable 
computational tool to quantitatively evaluate the energetics of defect 
interactions during the Ti hydriding processes [123,124]. However, 
complex defects such as dislocation networks or clusters, as well as 
stacking faults and interafacial/phase boundaries, feature large strain 
fields that are often difficult to address with DFT alone. Classical mo
lecular dynamics simulations are one alternative, but it is difficult to 
validate reliable interatomic potentials for defect interactions in the Ti- 
H system [89], which affects predictions of hydrogenation phenomena. 
For example, the inconsistency between classical molecular dynamics 
and ab initio simulations for H diffusion in Ti hydride was found to most 
likely be due to the Ti-H interatomic potential [112]. Beyond this, the 
materials in service are often under external load, which concentrates 
stresses that can facilitate H transport and lead to local buildup of H, 
promoting dislocation nucleation. Such mechanisms are common in 
metals and add to the difficulty with modeling these systems, typically 
requiring integration of models at different length scales. 

Overall, despite advances in understanding, robust quantitative de
scriptions of localized H at or near dislocations and their specific linkage 
to the microscopic/macroscopic brittleness of the Ti matrix are still 
lacking. Associated questions remaining to be answered are: what is the 
local H content near dislocations? What is the strength of the H-dislo
cation interaction and how can the dislocation interaction be deconvo
luted from that of other defects? How do the interactions impact local 
hydride formation and plasticity and further link to macroscopic me
chanical reponse, including brittleness? Closer feedback between mul
tiscale modeling and experimetal investigations, which provide 
complementary benefits and liabilities, may provide a more suitable 
approach to isolate specific H-dislocation interactions and trace their 
impacts across scales in hydride-forming materials. 

2.2.2. H-grain/phase boundary interaction 
In addition to its interaction with dislocations, H can also impact Ti 

properties by interacting with grain boundaries. A few studies have been 
carried out at atomic level on the hydrogen impact on the mobility of 
twin boundaries (TB) in Ti, e.g., (112 1) [125]. These studies confirm 
that the (112 1) TB glides easily and would readily encounter the mobile 
H atoms [126]. Note also that the energy barrier for TB shifting increases 
gradually with increasing hydrogen concentration. Unfortunately, such 
studies remain limited, and information regarding the interaction of H 
with other grain boundary orientations is sorely needed. 

Literature reports also indicate that grain boundaries and phase 
boundaries in Ti can act as preferential nucleation sites for growth of 
hydrides [127,128]. There have been additional reports exhibiting a 
high fraction of intragranular hydrides found in matrices even with 
relatively large grains [24,129]. For example, the nucleation and growth 
of TiH1.5 hydride in Ti64 initially occurred in the β phase because of the 
high diffusivity and contiguity of H in this phase [30,31]. In such in
stances, the process is accompanied by local stress accumulation and H 

confinement near the alpha/beta boundary, which eventually leads to 
hydride formation preferentially along the boundary. Such studies 
highlight the complex interaction between atomic disorder, stress, and 
composition at phase and grain boundaries, which remains difficult to 
unravel with most current approaches. 

2.2.3. H-impurities/inclusions interaction 
There are several major metallic impurities in CP Ti, such as Fe, Pd, 

and Ni, that may influence the hydrogenation of Ti because they are H 
sensitive. Fe is the most common impurity and present in many grades of 
CP Ti [130]. Pd is usually present in multi-grades of CP Ti metals such as 
Grades 7, 16, 18, and 24 [131], and Ni is usually found in CP Ti metal 
Grade 12 [131]. These elements usually dissolve in the solid solution of 
Ti, either in the α-phase, the β-phase, or at the α/β interface. Their sol
ubility tends to be higher in the β-phase than in the α-phase due to their 
affinity and stability in the BCC structure. In fact, these metallic impu
rities prefer to incorporate substitutionally as stabilizers in β-Ti 
regardless of their atomic size or chemistry [132]. However, when the 
impurity content exceeds their solubility in the Ti solid solution, they 
tend to precipitate to form Ti-R (R = Fe, Pd, or Ni) intermetallic com
pounds such as TiFe and Ti2Fe [133], TiPd and Ti2Pd [134–138], and 
Ti2Ni [13,139,140], further complicating the hydriding mechanism. For 
example, Ti-Fe particles can precipitate even if the Fe impurity con
centration is as low as ~ 0.03 wt% [130]. 

Extensive research regarding the influence of the elemental impu
rities (Fe [27,58,59,141–143], Pd [144,145], and Ni [13,139]) on 
hydrogen adsorption/absorption, hydrogen transport (diffusion and 
penetration), and hydriding has been carried out. However, the findings 
are often inconclusive or contradictory. Some studies reported that 
enriched elemental impurities in Ti solid solutions provide an entry 
point for hydrogen to the underlying Ti metal and promote hydrogen 
adsorption/absorption and hydrogen transport [139,144,146]. Howev
er, other studies determined that hydrogen incorporation and transport 
efficiency decreased with the rise in elemental impurity content in Ti 
[141,145]. For example, Cotton [146] reported that diffusion rate was 
proportional to the concentration of elemental Fe, and that hydriding 
was promoted by elemental Fe impurities. However, Covington [141] 
demonstrated that less hydrogen was absorbed as the Fe content 
increased and indicated that low levels of Fe in Ti do not make it more 
susceptible to hydriding. 

The impact of Ti-R intermetallic compounds on hydriding phenom
ena have also been investigated. Ti-Fe particles can impede hydrogen 
absorption and diffusion because hydride formation in/around Ti-Fe 
particles usually causes less lattice distortion than in Ti solid solutions 
[147]. Along these lines, Yan et al. [27] found that the hydrogen 
penetration depth into the matrix decreased with the presence of Ti-Fe 
particles. Liu et al. [17] reported preferential H aggregation at Fe- 
containing particles along grain boundaries in CP Ti-2, which might 
be due to either enhanced H diffusion or preferential formation of hy
drides. Grade 16 CP Ti was shown to be more resistant to hydride for
mation and HIC than Grade 2 CP Ti and 12104–105 Ti due to the 
presence of Pd-Ti particles in Grade 16 and the high solubility of H in 
these Ti-Pd intermetallic compounds, which act as a H sink [134,135]. 
Authors of these works further stated that the Ti-Pd compounds them
selves do not provide an entrance for H absorption but rather catalyze 
proton reduction and hydrogen evolution, which apparently contradicts 
with the high solubility of H in Ti-Pd particles and with Pd content 
promoting H adsorption [134–140]. Hydrogen adsorption can also be 
promoted by the β-phase of Ti as it is usually rich in impurities and can 
be considered as an impurity-containing intermetallic compound. The 
β-phase usually distributes discontinuously along grain boundaries in CP 
Ti and can form a continuous network in (α + β) Ti that acts as a fast 
diffusion pathway for H [13,139]. 

The enrichment and distribution of Pd, Ni and Fe can clearly have a 
significant influence on the hydrogen adsorption, penetration, and 
hydriding behavior of Ti. However, the conflicting nature of some of the 
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literature reports, as well as a lack of understanding of key mechanistic 
details, prompt additional investigation. Critical information is missing 
to thoroughly understand the role of these elemental or particle impu
rities in hydrogen adsorption, transport, and hydride formation. 
Research efforts to reveal the decoupled effects on each of these pro
cesses is particularly important not only for Ti, but also for other 
hydrogen-sensitive metals, e.g., Zr and Al [148–150]. Note that non- 
metallic impurities e.g., C, O, and N are not discussed here, but it is 
helpful to realize that these impurities can also compete with H 
adsorption within Ti matrix [151], particularly at defects that also 
function as H sinks. 

2.2.4. Hydride nucleation and growth 
Hydride formation and the resulting composition are also strongly 

dependent on microstructural features. In general, three types of Ti 
hydrides with different compositions and crystal structures are consis
tently reported: face-centered tetragonal (FCT) ε-hydride (TiH2, c/a <
1); stable face-centered cubic (FCC) δ-hydride (TiHx, 1.5 < x < 1.99); 
and metastable FCT γ-hydride (TiH, c/a > 1) [24,152,153]. The lowest- 
stoichiometry hydride was reported to be TiH(0.17-0.2) with a lattice 
parameter a of 4.40 Å, formed in α-Ti [19,154]. At lower concentrations, 
H remains in α-Ti with no hydride precipitate. The δ-phase hydride has 
been the most frequently observed Ti hydride. Hydrides grown under 
galvanostatic conditions, regardless of variation in charging durations or 
charging current densities, primarily consisted of TiH1.5 (δ-hydride) 
with a minor fraction of TiH1.7 and TiH2 [17]. The preferential forma
tion of δ -hydride has been attributed to the relatively small misfit strain 
at the δ hydride/matrix interface [155], close-packed substrate textures 
for both δ -hydride and α -matrix [156,157], preferential co-existence of 
solid solutions of both the δ -hydride and α -matrix phases [127,158], 
and preferred orientation of δ -hydride (200) along Ti (002) [34,127]. 
Formation of plate-shaped or lath δ-hydride was also confirmed in α/β 
Ti-55 alloys [159]. 

It has been reported that hydride nucleation in Ti matrix usually 
follows four different orientations, as tabulated in Table 3 [24,152,153]. 
Among these, two of the most frequent orientations (ORs) are OR1 and 
OR2 for the α-Ti/δ-hydride transition[160]. Details of ORs between 
hydrides and the Ti matrix have been documented elsewhere 
[24,152,153]. Nevertheless, the specific impacts of evolving strain, 
dislocation density, composition, interfacial coherency, and similar 
factors on hydride nucleation probability and preferred ORs have eluded 
detailed investigation. 

Experimentally, one challenge in addressing key unknowns 
regarding hydride nucleation is the sensitivity of conclusions to sample 
preparation. Hydride formation can readily occur even from sample 
grinding and polishing, which complicates interpretation. In particular, 
Ti hydride nucleation and phase transformation are commonly identi
fied in the process of thin sample fabrication using focused ion beams 
(FIB) and in subsequent TEM analysis [34,35]. For example, the con
ventional FIB-liftout process often induces δ- and/or γ-hydrides 
[35,161]. It has been further demonstrated that FIB-induced Ti hydrides 
do not precipitate within grains but rather preferentially form along α 
-phase grain boundaries and along α /β phase boundaries [33]. The 
temperature of sample preparation also plays a critical role, as no hy
dride formation was observed in cryo-plasma-FIB-prepared samples 
[34]. On the other hand, thermally produced FCC Ti-X phases are closely 
related to contamination by oxygen in high-purity Ti thin samples based 

on in situ TEM heating studies at ~ 600 ◦C [35,162], likely with anal
ogous effects for hydride formation. Zr has a similar concern of 
contamination during sample preparation [163,164]. Sample handling 
is likewise critical because exposure to air can result in H contamination 
in the form of moisture [165]. To minimize H (and also O) commination, 
Breen et al. [166] performed all transfers and APT analysis under vac
uum and cryogenic conditions. Such cryogenic conditions served two 
purposes: (1) to slow out-diffusion of H from the sample; and (2) to 
reduce background H by removing water vapor, which is often a major 
component of residual gas in vacuum chambers. 

