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Abstract: In this study, the authors propose a new group testing based (GTB) error control codes (ECCs) approach for
improving the reliability of memory structures in computing systems. Compared with conventional single- and double-bit error
correcting codes, the GTB codes provide higher reliability at the multi-byte error correction granularity. The proposed codes are
cost-efficient in their encoding and decoding procedures. Instead of requiring multiplication or inversion over Galois finite field
like most multi-byte ECC schemes, the proposed technique only involves bitwise XOR operations, therefore, significantly
reducing the computation complexity and latency. For instance, to correct m errors in a Q-ary codeword of length N, where
Q ≥ 2, the compute complexity is mere O(mNlog Q). The GTB codes trade redundancy for encoding and decoding simplicity, and
are able to achieve better code rate than other ECCs of the same trade-off. The proposed GTB codes lend themselves well to
designs with high reliability and low computation complexity requirements, such as storage systems with strong fault tolerance,
or compute systems with straggler tolerance, and so on.

1 Introduction
The very-large-scale integration industry has been growing
exponentially in the last two decades. The semiconductor products
now have much higher integration and speed by the increasing
density of transistors on chip and clock frequency. Their sizes are
reducing and the performance is still improving. However, the
growth of integration and speed in electronic components will
cause instability in compute and storage systems, which leads to
the increase of probability of errors. Thus, it is crucial to provide
higher reliability and faster correction with relatively low overhead
to those systems.

To equip the electronic systems with reliability on data level,
error control codes (ECCs) are commonly used, which are capable
of recovering the system from random errors [1]. Even the widely-
adopted reliability techniques such as duplication for single error
detection and triplication for single error correction are variations
of ECCs. For memories, bit-error correcting codes are mostly
adapted, among which single- and double-bit ECCs are the
majority. However, nowadays most memories are byte-organised or
word-organised. Meaning each byte contains b bits, and a single
error can affect the whole byte. Moreover, for large-capacity and
high-speed memories, due to their high-density nature, they can be
very vulnerable to the impact of particles [2]. It is not rare that
even multiple b-bit bytes can be distorted in this case [3, 4]. In
addition, in distributed systems, errors appear in the form of
stragglers, where multiple data blocks sized 32-, 64-bit, or larger
can be missing. Bit-level error correction will thus be insufficient.

In the domain of byte-error correction, Reed–Solomon (RS)
codes and non-binary Hamming codes are known for having the
smallest code redundancy (minimal number of redundant bytes).
However, their decoding complexity is relatively high by requiring
multiplications and inversions over finite fields.

Generally speaking, the decoding complexity of a byte-level (or
non-binary) Q-ary ECC is determined by three factors: the error
correcting capability m (number of erroneous bytes to be located
and corrected), the size of each codeword byte b, where usually for
a Q-ary code, b = log Q, and N the number of bytes in each
codeword. For most byte-level ECCs, the encoding and decoding
complexity grows proportionally to b2. Particularly for RS codes,
when b ≥ 32, the complexity cannot be neglected and the

implementation becomes impractical in both hardware and
software [5, 6].

Another drawback of conventional non-binary ECCs is the
decoding latency. For example, the decoding of RS codes based on
Berlekamp–Massey algorithm and Chien search requires
(2m2 + 9m + 3 + N) clock cycles for m-error correction in a N-byte
RS codeword [7–9]. Even the single-byte ECCs such as non-binary
Hamming codes cost considerable latency on finite field
multiplications to correct single byte errors. As modern systems
and smart devices are all working at high speed, such latency is
hardly acceptable.

Hence, interleaved codes are invented as an alternative solution.
Interleaved Hamming codes [10] can be used for single-byte error
correction, and interleaved orthogonal latin square codes (OLSCs)
[11, 12] usually for multi-byte error correction. Other types of
interleaved codes also exist. Briefly, they all are to interleave b
binary ECC codewords to form one non-binary codeword
consisting of b-bit bytes. In the decoding procedure, error
correction is performed on each of the binary codewords first. Then
they are de-interleaved to restore the correct non-binary codeword.
The decoding of this technique is in low complexity by avoiding
multiplications and inversions over GF(2b) fields. However, the
simplicity is achieved at the cost of b identical decoders for each
code. When b is large, the hardware cost on decoders is non-
negligible.

In response to these disadvantages, we propose a new class of
group testing based (GTB) ECC. The major properties of the
proposed codes are:

1. The GTB codes function over GF(Q) field, where Q = 2b and
b ≥ 1;

2. High reliability: GTB codes feature multi-byte error correction
capability;

3. Low encoding and decoding complexity: bitwise XORs and
integer additions are the only operations performed in the
encoding and decoding procedures of GTB codes. No finite
field multiplications or inversions are needed;

4. Parallelism: the encoding and decoding procedures of GTB
codes can be parallelised to 1-step encoding, 1-step syndrome
computing, and 1-step error correction;
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5. Code rate: GTB codes trade redundancy for computation
complexity. Nevertheless, they still achieve better code rates
than ECCs of the same trade-off, such as OLSCs.

