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Abstract Chronic traumatic encephalopathy (CTE, previously
called punch drunk and dementia pugilistica) has a rich history in
the medical literature in association with boxing, but has only
recently been recognized with other contact sports, such as
football and ice hockey, as well as with military blast injuries.
CTE is thought to be a neurodegenerative disease associatedwith
repeated concussive and subconcussive blows to the head. There
is characteristic gross and microscopic pathology found in the
brain, including frontal and temporal atrophy, axonal degenera-
tion, and hyperphosphorylated tau and TAR DNA-binding pro-
tein 43 pathology. Clinically, there are characteristic progressive
deficits in cognition (memory, executive dysfunction), behavior
(explosivity, aggression), mood (depression, suicidality), and
motor function (parkinsonism), which correlate with the ana-
tomic distribution of brain pathology. While CTE shares clini-
cal and neuropathological traits with other neurodegenerative

diseases, the clinical syndrome and the neuropathology as a
whole are distinct from other neurodegenerative diseases. Here
we review the CTE literature to date. We also draw on the
literature from mild traumatic brain injury and other neurode-
generative dementias, particularly when these studies provide
guidance for future CTE research. We conclude by suggesting
seven essential areas for future CTE research.
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Introduction

In 1928, Martland wrote that “[i]t is easily conceivable…that,
after many cranial injuries unassociated with fracture of the
skull…a progressive degenerative lesion may be the late
manifestation”. He presented a series of boxers who later in life
developed a “parkinsonian syndrome [and]… marked mental
deterioration … necessitating commitment to an asylum”. He
called this condition “punch-drunk” [1•]. In 1934, Parker
presented several more cases from the Mayo Clinic in a paper
entitled “Traumatic encephalopathy (‘punch drunk’) of profes-
sional pugilists”, and, in 1937, Millspaugh coined the term
“dementia pugilistica” [2, 3]. Although isolated cases continued
to appear in the medical literature, it was not until 1973 when
Corsellis et al. [4•] published their landmark series of 15 cases
describing the clinical and pathological features, that dementia
pugilistica was differentiated from other neurodegenerative
diseases. The term chronic traumatic encephalopathy (CTE) is
now used more widely to acknowledge that the pathology can
occur in a wider population than just boxers [5–7].

Clinical and pathological criteria for CTE have been pro-
posed by various authors [8•, 9–11], although no currently
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validated consensus criteria exist. Broadly, CTE is considered
to be a neurodegenerative disease associated with repeated con-
cussive and subconcussive blows to the head. There is charac-
teristic gross and microscopic brain pathology, and progressive
deficits in cognition, behavior, mood, and motor function.

Although there is evidence for an association between
history of repeated concussive or subconcussive injuries, and
chronic cognitive and behavioral impairment [7, 8••, 12•],
there are insufficient data to confirm a causal link. No epide-
miological, cross-sectional, or prospective studies of CTE
currently exist [13]. However, wild-type mice exhibit neuro-
pathology in some ways analogous to CTE 2 weeks after a
controlled blast-exposure and behavioral and motor deteriora-
tion after repetitive concussive injury [14•, 15]. Additionally,
human tau transgenic mice demonstrate increased tau immu-
noreactivity after repetitive impact injury [16].

Historically, the terms concussion and mild traumatic brain
injury (mTBI) have been used interchangeably. Concussion is
defined by the American Academy of Neurology as a clinical
syndrome of biomechanically induced alteration of brain func-
tion, typically affecting memory and orientation, which may
involve loss of consciousness [17]. Subconcussion refers to head
trauma that does not rise to the level of concussion, i.e., is
asymptomatic. Post-concussion syndrome (PCS) refers to a
constellation of physical, cognitive, and behavioral symptoms
that persist in a small number of concussion patients. There are
several formal definitions (International Statistical Classification
of Diseases and Related Health Problems 10th Revision and
Diagnostic and Statistical Manual of Mental Disorders DSM-
IV-TR Fourth Edition [18, 19]) that remain controversial. The
proposedminimum time that symptomsmust persist varies from
1 week to 3 months [20]. Although all reported cases with CTE
pathology have had a history of repetitive blows to the head, not
all cases had a documented history of concussion, raising the
suspicion that individuals with subconcussive injuries may also
be susceptible to CTE [7], [8•, 21]. CTE is clinically distinct
from the immediate sequelae from a head injury including PCS,
and, in most cases, the symptoms of CTE begin long after the
occurrence of trauma (usually 8–10 years) [7, 8•, 9]. Nonethe-
less, because there is symptomatic overlap between PCS and
CTE, and because symptoms of PCS can be quite prolonged,
clinical distinction can sometimes be challenging [22].

Clinical Presentation

CTE deficits can be in cognition, behavior, mood, or motor
function. Based on patient and informant interview, as well as
on neurological examination, themost prominent early cognitive
deficits tend to be in memory and executive function. Over half
of pathologically confirmed cases have memory symptoms.
Similarly to Alzheimer’s disease (AD), patients have difficulty
remembering recently formed memories, but have preserved

distantmemories. In addition, patients commonly have difficulty
with concentration, judgment, and problem-solving. While
patients also have language and visuospatial deficits, these
tend to occur later in the disease course [7, 8•, 9, 12•, 23–26].

