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A B S T R A C T

We introduce a new computational methodology for the identification and characterization of free volume
within/around atomistic configurations. This scheme employs a three-stage workflow, by which spheres are
iteratively grown inside of voxels, and ultimately converted to planar graphs, which are then characterized via
a graph-based order parameter. Our approach is computationally efficient, physically intuitive, and universally
transferable to any material system. Validation of our methodology is performed on several sets of materials
problems: (1) classification of unique free volumes in various crystal phases, (2) autonomous detection and
classification of complex surface defects during epitaxial growth simulations, (3) characterization of free
volume defects in metals/alloys, and (4) quantification of the spatio-temporal behavior of nano-scale free
volume morphologies as a function of both temperature and free-volume size. Our method accurately identifies
and characterizes unique free volumes over a multitude of systems and length scales, indicating its potential for
future use in understanding the relationship between free volume morphology and material properties under
both static and dynamic conditions.
1. Introduction

Characterizing the morphology of free volume in materials at the
atomic level is critical to our understanding of the material’s underlying
mechanical and transport properties [1–6]. Macroscale phenomena
such as fracture, phase transformations, and diffusivity are coupled to
the structure of free volume within a material [7–10]. For example,
problems such as void swelling in crystalline materials due to radiation
damage involves Frenkel pair formation and ultimately void coales-
cence within the bulk material, potentially leading to catastrophic
failure [11,12]. Mass transport within polymeric systems is largely
dictated by the local void structure, which can vary significantly over
sample size and with enhanced thermodynamic conditions [13]. Porous
organic materials such as covalent organic frameworks (COFs) have
potential for a number of application areas, including energy stor-
age, catalysis, and others [14]. Consequently, a quantitative mapping
technique that can uniquely identify free-volume structures within a
material is vital for reliable elucidation of experimental studies and can
potentially guide future synthesis by allowing for pore structure to be
used as a design tool.

However, this characterization is often non-trivial, especially for dis-
ordered systems in which the lack of atomic symmetry often makes de-
termining free volume topology challenging. Throughout the past two
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decades, many techniques have been employed to directly characterize
these morphologies such as Voronoi Site Detection (VSD) [15], Land-
mark Analysis (LAND) [16], Kaundinya et al.’s voxelization scheme
(VOX) [17], Minkowski Tensors (MT) [18], Chan et al.’s machine learn-
ing (ML) algorithm for determining 3D microstructures (ML3D) [19],
and Byska et al.’s Voronoi-based region of interest scheme (VROI) [20].
Methods that rely purely on voxelization of either atoms or their sur-
rounding local volume, such as ML3D, and VOX, often lack information
regarding voxel-atom connectivity (e.g., correlations over local spatial
scales), making it challenging to uniquely characterize free-volumes
and their effect on material properties. In contrast to these methods,
geometric manipulations such as Voronoi tessellations also form the
foundation of many methodologies, such as VSD, VROI, MT, and LAND.
However, Voronoi tessellations often require a reference system in
order to be interpretable, potentially making it difficult to quantify pre-
viously uncharacterized free volume topologies for amorphous systems
or phase changes in particular. Atomistic symmetry functions, such as
the Smooth Overlap of Atomic Positions (SOAP) [21] and the Behler–
Parrinello fingerprints [22] lack long-range connectivity information,
resulting in their inability to capture the shape and density of features
such as voids, channels, clusters, etc. [23].

In this work, we overcome these challenges through the develop-
ment of a physically intuitive and computationally efficient algorithm,
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Fig. 1. Visual depiction of the algorithmic workflow of PANDA. (left) The input space is voxelized and spheres of infinitesimal radius are placed at voxel centers. Spheres are
then grown iteratively, until user-defined rulesets have been satisfied (shown here in 2D, with blue circles representing their 3D counterparts). Planar graphs are constructed from
the overlaps between spheres, with vertex information derived from a sphere’s local connectivity. Unsupervised clustering and characterization is then performed on the planar
graph to obtain the free-volume morphology of the input system.
referred to as the Parallelized Atomistic Nanoscale Defect Analyzer
(PANDA). Our approach leverages voxelization, due to its highly par-
allelized nature, and places infinitesimally small spheres at the center
of each voxel. These spheres are then iteratively grown until a set of
user-defined rules has been satisfied. A handful of physically informed
parameters are used to drive the algorithm, though all can be derived
from the local geometric order present in the system, such as the
radial distribution function (RDF). The spheres are then mapped onto a
planar graph, where free volume identification and characterization are
performed. The threefold workflow of voxels to spheres to planar graph
ensures that the final free volume topology is encoded in a physically
informed way.