2.3. Mechanical performance & testing 

2.3.1. Mechanical properties of Ti hydrides 
The mechanical behavior of hydrides is complex: the deformation 

and brittleness of hydrides are determined by the hydride distribution, 
morphology, size, and orientation, as well as environmental factors such 
as temperature and applied stress [22,47,167–174]. Acquiring a thor
ough understanding of these intrinsic mechanical properties and their 
dependencies on materials features and environmental conditions is 
critical to discern potential impacts on HE and HIC tendency. Although 
some hydride mechanical property data have been documented in 
literature [32,47,172,174], reports are still very limited, particularly 
from detailed experiments [167,174]. Some existing data regarding the 
mechanical properties of hydrides, including fracture toughness (K), 
elastic modulus (E), bulk modulus (B), and shear modulus (G), are 
summarized in Table 4. 

The fracture toughness of hydrides, for example, has been studied 
only for the δ-phase (TiH1.6) using bending experiments, and it was re
ported to be around 2.2 MPa*m1/2 [167]. This is a common value for 
ceramics but significantly below the value of 50–70 MPa*m1/2 reported 
for the metallic matrix α-Ti [168]. The fracture toughness of the hy
drides was calculated to be 0.7 and 0.4 MPa*m1/2, respectively, for the 
δ-phase (TiH1.5) and ε-phase (TiH2) based on ab-initio calculations and 
Griffith-Irwin theory [32]. Note that the discrepancy between experi
mental observations and DFT calculations can be explained in part by 
temperature effects, given that the ground-state DFT calculations are 
performed at 0 K, whereas low temperature usually decreases toughness 
[169]. 

The difference in fracture toughness between the δ-phase (TiH1.5) 
and ε-phase (TiH2) correlates with the Young’s modulus, which is about 
two times larger for the δ-phase (125 MPa*m1/2 by experiment [174] 
and 151 MPa*m1/2 by DFT [47]) than for the ε-phase (60.1 MPa*m1/2 by 
DFT [47]). Note only one existing experimental dataset [174] that in
cludes Young’s modulus (125 MPa*m1/2), bulk modulus (125 MPa*m1/ 

2), and shear modulus (43 MPa*m1/2) has been reported for δ-hydride to 
date, and no experimental values for the other Ti-hydrides exist, high
lighting the data scarcity of mechanical properties of Ti-hydrides. 

2.3.2. Mechanical/stress response to hydride formation 
Hydrogen incorporation into the Ti matrix causes lattice deforma

tion, and further formation of Ti hydrides locally destroys the original 
matrix lattice. These structural changes are likely to contribute to the 
accumulation of volumetric and interfacial stresses, which can eventu
ally lead to HE and/or HIC. Such effects have been observed in other 
hydriding-susceptible metals. 

For example, H incorporation in Zircaloy-4 was found to induce 
significant strain in the δ lattice, leading to a transformation from the 
FCC δ-hydride to the HCP ζ-hydride (Zr2H) [185]. Similarly, H charging 
in steel led to austenite phase peak splitting and the development of 
heterogeneous tensile strains on the basis of synchrotron grazing- 
incidence X-ray diffraction (GIXRD) studies [186]. Nevertheless, the 
specific connection between stress and hydride formation in the case of 
Ti derivatives is not entirely clear. For instance, J. Wen et al. [128], 
found that electrochemical H-charging in the β-21S Ti alloy over time 
did not lead to hydride nucleation even though a proportional increase 

Table 3 
Four orientation relationships of α-Ti / δ-hydride transition.  

Orientation relationship Interface plane 
OR1 {0001}α // {1 1 1}δ, <1 210>α // 〈110〉δ {10 1 3}α // {1 1 0}δ 

OR2 {0001}α // {001}δ, <1 210>α // 〈110〉δ {10 1 0}α // {1 1 0}δ 

OR3 {10.11}α // {1 1 1}δ, <1 210>α // 〈110〉δ {0001}α // {1 1 2}δ 

OR4 {1 011}α // {001}δ, <1 210>α // 〈110〉δ {10 1 1}α // {1 11}δ  
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in the lattice parameter of BCC β-Ti was observed. 
We note that it can be difficult to experimentally reveal local me

chanical responses to hydrogenation, in part due to the high mobility of 
H and the length scales associated with the strain. An efficient meth
odology to bridge this gap involves combining in situ nano-to-micron 
scale chemical and mechanical analysis with in situ hydrogen 
charging, which can eliminate the impact of hydrogen diffusion and loss 
during tests while simultaneously providing fundamental insights into 
local mechanical responses to hydrogenation with high resolution. 

Meanwhile, these nano-to-micron scale experimental apparatus can 
provide useful measurements to compare to computational in
vestigations at the atomic scale. For example, anisotropic strains asso
ciated with both OR1 and OR2 types (in Table 3) of hydride phase 
transformations have been modeled to reveal the orientation depen
dence [24]. The results show that for OR1-type δ-hydrides, the 
maximum and minimum transformation strains are achieved for di
rections along the {1012.6}α and {0001}α plane normals, respectively. 
In contrast, for OR2-type hydrides, the maximum (of 21.8%) and min
imum strains are achieved for directions along the {1010}α and {0001}α 
plane normals, respectively. These findings suggest that grains with 
orientations that can more efficiently accomodate the strain associated 
with Ti-hydride transformation may also be more favorable for hydride 
formation. Further studies along these lines are recommended to reveal 
the full magnitude of the volumetric and interfacial stress effects on 
hydride formation and vice versa. 

2.3.3. Hydride impact on general corrosion resistance 
Similar to the functionality of the surface oxide film, the hydriding 

process creates a layer on Ti metal that ennobles the surface and is 
believed to provide some degree of corrosion inhibition [17,26,187]. For 
example, an increase in the average corrosion potential and decreased 
hydrogen discharge kinetics were reported for Ti metal and alloys upon 
surface hydride formation [17,26,58,188]. The increased corrosion po
tential is an indication of decreased overpotential for the cathodic 
hydrogen evolution reaction (HER) reaction and corresponds to the Ti 
corrosion rate. Ti was also found to be in the active dissolution state 
under reaction control prior to hydrogen charging, whereas a switch to 
the diffusion-controlled passivation state was observed upon growth of 
the hydride layer (also termed cathodic modification) [189]. 

A number of topics relating to the corrosion behavior of Ti metal and 
its alloys (including 3D printed Ti) have been reviewed recently, 
including general corrosion, methods for characterization Ti corrosion 
phenomena, passivation films, methods for corrosion mitigation, and 
the impacts of solution chemistry [26,190–195]. However, other 
important topics regarding the specific impacts of hydride formation on 

corrosion resistance have less extensively reported, such as the nature of 
the competitive growth and dissolution between oxide films and hydride 
films and its impact on surface protection, as well as the quantitative link 
between hydride microstructure (thickness, porosity, crystallinity, etc.) 
and corrosion resistance. In addition to experimental investigations, 
detailed multiscale modeling studies may provide further usefulness in 
this regard. 

2.3.4. Hydrogen embrittlement without hydride formation 
A significant amount of work has been dedicated to the mechanism 

of HE-induced failure in hydrogen-sensitive metals. Several possible HE 
mechanisms, including hydrogen-enhanced localized plasticity (HELP) 
[122,196–198], adsorption-induced dislocation emission (AIDE) 
[199,200], hydrogen-enhanced decohesion (HEDE) [201–203], and 
hydrogen-enhanced strain-induced vacancies (HESIV) [204–208], have 
been proposed in the past based on microscopic observations and 
modeling work. However, a general consensus regarding a single 
dominant mechanism by which hydrogen causes embrittlement has not 
been reached. More detailed discussions of HE mechanisms have been 
well documented elsewhere [91,109,122,196–200,204–208]. 

2.3.5. Hydride impact on localized stress corrosion cracking 
Ti is sensitive to localized corrosion in an aqueous environment of 

low pH, high temperature, and/or high concentration of halides e.g., 0.5 
wt% HCl or 1 wt% H2SO4 at 100 ◦C [209,210]. External mechanical 
loading or internal residual stress at localized corrosion sites further 
adds to the sensitivity of Ti to stress-assisted localized corrosion and 
cracking (SCC). Studying SCC under external stress loads is also practi
cally relevant, as Ti alloys used as structural materials in a service 
environment must usually withstand external mechanical loading. Some 
recent progress and remaining issues regarding the mechanism of SCC 
under loading or at the crack tip as it pertains to hydride formation, 
hydrogen enrichment, or mixed oxygen/hydrogen enrichment are 
briefly discussed below. 

Recent work has provided evidence that hydride formation itself can 
induce cracks, leading to mechanical failure in Ti alloys. Crack deflec
tion and failure was observed in fatigue crack growth testing performed 
on Ti-10 V-2Fe-3Al alloys in high-pressure (8.3 MPa) H2 gas [211]. The 
analysis revealed hydride-induced fatigue cracking, as TiH2 was the 
dominant residual phase on the cracking surface. Furthermore, hydro
genation of the Ti β-phase was found to induce lattice deformation, 
introducing a localized stress field to the α/β boundary region that 
facilitated hydriding [31]. In this process, nanoscale cracks nucleated in 
the hydrides and propagated along the interface of the hydride with the 
β-phase, eventually leading to transgranular cracking across β grains. 
The large mismatch between the cracked β grains and the α grains also 

Table 4 
Summary of experimental (Expt) and DFT calculated lattice parameters (in angstroms) and mechanical properties (in MPa*m1/2) of Ti hydrides.  

Hydride Expt/DFT a c E B G K Ref. 

TiH Expt  4.21  4.59     [158,175] 
DFT  4.168  4.584     [176] 
DFT  4.164  4.581 183 126 73  [177] 
DFT  4.171  4.581 85.5 129 31.7  [47] 

TiH1.5 Expt  4.40  4.40     [157] 
Expt  4.40  4.40 125 125 43  2.2 [167,178] 
DFT  4.360  4.404 187 130 74  [177] 
DFT  4.372  4.372     [179] 
DFT  4.355  4.394 151 137 57.5  0.72 [32,47] 

TiH2 Expt  4.53  4.28     [157] 
Expt  4.53  4.28     [180] 
DFT  4.513  4.179     [181] 
DFT  4.554  4.210     [182] 
DFT  4.532  4.187     [176] 
DFT  4.534  4.209  137 17.6  [183] 
DFT  4.517  4.201 121 139 45  [177] 
DFT  4.486  4.352     [184] 
DFT  4.527  4.199 60.1 141 21.1  0.43 [32,47]  
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ultimately resulted in transgranular cracking across the α grains. 
Adsorbed hydrogen can also chemically react with carbon at grain 
boundaries and produce methane gas, which can in turn lead to void 
formation and mechanical failure [212]. 