The most prominent early behavioral deficits tend to be
explosivity and aggression. Additional deficits in behavior
can include poor impulse control, paranoid ideations, poor
insight, disinhibition, risky behavior, inappropriate sexual
behavior, deterioration of interpersonal and intrafamily rela-
tionships, verbal and physical abuse, and substance abuse.
Owing to both cognitive (problem-solving difficulty) and
behavioral (risky behavior) deficits, patients may have diffi-
culty managing money and investments, at times leading to
bankruptcy [5–7, 8•, 9, 24–26]. The most prominent early
mood deficits tend to be depression and hopelessness. Addi-
tional deficits in mood can include suicidality, anxiety, agita-
tion, apathy, and, rarely, mania [5–7, 8•, 9, 24–26].

Additional signs and symptoms include headache, parkin-
sonism (including tremor, decreased facial expression, rigidity,
and gait instability), dysarthria, dysphagia, coordination diffi-
culty, and gaze disturbances. Headache tends to be an early
complaint, while the other signs and symptoms tend to occur in
more advanced disease [6, 7, 8•, 9, 23, 26]. In addition, a subset
of patients has motor neuron disease (MND, termed chronic
traumatic encephalomyelopathy). Signs and symptoms include
weakness, muscle atrophy, spasticity, and fasciculations. The
shoulder girdles, neck, arms, and bulbar musculature are typi-
cally involved.MND tends to be the initial presentation in these
patients with cognitive, behavioral, and mood deficits occur-
ring later [8•, 27••].

Typically, age of symptom onset of CTE is between 30 and
65 years, though pathologic evidence has been found as early
as age 14 years. Earlier case reports of boxers suggested that
there may be two distinct clinical presentations of CTE: an
earlier presentation of mood and behavior change, and a later
presentation of cognitive impairment, including dementia
[4•, 28]. Our group recently published the largest case series of
neuropathologically confirmed CTE in athletes without other
comorbidities. Based on retrospective interviews with family
members of the deceased athletes, our results supported the
previous findings of two clinical presentations. The group that
presented with mood and behavioral changes had a mean age of
presentation of 34.5 years, while the group that presented with
cognitive impairment had a mean age of presentation of
58.5 years [26]. Based on pathological data, the rate of decline
tends to be slower than in AD or frontotemporal dementia
(FTD), with progression at a rate of 11–14 years between path-
ological stages [8•]. As in most degenerative forms of dementia,
there is severe global impairment in advanced disease. Without
knowledge of the earlier clinical picture, it is hard to distinguish
advanced CTE from other causes of dementia [26, 29].

There are no clinical consensus criteria for CTE. Jordan
[10, 11] has proposed clinical criteria for boxers and, more
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recently, has suggested that these criteria are broadly applicable.
According to his criteria, “probable” CTE must have two or
more of the following conditions: 1) cognitive and/or behavioral
impairment; 2) cerebellar dysfunction; 3) pyramidal tract disease
or extrapyramidal disease. The presentation must be consistent
with the clinical description of CTE and clinically distinguish-
able from other disease processes. “Possible” CTE must be
consistent with the clinical description of CTE, but could be
explained by another disease process. “Improbable” CTE is
inconsistent with the clinical description of CTE and can be
explained by another disease process that is unrelated to brain
trauma [10, 11]. These criteria have not been validated or widely
cited. While these criteria are useful, there are inherent flaws:
there is no discussion of head injury, such as the severity, the
minimum number of events, or the temporal relationship to the
neurologic deficits. Additionally, there is no mention of meeting
criteria for dementia or alternatively of demonstrating neurologic
decline. Also, it is unclear if having motor dysfunction (pyrami-
dal or extrapyramidal disease) or cerebellar dysfunction should
be a necessary requirement for probable CTE. Our group found
that only 20 % of cases with pathologically proven CTE had
these deficits (though this finding was based on retrospective
informant interview rather than neurologic examination). Cere-
bellar pathology at autopsy was sparse and only found in the
most severely affected cases [8•]. Lastly, including a statement
about consistency with the clinical description in clinical criteria
is inherently circular. Plans to compose and validate clinical
consensus criteria are currently underway.

While CTE has clinical characteristics of other degenera-
tive diseases, the combination of signs and symptoms together
may uniquely distinguish it. The prominent poor impulse
control, executive dysfunction, and early age of onset of
CTE are reminiscent of behavioral variant FTD (bvFTD).
Further, MND is associated with both CTE and bvFTD [30].
However, our recent work suggests that disinhibition and
inappropriateness, which are very common in bvFTD, are less
common in CTE [26, 31]. Also, bvFTD lacks the memory
impairment characteristic of CTE.While the prominent memory
impairment of CTE is similar to AD, mild AD patients typically
do not have prominent behavioral symptoms. The combination
of dementia and parkinsonism periodically seen in CTE may
resemble dementia with Lewy bodies (DLB). However, parkin-
sonism tends to be a late feature of CTE and explosivity and
aggression are atypical of DLB [32].