The remainder of the manuscript is as follows. First, we provide
the reader with a detailed understanding of the theoretical framework
that drives the PANDA algorithm. Next, we demonstrate how the free
volume of various crystal phases of aluminum can be obtained by
PANDA. Complex surface features are then identified and characterized
after dynamic epitaxial growth simulations on the Al (110) surface.
Various types of free volume defects are then analyzed, such as mono,
di, and trivacancies, as well the differences between vacancies created
by removing unique chemical species in multicomponent systems. We
highlight PANDA’s ability to autonomously track vacancy diffusion
in aluminum during molecular dynamics (MD) simulations. We then
showcase how large-scale characterization of free volume morphology
can be observed by determining the various types of defects in Al.
Finally, we provide detailed insight into the spatio-temporal behavior
of different free volume morphologies in Al systems containing more
than a million atoms through nanosecond MD simulations, and connect
these findings with experimental observations.

2. Computational details

2.1. PANDA algorithm

The PANDA workflow is broken into several pieces: (1) the total
volume of the input space is voxelized into smaller subspaces, (2)
2

spheres are placed at the center of each voxel and grown iteratively
under a given ruleset is satisfied, and (3) planar graphs are constructed
from the overlaps between spheres. Fig. 1 provides a visual depic-
tion of this workflow. Stage 1 takes the input space and voxelizes
it, creating a computationally cheap and efficient way of discretizing
the configuration. Here we define voxel neighbors as adjacent voxels
(nearest-neighbors), allowing for an even further discretization of the
input space. As the voxel neighbors are predefined by nature, one does
not need to consider non-local information during graph construction
(stage 3), improving the scaling of the algorithm.

Stage 2 places spheres of arbitrarily small radius at the center of
each voxel. These spheres are then allowed to grow, iteratively, until
all desired rules have been satisfied. The rulesets that govern sphere
growth are, by nature, user-defined, providing one with the ability to
tailor the growth behavior to capture a desired aspect of free-volume
morphology. In this work, the growth of our spheres employs a simple
set of rules which govern when to turn off the growth of a specific
sphere: (a) 𝑟𝑠 ≥ 2𝑙𝑣, where 𝑟𝑠 is the radius of a given sphere and 𝑙𝑣 is
the length of a voxel, (b) if any point on the sphere falls within a user-
defined cutoff radius, 𝑅0

𝑐 of an atom, which is defined uniquely for each
chemical species present in the system (e.g., the van der Waals radius),
and (c) if there are no atoms within a user-defined cutoff radius of a
voxel center, 𝑅1

𝑐 (which in this work was set to 2𝑅0
𝑐 ). Step (c) is checked

once during the setup of the algorithm, as the atomic positions are held
fixed during the calculation, while steps (a) and (b) are checked during
each growth step.

After all of the growth has been switched off, a planar graph is
constructed from the resulting spherical overlaps. As each voxel only
has a predefined number of neighbors, sphere overlaps are checked
only within this voxel neighbor list. If any point on a given sphere falls
within a neighboring sphere the two voxels are joined together by an
edge on the planar graph, while the volume of the sphere is recorded
at each node in the graph. A Voxel whose sphere does not overlap
with any of its neighbors is not counted in the graph. The resulting
planar graph is then used to perform unsupervised clustering of the
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free-volume in the system by determining the subgraphs contained with
the graph. Each subgraph represents a unique free-volume polyhedra,
whose total volume is simply the sum of the node values within the
subgraph.

Overall, we find that PANDA yields strong computational efficiency
for analysis of these types of simulation supercells. For the largest
systems studied in this work, measured at 25 nanometers cubed, and
contained over 1 million atoms, the PANDA free volume map was
generated in less than thirty seconds using 36 threads on an Intel Xeon
E5-2695 v4 processor. This time can potentially be reduced further
by exploring a more efficient voxel-to-atom neighbor list generation
scheme, as well as opting for a distributed memory approach rather
than a shared memory one.

