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ABSTRACT

The increase in medical treatment complexity can cause experienced nurses to have difficulty determining
priorities among patient needs. Electronic health record systems will enable automated decision support
to assist medical professionals in making these determinations. This article details a framework that uses
a discrete-event simulation, programmed in Python, to determine how priorities should be assigned in real
time based on characteristics of patient needs. The severity of patient needs is dynamic because severity
increases over time until the need is addressed. The simulation framework is applied to a cardiac care
unit with 14 patients, who collectively have 125 needs. Four different priority schemes are evaluated and
their effectiveness compared under the assumption of an 8 or 9 nurse capacity. The results illustrate the
importance of modeling the dispatching of nurses according to severity because, although fewer nurses
result in longer average queue times, they can handle higher-severity needs effectively.

1 INTRODUCTION

In healthcare settings, nurses and other caregivers are confronted with a dizzying array to patient care tasks
that range from life threatening to routine. These needs encompass call button requests, device alarms,
machine maintenance, medication administration, and patient turning, among others. However, if some
routine tasks are delayed long enough, patients may suffer serious adverse outcomes and the cost of their
care may substantially increase. Examples of these types of tasks include ambulating patients to decrease
their length of stay in the hospital or turning a patient to prevent bedsores. Today, nurses use ad-hoc
or use implicit strategies for prioritizing care tasks which can lead to patients suffering from preventable
conditions. As medical settings become more complex, especially with the increase in technology-enabled
treatment systems, prioritization of care tasks will become more difficult and have a profound impact on
patient outcomes and costs.

With the introduction of electronic medical record systems, the potential exists to create a task
prioritization system that optimizes patient outcomes and reduces costs. The system would dynamically
list required tasks in priority order based on an intelligent algorithm that considers severity of patient needs
and other parameters. This system would operate as shown in Figure 1. It is meant to represent a ward
(i.e., department) of a hospital that consists of a group of nurses who serve a group of patients. Patients
require service when they press the nurse call button (which is immediately answered and assigned a reason
such as a drink refill or assistance to use the toilet), require scheduled care (such as medications or turning
over in their bed), or a device alarm sounds with a known reason (such as a device needing cleaning or a
patient activating a fall warning device at the edge of their bed), among others.
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This paper aims to develop a methodology for a decision support system (DSS), which assigns medical
personnel to tasks that have time-dependent severities. A tool was developed to evaluate alternative priority
assignment systems. This work included modeling of time-dependent severity functions and parameter
estimation, along with the development of a discrete-event simulation to determine how priorities should be
assigned in real time based on characteristics of patient needs. The main challenge was to model dynamic
priorities that will change while a patient’s need waits in a queue until the need is addressed. Various priority
schemes were evaluated using input from an experienced nurse practitioner. We organize the remainder of
this paper as follows. Section 2 presents the related literature. Section 3 details the methodology behind
the severity profiles and the discrete-event simulation. Section 4 presents the determination of parameters
for the severity functions and results of the simulation analysis that compares priority schemes. Section 5
concludes with future research directions.

Figure 1: Priority dispatching framework.

2 LITERATURE REVIEW

Although the job of a registered nurse is fast-paced with unpredictable and heavy cognitive work loads,
the few studies of interruptions and multitasking in health care have focused on physicians (Kalisch and
Aebersold 2010). Sir et al. (2015) designed patient classification systems, which are commonly used in
nursing units to assess how many nursing care hours are needed to serve patients. Bagheri et al. (2016)
proposed a stochastic optimization model for nurse scheduling that accounts for uncertainties in the demand
and stay period of patients over time. Kang et al. (2010) investigated alternative policies for dispatching
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ambulances to multiple call-types with priorities designed to maximize expected survival rates. Najafi et al.
(2014) developed a dynamic model for dispatching and routing vehicles in response to a natural disaster
that is capable of receiving updated information at any time and adjusting plans accordingly. The problem
of continuous reallocation of patient responsibilities for nurses was addressed by Klemets and De Moor
(2015), who developed a user-centered system using ubiquitous computing principles.

Queuing models have been applied extensively in healthcare settings. Bahadori et al. () used queuing
models and simulation to show that patient waiting times can be reduced by multitasking and reallocating
personnel to more time-consuming activities, such as filling prescriptions. Belciug and Gorunescu (2015)
considered resource allocation in a hospital by integrating a queuing system compartmental model and an
evolutionary-based optimization at a geriatric department in the UK. Vass and Szabo (2015) use a M/M/3
queue model to characterize the patient flow in the Emergency Department (ED) situated in Romania.
Developing criteria for queuing system effectiveness has also been addressed by Almehdawe et al. (2013),
who used a Markov chain approach to model the interface between a regional emergency medical services
provider and multiple EDs that serve both ambulance and walk-in patients. Komashie et al. (2015) provided
an integrated queuing model that links patient satisfaction, waiting time, staff satisfaction, and service time,
while considering efficiency in a holistic care delivery setting.