Neuropathology

Our group and others have shown that CTE is a pathologically
distinct tauopathy that can be clearly differentiated from
other neurodegenerative diseases, including AD and FTLD
[4•, 5–7, 8•, 9, 14•, 27••, 33–35]. These differences are present
at both the gross and microscopic levels.

Gross Pathology

InmildCTE, gross examination reveals subtle changes including
enlargement of the lateral and third ventricles, and, occasionally,
pallor of the locus coeruleus and substantia nigra. In more
advanced disease, there is reduced brain weight, frontal and
temporal atrophy with prominent medial temporal atrophy
with compensatory dilation of the lateral and third ventri-
cles. There is also atrophy of the thalamus, hypothalamus,
and mammillary body, thinning of the corpus callosum,
and reduction in subcortical white matter. Frequently,
there is a cavum septum pellucidum or septal fenestra-
tions. These septal abnormalities are most likely acquired
as a result of trauma-induced fluid waves in the ventricles
that over time injure the septum pellucidum and are more
likely a marker of head trauma than an independent risk
factor for CTE [4•, 7–9].

Microscopic Pathology

On the microscopic level, neurofibrillary tangle (NFT)
pathology—intracellular aggregates of phosphorylated tau
protein—are the hallmark of CTE. Inclusions form in both
neurons and glial cells. As in AD, all six tau isoforms are
found in the NFTs [36]. However, unlike in AD, NFTs in
CTE are irregularly/unevenly distributed with a tendency to
form around blood vessels and at the depths of the sulci,
especially in early stages of the disease. When NFTs are
diffusely distributed, they are preferentially found in the super-
ficial layers of cerebral cortex. Neurofibrillary pathology tends
to be particularly prominent in the frontal and temporal lobes,
and ultimately densely involves hippocampus, amygdala
and entorhinal cortex. Other areas of dense NFTs include
the olfactory bulb, diencephalon, substantia nigra, locus
coeruleus, and cerebellar dentate nucleus. In areas of dense
pathology, the NFT density may be greater than that found
in other tauopathies [5, 7, 8•, 9, 14•, 33–35, 37–39].

Axonal injury is also present in all cases of CTE. In mild
disease, axonal pathology is limited to multifocal axonal
varicosities in frontal and temporal cortex, subcortical white
matter, and deep white matter tracts. In more advance disease,
axonal loss is diffuse, affecting the subcortical white matter
and white matter tracts. In advanced disease, neuronal loss is
prominent, particularly in the hippocampus, entorhinal cortex,
and amygdala, and, to a lesser extent, in the locus coeruleus,
substantia nigra, and medial thalamus [7, 8•].

TARDNA-binding protein 43 (TDP-43) neuronal and glial
inclusions are also found in the majority of CTE cases (> 80%
in our brain bank), most commonly in association with severe
tau pathology. Inclusions have been found throughout the
cortex and subcortical white matter, including the frontal,
medial temporal (including the hippocampus and amygdala)
and insular cortices, basal ganglia (including caudate and
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putamen), thalamus, hypothalamus, and brainstem (including
substantia nigra pars compacta) [8•, 27••, 34].

Unlike AD, amyloid beta (Aβ) deposition is not a universal
pathologic feature of CTE. Multiple authors have noted the
relative predominance of diffuse Aβ plaques in CTE com-
pared with neuritic Aβ plaques, a necessary hallmark of AD
[4•, 9, 37–39]. In our case series, Aβ deposition (either as
diffuse plaques, neuritic plaques, or vascular amyloid) was
present in 44 % of CTE cases and was significantly associated
with age. Ten percent of CTE cases also met pathologic
criteria for AD. Thirty-seven percent had comorbid neurode-
generative disease including AD, MND, Parkinson’s disease
(PD), DLB, and frontotemporal lobar degeneration [8•]. Head
trauma is a well-established epidemiological risk factor for
AD and has also been associated with MND and PD [40–43].
It is possible that repetitive mTBI and axonal injury could
activate multiple molecular pathways involved in the inappro-
priate aggregation of proteins common to neurodegenerative
diseases.

While there are no pathological consensus criteria for CTE,
both Omalu et al. [9] and our group have proposed various
criteria. Omalu et al. [9] defined four distinct phenotypes
based on the type and anatomic distribution of histopathology
(Table 1). Our group has employed four criteria necessary to
define pathological CTE (termed hereMcKee criteria; Table 2).
We have also defined four stages of severity based on the extent
of phosphorylated tau (p-tau) pathology (termed here McKee
stages; Table 3).