2.2. Graph characterization

In this work we use two methods for characterizing graph morphol-
ogy. The first is simply the total volume of a given subgraph, defined
in the previous section. However, in many cases, the volume of the
subgraph may not be sufficient to uniquely identify subtle differences
between free-volumes, due to the inter-connectivity between voxels
(e.g., linear vs. three-dimensional morphologies). Therefore, we employ
a graph-based adjacency matrix to represent the spherical overlaps
present in the system. At the node-level of the graph, the degree
of each node is simply the number of voxel-voxel sphere overlaps.
SGOP-V, which is a modification of a previous graph-based order
parameter [23], is then defined as:

𝜃𝐺 = 1
𝑉

𝑆
∑

𝑠

𝜔𝑠
∑

𝑘

4
3
𝜋𝑟3𝑘

( 𝐷𝑠
∑

𝑚
𝑃 (𝑑𝑚) log𝑏 𝑃 (𝑑𝑚) + 𝑑𝑚𝑃 (𝑑𝑚)

)3

(1)

Each underlying graph network exists as a set of subgraphs, 𝑆, with
𝑠 indexing a particular subgraph. 𝜔𝑖 is the set of all nodes (voxels)
contained within a given subgraph 𝑠. 𝑟𝑘 is the radius of the sphere
located at voxel 𝑘. 𝐷𝑠 is the set of unique node degrees in a subgraph,
with 𝑃𝑑𝑚 being the probability of a given degree, 𝑑𝑚, occurring in
the subgraph. 𝑉 is the total volume of the input space, which acts
as a normalization term, allowing for the direct comparison of free-
volume morphologies regardless of the size of the structure. SGOP-V
is then used to distinguish unique classes of free-volume topologies.
Further information regarding the theory behind this methodology can
be found in our previous work [23].

2.3. Event tracking

Event tracking is defined as the ability to track positional changes
of free-volumes during a dynamic trajectory. A simple way to visualize
this would be to imagine a vacancy hopping to an adjacent site in a bulk
material. Rather than tracking the hopping of an atom to a vacancy
site, we can define the reverse, in which we track the movement of
the vacancy site itself. Such a scheme becomes extremely useful when
tracking the motion of large-scale voids under dynamic conditions,
though in this work we limit ourselves to tracking the motion of a single
vacancy in an otherwise pristine bulk system, as a proof of concept. As
the graph nodes described in the previous sections represent voxels in
a three-dimensional space, we can assign real-space positions to each
node in the graph. By doing this, one can now track the COM of a
subgraph, defined as:

𝑅𝑠 =
1
𝑀𝑠

𝜔𝑠
∑

𝑘
𝑑𝑘𝑟𝑘 (2)

Here 𝑅𝑠 is defined as the COM of a particular subgraph. 𝑀𝑠 repre-
sents the fictitious mass of the subgraph, defined as ∑𝐷𝑠

𝑖 𝑑𝑖, where 𝐷𝑠 is
the set of all degrees in subgraph 𝑠, and 𝑑𝑖 represents each individual
degree. Similar to our previous discussion, 𝜔𝑠 is the set of all nodes
3

in the subgraph 𝑠, and 𝑑𝑘 and 𝑟𝑘 are the degree of each node, and the
position of the node (voxel), respectively. Use of the degree to calculate
the fictitious mass of the subgraph allows for the COM to be determined
from the connectivity present in the subgraph as well as its shape.

We then define a change of position of the subgraph as the change in
the subgraph’s COM, 𝛿𝑅𝑠. If 𝛿𝑅𝑠 is greater than a pre-defined tolerance,
𝛿𝑡𝑜𝑙, then we say that the subgraph has moved to a new position. We
define this tolerance in this work to be 𝛿𝑡𝑜𝑙 ≥ 𝐶𝑙𝑣. We note that the
scaling factor 𝐶 is relative to 𝑙𝑣, with a finer voxel mesh requiring a
larger scaling factor. For this work, we find a scaling factor of 3.67
(which equates to a 𝛿𝑡𝑜𝑙 of 3 Å) is appropriate. Over the course of
several dynamic trajectories calculated at various temperatures, we
track the time between subgraph hops to find a relationship between
the hop rates and the temperature. This relationship allows us the use
an Arrhenius fit to extract the activation energy and prefactor required
for the vacancy to hop between adjacent sites. Our computed activation
energy was then compared to the zero-temperature activation energy,
calculated via the nudged elastic band (NEB) algorithm. All calculations
performed in this work were done on elemental aluminum using the
LAMMPS software suite [24].

2.4. Graph contouring

Graph contouring is the process of reducing a graph based on its
real-space positions to encode information about the length, width,
and height of features captured by the iterative sphere growth. We
can leverage step (c) of our sphere growth ruleset (i.e., to turn off
growth for spheres that are far away from an atom) to readily identify
surface features, in a way similar to pressing the surface into a mold
to understand its shape. We define a 𝑧-plane as the surface level, in
which any free-volume below this point is ignored for practical reasons.
Subgraphs are then determined on the remaining nodes, with each node
encoding the real-space position of its host voxel.