Queuing models in healthcare and other settings often include priority-based queue disciplines. Sze
(1984) described a queueing model of telephone operator staffing to reduce the cost of meeting its service
criteria. Zhang et al. (2019) provided a new patient queuing model with priority weightings to optimize
an emergency department, including a case study to illustrate the practicability of the proposed model.
Hagen et al. (2013) examined several alternative queuing models for intensive care units including effects
on wait times, utilization, return rates, mortalities, and number of patients served. Finally, a priority-based
queuing model with a similar problem profile was developed by Schmidt and Gazmuri (2012) to dispatch
products from two depots to geographically distributed clients.

Decision support systems are used extensively in healthcare settings. The applications include general
and specific clinical settings, including procedures involving in-flight medical emergencies (Sene et al.
2018), identifying high readmission-risk patients (Huang et al. 2020), finding interim housing (Rakes
et al. 2014), proposing ventilator settings (Akbulut et al. 2014), detecting diabetic retinopathy (Noronha
et al. 2013), hypertension management in developing countries (Anchala et al. 2013), medical personnel
identification (Zaffar et al. 2016), red eye detection (López et al. 2016), infectious disease diagnosis (Shen
et al. 2018), and diabetes care management (Sim et al. 2017).

Our approach creates a priority-dispatching methodology based on the severity of patient needs and
other parameters. This approach requires the integration of an intelligent algorithm to inform nurses of
required tasks and their relative priorities. Embedded methodologies in other DSS applications include
text-mining (Huang et al. 2020), and mixed-integer sequential goal programming modelling (Ang et al.
2018). The use of these DSS applications reduced readmission (Huang et al. 2020), reduced mistakes
(Akbulut et al. 2014), improved quality of care (Lin et al. 2011), improved nurse scheduling (Ang et al.
2018), and improved job satisfaction (Kihlgren et al. 2016).

Simulation approaches have been used to support scheduling decisions in healthcare settings, with
many of them applied to EDs. Prabhu et al. (2019) used a simulation model to test various physician to
patient assignment policies to minimize the number of information handoffs and to reduce the workload
at the end of a shift. Swan et al. (2019) compared a pod system to a unit-based design in an ED using a
discrete-event simulation, showing that pod system maintained clinical quality while increasing resource
utilization and maintaining patient flow requirements.

Simulation models have also been used to evaluate a system’s sensitivity to changes in the input
parameters in an ED (Furian et al. 2019). Garcia-Vicuña et al. (2019) applied a “management flight
simulator” to support better admission and discharge discharge and admission processes. Tako et al. (2019)
used simulation to evaluate the effectiveness of integrated community-based health and social care services.
Pepino et al. (2015) proposed a prototype simulation of a hospital ward that evaluates task distribution
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among nursing and other clinical personnel. Walker et al. (2015) developed a simulation for planning the
schedules of providers and the appointment for patients.

Simulation models can also help support real time decision making. Morrice et al. (2018) used
simulation to design a worklife integrated practice unit that treats various medical issues and determines
patient appointment schedules. Ceresoli and Kuhl (2018) developed a generalized simulator to analyze
alternative outpatient healthcare clinic designs. Berg et al. (2018) presented a discrete-event simulation
model based on the daily operations of an outpatient clinic where multiple specialties share resources
including support staff, exam rooms, and ancillary providers.

3 METHODOLOGY

A discrete-event simulation model that mimics a hospital ward was created. In this setting, a group of nurses
provide care to each patient in the ward without being assigned to a specific patient. Inputs include patient
needs that require one of the nurses to complete. Some tasks, such as the administration of medications,
must take place within a certain time frame and other tasks, such as machine alarms, will occur at random
times. Available resources consist of nurses who would accomplish the required tasks. Task completion
times have random duration, with distributions based on collected or published data. Tasks are dispatched
according to a set of priority-based rules that include the severity of each patient’s need.

