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Double Perturbation Theory

If we’re looking for the linear response of our molecule to 
two different perturbations, we can recast our Schrödinger 
equation using the following:

𝐸 = 𝐸0 + 𝜆1𝐸
10 + 𝜆2𝐸

01 + 𝜆1𝜆2𝐸
11

෡𝐻 = ෡𝐻0 + 𝜆1 ෡𝐻
10 + 𝜆2 ෡𝐻

01 + 𝜆1𝜆2 ෡𝐻
11

𝜓 = 𝜓0 + 𝜆1𝜓
10 + 𝜆2𝜓

01 + 𝜆1𝜆2𝜓
11

Also not that the perturbed wavefunctions are 
orthogonal to the ground state wavefunction



Double Perturbation Theory

We’re looking for a stationary state of  E11, so at first we can 
use the Time-Independent Schrödinger equation to find:

𝐸11 =
𝜕2𝐸

𝜕𝜆1𝜕𝜆2

Plugging our perturbative expansion into the TISE, and only 
keeping terms in 12 followed by left multiplication and 
integration:

𝐸11 = 𝜓0 ෡𝐻11 𝜓0 + 𝜓01 ෡𝐻10 𝜓0 + + 𝜓0 ෡𝐻10 𝜓01



TD-DFT

The Time-Dependent Perturbation Theory gives us:

𝐸11 = lim
𝜂→∞

෍

𝑗≠0

Ψ0
෠𝐵 Ψ𝑗 Ψ𝑗 መ𝐴 Ψ0

𝜔 + 𝑖𝜂 − Δ𝐸0𝑗
−

Ψ𝑗 ෠𝐵 Ψ0 Ψ0
መ𝐴 Ψ𝑗

𝜔 + 𝑖𝜂 + Δ𝐸0𝑗

If we first invoke the independent particle model (IPM) 
and assume the operators are 1-electrons operators, then:

𝐸11 = lim
𝜂→∞

෍

𝑘

𝑜𝑐𝑐

෍

𝑎≠𝑘

𝜙𝑘 ෠𝐵 𝜙𝑎 𝜙𝑎 መ𝐴 𝜙𝑘
𝜔 + 𝑖𝜂 − Δ𝐸𝑘𝑎

−
𝜙𝑎 ෠𝐵 𝜙𝑘 𝜙𝑘 መ𝐴 𝜙𝑎
𝜔 + 𝑖𝜂 + Δ𝐸𝑘𝑎

= lim
𝜂→∞

෍

𝑘𝑎

𝑛𝑘 − 𝑛𝑎
𝜙𝑘 ෠𝐵 𝜙𝑎 𝜙𝑎 መ𝐴 𝜙𝑘
𝜔 + 𝑖𝜂 − Δ𝐸𝑘𝑎



TD-DFT

We now allow the operator መ𝐴 to respond to the changes that the 
perturbation makes in the orbitals, rather than changing the 
orbitals themselves:

If we first invoke the independent particle model (IPM) 
and assume the operators are 1-electrons operators, then:

𝐸11 = lim
𝜂→∞

෍

𝑘𝑎

𝑛𝑘 − 𝑛𝑎
𝜙𝑘 ෠𝐵 𝜙𝑎 𝜙𝑎 መ𝐴 + ෠𝑉 1 𝐶 + ෠𝑉 1 𝑋𝐶 𝜙𝑘

𝜔 + 𝑖𝜂 − Δ𝐸𝑘𝑎

መ𝐴 1 = መ𝐴 + ෠𝑉 1 𝐶 + ෠𝑉 1 𝑋𝐶



TD-DFT

To solve this equation, we now work with the perturbed first-
order density matrix, which is easier to work with and can 
still be used to evaluate matrix elements:

P𝑎𝑘
1
𝜔 =

𝑛𝑘 − 𝑛𝑎
𝜔 − Δ𝐸𝑘𝑎

𝜙𝑎 መ𝐴 1 𝜙𝑘

Note that 𝜙𝑎 መ𝐴 1 𝜙𝑘 also depends on P𝑎𝑘
1
𝜔 (it’s self-

consistent), so we can’t solve directly…

Γ
෠𝐴 1 0

1
=෍

𝑘𝑎

P𝑎𝑘
1
𝜔 𝜙𝑎

∗ ෥𝒙 𝜙𝑘 𝒙

𝐸11 𝜔 = න𝑑𝒙 ⋅ ෠𝐵 𝒙 Γ
෠𝐴 1 0

1



TD-DFT

To get the P𝑎𝑘
1
𝜔 , we explicitly write out the dependence of 

መ𝐴 1 on P𝑎𝑘
1
𝜔 :