The subgraphs are then projected back into real-space and the space
is binned along the 𝑥 and 𝑦 directions. A contouring algorithm is then
sed to map the boundaries of each binned-subgraph, with the length
nd width of each contour defined as the largest distance between
oints along the contour line, in the specified direction. This distance,
owever, is defined in the binned region, and is therefore projected
ack into real-space. These final two values represent the length and
idth of surface features present in the system. One can control the

idelity of these values by adjusting the number of bins along each
irection in the real-space binning of the subgraphs.

. Results

.1. Atomic packing factor characterization

In this section, we employ PANDA in a proof-of-principle study
o characterize the free volume between atoms present in various
rystal systems. Fig. 2 shows a visual depiction of this free volume
orphology for simple cubic (SC), face centered cubic (FCC), body

entered cubic (BCC), and diamond cubic (DC) crystal structures of
luminum. All visualization in this work were generated using the
vito software package [25]. Visual differences clearly exist in the
omputed free volume topologies, depending on the interstitial sites
vailable within each lattice. For example, as expected the SC lattice
ndicates a single type of free-volume within the center of the unit cell
blue field in Fig. 2a). The PANDA computed FCC lattice result clearly
hows an octahedral interstitial free volume (surrounding the yellow
enter of the cube face of Fig. 2b) as well as the smaller tetrahedral
ites (e.g., in between diagonals connecting atomic volumes, colored
ellow). PANDA yields a connected free volume around the central
tom in a BCC unit cell (Fig. 2c), as well as the somewhat more complex
ree volume connecting the DC interstitial sites (Fig. 2d).

The free volume generated by PANDA can also be compared directly
ith the true value for each crystal system. By using the atomic packing
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Fig. 2. PANDA visualizations for simple cubic (a), face centered cubic (b), body
centered cubic (c), and diamond cubic (d) lattices, respectively. Transparent blue
regions display the free volume identified by PANDA, while yellow iso-surfaces indicate
the boundary between the volume occupied by atoms and that occupied by free volume.
The diamond cubic calculation was performed with ∼5 times more voxels compared
to body centered cubic, yielding a less smooth contour.

factor (APF) we can estimate the remaining free volume available in
the unit cell. Here we calculate this free volume as V𝑓𝑟𝑒𝑒 = 1− V𝐴𝑃𝐹 ,
where V𝑓𝑟𝑒𝑒 is the available free volume in the unit cell and V𝐴𝑃𝐹
is the APF for a particular crystal system. PANDA can also be used
to calculate V𝑓𝑟𝑒𝑒 directly by summing together the volumes of all
subgraphs present in the system, as described earlier. Table ST1 shows
the PANDA calculated free volume as well as the true free volume
calculated from the known APF, for various phases of Aluminum. From
Table ST1 one can see the excellent agreement between PANDA and the
APF-derived free volumes, indicating that PANDA can reliably capture
the unique aspects of free volume topology present in distinct material
phases.

3.2. Autonomous characterization of nano-scale surface morphology

We now discuss application of PANDA to understanding the topol-
ogy of surface features under dynamic conditions. As described in the
Computational Details section, PANDA can capture the geometric fea-
tures of surface structures by generating contour maps of the resulting
atom-surface voxel interactions. Conceptually, this is due to the fact
that PANDA can be abstracted to examine a variety of different types of
interactions, which are ultimately defined by the user. The abstraction
of interactions types to graphs provides the user with a nearly limitless
number of potential use cases, provided one can construct a set of rules
for the graph construction. Here, we showcase this ability by restrict-
ing our PANDA analysis to the surface morphology of the aluminum
(110) facet during molecular dynamics (MD) simulation of epitaxial
growth (containing approximately 250,000 atoms). The MD simulation
was performed at 300 K for 25 ns with a deposition rate of 1 𝑀𝐿

𝑛𝑠 .
Experimental observations indicate the tendency to form pyramidal
structures, where the length of these features are approximately 2–4
times greater than the width [26]. All atomic structures used in this
section were generated from previous work [27].

Fig. 3(a) shows a contour map of the binned surface axis. Here,
the surface features are outlined in black using the graph contouring
algorithm described in the Computational Details section. The colors
represent the height of the pyramidal structures, with areas of dark blue
indicating that no surface features are present above the designated
𝑧-axis cutoff. We observe that the PANDA surface map has recovered
the pyramidal nature of the surface features, and clearly distinguishes
4

between each unique cluster. The graph contouring algorithm also
uniquely identifies where these clusters exist, providing an intuitive and
efficient way of calculating each cluster’s length and width.