Clinicopathologic Correlation

Although detailed quantitative pathological analysis and clin-
ical correlation has not been performed, the general anatomic
distribution of tau pathology correlates with the cognitive,
behavioral, mood, and motor symptoms most frequently seen
in CTE. As in AD, the accumulation of NFTs in the hippo-
campus, entorhinal cortex, and parahippocampal gyrus likely
leads to the memory deficits. Involvement of the superior,
dorsolateral, and lateral frontal cortices may account for the
apathy and executive dysfunction, and involvement of the
orbitofrontal cortices and inferior temporal cortices (including
the amygdala) may produce explosive outbursts and poor
impulse control. Involvement of the basal ganglia and
substantia nigra probably leads to the gait instability and
parkinsonism. It is unknown if the anatomic distribution of
tau pathology differs by age as the distinct age-associated
clinical presentations may suggest.

In mTBI, rapid head acceleration leads to stretching of
white matter axons, resulting in diffuse axonal injury. Injury
leads to disruption in axonal transport, axonal swelling, and,
ultimately, Wallerian degeneration. Axonopathy can continue
for years after the head injury [44]. While the connection
between repetitivemild TBI and progressive neurodegeneration

is not well understood, it is possible that early symptoms of
CTE, like headache and concentration difficulty, might be due
to axonal injury given the small amount of tau pathology early
in the disease [8•].

Epidemiology

There is very limited epidemiological data on CTE because
there have been no cross-sectional or prospective studies.
Because CTE was historically a disease of boxers, older
studies focused exclusively on them. A prevalence study
limited to former professional boxers from 1969 showed
that 17 % had neurologic deficits reasonably attributable
to boxing. Risk factors included retirement after the age of
28 years, boxing longer than 10 years, and engaging in 150 or
more fights [24]. Other studies of boxers have implicated
increasing sparring exposure and history of a technical knock-
out or knockout [45, 46]. The number of fights of a typical

Table 1 Chronic traumatic encephalopathy pathological phenotypes as
defined by Omalu et al. [9]

1 Cerebral cortex: sparse to frequent NFTs and NTs
Brainstem: sparse to frequent NFTs and NTs
Subcortical nuclei/basal ganglia: present or absent NFTs and NTs
Diffuse amyloid plaques: absent

2 Cerebral cortex: sparse to frequent NFTs and NTs
Brainstem: sparse to frequent NFTs and NTs
Subcortical nuclei/basal ganglia: present or absent NFTs and NTs
Diffuse amyloid plaques: sparse to frequent

3 Cerebral cortex: absent or sparse NFTs and NTs
Brainstem: moderate to frequent NFTs and NTs
Subcortical nuclei/basal ganglia: absent to sparse NFTs and NTs
Diffuse amyloid plaques: absent

4 Cerebral cortex: absent to sparse NFTs and NTs
Brainstem: absent to sparse NFTs and NTs
Subcortical nuclei/basal ganglia: absent to sparse NFTs and NTs
Diffuse amyloid plaques: absent

NFTs neurofibrillary tandles, NTs XXX

Phenotypes are defined by the type and anatomic distribution of
histopathology

Table 2 Chronic traumatic encephalopathy (CTE) pathological criteria
as defined by McKee et al. [8••]

1 Perivascular foci of p-tau immunoreactive astrocytic and NFTs

2 Irregular cortical distribution of p-tau immunoreactive astrocytic
and NFTs with predilection for the depths of cerebral sulci

3 Clusters of subpial and periventricular astrocytic tangles in the
cerebral cortex, diencephalon, basal ganglia, and brainstem

4 NFTs in the cerebral cortex located preferentially in the superficial
layers

p-Tau phosphorylated tau, NFTs neurofibrillary tanges

All four criteria must be met to have pathological CTE
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professional boxer has declined substantially since 1969,
which may have an impact on the prevalence [47].

More recently, pathological evidence of CTE has been
found in a variety of contact sports and other activities in
which head trauma occurs. It has been pathologically verified
in athletes from the following sports: boxing, American foot-
ball, wrestling, soccer, hockey, and rugby [5–7, 8•, 37]. It has
also been pathologically confirmed in soldiers who have
experienced multiple blast injuries [8•]. In addition, it has
been found in patients with epilepsy, patients with autism
(from head banging), abuse victims, and a circus clown recur-
rently shot from a cannon [7, 33, 38].

The relationship between CTE and exposure to concus-
sions and subconcussions is incompletely understood, but
likely crucially important. In American football players with
pathologically confirmed CTE, the stage of p-tau pathology
(a measure of severity) was associated with years played and
thus indirectly with the amount of head trauma [8•]. There
are no data on the minimum threshold of head injuries
required to develop CTE, though a study of professional
American football players showed that players with a history
of at least three concussions were five times more likely to
report being diagnosed with mild cognitive impairment,
three times more likely to have memory complaints, and
three times more likely to report being diagnosed with
depression compared with those without a history of con-
cussion [12•, 48]. Another study of professional American
football players demonstrated that player neurodegenerative
mortality was three times higher than that of the general US
population and that “speed player” (non-lineman and non-
kickers) neurodegenerative mortality was three times higher
than that of “non-speed players” (lineman). The authors
hypothesized that the higher momentum blows that speed
players endure might be responsible for this difference [49•].