𝐾𝑎𝑘,𝑏𝑗
𝐶 = 𝜙𝑎𝜙𝑏 𝑟12

−1 𝜙𝑘𝜙𝑗

෠𝑉𝑎𝑘
1 𝐶

+ ෠𝑉𝑎𝑘
1 𝑋𝐶

=෍

𝑏𝑗

𝐾𝑎𝑘,𝑏𝑗
𝐶 + 𝐾𝑎𝑘,𝑏𝑗

𝑋𝐶 P𝑏𝑗
1
𝜔

𝐾𝑎𝑘,𝑏𝑗
𝑋𝐶 = 𝜙𝑎𝜙𝑏 𝑓𝑋𝐶 𝒙1, 𝒙2, 𝜔 𝜙𝑘𝜙𝑗



TD-DFT

Plugging the correlation functions into the expression for 

P𝑎𝑘
1
𝜔 , we get the following for P𝑎𝑘

1
𝜔 :

෍

𝑏≠𝑗

𝛿𝑎𝑏𝛿𝑘𝑗
𝜔 − Δ𝐸𝑗𝑏

𝑛𝑗 − 𝑛𝑏
− 𝐾𝑎𝑘,𝑏𝑗 𝑃𝑏𝑗

1
𝜔 = 𝜙𝑎 መ𝐴 𝜙𝑘



TD-DFT

We can now imagine breaking this equation up...  

If b,a is virtual and j,k is occupied:

𝛿𝑎𝑏𝛿𝑘𝑗 𝜔 − Δ𝐸𝑗𝑏 − 𝐾𝑎𝑘,𝑏𝑗 𝑃𝑏𝑗
1
= 𝐴𝑎𝑘

If j,k is virtual and b,a is occupied:

−𝛿𝑎𝑏𝛿𝑘𝑗 𝜔 − Δ𝐸𝑗𝑏 − 𝐾𝑎𝑘,𝑏𝑗 𝑃𝑏𝑗
1
= 𝐴𝑎𝑘

If b,k is virtual and j,a is occupied or j,a is virtual and b,k
is occupied:

−𝐾𝑎𝑘,𝑏𝑗𝑃𝑏𝑗
1
= 𝐴𝑎𝑘



TD-DFT

If we now split into two parts, with X = 𝑃𝑏𝑗
1

(b vir, j occ) and 

Y = 𝑃𝑏𝑗
1

(b occ, j vir); and also Q = 𝐴𝑎𝑘 (a vir, k occ) and R =

𝐴𝑎𝑘 (a occ, k vir) :

We can look back to see 
why this is true…

𝐴 + 𝜔 𝐵
𝐵 𝐴 − 𝜔

𝑋
𝑌

=
𝑄
𝑅



TD-DFT

We can now imagine breaking this equation up...  

If b,a is virtual and j,k is occupied:

𝛿𝛿 𝜔 − Δ𝐸 − 𝐾 𝑋 = 𝑄

If j,k is virtual and b,a is occupied:

If b,k is virtual and j,a is occupied or j,a is virtual and b,k
is occupied:

−𝐾𝑋 = 𝑅

−𝛿𝛿 𝜔 − Δ𝐸 − 𝐾 𝑌 = 𝑅

−𝐾𝑌 = 𝑄
𝐴 =

−𝛿𝑎𝑏𝛿𝑘𝑗Δ𝐸𝑗𝑏

𝑛𝑏 − 𝑛𝑗
− 𝐾𝑎𝑘,𝑏𝑗 𝐵 = −𝐾𝑎𝑘,𝑏𝑗



TD-DFT

Our task is now to find the excitation energies using this 
equation:

𝐴 + 𝜔 𝐵
𝐵 𝐴 − 𝜔

𝑋
𝑌

=
𝑄
𝑅

It’s important to recognize now that Q is simply the complex 

conjugate of R. 𝜙𝑎 መ𝐴 𝜙𝑘 = 𝜙𝑎 መ𝐴 𝜙𝑘
∗

Because the MOs are real, we can say that for real operators መ𝐴
we can represent 𝑄 + 𝑅 with 𝑋 + 𝑌 , and with imaginary
operators, 𝑄 + 𝑅 is represented with 𝑋 − 𝑌 (because
everything on the left-hand side is real)