Fig. 3 provide histograms of the width (b) and length (c) of the
graph-contoured surface features. We clearly see that the surface cluster
length to width aspect ratio of 3:1 falls within the experimentally
observed range. We note that the aspect ratio distributions will not
necessarily be uniform due to the limited surface area used during the
MD simulations. Regardless, this aspect ratio is only expected to be
qualitatively correlated with experimental observations. The ability to
employ user-defined rule sets to automatically detect and characterize
these types of surface features allows the PANDA algorithm to be
utilized for a multitude of materials characterization problems, includ-
ing nucleation and growth of metal hydrides [28], carbon condensa-
tion in hot, compressed materials [29], and the study of mass trans-
port in amorphous solids within grain boundaries of polycrystalline
materials [30].

3.3. Bulk free-volume defects

3.3.1. Characterization of nano-scale free volume topology
Here we use a combination of PANDA and a graph-based order

parameter (SGOP-V) to map and characterize the subtle differences in
the free volume of various types of vacancies and voids. Fig. 4 shows
a visual depiction of this characterization for elemental Aluminum.
Fig. 4 provides the PANDA-generated free volumes for a mono, di,
two types of tri-vacancies, and a small vacancy cluster containing
five vacancies. One can visually identify the differences between the
vacancies from Fig. 4, as generated from the inserted PANDA meshes,
as well as a strong correlation between the volume of the defects as
their corresponding SGOP-V.

From Table ST2, it is clear that the SGOP-V values (generated from
PANDA planar graphs) can uniquely characterize different classes of
vacancies. The SGOP-V values are also physically meaningful, with a
divacancy SGOP-V value being roughly double that of a monovacancy
SGOP-V value. One observation to note is that the vacancy cluster
containing five vacancies does not yield a SGOP-V value five times that
of the monovacancy, which would be the case if all five vacancies were
connected in a row, like a chain. However, the vacancy cluster studied
here is more densely packed, like a ball, and therefore does not match
the shape of five isolated vacancies strung together. This is in contrast
to the di- and tri-vacancies, which follow monotonically from the single
vacancy SGOP-V value. This physically-informed nature of the SGOP-V
provides an intuitive characterization metric where one can capture not
only the volume that a particular PANDA graph encompasses, but also
its topology.

Figure S1 showcases PANDA’s ability to characterize defects in mul-
ticomponent systems, namely Al4Cu9 and Ti11Ni9Pt4. In both systems,
a single vacancy of each chemical element is created and a PANDA
free volume topology map is generated. Table ST2 provides the SGOP-
V values for the various results. We note that values across different
material types are not necessarily comparable, as the graph’s node
degrees are dependent upon the voxel size, which can be different
depending on the system. The SGOP-V values from the PANDA map
again provide physically intuitive vacancy characterizations. Al and Cu
share similar free volumes, though the SGOP-V indicates that Cu does
produce a larger free volume overall, commensurate with its larger
atomic radius. For the case of Ti11Ni9Pt4, the SGOP-V indicates that the
free volume created by Ti, Ni, and Pt vacancies increases respectively,
as one would expect due to an increased atomic radius. We note that
Ti11Ni9Pt4 does not have an orthogonal set of lattice vectors, and that
the PANDA algorithm can be employed to all crystal system.

In order to investigate free volume correlations over larger spatial
scales, we employ PANDA to generate a free volume map of elemental
Aluminum, spanning over 25 nanometers in each direction. In this case,
we generate a porosity of five percent, where atomic sites are randomly
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Fig. 3. (a) 2D histogram of the real-space voxel positions. Bin colors represent the average voxel z-coordinate within each bin. Boundary lines represent the contour line that
encodes the perimeter of the cluster. The inserted axis, shown in red, indicates crystallographic directions. Histograms of the length (c) and width (b) of the clusters shown in (a).
Cluster width and length are discussed in the Computational Details section, which is derived from the contour lines shown in (a).
Fig. 4. Monovacancy, divacancy, two types of trivacancies, and a vacancy cluster in Al. Each free volume’s SGOP-V is plotted as a function of the defect’s volume. Yellow surface
encapsulate the free volume identified by PANDA.
removed until the required concentration is satisfied. Fig. 5(a) provides
a visualization of the free volume map for a vacancy concentration of
five percent. Fig. 5(b) provides a 2D slice of the overall 3D system.