Nevertheless, hydride formation-aided SCC at a crack tip has been 
questioned in certain types of Ti alloys (e.g., Ti-4Al [30] and Ti-8Al- 
1Mo-1 V [213–216]) due to two aspects: the slow hydride formation 
kinetics and its orientation. On one hand, the onset of hydride nucle
ation was not observed in Ti-4Al until about 14 min after gaseous H2 
charging under a pressure of 16 kPa [215], which is indeed significantly 
slower than the crack propagation rate of around 10-5 m/s in an aqueous 
environment [214]. On the other hand, intergranular hydride formation 
was observed along phase (or grain) interfaces in Ti-811 in an aqueous 
NaCl solution around neutral pH; however, SCC fracture produced 
hydride-free intragranular facets across grains [215,216], which is 
contrary to the finding of hydride-induced transgranular-cracking across 
grains in Ti64 [31]. Adding to this, S. Cao et al. [213,214] found that 
absorbed H at the crack tip accelerated dislocation emission, enhanced 
the dislocation density, and introduced severe plastic deformation ahead 
of the crack tip that produced additional dislocations and eventually led 
to cracking. These studies make it apparent that SCC and HE at and 
ahead of a crack tip are highly dynamic processes and at very localized 
sites involving microstructure evolution, passive film formation/break
down, chemical/electrochemical reactions, and dynamic environmental 
conditions. 

Recently, S. Joseph et al. [217] suggested that a synergistic effect of 
O and H solute atoms in the solid solution is responsible for cracking in 
Ti-6Al-2Sn-4Zr-6Mo in an aqueous (D2O) environment. This proposed 
scenario, in which O also plays a vital role, challenged the decades-old 
assumption that cracking of Ti alloys is related only to H (as inter
preted by the HELP mechanism and the AIDE mechanism). This work 
inspires a new perspective for cracking studies that transition from a 
focus only on H towards the ingress of O—a critical insight for designing 
corrosion-resistant Ti-based materials. 

It should also be noted that at this stage, none of the above 

mechanisms can be completely ruled out in favor of the others. Studies 
of the proposed mechanisms are at different stages of maturity and not 
always on the same materials or under the same conditions. As such, it is 
difficult to interpret characteristics beyond each individual experiment. 
Instead, it is necessary to carry out in-depth and highly systematic 
analysis to identify and validate missing characteristics, as well as to 
determine the conditions under which each of the representative 
mechanisms might manifest. Advances in both characterization capa
bilities and integrated multiphysics models could provide significant 
benefit for elucidating the different stages of cracking, including local
ized corrosion processes, crack nucleation, and crack propagation. 

3. Opportunities and perspectives 

Charting a course towards improving the performance of Ti metals 
and alloys in the presence of hydrogen relies on improved understanding 
of hydrogenation phenomena at the atomic to microstructural scales 
[34,35]. Achieving this understanding is an ongoing challenge, in large 
part because of the difficulty of making observations at the necessary 
length scales and deconvoluting causation associated with particular 
materials features. Integration of experimental approaches with 
modeling offers a unique opportunity to address these concerns 
[21,51–53,218–221]. Some general experiment-modeling integration 
strategies to probe relevant phenomena across multiple scales are pre
sented in Fig. 2. Governing thermodynamic and kinetic processes asso
ciated with Ti hydriding are described in terms of composition and 
chemistry (atomistic scale), microstructure and mass transport (micro
structural scale), and bulk hydriding and corrosion performance 
(macroscale). In each case, some physical quantities that can be both 
measured and modeled are identified, along with corresponding classes 
of techniques that can be utilized to achieve the handshaking between 
experiments and simulations: chemical spectroscopy, diffusion kinetics, 
phase growth/dissolution, and overall hydriding rate. The schematic in 
Fig. 2 underscores the need to combine multiscale models, multimodal 
materials characterization, and testing in order to achieve a holistic view 

Fig. 2. Strategies for integration of 
advanced characterization and 
modeling to tackle challenges listed in 
Table 1 in Ti hydriding, with repre
sentative examples from the authors’ 
work probing surface chemistry, mass 
transport, and hydrogen mass uptake. 
Top from left to right: Raman spectra 
for rutile and anatase TiO2 native ox
ides at ambient conditions, dark field 
STEM imaging of hydrided α-Ti, and 
potential evolution during the galva
nostatic H-charging on an α-Ti surface 
in deaerated NaCl solution. Bottom 
from left to right: DFT modeling of H 
atom in an amorphous TiO2 native 
oxide, phase field modeling (PFM) of 
hydride formation in α-Ti, and inte
grated modeling of H uptake kinetics 
in TiO2 native oxides with different 
phase and grain boundary composi
tion approximations.   
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of Ti hydriding. Recent progress, opportunities, and perspectives in both 
experimental characterization and modeling will be discussed in this 
section, along with additional specific examples of proposed integration 
strategies. 

3.1. Opportunities and perspectives in characterization methods 

Although challenging, it is critical to develop and implement 
experimental characterization methods with high spatial resolution and 
dynamic capabilities. Table 5 summarizes the commonly used charac
terization methods, their capabilities, and the challenges listed in 
Table 1 that can be potentially addressed using these methods. For 

Table 5 
Characterization methods, their capabilities, and the related challenges in Table 1 that can potentially be addressed using these methods. Shaded techniques (rows 2–6) 
are destructive, whereas unshaded techniques are non-destructive.  

*Indicates the most closely relevant challenges that can be routinely studied but does not exclude the possibility of studying other challenges. 
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example, leading methods for sample characterization include tomog
raphy and mass spectrometry for precise compositional analysis, and in 
situ or operando techniques like electron microscopy for structure and 
phase identification during the hydriding processes. Non-destructive, 
high-resolution experimental tools based on X-ray techniques and 
atomic force microscopy-based methods are likewise useful to collect 
information during materials degradation and have the advantage of 
doing so with minimal perturbation or impact of external factors, 
especially when these tools are employed in operando or in situ to 
monitor topography, phase, and electronic state evolution. In the case of 
hydriding, additional challenges arise from the difficulty of directly 
probing the tiny atom. Techniques based on neutron probes are partic
ularly useful in this regard; additional hydrogen-sensitive character
ization techniques are also documented in reference [222]. 

3.1.1. Development of high-resolution, localized hydrogen/hydride 
detection methods 

3.1.1.1. Electron microscopy. Environmental electron microscopy, 
including environmental SEM and TEM [223,224], particularly when 
integrated with in situ nanomechanical testing, provides a powerful tool 
to investigate hydriding of metal alloys. The mechanical behavior of a 
hydrogenated matrix can be directly observed [197], and nano
mechanical testing can be carried out on samples at the nano-to-micro 
meter scale e.g., nanopillars [225,226], nanowires [110], and nano
cantilevers [107]. As an example of how this could be done, Xie et al. 
utilized quantitative environmental TEM nanomechanical testing [225] 
to report that dislocations in nanopillars of Al metal can be locked with 
hydrogen exposure and reactivated under cyclic loading without 
hydrogen exposure. Using a similar method, Yin et al. [110] observed 
that hydrogen suppresses the nucleation and movement of dislocations 
on the surface of Ag nanowires, rather than the usually reported 
hydrogen-enhanced dislocation nucleation and movement. Electron 
microscopy has also been applied to study hydriding of Ti-based metals. 
Q. Wang et al. [24] evaluated the orientation relationship between hy
drides and the Ti metal matrix in CP titanium using an interrupted in situ 
electron backscatter diffraction (EBSD) setup. Kim et al. [30] developed 
an apparatus that combines electrochemical hydrogen charging in an 
aqeuous environment with a high vacuum-based SEM/EBSD capability 
to study the dynamic hydrogenation process of Ti64. The emerging 
electron channeling contrast imaging (ECCI) approach [227,228] has 
also shown to be very useful in revealing the correlation between 
subnanometer-scale H-dislocation interactions and micrometer-scale 
heterogeneous phenomena and mechanical response by imaging dislo
cations in larger-area grains. 

However, it must be realized that it is challenging to directly observe 
hydrides based on contrast of collected images using electron micro
scopes; instead, indirect approaches are generally required. TEM usually 
needs to operate in electron diffraction mode to capture characteristic 
diffraction patterns specific to each type of hydride. SEM typically 
identifies hydrides through equipped EBSD by collecting phase maps or 
Kikuchi patterns and comparing them to known crystallographic phase 
databases. Interestingly, Kooi et al. [229] very recently demonstrated 
unprecedented imaging of H atoms and hydrides in Ti by developing an 
integrated differential phase contrast method in STEM mode. Some 
other limitations of electron methods include limited field of view and 
sample size, as well as reduced vacuum (gaseous environment) and 
occasional radiolysis of water (in humid or liquid cell environments), 
which can reduce resolution due surface contamination [223,224]. The 
sample preparation process for TEM (e.g., through electro-polishing or 
FIB) also tends to introduce H contamination and facilitates preliminary 
hydride formation if not controlled properly. 

3.1.1.2. Secondary ion mass spectrometry (SIMS). SIMS techniques, 
including Time-of-flight (ToF) SIMS and NanoSIMS, have been used to 

analyze the surface and depth distribution of hydrogen, hydride, or 
hydroxide, and to correlate with microscopy (including 3D) of surfaces 
at microstructurally relevant length scales in Ti metals/alloys 
[17,27,29,133,220,230–240]. The advantages of SIMS are that it can 
analyze all elements (including H), distinguish isotopes, achieve 
extremely low detection thresholds (in ng/g or ppb range), and collect 
images of lateral chemical distributions (in certain instances) 
[236–239]. However, accurate SIMS analysis requires that the reference 
material be very similar to the studied material, given that sputter yields 
are highly dependent on chemical composition [239,241,242]. There
fore, SIMS is more often used for qualitative evaluation and visualization 
of hydrogen distribution and usually needs to be combined with other 
hydrogen-sensitive techniques for more reliable quantitative analysis. 
As an example, Y. Duan et al. [232] studied the influence of Ti-Mo 
interdiffusion on the distribution profile of deuterium (D) across TiDx/ 
Mo films using the SIMS method, as well as a combined Rutherford 
backscattering (4He-RBS) and D(3He,p)4He nuclear reaction analysis 
(NRA) approach. It turned out that the SIMS-measured D concentration 
is remarkably smaller than the concentration obtained via RBS-NRA 
(this technique is discussed further below). Beam damage effects is 
another concern of SIMS, which compromises the analysis accuracy of 
localized hydrogen/deuterium signals [243]. 