Interestingly, a review of 36 observational studies of amateur
boxers (who have far fewer fights and wear head gear) did
not demonstrate an association between amateur boxing and
chronic traumatic brain injury, though the quality of the studies
was judged to be poor [50]. Similarly, in a community-based
study of individuals whowere high school students in Rochester,
Minnesota, between 1946 and 1956, high school football players
had no increased risk of dementia, PD, or MND compared with
non-football-playing classmates [51].

Although, there are scant epidemiological data on CTE,
there are far more epidemiological data on mTBI. While
mTBI data certainly cannot be extrapolated to CTE, it might,
nonetheless, offer some insight into CTE. mTBI has large
public health implications. The US annual incidence of
mTBI is 1.2 million, and the estimated annual number of
outpatient and emergency department visits for mTBI in the
USA exceeds 2 million. Eighty percent of all TBI is mild
[52, 53]. Five to 20 % with mTBI develop PCS [20, 54].
Athletes with a concussion history have a 5.8-times greater
risk of a subsequent concussion, and there is a suggestion that
there is a dose–response relationship between the number of
previously sustained concussions and the risk for future con-
cussion [55, 56]. Together, these statistics suggest that CTE
could have a significant impact on public health.

There is ongoing debate regarding whether age at time of
head injury affects recovery. Some researchers have hypothe-
sized that immature brains are more plastic and thus better able
to recover from concussion [57], while others have argued that
a developing brain is more susceptible to injury [58]. Com-
pared with younger children, adolescents are more likely to
develop PCS after mTBI [59]. However, compared with col-
lege athletes who suffered concussion, high school athletes
who suffered concussion had prolonged memory dysfunction
[60]. Interestingly, on MR spectroscopy, while adults have
changes in N-acetyl aspartate (NAA) concentrations after mild
TBI, children do not [61, 62]. Whether age at the time of head
injuries affects risk of development of CTE is an open question
and an active area of investigation.

Gender may also play a role in recovery from concussion.
Female athletes have greater concussion rates, report greater
increases in symptoms after concussion, and have greater
impairment on neuropsychological testing after concussion
compared with male athletes. It is unclear if these differences
are biomechanical, hormonal and/or are due to reporting bias
[63–66]. In CTE, the vast majority of patients studied have
been men because brain donation has largely occurred among
professional athletes in contact sports.

Genetics

All cases of neuropathologically confirmed CTE have had a
history of repetitive mTBI. However, not all individuals with

Table 3 Chronic traumatic encephalopathy pathological stages as defined
by McKee et al. [8••]

1 Discrete foci in the cerebral cortex, normally surrounding small
vessels at the depths of sulci, largely limited to frontal lobes,
usually the superior, dorsolateral or lateral cortices

2 Multiple epicenters at the depths of the cerebral sulci with localized
spread from these epicenters to the superficial layers of adjacent
cortex, more extensive involvement of the frontal lobes, as well
as anterior, inferior, and lateral temporal cortices, inferior parietal,
insular, and septal cortices with sparing of the medial temporal
cortices

3 Widespread involvement, still most pronounced in the depths of the
sulci, most prominent in the frontal and temporal lobes, though
also involving the insular and parietal cortices, the amygdala, the
hippocampus, the entorhinal cortex

4 Diffuse, severe pathology throughout the cerebral cortex and the
medial temporal structures, usually spares the calcarine cortex

Stages are based on extent and anatomic distribution of phosphorylated-
tau pathology
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exposure to these injuries go on to develop CTE. This
suggests that repetitive mTBI is necessary, but not suffi-
cient for the development of CTE. Therefore, it is critical to
examine additional potential risk factors, including genetic
risk factors, for the pathogenesis of this disease. The notion
that dementia is associated with a gene-environment inter-
action between head trauma and the presence of genetic
risk factors dates back to 1995. Mayeux et al. [67] initially
found that head trauma was associated with incidence of
AD only in the presence of an APOEε4 allele. While this
finding has been difficult to replicate [68, 69], there is a
clearer association between APOEε4 and an unfavorable
outcome following recurrent mTBI. Among current and
former boxers, APOEε4 carriers were more impaired on a
global scale quantifying motor, cognitive, and psychiatric
deficits [70]. Among 53 active American professional foot-
ball players, older players who were APOEε4 carriers were
more impaired on measures of global cognition, processing
speed, and attention [71]. In human APOE transgenic mice
that underwent mild-to-moderate head injury, APOEε4 car-
riers had different microarray expression patterns in the
hippocampus and cortex compared with non-carriers [72].
Recent work suggests that APOE is expressed in neurons
in response to neuronal damage (e.g., from head injury). In
neurons, the apoE protein conformation makes it suscepti-
ble to proteolytic cleavage. The resulting cleavage fragment
has been shown to be neurotoxic [73]. The role of APOE
in CTE remains ambiguous. In 68 pathologically proven
cases of CTE from our center, the frequency of APOEε4
carriers did not differ from the frequency in the US popu-
lation [8•]. However, we have shown that in a subset of
these cases (plus several new cases), all of whom were
athletes who had no comorbid neurodegenerative or MND,
APOEε4 homozygotes were over-represented compared
with the general population [26]. In all likelihood, APOE
will only explain a fraction (if any) of the heritability of
CTE. Genome-wide family-based and case–control genetic
studies will likely be required to explain the genetic archi-
tecture of CTE.