Fig. 5 provides a more quantitative analysis of the resulting defects
by observing both the volume (c) and SGOP-V value (d) of each
subgraph discovered within the system. Fig. 5(c) shows a histogram
of PANDA planar graph volumes, indicating that the overwhelming
majority of defects present in the system are indeed composed of
small vacancy clusters. Fig. 5(d) corroborates this by providing a his-
togram of SGOP-V values on each PANDA-generated subgraph. Here,
we observe that the peaks present in both parts of the figure largely
overlay, predictably. In addition, each histogram indicates an overall
exponential distribution, as expected from randomly chosen vacancy
configurations. Some contrast between these two plots occurs where the
volume histogram shows a peaked distribution about fixed intervals,
5

corresponding to small vacancy clusters that tend to have similar vol-
umes. These peaks tend to be removed from the SGOP-V histogram, due
the fact that different polymorphs of small clusters can have different
connectivities/morphologies, e.g., a tri-vacancy can occur as a linear
chain or triangle, a tetra-vacancy can occur as a one dimensional chain,
two-dimensional, or three-dimensional structure.

3.3.2. Tracking vacancy diffusion events
Free volume corresponding to defects present in a material often

diffuse through their host under dynamic conditions. Here we use the
PANDA planar graph to track diffusion events of a single vacancy in
elemental aluminum at various temperatures. The methodology behind
this event tracking can be found in the computational details section.
To summarize, the planar graph center of mass (COM) can be used to
track free volume diffusion by observing when the graph COM changes
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Fig. 5. (a) Reconstructed surface mesh overlaying the voxel positions. These surface meshes (yellow) indicate areas of free-volume within the system, with the blue areas indicating
periodically replicated free volumes. The shape of the surface mesh is generated from a combination of voxel position and voxel sphere radii. (b) 1 Åsliced view of the surface
meshes shown above, with the blue regions representing the 2D area of the free-volume defect captured in the sliced view. This view provides the reader with a more intuitive
way to visualize the types of defects that are captured in (a). (c) Histogram indicating the distribution of volumes of each free-volume defect in (a). (d) Histogram indicating the
distribution of SGOP-V values for each free-volume defect’s planar graph in (a).
Fig. 6. (a) Visual depiction of determining free-volume event tracking as the free-volume moved from time 𝑡𝑖 to 𝑡𝑖+𝑘. Red spheres represent the center of mass of the underlying
free-volume graph. Distances, 𝑑𝑖,𝑖+𝑘, are calculated as the distance between each graph’s center of mass. (b) Free-volume displacement rates as a function of temperature. Grey
distributions represent the distribution of displacement times over the course of the MD trajectory. Yellow points represent the mean of the displacement rates, which was used
to fit the Arrhenius curve (cyan), which was used to calculate the activation energy required for free-volume displacement.
beyond some threshold. Fig. 6(a) provides a visual depiction of how
the graph COM can be tracked to determine diffusion events. Here,
the graph COM (red) at time 𝑡𝑖, moves by some distance, 𝑑𝑖,𝑖+𝑘, at
time 𝑡𝑖+𝑘. In principle, multiple graph COM changes can be tracked for
various types of free volumes, though in this work we consider only the
single vacancy. Here we consider MD simulations of elemental Al using
255 atoms (with a primitive cell optimized by quantum mechanical
calculations [31]) at temperatures ranging from 300 K to 900 K.

Fig. 6(b) shows the hop rates calculated from graph COM displace-
ments as a function of temperature. Yellow points represent the average
hop rate at a given temperature, while the grey distributions show a
Gaussian fit to the hop rates at the specified temperature. The cyan
curve was generated from a linear fit to the yellow data points. The
activation energy required for vacancy diffusion can then be estimated
6

from an Arrhenius relationship between the hop rate and temperature.
The activation energy can also be calculated via a nudged elastic
band calculation (NEB) [32] using the Zhou et al. EAM potential [33].
Both values are provided in the green insert within Fig. 6(b). We
observe that the PANDA computed activation energy agrees with NEB
within 0.04 eV (1 kcal/mol), with differences likely due to entropic
effects and the fact that NEB probes the zero temperature potential
energy surface, only. NEB calculation also provide no intuitive way to
determine uncertainty, whereas our activation energies determined via
dynamic phase space sampling inherently provide a means for error
estimation. This type of PANDA-computed COM tracking can readily be
applied to many temperature dependent phenomena, such as vacancy
cluster dissociation, conformational changes of large void systems, as
well as the nucleation of free volume defects.
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3.3.3. Spatio-temporal behavior of nano-scale free volumes
The spatio-temporal behavior of free volumes is of critical im-

portance, as changes in the underlying free volume topology greatly
influence the properties of the material such as stress moduli [34],
strength [35], ductility [36], brittleness [37], and other mechanical
properties [38]. Here, we explore the time-evolution of several nano-
scale free volume morphologies in aluminum via million-atom MD sim-
ulations. The finding of these simulations can be found in Fig. 7. Further
details regarding these simulations can be found in the computational
details section.