3.1.1.3. Atom probe tomography (APT). APT utilizes a strong electric 
voltage to activate individual atoms of elements emitted from a needle- 
shaped sample, then chemically maps the 3D distribution of those ele
ments [244]. APT is the only currently known technique with atomic 
spatial resolution that can precisely map hydrogen distribution and 
quantify its content in a material [33,34,161,165,166,217,245–247]. 
Independent researchers have further demonstrated that APT tips pre
pared by cryo-FIB can significantly lower hydrogen contamination 
compared with tips prepared under non-cryogenic conditions [34,166]. 
Cryogenic environment control throughout the sample tip preparation 
processes using, for example, cryo-FIB combined with a cryo- 
transferring chamber can further eliminate pre-existing H attached to 
samples [34,166]. These advances in technique development make it 
possible to properly leverage the unique advantages of APT towards 
analysis of hydrogen in Ti and Ti hydrides. 

However, it is important to note that the APT tip can still be 
contaminated, usually in the range of 0.5–1.5 at%, by the residual H in 
the APT instrument chamber [35]. Hydrogen charging in a deuterium 
environment represents an alternative strategy that has been verified by 
others [165,166,246,247], although the noise from residual H in the 
collected spectra still perturbs the quantitative analysis to some degree. 
[165,166,246,247]. If other isotopes or used, it must be considered 
whether deuterium or tritium would exhibit the same segregation, 
phase, and distribution behavior compared to hydrogen, which is many 
cases is an unanswered question. 

3.1.1.4. Flash freezing techniques. Beyond eliminating contaminations 
through cryo-environment control, an even more promising and exciting 
development involves the use of flash-freezing techniques, which have 
been successfully applied both to APT [248–252] and SIMS [253–255] 
at different length scales at solid–liquid interfaces. Flash freezing can 
“lock” the instantaneous elemental and ionic information (e.g., 
hydrogen, water, protons) at the regions of interest for performing 
“quasi in situ” analysis. For example, flash-frozen APT work [250] has 
been performed for 3D nanoscale analysis of composition and structure 
at the solid-water interface in corroded glass. These characterization 
advances should be transferable to hydriding studies of Ti, especially for 
trapping of H and local pH gradients in phase/grain boundaries, crev
ices, and matrix/inclusion interfaces. Depending on the size of the fea
tures of interest, APT, SIMS, or a combination of the two could then be 
adopted for analysis and data acquisition. 
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3.1.2. Development of non-destructive and in situ or operando methods 

3.1.2.1. Scanning Kelvin probe force microscopy (SKPFM). SKPFM is a 
promising method to non-destructively detect H with high spatial res
olution. It allows detection through a change in surface potential caused 
by H incorporation into the surface oxide and the matrix following 
hydrogen charging of the metal [42,256–263]. Direct quantification of 
H is made possible by applying a thin Pd layer, which effectively con
trols for the impact of oxide heterogeneity on hydrogen adsorption, 
thereby enabling the detection of limiting concentrations as low as 0.01 
ppm and at nm resolution [40–46]. The measured surface potential via 
the Pd layer follows a logarithmic correlation with the charged H con
tent [39,42]. It would be interesting to carry out feasibility studies of 
hydrogen adsorption quantification and hydriding phenomena in Ti 
alloys by coupling in situ SKPFM with an electrochemical charging 
process. 

3.1.2.2. Elastic recoil detection analysis (ERDA). As a non-destructive 
and highly accurate quantification method, ERDA [264] can be used 
to measure both the lateral distribution at a resolution of tens of mi
crometers and the depth profile at a resolution of nanometers for light 
elements such as H and C. A beam of projectile ions that are usually 
heavier than the light elements to be probed collides elastically with the 
nuclei of the light element targets, ejecting them from the matrix ma
terial. ERDA has been successfully used to study H distribution in Ti64 
by measuring the volume density [265] and depth profile [151,266]. 
Note that despite its usefulness in depth profiling, ERDA has relatively 
low lateral resolution and accumulative signals. As such, it should be 
classified as a surface-averaged measurement tool. 

3.1.2.3. Thermal desorption spectroscopy (TDS). TDS is a reliable tool to 
collect information pertaining to H trapped in metals and alloys. The 
lattice H concentration, the reversibly incorporated H concentration and 
the irreversibly trapped H can all be estimated through desorption 
spectra. TDS also enables analysis of trapped energies at different types 
of matrix defects (e.g., vacancies, interstitial sites, dislocations, pre
cipitates, and grain boundaries) [90]. Note that the accuracy of such 
analysis is typically around 0.1 eV for the binding energy. Uncertainties 
can be ascribed to surface defects, inaccuracies of temperature moni
toring devices, and microstructure thermal instability. In interpreting 
TDS data in terms of H binding energies, one must remember that the 
temperature of H release implicitly contains information regarding both 
thermodynamic and kinetic factors, which can be difficult to disentangle 
if significant kinetic limitations are active. 

3.1.2.4. Neutron diffraction and imaging. Hydrogen adsorption, trans
port and hydriding phenomena in the bulk materials can be studied non- 
destructively via neutron-based techniques such as neutron diffraction, 
scattering, vibrational spectroscopy, and imaging. For example, in situ 
neutron diffraction was utilized to study the decomposition of Ti hydride 
powder during constant heating in Ar environment [267]. In situ and 
operando neutron imaging was used to investigate the structural stability 
and the spatiotemporal H distribution in bulk (up to 40 mm in diameter) 
metal hydride composites (hydrided Hydralloy) [268]. In a similar vein, 
SCC phenomena associated with low H content (10 – 300 ppm) in Zr 
alloys were studied using neutron imaging with a mass resolution of ~ 5 
wt ppm and a spatial resolution of ~ 25 µm [269]. 

3.1.2.5. X-ray techniques. XRD as a non-destructive and readily acces
sible method that is particularly useful for studying surface/sub-surface 
hydriding phenomena relating to hydride nucleation, lattice degrada
tion, phase transformation, and cracking or fatigue. In addition to bulk 
phase identification, strain effects correlating to H content can be pro
bed. For example, the evolution of the lattice parameter of δ-TiHx, which 
depends on the H concentration in pure Ti samples, was determined by 

XRD measurements in the Bragg-Brentano symmetric geometry using Co 
Kα radiation [19]. Liu et al. used the technique to estimate different 
hydride compositions, identifying a primary composition of TiH1.5 (δ 
hydride), with a small fraction of TiH1.7 and TiH2, in electrochemically 
charged pure Ti [17]. 

In situ or operando XRD has also been shown to be very powerful to 
collect the dynamic information of hydriding phenomena in Ti, Zr, and 
Pd [128,185,186,211,221,270–274].[128,185,186,211,221,270–274]. 
In particular, 3D X-ray diffractive imaging (XRDI) is a new in situ/ 
operando X-ray imaging technique developed to resolve 3D distributions 
of strain and phase transformations of solid materials exposed to reac
tive environments [36,275–277]. For example, Ulvestad et al. [118] 
used 3D XRDI to monitor the strain and phase transformation evolution 
during hydriding of Pd nanocubes and corroborate strain distributions 
with H concentration distributions. Hahn et al. [221] revealed the dy
namics and hysteresis mechanism of H-Pd interactions during interca
lation and deintercalation based on a multimodal in situ XRD and 
absorption spectroscopy (XAS) apparatus. 

XAS has also been demonstrated as a probe of phase composition 
within Ti hydrides [278]. Although less direct than XRD for phase 
identification, XAS has the intrinsic advantages of sensitivity to both 
surface and bulk regions depending on the collection mode (electron and 
fluorescence yield, respectively), as well as the ability to probe hydrogen 
effects on electronic structure in non-crystalline local environments or 
prior to hydride phase formation. The combination of X-ray-based 
multimodal diffraction, spectroscopy, and microscopy could open a new 
characterization frontier to understand various metal hydriding 
phenomena. 

3.1.2.6. Nuclear reaction analysis (NRA). Through the resonant reaction 
H(15N, αγ)12C [279] or non-resonant reaction D(3He,p)4He [232], nu
clear reaction analysis (NRA) is capable of quantitatively depth profiling 
and non-destructively measuring H (or D) content distribution at solid 
surfaces, subsurfaces, and interfaces. The method utilizes a 15N or 3He 
ion beam to detect the H or D isotope in a depth range of up to 1–2 μm. 
The near-surface depth resolution is a few nanometers for surface- 
normal ion incidence and can be further improved to 1 nm by 
applying a grazing-angle beam. NRA can measure hydrogen with a 
surface concentration of ~ 1013 cm− 2 (~1% of a typical atomic mono
layer density) and volume concentration at a sensitivity of ~ 1018 cm− 3 

(~100 at. ppm). NRA has been successfully demonstrated in some 
hydriding studies including: quantitative measurement of surface and 
bulk H concentration in the near-surface region of a H-treated Pd single 
crystal [280]; determination of H depth and density near the interfaces 
of thin SiO2 films and Si(100) substrates [280]; and depth profiling of D, 
Ti, and Mo in metal hydride films (TiDx/Mo) [232]. 

3.2. Opportunities and perspectives in multiscale modeling 

In close concert with experimental probes, multiscale, multiphysics 
models have a key role to play in providing foundational understanding 
of Ti hydriding. Here we focus on predictive models that range from 
atomistic to mesoscopic to macroscopic, which are emerging as a 
powerful tool for generating “synthetic data” that can be treated on 
equal footing with measurements for unbiased comparison. Table 6 lists 
several classes of methods that can provide much-needed insight, 
whereas Fig. 2 shows how these models can provide tie-ins with ex
periments (Table 5) to more comprehensively address the challenges 
listed in Table 1. 

In general, the methods fall into two categories: atomistic/discrete 
methods and continuum methods. The first category includes first- 
principles and quantum chemical approaches (most notably, DFT), as 
well as DFT-based molecular dynamics, which provide high-accuracy 
energies, forces, charge states, and atomic positions, as well as ther
modynamics for phase diagram prediction, but are limited to very small 
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or ideal systems for short times. Other atomistic methods include force- 
field based molecular dynamics (MD) for simulating local diffusion, 
segregation, and trapping, in addition to coarse-grained approaches 
such as kinetic Monte Carlo (KMC) for transcending much larger ranges 
of time scales. On the continuum side, more complex models that 
incorporate microstructural features and nonequilibrium conditions can 
be incorporated, but at the expense of physical accuracy. Among the 
continuum methods, phase-field modeling (PFM) provides a highly 
flexible framework for analyzing phase transformation, microstructure 
evolution, and chemomechanical coupling under different environ
ments. This approach can be well integrated with atomistically derived 
quantities, as detailed in the sections below. Finite-element models 
(FEM) lack the flexibility, resolution, and microstructure awareness of 
the phase-field approach, but are well suited to examine solid mechanics 
and fracture effects. Finally, integrated kinetic models can be built 
around parameterized nucleation-growth and diffusion equations to 
simulate the full hydriding process; unfortunately, these models typi
cally forego details of microstructure and defect interactions and are 
therefore less useful for addressing the gaps in Table 1. In addition, they 
are typically empirically fitted and therefore provide minimal predictive 
capability beyond the specific conditions and materials for which they 
were parameterized. Nevertheless, we include them here because they 
can retain some predictive power when coupled with finer-scale 
modeling approaches to obtain needed parameters. The following sec
tions detail three key needs for progressing modeling methods to better 
address hydriding issues in Ti and other metals: multiphysics 

integration, multiscale integration, and incorporation of beyond-ideal 
factors. 