TD-DFT

Thus, after working out the algebra:

𝑋 + 𝑌 = 𝑆−1/2 𝜔2 + 𝑆−1/2 𝐴 + 𝐵 𝑆−1/2
−1
𝑆−1/2 𝑄 + 𝑅

For a singularity in 𝑃 1 , therefore, it is clear that we need: 

𝑆 = 𝐼 𝐴 − 𝐵 −1 −𝐼

𝜔2 + 𝑆−1/2 𝐴 + 𝐵 𝑆−1/2 = 0

Now we have an eigenvalue equation, that we can use 
Davidson Diagonalization on: 

𝜔0𝑗
2𝐹0𝑗 = −𝑆−1/2 𝐴 + 𝐵 𝑆−1/2𝐹0𝑗



TD-DFT (TDA)

In the TDA, our B term is approximated as zero:

Why is this valid? Remember that our first-order density
matrix is self-consistent, and as a first guess, it would be
reasonable for us to assume that the density change is
comprised entirely of excitations from the occupied to
virtual orbitals (X) with Y=0. We don’t expect Y to get very
large because it is entirely a correlation effect which ideally
will have been appropriately treated in the ground state
calculation

𝐴 + 𝜔 0
0 𝐴 − 𝜔

𝑋
𝑌

=
𝑄
𝑅



TD-DFT in Orca

• ORCA uses TDA by default in all TD-DFT equations, but it 
can be turned off if necessary.

• TD-DFT can be GREATLY sped up (up to 15) in ORCA with 
the use of an auxiliary basis set.

This is similar to the RIJCOSX approximation in the 
ground state, but here a new auxiliary basis is 
introduced to fit densities of the excited states.

• Almost all DFT functionals have analytic gradients 
implemented for TD-DFT, so geometry optimization can be 
performed.



Let’s Run One



My Recommendations

These are my personal functional recommendations:

• B97X-D3BJ has been shown to be very good for TD-DFT.
A recent benchmark showed a RMSE of 0.29 eV which
was the best among the tested functionals (B3LYP was
worst, followed by PBE0, M06-2X, CAM-B3LYP, then
B97X-D)

• PBE0 is still pretty reliable
• If you have the resources, there are new double-hybrid

functionals specifically designed for excited states:
• I have personally used wPBEPP86, and it is very good!



A Double-Hybrid Run



Natural Transition Orbitals

Natural orbitals are eigenvectors of the first-order perturbed
density matrix:

• We already saw this matrix!  

• When visualized, these orbitals focus in on the regions of
the molecule that are important for a given transition.

Γ
෠𝐴 1 0

1
=෍

𝑘𝑎

P𝑎𝑘
1
𝜔 𝜙𝑎

∗ ෥𝒙 𝜙𝑘 𝒙



Generating NTOs



Optimizing an Excited State



Looking at the results

grep –A 15 ELECTRIC\ DIPOLE tddft.out | head –n16



Plot Spectra

/projectnb/webmo/orca/6_0_0/orca_mapspc tddft.out ABS
–eV –x01.5 –x16.2 –w0.05



/projectnb/webmo/orca/6_0_0/orca
_plot tddft.s1.nto –i << END
2
144
4
100
5
7
11
2
145
11
12
END

NTOs

grep –n NATURAL\ TRAN tddft.out
less +3735 tddft.out



Difference Densities

/projectnb/webmo/orca/6_0_0/orca_plot tddft.gbw –I << END
4
100
5
7
6
y
1 2 3 4 5
12
END

S1

S2

S3

S4

S5



NMR Theory

For the chemical shift, we have: 𝝈𝐴 = อ
𝜕2𝐸

𝜕𝑩𝜕𝝁𝐴
𝑩=0,𝝁𝐴=0

The operators that end up contributing are the orbital 
Zeeman, paramagnetic orbital, and diamagnetic terms:

𝐸11 = 𝜓0 ෡𝐻11 𝜓0 + 𝜓01 ෡𝐻10 𝜓0 + + 𝜓0 ෡𝐻10 𝜓01



NMR Theory - Nonrelativistic

The following operators can be derived from Maxwell’s 
Equations:

෠ℎ𝑚𝑎𝑔 = 𝑨𝑒𝑥𝑡
2
+ ෠ℎ𝑂𝑍 + ෠ℎ𝑆𝑍 + ෠ℎ𝑂𝑃 + ෠ℎ𝐷𝑆 + ෠ℎ𝐹𝐶 + ෠ℎ𝑆𝐷 + ෠ℎ𝑂𝐷

෠ℎ𝑂𝑍 = −ෝ𝝁𝑒 ⋅ 𝑩
𝑒𝑥𝑡෠ℎ𝑆𝑍 = −ෝ𝝁𝑠 ⋅ 𝑩

𝑒𝑥𝑡෠ℎ𝑂𝑃 =
1

𝑐2
෍

𝐴

𝝁𝐴
𝒓𝐴

𝑟𝐴
3 × ෝ𝒑

෠ℎ𝐷𝑆 =
1

2𝑐2
෍

𝐴

𝝁𝐴 ⋅ 𝑩
𝑒𝑥𝑡

𝒓𝐴

𝑟𝐴
3 ⋅ 𝒓 − 𝝁𝐴 ⋅ 𝒓 𝑩𝑒𝑥𝑡 ⋅

𝒓𝐴

𝑟𝐴
3

෠ℎ𝑆𝐷 =
1

𝑐2
⋅
3 ෠𝑺 ⋅ 𝒓𝐴 𝝁𝐴 ⋅ 𝒓𝐴 − 𝑟𝐴

2𝝁𝐴 ⋅ ෠𝑺

𝑟𝐴
5෠ℎ𝐹𝐶 =

8𝜋

3𝑐2
𝛿 𝒓𝐴 ෝ𝝁𝐴 ⋅ 𝑺



NMR Theory - Nonrelativistic

The terms linear in 𝝁𝐴, B, and 𝝁𝐴𝑩 

෠ℎ𝑂𝑍 = −ෝ𝝁𝑒 ⋅ 𝑩
𝑒𝑥𝑡

෠ℎ𝑆𝑍 = −ෝ𝝁𝑠 ⋅ 𝑩
𝑒𝑥𝑡

෠ℎ𝑂𝑃 =
1

𝑐2
෍

𝐴

𝝁𝐴
𝒓𝐴

𝑟𝐴
3 × ෝ𝒑

෠ℎ𝐷𝑆 =
1

2𝑐2
෍

𝐴

𝝁𝐴 ⋅ 𝑩
𝑒𝑥𝑡

𝒓𝐴

𝑟𝐴
3 ⋅ 𝒓 − 𝝁𝐴 ⋅ 𝒓 𝑩𝑒𝑥𝑡 ⋅

𝒓𝐴

𝑟𝐴
3

Doesn’t contribute for 
diamagnetic molecules



NMR Theory – The Gauge

The magnetic field used in those operators has a problem, in 
that it has a “location” or an origin. This causes a problem for 
incomplete basis sets.

Orca by default uses so-called GIAO, or gauge-independent 
atomic orbitals to get over this problem.

This adds a lot of math to the Coupled Perturbed equations but 
is worth the result!

For more information, see here:
McNeely, J., Rogachev, A.Y. Theoretical investigation of the record 7Li-NMR chemical shift in new 
sandwich-like aggregates of corannulene. Theor Chem Acc 139, 35 (2020). https://doi-
org.ezproxy.bu.edu/10.1007/s00214-020-2549-4



Running a Shielding Calculation (H)



Running a Shielding Calculation (C)



NMR Theory

For the J-coupling, we have:

𝐾𝐴𝐵 = อ
𝜕2𝐸

𝜕𝝁𝐵𝜕𝝁𝐴
𝑩=0,𝝁𝐴=0

The operators that end up contributing are the orbital 
paramagnetic, Fermi contact, and spin dipole, and orbital 
diamagnetic:

𝐸11 = 𝜓01 ෡𝐻10 𝜓0 + + 𝜓0 ෡𝐻10 𝜓01

𝐸 = 𝝁𝐴𝐾𝐴𝐵𝝁𝐵



Running a Coupling Calculation (H)



Looking at Results

less +G nmr.out



Looking at Results

less +G nmr.out



Recommendations for NMR Calculations

These are my personal functional recommendations:

• PBE0 has long been recommended for NMR.

• Many groups also like the TPSSh functional.

• If you have the resources:
• DSD-PBEP86 with the pcSseg-2 basis set
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