Fig. 7 provides a visualization of the initial (a) and final (b) con-
figurations, with the atomic environments characterized via a-CNA
and the free volume with PANDA. Here, one can infer the changes in
free volume morphology under dynamic conditions through both the
changes in local atomic coordination, through a-CNA (shown at the top
of each subplot in (a) and (b)), and by observing the differences in the
generated PANDA meshes (shown at the bottom of each subplot in (a)
and (b)). For instance, we can observe that there are only small changes
in local atomic coordination in (a) for the case of 1% initial porosity at
100 K. We observe a similar trend for the PANDA mesh in (a) which
highlights that the free volumes present in the initial configuration
barely change their size and location within the cell. The opposite trend
is observed in (b), for the case of 10% initial porosity at 100 K, with
significant differences in local atomic coordination observed through a-
CNA. These changes are also observed within the PANDA mesh, with a
clear reduction in the number of larger free volumes and an increase in
smaller ones as a function of time. It is important to note that PANDA is
not competing against a-CNA, but rather complements it by providing
an intuitive explanation for why changes in local atomic coordination
occur.

While Fig. 7(a) and (b) aim to qualitatively show the connection
between free volume changes and local atomic structure, Fig. 7(c–h)
quantifies those observations in a physically intuitive manner. From
Fig. 7(c–h) one can observe the change in free volume topology over
time for different initial free volume distributions. Fig. 7(c) and (d)
shows the change in free volume topology for the case of an initial
randomly generated 1% porosity (where 1% of the atoms are randomly
removed from a perfect FCC system). Fig. 7(c) shows a skewnorm fit to
the SGOP-V values for three configurations, which represent different
snapshots in time during the 𝑇 = 100 K MD simulation. Here, the
initial free volume topology, shown in Fig. 7(c) as the yellow curve, is
centered around a 𝜃𝐺 of 10−4, with a uniform spread of approximately
1 order of magnitude around the mean. This is consistent with the
characterized distributions in Fig. 5, indicating a similar free volume
morphology which consists of mostly smaller point defects. After 10 ns,
one can observe the red and blue curves in Fig. 7(c) have shifted to
the right, indicating a minor reduction in larger free volumes and an
increase in small free volumes such as monovacancies and interstitial
environments.

A different picture emerges for the case of Fig. 7(d), which shows
the evolution of the 1% initial free volume morphology at 600 K.
Here, after 10 ns the free volume in the system is composed of small
free volumes and a large number of interstitial sites. This implies that
above a kinetic threshold the migration of free volumes in the system
often lead to dissolution of the free volume, resulting in the creation
of abundant interstitial environments. This observation correlates well
with experimental observations, which indicate that nano-scale voids in
Al tend to dissociate during annealing, leading to a reduction in both
the density and size of the free volumes [39,40]. While the free volumes
studied in this work are roughly 1 order of magnitude smaller than
those studied in [39,40], the qualitative trend is quantified through our
MD/SGOP-V framework.

This trend continues as one increases the initial porosity of the
system, as seen in Fig. 7(e) and (f) for the case of 5% initial porosity.
In Fig. 7(e), which represents the 100 K MD simulations, we can see a
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much larger spread of the initial free volume distribution, which makes o
intuitive sense as more atoms have been randomly removed, resulting
in larger free volumes. However, after the 10 ns MD simulation, the
resulting free volume morphology is quite different than that of the
1% case. Here, the majority of free volume environments in the system
are that of interstitial sites, with a minority consisting of small point
defects (as indicated by the tail of the fitted distribution at 10 ns). This
implies that, even at 100 K, the system is so energetically unstable that
frequently free volume dissolution occurs. Interestingly, this process
leads to fewer small free volumes as the system approaches equilibrium
than at 1% porosity, indicating that there is enough kinetic energy in
the system upon void dissolution to effectively eliminate the majority
of free volumes, leaving only a limited number of smaller voids/point-
defects. A similar trend is seen in Fig. 7(f), the 600 K case, but with
a larger reduction in free volume size and subsequent increase in the
likelihood of a free volume defect being an interstitial site. This again
makes sense, as the system has enough kinetic energy at 600 K to
further reduce unstable free volume defects upon the dissolution stage.