3.2.1. Multiphysics integration 
One of the major challenges in modeling metal hydride formation 

and associated microstructures is the involvement of concurrent chem
ical, physical, and materials processes, as well as their complicated (and 
often unknown) coupling. For instance, to comprehensively account for 
nucleation and growth of hydride phases in realistic polycrystalline Ti 
and its alloys, the model should incorporate surface reactions; surface, 
grain, and boundary diffusion, thermal transport, grain boundary H 
segregation, crystallographic structural transformations, and mechani
cal interactions involving large volume changes. Of the available ap
proaches, perhaps the most versatile in this regard is the phase-field 
method [281–283], which has provided a general framework for inte
grating these multiphysics phenomena for modeling phase trans
formations and associated microstructure evolution in a wide variety of 
structural applications [284], energy applications [285], and functional 
applications [286]. PFM is based on a diffuse-interface description and 
can track the evolution of a diffuse grain, phase, or particle boundary 
according to underlying governing physical equations. As such, it can 
easily be extended to include different physicochemical phenomena, 
provided the necessary parameters and functional relationships can be 
properly defined. 

For modeling hydride formation in metals using PFM, α -Zr (hcp) has 
often been employed as a model system [287,288]. The fundamental 

Table 6 
Modeling methods at multiple scales, their capabilities, and the related challenges in Table 1 that can potentially be addressed. Shaded techniques (rows 2–4) are 
atomistic or discrete, whereas unshaded techniques are based on continuum approaches.  

*Indicates the most closely relevant challenges that can be routinely studied but does not exclude the possibility of studying other challenges. 
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physical processes, including hydrogen diffusion, crystallographic 
structural changes, and elastic interactions, were first integrated in the 
context of the diffuse-interface description to model the coherent 
nucleation and growth of the γ Zr hydride by Ma et al.[289]. This phase- 
field model was subsequently extended to account for the effect of an 
applied load [289], grain boundaries [290], and the non-uniform stress 
field near a blunt notch [291]. Guo et al. incorporated elastoplastic ef
fects involving large volume expansion into the phase-field modeling 
framework [292], which was applied to simulating γ hydride formation 
near structural flaws, including cracks [293]. Similar models were 
developed and applied to analyze metastable hydride phase formation 
involving inhomogeneous elasticity [294,295] and its role in nucleation- 
and-growth mechanisms of the stable δ Zr hydride phase [296]. More 
quantitative phase-field models that account for temperature-dependent 
thermodynamics and materials parameters have also been discussed 
[297,298]. Han et al. employed the micromechanical phase-field model 
to investigate more detailed microscopic features of the δ Zr hydride 
microstructure, focusing on stacking of microplates and their reor
ientation behavior [299]. 

Recently, Heo et al. established a comprehensive phase-field model 
for simulating hydride formation with general metal/hydride interfacial 
coherency in a generic polycrystalline Zr system [50]. Because hydride 
formation in α -Ti exhibits very similar features and characteristics to Zr, 
this same framework can directly be applied to model Ti hydride for
mation. Preliminary simulations along these lines are reported in Sec
tion 3.3, wherein we have parameterized the model to simulate reaction- 
induced hydride formation in polycrystalline pure α -Ti using available 
materials databases (e.g., thermodynamic free energies [300], diffusiv
ities [89,301], elastic modulus (in Table 4), etc.). A more detailed 
description of this work is forthcoming. 

Despite the power of PFM and related continuum approaches to 
integrate multiphysics factors within a single framework, the underlying 
governing relationships must be known or readily derivable. Because 
defects, compositional heterogeneity, microstructure, and other factors 
discussed in Section 2 play an important role in determining local 
interaction with H, determining such relationships in practice can be 
extraordinarily difficult. Moreover, if nonequilibrium hydriding kinetics 
are to be properly incorporated, then the effects of the environment 
must likewise be considered either implicitly or explicitly. In our view, 
this is best accomplished by incorporating a combination of experi
mental inputs and atomistic modeling inputs to extract important pa
rameters and functional relationships. Examples of needed quantities for 
accurate PFM include phase free energies, detailed microstructures, 
diffusivities, interfacial and surface energies, and elastic constants. 

3.2.2. Scale integration 
Another challenge closely related to the need for multiphysics model 

integration is the intrinsically multiscale nature of hydrogen-material 
interactions. In general, each of the methods listed in Table 6 can be 
integrated with other modeling methods to extend scales of space, time, 
or both. For example, KMC methods are well suited to extend atomistic 
simulation times to experimentally relevant scales by incorporating 
DFT- or MD-derived kinetic barriers, provided events can be discretized 
(e.g., diffusion or trapping) and mapped onto a regular lattice. However, 
it is far more challenging—yet ultimately more impactful—to integrate 
discrete atomistic approaches and continuum approaches. This combi
nation can leverage the superior accuracy and capability of atomsitic 
approaches to account for local features such as point defects, while also 
appealing to the microstructure awareness and rapid nonequilibrium 
simulation capabilities inherent to many of the continuum approaches. 

Along these lines, H-dislocation interactions and hydriding phe
nomena were recently explored via multiscale approaches in which 
thermodynamic and analytical models were combined to achieve both 

atomic-level resolution and continuum-level computational efficiency 
[48,49,108]. These approaches allow for determination of the concen
tration of hydrogen at the atomic scale upon perturbation of thermo
dyamic variables, including temperature and hydrogen chemical 
potential. In general, the thermodynamic parameters are linked to, and 
controlled by, continuum-scale models (e.g., FEM or PFM). 

Another example is the integrated thermodynamic and analytical 
model developed by Leyson et al. [49]. In this model, input parameters 
(e.g., H-H interaction energies) were derived from coupled embedded 
atom force-field and Monte Carlo simulations. The integrated model 
assessed the dependence of hydride size on environmental temperature 
and bulk hydrogen concentration and also successfully predicted both 
nanometer-scale hydride nucleation and the activation of hydrogen- 
enhanced local plasticity. A sharp transition from a non-hydride- 
forming domain to a hydride-forming domain was identified, for 
which the transition point was characterized by a critical hydrogen 
chemical potential for hydride nucleation. The predicted results were 
also consistent with nanoindentation tests carried out on H-charged 
materials. 

Similarly, Zhao et al. [108] developed a continuum model, the so- 
called hydrogen-informed expanding cavity model, that was calibrated 
by the large-scale MD simulations. This model incorporates the collec
tive interactions between hydrogen and dislocations and their impact on 
softening of HE metals and alloys. The simulation results show that the 
activation energy for dislocation nucleation decreases with the 
concentrated local H, leading to decrease in indentation force and 
hardness. Note that this behavior is consistent with the hydrogen- 
promoted dislocation migration and multiplication along with the ma
trix softening reported by many studies as discussed above. 

The PFM examples discussed in the previous section provide addi
tional opportunities to improve multiscale integration. DFT, MD, and 
KMC simulations can provide transport data, whereas DFT and force- 
field models can provide needed interfacial energy and solid me
chanics inputs. Some specific examples of how this can be done are 
provided in Section 3; nevertheless, additional progress is needed to 
incorporate the needed diversity and complexity into the lower-length 
scale simulations. A particular priority involves modeling static and 
dynamic properties of disordered and heterogeneous systems including 
grain and phase boundaries, as well as amorphous surface oxides that 
offer unique configurational and chemical challenges at the interface 
with the Ti metal. 

3.2.3. Beyond ideal models 
To correctly capture physical, chemical, and materials behavior in 

simulations of hydriding phenomena, it is important to incorporate 
models capable of transcending idealized crystalline structures and 
purely thermodynamic considerations. Critical frontiers in computation 
include the development of models with more sophisticated and coupled 
physics, more realistic microstructures, more complex atomic configu
rations of interfaces and boundary regions, and better approximations of 
real operating conditions. 

This need was recognized in a recent paper outlining how “beyond- 
ideal” factors could be incorporated at both the atomistic and continuum 
scales to improve hydriding models being developed by within the 
Hydrogen Materials—Advanced Research Consortium (HyMARC) [51]. 
In that study, four key beyond-ideal factors were identified and shown to 
influence performance predictions in hydriding reactions: (1) surface 
anharmonic dynamics; (2) interface and surface energy penalties; (3) 
mechanical stresses induced by constrained volume expansion; and (4) 
the presence of the native surface oxide. Although the focus did not 
include Ti, the identified beyond-ideal factors echo many of the themes 
introduced in Table 1 and Section 2. An additional priority is the 
development and application of methods capable of evaluating the 
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properties of Ti surface oxides, which are notoriously configurationally 
complex. Graph neural network-based approaches [302] are emerging 
as a promising approach to quantify and efficiently explore this 
complexity and are currently being applied by our team to investigate H 
in TiO2 films. 

Another challenge involves accounting for atomistic defect in
teractions within continuum models that are otherwise incapable of 

achieving the necessary fidelity. One example of such an approach that 
has achieved widespread use is the point defect model (PDM). The PDM 
has been applied to predict the growth or dissolution of oxides and 
hydrides in hydride-forming metals, typically by integrating experi
ments and numerical models [52,53]. For instance, Ai et.al. [52,53] 
employed the PDM to analyze H-associated degradation mechanisms in 
pure Zr in hydrogenated pressurized water reactor primary coolants. 

Fig. 3. Modeling and experimental integration strategies for studying hydrogen transport and trapping in surface Ti oxides, with specific examples from the authors’ 
work. Computational approaches on left side, top to bottom: Relative probability of H binding energy (in eV with respect to H2) at diverse local sites in amorphous 
TiO2 (α-TiO2) with respect to oxygen coordination number (2-fold [2F], 3-fold [3F], 4-fold [4F]); KMC setup for molecular modeling of H hopping in a-TiO2 based on 
a graph neural network description (inset shows Ti (blue), O (red), and Ti-O bonds (green) within the network); mesoscopic continuum modeling of hydrogen 
diffusion through a complex microstructure in polycrystalline TiO2 (insets: input microstructure and corresponding prediction of local variation in H composition). 
Experimental approaches in right side, top to bottom: NMR measurement of O coordination number distribution in 17O-labeled a-TiO2, APT analysis of as-deposited 
(top level) and polycrystalline (bottom level) Ti oxide film showing compositional variations (scale bar: 50 nm) indicative of interfaces and local heterogeneities; 
measured H permeation through a 400 nm thick as-deposited Ti oxide film on Ti metal using a Devanathan cell as a function of charging time in an aqueous 
environment (charging current: 200nA/cm2, discharge potential: 0.2 VSCE, electrolyte: deaerated 0.6 M NaCl). 
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They found that the barrier layer comprises hydrogen-deficient zirco
nium hydride (ZrH2-x), while the outer layer comprises porous, stoi
chiometric ZrO2 that forms via hydrolysis of ZrH2-x at the interface 
between the layers. This analysis indicates that corrosion resistance 
depends on the physical features of the porous oxide layer, including its 
porosity and thickness. Furthermore, hydride platelets were found to 
precipitate below the metal/barrier layer interface, with their number 
density decreasing with distance from that interface [53]. This behavior 
verifies that hydride platelets form due to atomic H that diffuses through 
the metal phase from the interface with the barrier layer. Importantly, 
this mechanistic understanding provides practical guidance on slowing 
hydriding by engineering the porosity and/or thickness of the outer 
layer for enhanced outer-layer resistance. 