3.1 Severity Profiles

The system includes a set of time-dependent severity profiles based on various patient types, as illustrated
in Figure 2. Each profile is flexible to account for specific severity levels for events. Each patient need
starts with a severity S0. This severity linearly increases to a severity of S1 at time T1. The severity rating
model is flexible, allowing for every type of severity. Some patient needs are initiated by the patient, for
example when they press the nurse call button for assistance with sanitary needs. Other service needs
are not initiated by the patient, such as when an elderly patient requires turning to avoid bedsores. In
these cases, although a frequency of the service (e.g., every two hours) is known, the severity rating of the
service need would be S0 = 0 (or 1) at the earliest practical time at which the patient can be turned (e.g.,
90 minutes). Some service requests have a severity function that is constant over time. In these cases,
S0 = S1 and T1 = 0.

Figure 2: Severity model.

Several meetings were held with an experienced nurse who assisted with the quantification of severity
ratings for the myriad of service types. They were asked to estimate severity at points in time based on the
severity scale shown in Table 1. That is, they were asked to estimate the variables (S0, S1, and T1) for a
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variety of patient service needs. The data collected during these meetings are shown in the results section
below.

Table 1: Severity definitions.

3.2 Python Simulation

There are many complexities that preclude the use of a closed-form analytical model to determine the best
priority dispatching scheme. In particular, patients have needs that vary from one another, depending on their
age, condition, and recent treatments. Given the lack of a closed form analytical solution, a discrete-event
simulation was created to mimic the operation of a typical hospital ward. The events triggering action
include the arrival of a patient need and the completion of service. System state changes occur based on
these events and are controlled by the priority dispatching scheme. A particularly-important complexity is
the continuous changing of priority over time, even while the patient need is waiting in queue for service.

A flowchart illustrating the logical flow of the simulation code is shown in Figure 3. The simulation
conforms to a general framework, where a set of nurses provide care for a group of patients. Patients vary
in their specific needs, and therefore each patient-need combination would be considered an entity. For
example, if the hospital ward includes 15 patients, of which 10 were elderly, then 10 patients would need
to be turned about every two hours to prevent bedsores. As such, the queuing system includes a finite
population of patient needs that re-occur periodically, some at random times and some at pre-determined
frequencies.

The simulation is initiated with a internal storage consisting of p patient needs and k nurses. The first
arrival for each of the p patient needs is then generated, including its arrival time and service time (the
time-between-arrivals and service time parameters are taken from a database of patient need parameters).
The main simulation loop starts with the determination of the next event - either a patient need “arrival”
or a service completion “departure.”

If the next event is an arrival, the logic checks to determine if all nurses are busy. If so, the entity
is added to the patient need queue. If any of the nurses are idle (they are assumed to be interchangeable
relative to their skill sets, so that each nurse can address any patient need), a nurse begins service delivery.
In this case, the start time, end time, queue time duration, and system time duration are tabulated. The
logic continues by determining the next event.

If the next event is a departure, the queue is checked. If the queue is empty, then the simulation logic
determines the next event. If the queue is not empty, then the severity of each member of the queue is
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Figure 3: Simulation flowchart.
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calculated based on its time in queue and severity function model parameters. Based on this severity, a
priority is calculated using a specific priority scheme (discussed in the results section below). The highest
priority entity is taken off the queue and service begins. In this case, the start time, end time, queue time
duration, and system time duration are tabulated. The logic continues by determining the next event.

The simulation continues until the target number of simulated arrivals occurs. A “warm-up” period is
included to eliminate instability that can take place at the beginning of the simulation, and a “warm-down”
period is also included at the end of the simulation. A fixed number of macro replicates are simulated. Then,
all summary statistics are calculated and graphical results are presented for analysis. The simulation output
includes the distribution of queue time, displayed as a histogram, time series plot, and box plot. It also
includes numerical summaries, including the average, median, and 95th percentile of queue times. These
statistics are shown for each patient need to facilitate the analysis of the systems performance according
to the severity of each need.

4 RESULTS

Key results are described in this section. Although the simulation represents a general framework for many
types of hospital wards, the remainder of this section applies the simulation to a cardiac care unit (CCU)
at a medium sized hospital.

4.1 Parameter Determination

Consultation with an experienced nurse practitioner provided information concerning parameter estimation
for severity functions. Parameters were estimated for a hospital’s CCU, where results are shown in Table
2. In the table, “TBA” is the average time-between-arrivals, “Random?” asks if the TBA is constant or
variable, “Min ST” and “Max ST” are the typical minimum and maximum service times, and the other
table headings have previously been defined. An example of a constant TBA is a routine visits to rooms,
while an example of a random TBA is initiation of the bed exit alarm. In the simulation, random arrivals
are assumed to vary according to a Poisson process (hence, the TBA would be exponentially distributed),
and the service time distribution is assumed to be a shifted gamma, where 90% of service times were
assumed to fall between the minimum and maximum values.