For the case of 10% initial porosity, shown in Fig. 7(g) and (h), the
same trend emerges but again with a more dramatic reduction in free
volume after 10 ns. For both the 100 K and 600 K MD simulations, there
are effectively no large free volume defects present in the system, and
only a limited number of small free volumes such as monovacancies,
with the majority off free volume composed of interstitial environ-
ments. As ones moves from 5% porosity and 100 K to 10% porosity
and 600 K, one can observe a consistent reduction in the number of
larger free volumes and a subsequent growth in the number of intersti-
tial environments. This is again observed experimentally [39,40], and
qualitatively matches our observations.

The growth of these interstitial sites ultimately leads to lattice
mismatches and the nucleation of HCP regions within the material.
This can be observed for the case of 10% porosity and 100 K in
Fig. 7(b). Here, using a-CNA we observe the growth of HCP sites,
shown in red, after 10 ns, along with an increase in the number
of FCC sites, shown in green, indicating the removal of larger free
volume defects (which can be inferred from the distribution of white
atoms at 𝑡 = 0). This phenomena is also identified using the PANDA

apping in Fig. 7(g) and (h), with a larger increase in the number of
mall free volumes and a reduction of larger ones. Interestingly, one
an qualitatively identify regions of HCP-FCC mismatch by observing
reas of concentrated small free volumes, indicating that regions of the
aterial with a high concentration of interstitial-like free volumes are

ssociated with interfacial regions.

. Discussion

Characterizing the morphology of defects in materials is critical to
ur understanding of the material’s underlying properties. Free vol-
me within a material is often correlated with atomic-level transport,
s voids and channels can serve as diffusion highways. Mechanical
roperties such as toughness and fatigue strength are also correlated
ith free volume, as these sites often serve as stress-points that can
ventually lead to failure. Many techniques have been created in the
ast few decades to explore the topology of free volume defects in
aterials, such as ML3D, VROI, VOX, and MT. The PANDA algorithm
rovides a new capability to understand the morphology of these defect
nvironments with a high level of precision by combining the fidelity
f voxelization with the characterization power of graph theory. The
ANDA algorithm overcomes limitations of these methods by com-
uting the shape and connectivity of a void space over arbitrarily
ong distances, rather than focusing exclusively on local free volume
onfigurations. We applied PANDA to a variety of distinct materials
roblems that uniquely employ our method to help facilitate the under-
tanding of point defect characterization, diffusion event tracking, the
etermination of surface morphology, and the spatio-temporal behavior

f free volume topology as a function of both temperature and porosity.
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Fig. 7. (a–b) Qualitative visualization of dynamic free volume evolution using a-CNA (top of each subplot) and PANDA (bottom of each subplot), and (c–h) quantification of these
changes at specific timestamps. (a) For 1% initial porosity and (b) 10% initial porosity, both at T = 100 K, the a-CNA and PANDA visualizations are shown for 𝑡 = 0 ns (a) and
𝑡 = 10 ns (b). (c–d), (e–f), and (g–h) show the distributions for 1%, 5%, and 10% initial porosity, respectively, with the left and right columns representing MD runs at 𝑇 = 100 K
and 600 K, respectively. For reference, in (d) there are two vertical dashed lines representing the approximate location along the 𝜃𝐺 axis where interstitial and monovacancy
environments exist.
While the PANDA algorithm does require a minimal set of user-
adjusted parameters, they are generally chosen in a physically intuitive
manner, requiring only a limited understanding of the local geometric
structure of the system (such as pair correlation functions). Our free
volume to graph representation allows for the physically informed
characterization of these defects through the SGOP-V, providing a
mathematically robust morphological feature representation. The com-
putational efficiency, algorithmic simplicity, and mathematical robust-
ness ensure that PANDA can accurately explore a materials free volume
defect space for any material system. PANDA thus holds promise as a
novel computational capability that can have impact on any number of
materials problems, including studies of disordered systems, including
porous and/or amorphous structures, that are historically difficult to
interpret based on experimental data alone.

The results presented within this work indicate PANDA’s potential
use in a broad number of potential applications including understand-
ing the nucleation and growth of defects under extreme conditions,
dynamic site identification to better understand transport phenomena,
and quantifying the intricate spatio-temporal relationship between free
volume morphology and local atomic structure. These application do-
mains represent historically challenging spaces for experiments due to
the length and time scales often required to reliably quantify them.
Therefore, PANDA could serve as a natural bridge between experimen-
tal and computational studies, allowing for a physically intuitive and
accurate coupling of these two regimes.
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