Considering the mechanistic similarity between Ti hydriding and Zr 
hydriding, the PDM could likewise be applied to predict key aspects of 
hydriding and hydrogen-induced corrosion of Ti and its alloys. For 
electrochemical charging, the PDM could be optimized to describe the 
partial anodic process and incorporate cathodic hydrogen evolution. 
The optimized model could then be used to compute the passive disso
lution rate, allowing for reliable estimation of the time to perforation of 
the porous oxides layer. Once perforated, hydriding of the base Ti alloy 
would occur. The thickness of the barrier layer becomes larger as the 
potential is made more negative and can serve as a reliable measure of 
the extent of hydriding, which can in turn be predicted by the PDM 
based on in situ EIS measurements along with optimized model param
eters [52,303]. Suggested details of how PDM could be applied to 
studying Ti hydride growth process are provided step-by-step in the 
supplementary information. 

3.3. Examples of experiment-model integration 

In this section, we provide representative examples of our current 
efforts to more closely integrate experiments and models to investigate 
some of the key thermodynamic and kinetic mechanisms associated with 
Ti hydriding. These examples, which are outlined alongside preliminary 
representative results in the subsequent sections, demonstrate the 
feasibility of the integrated approach for analyzing coupled chemical, 
physical, and materials processes that constitute hydrogenation of Ti. In 
particular, we focus on probes of three key governing phenomena: (1) H 
transport through the protective Ti surface oxide; (2) micromechanical 
response of surface oxide to hydrogenation of underlying Ti; and (3) the 
beginnings of hydride formation in polycrystalline Ti. 

3.3.1. H transport through Ti surface oxide 
Fig. 3 illustrates how experiments and models can be integrated to 

probe the effects of local binding characteristics and microstructural 
features on hydrogen transport in stoichiometric and nonstoichiometric 
titanium surface oxides (TiOx) at multiple length scales. As discussed in 
Section 2.1, this oxide layer forms at the Ti metal surface in service, and 
understanding its interaction with H is critical for elucidating the key 
processes in early-stage hydrogenation of Ti and its alloys. The TiOx 
oxide layer incorporates a variety of chemical and structural complex
ities, including atomic structural disorder, non-stoichiometry, and 
structural defects such as grain boundaries. 

To isolate physicochemical factors that determine the impacts of the 
structural complexities on hydrogen transport at the atomic level, 
quantum–mechanical computational approaches based on DFT can be 
employed. Such approaches are uniquely capable of interrogating the 
relationship between relevant local atomic structures of the oxide and 
the associated H binding characteristics. Ab initio molecular dynamics 
simulations can be used to generate both ordered and highly disordered 
atomic structures of TiOx, which can then be analyzed to identify classes 
of unique environments for hydrogen binding, parameterized by struc
tural factors such as the local oxygen coordination number (Fig. 3, top 
left). Particularly for atomically disordered regions, it is critical to 
validate that the models are correctly capturing the available local 

environments. For this purpose, we can use DFT to compute spectral 
“fingerprints”, which can be compared directly to measurements. One 
example of is NMR, which can probe the relative expression of local O 
coordination environments throughout the sample (Fig. 3, top right). In 
addition to validating the possible local environments in the oxide, such 
spectroscopic measurements can be used to “tune” the model towards a 
calibrated result that better expresses the correct fraction of local en
vironments found in the material. 

Having validated the unique local environments, we can proceed to 
compute hydrogen hopping events among them. Coarse-grained featu
rization using graph neural network-based approaches aid in rapidly 
analyzing the role of diffusion network topology within the complex 
oxide (Fig. 3, center left). This analysis informs kinetic Monte Carlo 
simulations, by which hydrogen hopping kinetics in TiOx is directly 
extracted. The network models can be informed and validated by precise 
elemental distribution and composition analysis of TiOx using APT, 
which provides a compositional and microstructural guide to inform 
factors such as stoichiometry (Fig. 3, center right). 

Finally, the measured microstructural features are reproduced in 
digital representations using PFM, and the microstructure-level effective 
diffusivity of hydrogen through TiOx is computed in the presence of 
different microstructural features (e.g., grain size, grain boundaries, 
crystallinity fraction, and compositional variation). This can be done 
using a microstructure-aware mass transport modeling approach, such 
as the one our team recently reported for complex oxides [304] (Fig. 3, 
bottom left). This mesoscopic modeling approach incorporates input 
diffusion parameters from atomistic simulations and digital represen
tations of realistic oxide microstructures. Fig. 3 (bottom left) shows an 
example of computed effectivity diffusivities of hydrogen in poly
crystalline TiOx (see figure inset for the corresponding input micro
structure) at different temperatures. The resulting H transport 
prediction can then be compared to independent measurements of H 
permeation. At mesoscopic (e.g., grains) and macroscopic (e.g., entire 
film) levels, hydrogen diffusion through Ti oxide thin film can be eval
uated experimentally by gaseous permeation or electrochemical 
permeation. Fig. 3 (bottom right) includes an example of electro
chemical permeation of hydrogen under controlled environment 
through a Ti oxide thin film. The onset of discharge on the anodic side of 
the cell indicates the permeation of hydrogen through the film and metal 
foil. Diffusion coefficients can be estimated from such measurements 
and compared with mesoscopic effective diffusivity calculations with 
identical microstructural features and chemical composition (We 
caution that microcracks in the oxide films can affect these measure
ments; however, such effects can be partially compensated by 
comparing charging and discharging currents.). Having validated the 
model, we can then proceed to systematically quantify the impacts of 
microstructural features such as grain size, grain morphology, and grain 
boundary types on hydrogen diffusion properties in TiOx. 

3.3.2. Micromechanical response to H incorporation 
Fig. 4 shows how the relationship between microstructure and me

chanical response of the surface oxide to hydrogenation-induced strain 
can be assessed by combining experiments and simulations. As discussed 
in Section 2.3, hydrogenation of Ti metal involves significant volume 
expansion, which exerts mechanical strain within the oxide layer on the 
metal surface. The associated lattice distortion in the oxide can affect 
hydrogen transport kinetics or cause physical damage (e.g., cracking) to 
the surface oxide layer, potentially accelerating hydrogen permeation 
through the layer [305]. When analyzing the mechanical response of the 
oxide layer, additional potential complexity may arise from possible 
phase transformations or hydrogen reactions activated by the exerted 
strain [305]. 

The relevant phase and reaction behavior in TiO2, as well as their 
sensitivity to microstructural features, can be probed experimentally via 
controlled experiments employing TiO2 thin films with varied micro
structures. Fig. 4 (top left) shows examples of crystalline TiO2 surface 
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films produced with grain sizes ranging from ~ 5 nm to ~ 200 nm by ion 
beam sputter deposition method and subsequent thermal treatment. 
Electron microscopy is used to determine grain structure, whereas XRD 
is used to identify phases. Fig. 4 (top right) demonstrates that the 
anatase phase is the only crystalline phase during thermal treatment at 

an intermediate temperature (700 ◦C), whereas both the anatase and 
rutile phases are present at 1100 ◦C. The impact of mechanical loading 
on the phase and hydrogen reaction behavior is gauged by monitoring 
phase evolution and strain of TiO2 in situ under pressure loading in an H2 
environment in a diamond anvil cell (DAC) coupled with Raman 

Fig. 4. Modeling and experimental 
integration strategies for probing 
micromechanical response to H- 
charging in Ti oxide thin films, with 
specific examples from the authors’ 
work. Experiments provide micro
structure inputs for modeling, which 
facilitates comparison between pre
dicted stress distributions and the 
measured phase mechanical response. 
Experiments in top row (left to right): 
Ti oxide thin film with different grain 
sizes (SEM images) and orientations 
(EBSD image) obtained by deposition 
and subsequent thermal treatment; 
XRD and in situ DAC-Raman spectra 
(in an H2 environment). Simulations 
in bottom row (left to right): digital 
representation of an Ti oxide micro
structure simulated using PFM; pre
dicted distribution of local Von Mises 
stresses for two different Ti oxide 
grain sizes based on mesoscopic 
microstructure-aware micromecha 
nics modeling.   

Fig. 5. Modeling and experimental integration strategies for investigating hydride phase evolution in Ti metal and its correlation to H absorption across atomistic, 
microscopic, and macroscopic scales. Modeling in top row (left to right): DFT-MD simulation of H incorporation within a model grain boundary of Ti as inputs for 
PFM; PFM of hydride formation; and results from PFM-based integrated modeling of hydrogen uptake kinetics. Experiments in bottom row (left to right): dark field 
STEM imaging (inset: bright field) of α-Ti/hydride at lattice resolution; EBSD phase maps of Ti hydride phase distribution in α-Ti metal; and macroscale H-charging/ 
absorption kinetics of a Ti disc (2 mm in thickness and 8.5 mm in diameter) with respect to time, temperature, and pressure. 
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spectroscopy. In this case, the strain is visible, although no evidence of 
hydriding is detected in the Raman spectroscopy measurement up to 30 
GPa at ambient temperature. 

A companion computational effort involves the design of a 
microstructure-aware micromechanics modeling approach [306] to 
analyze the mechanical response of polycrystalline TiO2 to the tensile 
strain caused by the volume expansion associated with hydriding of the 
underlying Ti metal. First, a microstructural representation is produced 
(Fig. 4, bottom left) using PFM or direct tomographic reconstruction to 
match the experimental grain structure. Next, the stress distribution 
within this digital microstructure is computed based on local elastic 
moduli of the individual grains, as parameterized from DFT calculations. 
Fig. 4 (bottom right) shows how von Mises stress distributions qualita
tively differ for two average grain sizes. Based on these computed dis
tributions, we can identify mechanical “hotspots” featuring extreme 
local stresses that might initiate cracks or induce phase transformations. 
By further combining with experimental mechanical testing and 
microstructural probes, the models can in principle be calibrated to 
quantify the relationship between oxide microstructural features and 
observed micromechanical and phase behavior. 