Like other neurodegenerative diseases, the only way to
make a definitive CTE diagnosis is pathologically. In other
neurodegenerative diseases, the use of neuropsychological
testing, imaging, and cerebrospinal fluid (CSF) biomarkers
has allowed clinicians to diagnose these conditions in life with
more confidence. A similar approach to CTE is conceivable,
though its development is in its infancy.

Neuropsychological Testing

Because nearly all CTE studies have been retrospective
autopsy studies, patient performance on neuropsychological
tests has hardly been examined. These studies are currently

underway. Unlike CTE, there is substantial data on neuro-
psychological performance following mTBI. As with the
epidemiological data on mTBI, the neuropsychology of
mTBI cannot be simply extrapolated to CTE, but, nonethe-
less, may offer some insight. A meta-analysis of eight
studies of healthy former athletes showed that compared
with a history of only one mTBI, a history of repeated mTBI
was associated with reduced delayed recall and executive
function, but not with impairment in attention or language.
A small, non-significant effect was seen for visuospatial func-
tion. Participants in these studies had suffered their concus-
sions at least 4 months prior to neuropsychological testing
[74•]. There is also evidence that subconcussive blows to
the head can affect neuropsychological performance. High
school football players who sustained head injuries that
did not result in any reported symptoms still had lower
scores in visual working memory (as well as decreased
activation in the dorsolateral frontal cortex on fMRI) on
post-season evaluation compared with pre-season evalua-
tion. Not surprisingly, these asymptomatic players did not
undergo a clinical assessment during the game and con-
tinued to play [75•]. Hart et al. [76•] recently studied 34
retired professional American football players (age range,
47–71 years), all but two of whom had suffered at least
one concussion (range, 0–13) and about half of whom had
cognitive impairment (at least some of which was presumably
due to CTE). They found that the cognitively impaired players
had deficits in naming, word finding, and visual and verbal
episodic memory [76•]. Larger replication cohorts will be
required to confirm these findings.

Imaging

As with the other clinical sections of this review, there are far
more imaging studies of mTBI than there are of CTE. While
not a substitute for CTE studies, mTBI imaging studies do
offer some guidance for evaluating patients with suspected
CTE. Here we discuss chronic findings associated with mTBI
for a range of imaging modalities, and whether these modal-
ities might be applied to CTE.

Computed Tomography

Computed tomography (CT) is a widely available and fre-
quently used technique to evaluate structural pathology in the
brain. Because it depicts anatomy in less detail than structural
magnetic resonance imaging (MRI), it is less commonly used
in dementia research. Nonetheless, a study from 1983 showed
that in former boxers the number of bouts was associated with
the amount of global atrophy on CT [77]. In clinical evalua-
tion of CTE, CTwould probably be used when patients have a
contraindication to MRI.
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MRI

In mTBI, longitudinal studies using volumetric MRI demon-
strated a greater decrease in global atrophy over time. Regional
analyses showed differences in the cingulate and precuneus
white and gray matter [78–80]. These studies and the focal and
global atrophy present on neuropathological evaluation of CTE
brains suggest that structural MRImay be a valuable diagnostic
technique for CTE as it is for other forms of dementia.

Susceptibility weighted imaging (SWI) is an MRI sequence
that accentuates the paramagnetic properties of blood products
rendering it very sensitive for detecting microhemorrhages
in head trauma from diffuse axonal injury [81]. While
microhemorrhages on SWI are commonly found in moderate
and severe TBI, they are less commonly found in mTBI [79].
Further, boxers and former professional American football
players have not been found to have significantly more
microhemorrhages than the general population [76•, 82, 83].
However, a Korean study found that compared with controls,
microhemorrhages were more commonly found in those with
mTBI, were in a different anatomic distribution (white matter
rather than deep nuclei), and portended aworse prognosis 1 year
after the event [84]. There have been no published studies in
CTE.We suspect that while white matter microhemorrhages on
SWI may offer additional confirmation that an impaired patient
suffered axonal injury, they are unlikely to be a sensitive or
specific marker for CTE.