Two important considerations were revealed during interaction with the nurse practitioner. First, the
patient-condition interaction can effect many of the severity rankings. Severity parameters will be higher
for patients suffering from certain serious conditions. Second, some patient needs, such as pain medication,
should be flexible and vary by patient as well as over time. For example, a patient that does not respond well
to medication after 30 minutes may be subjected to a more aggressive treatment (e.g., IV administration)
than originally planned. This circumstance may impact how severity is quantified. In both cases, the
simulation is easily setup to include severities specific to each patient. However, in the results that follow
we used the parameters from Table 2.

4.2 Simulation Results

To illustrate the operation of the simulation, inputs associated with the CCU were used. The simulation was
developed in Python 3.7, a programming language that is offered free of charge by the Python Software
Foundation. It incorporates packages NumPy, matplotlib, statistics, math, and sys. The NumPy random
number generator is used to generate random numbers. It was run on a Lenovo ThinkPad Carbon X1 with
Windows 10 Enterprise, Version 1903, OS Build 18362.900.

The number of micro-replications (i.e., iterations), macro-replications (i.e., replicates), and duration of
warm-up period were chosen as follows. Welch’s method (Welch 1983) was used to identify the warm-up
period duration. Based on an analysis of moving average plots of queue times, 1,000 iterations were
removed from the beginning and the end of the simulation output data. By calculating the standard error of
average waiting time across replicates, the number of replicates was set at 10, and the number of iterations
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Table 2: Example parameters for severity functions.

per replicate was set at 25,000. Using these settings, the simulation took an average of about 40 minutes
to run.

In order to compare various priority schemes, the following priority schemes were analyzed (their A-D
code will be used later in this section to identify the priority scheme):

A. The severity score at the time queue is analyzed.
B. The product of severity score and time in queue.
C. The severity score with preference given to entities in queue longer than 10 minutes.
D. The severity score with preference given to entities in queue longer than 5 minutes.

To illustrate the simulation output, the parameters in Table 2 were simulated. Table 3 assumes 8 nurses
serve patient needs and priority scheme A is implemented. The most important results concern how the
dispatching of nurses relates to the severity of patient needs and the length of time a patient spends in the
queue. For example, an analyst may wish to focus on the ability of nurses to serve higher severity patient
needs in a timely manner. After running the simulation for the four priority schemes, the comparison
graphs are shown in Figure 4. For example, for priority scheme A, the average waiting time for a patient
needing to be turned is 7.6 minutes.

Tables 4 and 5 provide summary results comparing the CCU operation with 8 nurses to its operation
with 9 nurses. It separates patient needs into those with lower severities (with S0 ≤ 1) and those with
higher severities (with S0 ≥ 5). By separating higher from lower severity needs, an analyst can evaluate
the system’s performance relative to the various types of needs. For example, with 8 nurses and priority
scheme A, the overall average queue time was 5.36 minutes (with a 95th percentile of 22.41 minutes).
Although this response time may be unacceptable for higher severity needs, higher severity needs are in
fact responded to in an average of 1.11 minutes (with a 95th percentile of 3.92 minutes).

The value of the simulation is evident when comparing the assignment of 8 versus 9 nurses for priority
scheme A. With 9 nurses, the overall average queue time is reduced to 2.04 minutes (and the 95% percentile
is reduced to 12.29 minutes). However, for high severity patient needs, the average queue time is only
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Table 3: Simulation output example.

reduced by 30 seconds to 0.61 minutes. Therefore, a manager will likely be satisfied with a staffing level
of 8 nurses.

The results would be interesting to an analyst who wishes to compare priority schemes. In all cases, the
average and 95% percentile queue times are improved for lower severity patient needs. However, priority
schemes B, C, and D are similar in regards to their affects on the system’s performance.

Table 4: Comparison of average queue times.

Table 5: Comparison of 95th percentile of queue times.

5 CONCLUSION AND FUTURE WORK

In this research, we addressed the problem of dispatching nurses in real time based on a set of patient needs
whose priorities are dynamic. A discrete-event simulation with events associated with patient request and

790



Corlu, Maleyeff, Wang, Yip, and Farris

Figure 4: Average queue times (minutes) by patient need.

nurse availability was built. This effort required the quantification of severity for various patient needs
that may increase while the patient awaits service. Potential future work could include analysis of systems
where continuity of care is critical. For example, the allocation of 8 nurses or a subset thereof to specific
patients can be compared to a system where every nurse satisfies every patient’s need. In addition, it would
be interesting to evaluate experienced nurses’ actions using a machine learning approach. These results
could inform future simulations regarding the setting of priority schemes.
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