Note that by combining models with experiments, we can directly 
probe local stress variation within the oxide film under hydriding con
ditions, as well as isolate the micromechanical effects within the film 
from those of the underlying metal substrate. By comparison, direct 
measurement of stress distributions within an isolated, standalone thin 
oxide film without a supportive substrate would be extremely chal
lenging experimentally. As an alternative, TiO2 thin films could instead 
be deposited onto a carefully selected substrate, or else well-controlled 
bulk TiO2 could be used. The latter solution would also enable use of 
bulk experimental probes such as XRD, permitting monitoring of 
average lattice deformation and strain accumulation during hydrogen 
charging and transport for direct comparisons with model predictions as 
a function of microstructure. 

3.3.3. Hydride phase formation 
Fig. 5 shows how hydride phase formation at grain boundaries and 

related microstructural features within Ti metal can be probed at three 
different scales by combining simulations and experiments. Here, 
experimental and modeling approaches are synergistically combined to 
examine multiscale mechanisms incorporating coupled physicochemical 
processes and metal microstrucutral effects that determine the hydro
genation kinetics and the associated hydride phase microstructure 
evolution. Experimental and modeling efforts benefit one another by 
providing input parameters, measurement or simulation conditions, and 
cross-validation. 

The modeling effort begins with atomistic DFT and MD simulations 
of grain boundary structures to compute hydrogen incorporation and 
segregation energetics (Fig. 5, upper left). The simulations are per
formed in concert with experimental characterization of α-Ti/hydride 
interfaces and grain structures using electron microscopy at lattice res
olution (Fig. 5, lower left). 

Next, we adapt a mesoscopic PFM approach to simulate hydride 
formation and corresponding microstructure using the model formula
tion by Heo et al. [50] (Fig. 5, top middle). The PFM simulations account 
for multiple multiphysics factors governing hydriding of polycrystalline 
Ti. including the thermodynamic driving force [300], hydrogen diffu
sion rates [301], crystallographic structural changes [283], micro
mechanical interactions [282], hydrogen-grain boundary/surface 
interactions [307,308], and hydrogen reactions at the surface. The 
atomistic simulations provide key parameter inputs for these quantities. 
To analyze and quantify the realistic metal microstructural impacts on 
the hydride formation tendency and kinetics, it is further necessary to 
include experimentally relevant microstructural features and reliable 
energetics related to experimentally probable grain boundaries. As such, 
we also analyze the spatial distribution of hydrogen (H or D) and hy
dride in Ti microstructures based on imaging data (Fig. 5, bottom 

middle), which are then compared with simulated hydride phase mi
crostructures. For instance, the orientation relationship between the 
growing hydride phase and the α-Ti metal phase can be captured using 
EBSD, providing information comparable to PFM-modeled α-Ti/hydride 
mixed microstructures. 

Finally, a fully integrated model based on PFM allows us to simulate 
the overall H absorption kinetics within the metal microstructure under 
controlled conditions (Fig. 5, top right). The validity of this integrated 
model is verified by comparing the PFM results with experimental 
measurements performed at the macroscale (Fig. 5, bottom right). For 
instance, the experimental hydrogen uptake curves as a function of H- 
charging time and/or temperature under controlled hydrogen pressure 
can be collected via a pressure-composition-temperature (PCT) appa
ratus. The model-predicted and PCT-measured hydrogen uptake 
behavior represent macroscopic characteristics of hydriding resulting 
from collective effects of the involved multiphysics factors, allowing for 
direct comparison. The model can then be used to probe various “what 
if” scenarios in which materials or environmental parameters are 
altered. Various physical ingredients can also be turned off to explicitly 
isolate their effects, as in the example of elastic micromechanical in
teractions given in Fig. 5 (top right). In addition, by linking performance 
to H-metal interactions across all three scales (atomistic, microscopic, 
and macroscopic), we can in principle distinguish reversible (e.g., H in 
hydride phases) and irreversible (e.g., H in trapping sites) H contents, 
with implications for developing practical microstructural or composi
tional engineering guidelines for improving performance or degradation 
resistance. 

3.4. Summary 

Recent advances in multiscale, multiphysics simulation and 
modeling, as well as ongoing improvements in the resolution and so
phistication of experimental probes, continue to provide new opportu
nities to address lingering unknowns in Ti hydriding. However, in our 
view, it is the integration of atomistic and continuum simulations with 
multimodal experimental characterization that offers the highest value. 
Indeed, such integration has already begun to elucidate contributing 
factors in several key underlying phenomena. The demonstrated ex
amples for hydrogen transport in surface oxide, micromechanical re
sponses of surface oxide, and hydride formation in polycrystalline Ti 
illustrate how improved experiment–theory integration might be ach
ieved. Nevertheless, these examples represent only a few of the many 
emerging integrated approaches for examining atomistic and micro
structural impacts that could be applied in the near future to understand 
thermodynamics and kinetics of Ti hydriding. Additional extensions 
should be prioritized to account for more complex hydrogen-related 
phenomena, including hydriding-induced cracking and hydrogen- 
dislocation interactions, which form key bases for analyzing mechani
cal failure mechanisms due to hydrogen exposure. 

Opportunities are also available for improvements in the models to 
better facilitate direct comparisons with experiments. For instance, as 
first-principles simulations of complex surfaces become more routine, 
the feedback cycle between spectroscopic predictions and measure
ments can be expected to play a much larger role in elucidating the ef
fects of surface chemistry and other materials features on hydriding. By 
using model systems that represent features of realistic systems under 
working conditions, first-principles methods can also be employed to 
illustrate the specific relationship between surface chemistry and 
transport at the interface, and to identify the most impactful materials or 
environmental factors. Likewise, mesoscopic “microstructure-aware” 
models can be used to integrate atomistically derived parameters with 
inhomogeneous microstructural features that match experimental re
alities, allowing far more representative investigations of hydrogen- 
materials interactions under more realistic conditions. Capturing such 
nuances is likely to prove increasingly important as our understanding of 
Ti hydriding improves. 
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On the experimental side, a variety of useful approaches have been 
demonstrated to measure composition, phase evolution, and mass 
transport at surfaces and interfaces during Ti hydriding. Such quantities 
already provide a compelling roadmap for direct integration with 
theoretical calculations. Nevertheless, the development of complemen
tary experiments capable of validating theoretically predicted phe
nomena at all relevant length scales remains challenging: single 
experiments usually result in a qualitative or quantitative measurement 
that at best corresponds to a single value within a theoretical model. 
Such experiments offer little help to validate theory at multiple length 
scales simultaneously—key to extracting reliable connections between 
atomistic, microstructural, and macroscale behavior—and are therefore 
subject to sample-to-sample variation. One way to address this problem 
is to prioritize development in situ and in operando methodologies 
capable of taking multiple measurements during the hydrogen uptake 
process. Ideally, the measurement modalities would be capable of 
quantifying multiple physical changes that span length scales (e.g., re
sistivity, optical properties, mass, and dilatometry, followed by imaging 
and destructive techniques). Having access to these simultaneous probes 
would provide significant value for existing efforts to integrate experi
ments and theory towards a deeper understanding of materials changes 
during hydriding. 

In conclusion, we emphasize that because combined theory–experi
ment approaches can uniquely and holistically investigate surface 
morphology, chemical composition, and hydrogen transport, future in
vestments along these lines will be crucial. Such investments, properly 
realized, can guide forthcoming strategies for slowing hydriding of Ti 
alloys in corrosion-resistant structural applications. On the opposite side 
of this coin, we suggest that the obtained scientific understanding could 
likewise be applied to accelerate hydriding Ti-based materials for 
emerging functional applications, including hydrogen and thermal 
storage. 
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storage properties of MgH2 induced by heavy ion irradiation, Int. J. Hydrogen 
Energy 33 (7) (2008) 1876–1879. 

[71] H. Abe, S. Aone, R. Morimoto, H. Uchida, T. Ohshima, Improvement of hydrogen 
absorption characteristics of Pd using irradiation of heavy ions, Trans. Mater. Res. 
Soc. Jpn 36 (1) (2011) 133–135. 

[72] N.U. Navi, J. Tenenbaum, E. Sabatani, G. Kimmel, R.B. David, B.A. Rosen, 
Z. Barkay, V. Ezersky, E. Tiferet, Y.I. Ganor, Hydrogen effects on 
electrochemically charged additive manufactured by electron beam melting 
(EBM) and wrought Ti–6Al–4V alloys, Int. J. Hydrogen Energy 45 (46) (2020) 
25523–25540. 

[73] K. Verbeken, Analysing hydrogen in metals: bulk thermal desorption 
spectroscopy (TDS) methods, Gaseous hydrogen embrittlement of materials in 
energy technologies, Elsevier (2012) 27–55. 

[74] K. Azumi, Y. Asada, T. Ueno, M. Seo, T. Mizuno, Monitoring of hydrogen 
absorption into titanium using resistometry, J. Electrochem. Soc. 149 (9) (2002) 
B422. 
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Wiedenbeck, J. Aléon, H. Jungnickel, J.-P. Barnes, Secondary ion mass 
spectrometry, Sector field mass spectrometry for elemental and isotopic 
analysis2014, pp. 439-499. 

[242] S. Fearn, An introduction to time-of-flight secondary ion mass spectrometry (ToF- 
SIMS) and its application to materials science, Morgan & Claypool Publishers San 
Rafael, CA, USA2015. 

[243] Y. Aboura, K.L. Moore, NanoSIMS analysis of hydrogen and deuterium in metallic 
alloys: Artefacts and best practice, Appl. Surf. Sci. 557 (2021), 149736. 

[244] B. Gault, M.P. Moody, J.M. Cairney, S.P. Ringer, Atom probe microscopy, 
Springer Science & Business Media2012. 

[245] G. Sundell, M. Thuvander, H.-O. Andrén, Hydrogen analysis in APT: methods to 
control adsorption and dissociation of H2, Ultramicroscopy 132 (2013) 285–289. 

[246] J. Takahashi, K. Kawakami, Y. Kobayashi, T. Tarui, The first direct observation of 
hydrogen trapping sites in TiC precipitation-hardening steel through atom probe 
tomography, Scr. Mater. 63 (3) (2010) 261–264. 

[247] Y.-S. Chen, D. Haley, S.S. Gerstl, A.J. London, F. Sweeney, R.A. Wepf, W. 
M. Rainforth, P.A. Bagot, M.P. Moody, Direct observation of individual hydrogen 
atoms at trapping sites in a ferritic steel, Science 355 (6330) (2017) 1196–1199. 

[248] I.E. McCarroll, P. Bagot, A. Devaraj, D.E. Perea, J. Cairney, New frontiers in atom 
probe tomography: A review of research enabled by cryo and/or vacuum transfer 
systems, Materials Today Advances 7 (2020), 100090. 

[249] D. Schreiber, D. Perea, J. Ryan, J. Evans, J. Vienna, A method for site-specific and 
cryogenic specimen fabrication of liquid/solid interfaces for atom probe 
tomography, Ultramicroscopy 194 (2018) 89–99. 