MRI diffusion tensor imaging (DTI) can produce detailed
white matter tract images using measurement of water mole-
cule diffusion within white matter. Several measures of this
diffusion, including fractional anisotropy (FA), mean diffusivity
(MD), axial diffusivity (AXD) and radial diffusivity (RD),
are markers of white matter integrity [85]. In a meta-analysis
of 13 DTI studies of mTBI, FA was reduced and MD was
increased in the corpus callosum compared with controls.
Unfortunately, the time between trauma and the scan differed
from 3 days to 8 years [86] . Longitudinal analyses have been
inconsistent regarding whether these DTI changes resolve over
time [87–89], though increased MD in multiple brain regions
has been associated with poorer outcome after 3–4 months
[90]. Increases in AXD and RD have been found cross-
sectionally in professional soccer players compared with com-
petitive swimmers, and longitudinally over the course of a
season in university hockey players [91, 92•]. Further, in the
study by Hart et al. [76•], retired professional American foot-
ball players with cognitive deficits had reduced FA in frontal,
parietal, and temporal regions, as well as the corpus callosum,
compared with controls and with players without cognitive
deficits. Given that axonal injury might be the early trigger
for later degeneration, MRI DTI may play an important role in
diagnosis of CTE. However, before this is possible, future DTI
studies will need to show whether white matter damage
resulting from CTE can be differentiated from white matter

damage resulting from trauma itself. Additionally, because
there are also DTI changes in AD [93], future studies will not
just need to show whether DTI can differentiate CTE cases
from controls, but also whether it can differentiate CTE cases
from AD cases.

There are two types of functionalMRI (fMRI)methods that
may be useful in CTE: blood oxygenation level dependent
(BOLD) and arterial spin labeling (ASL) imaging. Both can
measure brain function either in the resting state or as the
patient performs a task. In BOLD fMRI imaging, brain func-
tion is measured by changes in the oxygenation of blood
hemoglobin [94]. In a meta-analysis of 14 BOLD fMRI studies
of mTBI with imaging performed 6.5 days to 6.4 months
after the event, BOLD hyperactivation, especially of the
dorsolateral prefrontal cortex, was associated with continuous
tasks of working memory in cases compared with controls.
Interestingly, BOLD hypoactivation in the same region was
associated with discrete tasks of working memory in cases
compared with controls [95]. While there have been fewer
BOLD fMRI resting state studies, they tend to consistently
show decreased connectivity in the posterior cingulate cortex
and increased connectivity in the prefrontal cortex acutely.
These changes resolve over 4 months [96–98]. ASL uses
magnetically labeled water molecules as an endogenous tracer
for measuring brain perfusion. While BOLD is susceptible to
baseline drift over time and possesses significant inter-subject
variability, this is not the case for ASL [99], potentially
making it a better method for measuring brain function in
CTE. In the study by Hart et al. [76•], retired professional
American football players with cognitive deficits had varia-
tion in regional blood flow in the left temporal pole, inferior
parietal lobule, and superior temporal gyrus on ASL com-
pared with controls [76•]. As in other forms of dementia,
fMRI for CTE will likely be an important tool for research,
though its role in clinical practice is still unclear.

Magnetic resonance spectroscopy (MRS) can reliably detect
multiple neurometabolites that appear as a spectrum of peaks at
specific frequencies. The height of the peak represents the
concentration of the metabolite in the brain [100]. Multiple
MRS longitudinal studies of mTBI demonstrated changes in
NAA (a marker of viable neurons), creatine (a reference for the
evaluation of other peaks) and Glx (a measure of combined
glutamate and glutamine and a marker for excitotoxicity) in
the frontal white matter compared with controls acutely.
However, all levels eventually returned to baseline by 1–
5 months [61, 101–103]. Interestingly, one of the studies
showed that individuals who had a second head injury took
15 days longer to recover [101]. Importantly, another showed
increased myo-inositol (a marker of membrane injury) only
after 6 months, suggesting it could be indicative of chronic
injury [102]. One pilot study has used MRS to compare
former professional athletes who had a history of multiple
concussions and symptoms concerning for CTE to healthy,
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age-matched controls. Compared with controls, cases showed
increased choline (another marker of membrane injury) and
increased Glx [100]. Given these findings, MRS could
be an important adjunct to both structural and function
imaging in CTE.

Single Photon Emission Computed Tomography

Single photon emission CT (SPECT) characterizes regional
cerebral blood flow by collecting data from an infused
gamma-emitting isotope [104]. Acutely, patients with mTBI
show decreased perfusion in the frontal lobes [105]. Many
studies have used SPECT to evaluate mTBI chronically
(1 month to 12 years post-injury). In a comprehensive review
of these studies, Lin et al. [100] state that the preponderance of
regions with hypoperfusion were in the frontal and parietal
lobes, though hypoperfusion was also noted in the basal
ganglia, the occipital lobes, the parietal lobes, and the cere-
bellum. Compared with controls, 100 active and former
American football players (age range 25–82 years), whose
cognition spanned from normal to demented and who reported
0 to > 5 episodes of LOC, demonstrated decreased perfusion
in the prefrontal poles, temporal poles, occipital lobes, cingu-
late gyrus, and hippocampus [106]. Lack of SPECT findings
probably portends a good prognosis. A longitudinal evalua-
tion of mTBI patients demonstrated that SPECTabnormalities
had high sensitivity and high negative predictive value for
any clinical symptoms up to a year after the trauma [107].
SPECT is already widely used clinically for differentiating
dementia types. Studies are needed to show whether SPECT
can differentiate CTE fromAD or FTD, though the aforemen-
tioned studies are certainly promising.