[250] D.E. Perea, D.K. Schreiber, J.V. Ryan, M.G. Wirth, L. Deng, X. Lu, J. Du, J. 
D. Vienna, Tomographic mapping of the nanoscale water-filled pore structure in 
corroded borosilicate glass, npj Mater. Degrad. 4 (1) (2020) 1–7. 

[251] P.J. Felfer, A Toolchain for the Analysis of Hydrogen in Materials at the Atomic 
Scale, Microsc. Microanal. 25 (S2) (2019) 278–279. 

[252] M.J. Zachman, N. De Jonge, R. Fischer, K.L. Jungjohann, D.E. Perea, Cryogenic 
specimens for nanoscale characterization of solid–liquid interfaces, MRS Bull. 44 
(12) (2019) 949–955. 

[253] C.G. Marxer, M.L. Kraft, P.K. Weber, I.D. Hutcheon, S.G. Boxer, Supported 
membrane composition analysis by secondary ion mass spectrometry with high 
lateral resolution, Biophys. J . 88 (4) (2005) 2965–2975. 

[254] S.G. Boxer, M.L. Kraft, P.K. Weber, Advances in imaging secondary ion mass 
spectrometry for biological samples, Annu. Rev. Biophys. 38 (2009) 53–74. 
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Heere, C. Zlotea, P.A. Szilágyi, J.-P. Bonnet, W. Grochala, Metal hydrides and 
related materials. Energy carriers for novel hydrogen and electrochemical 
storage, ACS Publications, 2020. 

[286] M. Kaur, K. Singh, Review on titanium and titanium based alloys as biomaterials 
for orthopaedic applications, Mater. Sci. Eng., C 102 (2019) 844–862. 

[287] J. Bair, M.A. Zaeem, M. Tonks, A review on hydride precipitation in zirconium 
alloys, J. Nucl. Mater. 466 (2015) 12–20. 

[288] A.T. Motta, L. Capolungo, L.-Q. Chen, M.N. Cinbiz, M.R. Daymond, D.A. Koss, 
E. Lacroix, G. Pastore, P.-C.-A. Simon, M.R. Tonks, Hydrogen in zirconium alloys: 
A review, J. Nucl. Mater. 518 (2019) 440–460. 

[289] X. Ma, S.-Q. Shi, C. Woo, L. Chen, Effect of applied load on nucleation and growth 
of γ-hydrides in zirconium, Comput. Mater. Sci. 23 (1–4) (2002) 283–290. 

[290] X. Ma, S.-Q. Shi, C. Woo, L. Chen, Phase-field simulation of hydride precipitation 
in bi-crystalline zirconium, Scr. Mater. 47 (4) (2002) 237–241. 

[291] X. Ma, S.-Q. Shi, C. Woo, L. Chen, The phase field model for hydrogen diffusion 
and γ-hydride precipitation in zirconium under non-uniformly applied stress, 
Mech. Mater. 38 (1–2) (2006) 3–10. 

[292] X. Guo, S.-Q. Shi, Q. Zhang, X. Ma, An elastoplastic phase-field model for the 
evolution of hydride precipitation in zirconium, Part I: Smooth specimen, Journal 
of Nuclear Materials 378 (1) (2008) 110–119. 

[293] X. Guo, S.-Q. Shi, Q. Zhang, X. Ma, An elastoplastic phase-field model for the 
evolution of hydride precipitation in zirconium, Part II: specimen with flaws, 
Journal of Nuclear Materials 378 (1) (2008) 120–125. 

[294] L. Thuinet, A. De Backer, A. Legris, Phase-field modeling of precipitate evolution 
dynamics in elastically inhomogeneous low-symmetry systems: Application to 
hydride precipitation in Zr, Acta Mater. 60 (13–14) (2012) 5311–5321. 

[295] L. Thuinet, A. Legris, L. Zhang, A. Ambard, Mesoscale modeling of coherent 
zirconium hydride precipitation under an applied stress, J. Nucl. Mater. 438 (1–3) 
(2013) 32–40. 

[296] J. Bair, M.A. Zaeem, D. Schwen, Formation path of δ hydrides in zirconium by 
multiphase field modeling, Acta Mater. 123 (2017) 235–244. 

[297] S.-Q. Shi, Z. Xiao, A quantitative phase field model for hydride precipitation in 
zirconium alloys: Part I. Development of quantitative free energy functional, 
J. Nucl. Mater. 459 (2015) 323–329. 

[298] Z. Xiao, M. Hao, X. Guo, G. Tang, S.-Q. Shi, A quantitative phase field model for 
hydride precipitation in zirconium alloys: Part II. Modeling of temperature 
dependent hydride precipitation, J. Nucl. Mater. 459 (2015) 330–338. 

[299] G. Han, Y. Zhao, C. Zhou, D.-Y. Lin, X. Zhu, J. Zhang, S. Hu, H. Song, Phase-field 
modeling of stacking structure formation and transition of δ-hydride precipitates 
in zirconium, Acta Mater. 165 (2019) 528–546. 

[300] C. Qiu, S.M. Opalka, O.M. Løvvik, G.B. Olson, Thermodynamic modeling of the 
Na–Al–Ti–H system and Ti dissolution in sodium alanates, Calphad 32 (4) (2008) 
624–636. 

[301] X. Han, Q. Wang, D. Sun, T. Sun, Q. Guo, First-principles study of hydrogen 
diffusion in alpha Ti, Int. J. Hydrogen Energy 34 (9) (2009) 3983–3987. 

[302] J. Chapman, N. Goldman, B.C. Wood, Efficient and universal characterization of 
atomic structures through a topological graph order parameter, npj Comput. 
Mater. 8 (1) (2022) 37. 

[303] P. Lu, S. Sharifi-Asl, B. Kursten, D.D. Macdonald, The irreversibility of the passive 
state of carbon steel in the alkaline concrete pore solution under simulated anoxic 
conditions, J. Electrochem. Soc. 162 (10) (2015) C572. 

[304] T.W. Heo, A. Grieder, B. Wang, M. Wood, T. Hsu, S.A. Akhade, L.F. Wan, L.- 
Q. Chen, N. Adelstein, B.C. Wood, Microstructural impacts on ionic conductivity 
of oxide solid electrolytes from a combined atomistic-mesoscale approach, npj 
Comput. Mater. 7 (1) (2021) 214. 

[305] P. Modi, K.-F. Aguey-Zinsou, Titanium-iron-manganese (TiFe0.85Mn0.15) alloy 
for hydrogen storage: Reactivation upon oxidation, Int. J. Hydrogen Energy 44 
(31) (2019) 16757–16764. 

[306] T.W. Heo, S.A. Khairallah, R. Shi, J. Berry, A. Perron, N.P. Calta, A.A. Martin, N. 
R. Barton, J. Roehling, T. Roehling, J.-L. Fattebert, A. Anderson, A.L. Nichols, 
S. Wopschall, W.E. King, J.T. McKeown, M.J. Matthews, A mesoscopic digital 
twin that bridges length and time scales for control of additively manufactured 
metal microstructures, Journal of Physics: Materials 4 (3) (2021), 034012. 

[307] T.W. Heo, S. Bhattacharyya, L.-Q. Chen, A phase field study of strain energy 
effects on solute–grain boundary interactions, Acta Mater. 59 (20) (2011) 
7800–7815. 

[308] T.W. Heo, L.-Q. Chen, B.C. Wood, Phase-field modeling of diffusional phase 
behaviors of solid surfaces: A case study of phase-separating LiXFePO4 electrode 
particles, Comput. Mater. Sci. 108 (2015) 323–332. 

Y. Zhu et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S1359-0286(22)00040-7/h1380
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1380
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1385
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1385
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1385
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1390
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1390
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1390
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1390
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1395
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1395
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1405
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1405
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1410
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1410
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1410
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1415
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1415
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1415
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1420
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1420
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1430
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1430
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1435
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1435
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1440
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1440
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1440
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1445
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1445
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1450
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1450
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1455
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1455
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1455
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1460
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1460
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1460
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1465
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1465
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1465
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1470
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1470
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1470
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1475
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1475
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1475
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1480
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1480
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1485
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1485
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1485
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1490
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1490
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1490
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1495
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1495
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1495
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1500
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1500
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1500
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1505
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1505
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1510
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1510
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1510
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1515
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1515
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1515
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1520
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1520
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1520
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1520
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1525
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1525
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1525
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1530
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1530
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1530
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1530
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1530
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1535
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1535
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1535
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1540
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1540
http://refhub.elsevier.com/S1359-0286(22)00040-7/h1540

	Hydriding of titanium: Recent trends and perspectives in advanced characterization and multiscale modeling
	1 General overview of hydriding of Ti
	1.1 Introduction to Ti
	1.2 Hydriding in Ti
	1.3 Perspective synopsis

	2 Recent advances and key challenges
	2.1 Chemistry and composition
	2.1.1 Hydrogen uptake
	2.1.1.1 Electrochemical charging
	2.1.1.2 Gaseous charging
	2.1.1.3 Ion implantation
	2.1.1.4 Comparison and discussion

	2.1.2 Hydrogen transport through oxide surface layers
	2.1.3 Hydrogen transport and trapping in Ti

	2.2 Microstructure phenomena
	2.2.1 H-dislocation interaction
	2.2.2 H-grain/phase boundary interaction
	2.2.3 H-impurities/inclusions interaction
	2.2.4 Hydride nucleation and growth

	2.3 Mechanical performance & testing
	2.3.1 Mechanical properties of Ti hydrides
	2.3.2 Mechanical/stress response to hydride formation
	2.3.3 Hydride impact on general corrosion resistance
	2.3.4 Hydrogen embrittlement without hydride formation
	2.3.5 Hydride impact on localized stress corrosion cracking


	3 Opportunities and perspectives
	3.1 Opportunities and perspectives in characterization methods
	3.1.1 Development of high-resolution, localized hydrogen/hydride detection methods
	3.1.1.1 Electron microscopy
	3.1.1.2 Secondary ion mass spectrometry (SIMS)
	3.1.1.3 Atom probe tomography (APT)
	3.1.1.4 Flash freezing techniques

	3.1.2 Development of non-destructive and in situ or operando methods
	3.1.2.1 Scanning Kelvin probe force microscopy (SKPFM)
	3.1.2.2 Elastic recoil detection analysis (ERDA)
	3.1.2.3 Thermal desorption spectroscopy (TDS)
	3.1.2.4 Neutron diffraction and imaging
	3.1.2.5 X-ray techniques
	3.1.2.6 Nuclear reaction analysis (NRA)


	3.2 Opportunities and perspectives in multiscale modeling
	3.2.1 Multiphysics integration
	3.2.2 Scale integration
	3.2.3 Beyond ideal models

	3.3 Examples of experiment-model integration
	3.3.1 H transport through Ti surface oxide
	3.3.2 Micromechanical response to H incorporation
	3.3.3 Hydride phase formation

	3.4 Summary

	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References