Positron Emission Tomography

Like SPECT, positron emission tomography (PET) detects
an infused biologically-active radiolabeled tracer. Several
tracers exist and can be used to detect various physiologic
and pathophysiologic processes. Fludeoxyglucose (FDG),
an analogue of glucose, is rapidly taken up by brain cells
and is a marker of metabolic activity [108]. Nearly all
FDG–PET studies that evaluated mTBI were conducted in
the chronic setting (months to years after the trauma) and
have been inconsistent [100]. For instance, two recent studies
evaluated patients with a history of multiple concussions, but
found differing results. Provenzano et al. [109] found that
current boxers had reduced FDG uptake in the frontal, parietal
and occipital lobes, cingulate gyrus, and cerebellum compared
with controls. However, Peskind et al. [110] found that former
soldiers (mean age 32±8.5 years) who had experienced mul-
tiple blast exposures (range, 3–51) that met criteria for mTBI
had reduced FDG uptake in the cerebellum, pons, and medial
temporal lobes. The different findings in these studies might

reflect differences in the type of head injuries obtained (boxing
versus blast injury).

As NFTs are a hallmark of CTE pathology, tau pathology is
an obvious target for a PET tracer. Tau-specific radioligands
have been developed and preliminarily used in PET imaging of
patients with AD and MCI, as well as in normal controls [111].
FDDNP, a PET ligand that non-selectively binds both NFT and
amyloid plaque deposition, was recently used in a preliminary
study of five retired American professional football players
(aged 45–73 years) with mood and cognitive symptoms.
Compared with controls, there were higher signals in all
subcortical regions and the amygdala [112]. Tau imaging
will likely be of immense utility in CTE. Future studies
using tau-specific tracers (rather than tracers such as FDDNP
that non-selectively bind both tau and amyloid pathology) in
larger cohorts of retired athletes who have suffered head
injuries will be crucial.

CSF and Blood Biomarkers

The CSF is a sensible source for biomarkers in neurodegen-
erative disease because it directly baths the brain and its
biochemical composition may therefore reflect underlying
brain pathology. Because CSF biomarkers have been success-
fully developed and are regularly used in the clinical diagnosis
of AD, they serve as a model for CTE. As is the case for the
other clinical sections in this review, studies in mTBI have
been conducted, but are lacking/ongoing for CTE. Two stud-
ies of amateur boxers evaluated several CSF proteins shortly
after a bout (1–10 days) and after a delay (2 weeks–3 months).
Compared with controls, one of the studies found elevated
total-tau acutely, but levels returned to normal after the delay.
p-Tau, the most established CSF biomarker to date for NFT
pathology (at least in AD), was not elevated. More promising,
both studies found neurofilament light polypeptide, a promi-
nent component of the neuronal cytoskeleton, especially in
large-caliber myelinated axons, to be elevated immediately
and after the delay compared with controls [113, 114].

While serum biomarkers are more desirable than CSF
biomarkers because their attainment is less invasive, effective
assays are more difficult to develop because the blood–brain
barrier impedes central nervous system (CNS) protein diffu-
sion into the plasma. Proteins that make it to the plasma are
further diluted by the plasma’s large volume making them
even more difficult to detect [115]. Glial fibrillary acidic
protein, a CNS-specific intermediate filament protein that is
a well-known target for pathological staining, was found to be
elevated acutely in plasma in mTBI patients with abnormal
imaging findings (suggesting their injuries may, in fact, have
been more severe). It was not predictive of outcome [116]. As
in the CSF, elevated plasma tau levels have been detected in
boxers acutely after a bout, but levels significantly decreased
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after a 2-week delay [117]. As with imaging studies, fluid
biomarkers will only prove truly useful if protein levels can
differentiate neurodegeneration resulting from CTE from
brain injury resulting from trauma itself.

Conclusions and Future Directions

As noted throughout this review, CTE research is just begin-
ning. Nonetheless, over the last few years, the topic has
achieved public prominence owing to the sizeable place contact
sports have in our society, as well as the large number of head
injuries recently sustained by soldiers fighting in Iraq and
Afghanistan. Research on other neurodegenerative diseases
provides an excellent model for how we should go about
studying CTE: 1) prospective, longitudinal epidemiological
studies to determine the incidence and prevalence of CTE in
the general population and to analyze whether a causal link
exists between head injury and CTE; 2) careful clinical
phenotyping in order to develop clinical consensus criteria; 3)
studies of clinicopathological correlation in order to develop
pathological consensus criteria; 4) identification of biomarkers,
including structural, functional, and tau radioligand imaging,
and CSF and serum protein levels to aid in early diagnosis; 5)
identification of CTE risk factors, including specific aspects of
TBI exposure (number of injuries, age at injury, injury severity,
etc.) and non-TBI factors; 6) family-based and case–control
genetic studies to better understand the genetic architecture of
CTE, especially the gene-environment interaction; 7) in con-
junctionwith the study of other tauopathies, translational studies
into the prevention of tau aggregation, and propagation.
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