In short, GTB codes are a new class of ECC that is high in error
tolerance, low in computation complexity and latency. The price
paid for these advantages is smaller code rate than that of
Hamming and RS codes. However, it is managed in an acceptable
range.

The rest of the paper is organised as follows. Section 2 is on the
construction of the check matrices for GTB codes. Section 3
introduces the mathematical definition and optimal parameters of
GTB codes. The encoding and decoding algorithms of GTB codes
are explained in Sections 4 and 5. In Section 6, a new concept of 1-
step threshold decoding is introduced to simplify and generalise the
procedure. In Section 7, single- and double-byte error correction,
the two most common and important cases from the practical point
of view, are discussed.

In terms of evaluation, the GTB codes are compared in various
aspects with the classical codes, such as non-binary Hamming, RS,
and interleaved codes. Section 8 is on the code rate comparison,
and Section 9 investigates their potential beyond the designed error
detection and correction capability. Section 10 is on the
implementation of the GTB decoder, as well as the hardware
comparison with other ECCs’ decoders. In this section, we show
that the hardware cost of GTB decoder is linear to its codeword
size and error tolerance capacity.

Section 11 illustrates several possible applications of the GTB
codes. Finally, Section 12 concludes the paper.

2 Check matrices of the GTB codes
Before we formally define the GTB codes, the construction of their
check matrices is discussed in this section. Most ECCs’ definitions
are closely related to their check matrices, which can contain
critical information on length, code rate, and error tolerance
capability of a code. GTB codes are no exception.

More importantly, for both binary and non-binary GTB codes,
the check matrices remain in the binary form. The simplicity of
check matrices ensures the low decoding complexity for GTB
codes, even under non-binary scenarios. In our proposal, the
superimposed codes will be used for the construction of check
matrices for GTB codes.

2.1 Definition of superimposed codes

First, the original definition of superimposed codes is given below.
 

Definition 1: Let Mi, j ∈ {0, 1} be the element in row i and
column j in a binary matrix M of size A × N. The set of columns of
M is called an m-superimposed code, if for any set T of up to m
columns and any single column h ∉ T , there exists a row k in the
matrix M, for which Mk, h = 1 for column h, and Mk, j = 0 for all
j ∈ T  [13, 14].

The above property is called zero-false-drop of order m. Next,
two properties of superimposed codes are defined.
 

Definition 2: For any two A-bit binary vectors u and v, we say
that u covers v if u ⋅ v = u, where ⋅ denotes the dot product of the
two vectors. An (A × N) binary matrix M is m-disjunct if the
bitwise OR of any set of no more than m columns does not cover
any other single column that is not in the set. The columns of an m-
disjunct matrix compose an m-superimposed code [15].

For example, the columns of the following matrix are 1-disjunct
superimposed code

M =

1 0 0 0
0 0 1 0
1 1 1 1
0 0 0 1
0 1 0 0

It follows that, the superimposed codes are uniquely decodable of
order m, as defined below.
 

Definition 3: An (A × N) binary matrix M is m-separable, if the
bitwise OR of any up to m columns are all different.

It has been proved that the matrix M constructed from
superimposed codes is not only m-separable, but also m-disjunct.
Due to its zero-false-drop and uniquely decodable properties,
superimposed codes are often used in non-adaptive group testings.
For an m-superimposed code matrix sized A × N, A is the number
of tests needed to locate m particular (erroneous, defective, or
poisonous etc.) objects, and N the total number of objects in the
tests. The rows of M are test patterns, and the 1's in each column
indicate which tests an object will participate.

A positive test result is represented as 1 (meaning at least one or
more targeted objects located in the test), and negative result as 0.
Therefore, the A-bit test syndrome is essentially the bitwise OR of
all the m columns corresponding to the m targeted objects. By
Definition 3, for each possible combination of m (or less) columns,
the resulted A-bit test syndrome is unique and thus the targeted
objects are decodable.

2.2 Lower and upper bounds on minimal length of
superimposed codes

The bounds on lengths of superimposed codes are actually the
bounds on the minimum numbers of tests for non-adaptive group
testing. Adaptive testing may result in a smaller number of tests
(length of the syndrome) than non-adaptive testing. However, the
decoding for the corresponding GTB codes will be much more
complicated. According to D'yachkov and Singleton's research
[16], the lower and upper bounds on the shortest superimposed
codes’ length Amin are very tight by a factor of 1/log m

Ω m2log N
log m ≤ Amin ≤ O(m2log N), (1)

where Amin is the length of the shortest m-superimposed codes with
N codewords.

It is notable that when m = 1, (1) becomes the most commonly
seen case where Amin = ⌈log N⌉.

2.3 Notations

Before describing the construction of superimposed codes, which
will be used for the construction of check matrices for GTB codes,
we introduce the following notations:

• nq: the total number of bytes in codewords of a q-ary (nq, kq, dq)q
code Cq;

• kq: the number of information bytes in Cq;
• rq = nq − kq: the number of redundant bytes in Cq;
• dq: the minimum Hamming distance in Cq;
• A: the length of codewords in a superimposed code CSI;
• N = CSI : the number of codewords in CSI;
• M: the binary matrix of size A × N whose columns are

codewords in CSI as its columns;
• l: the maximum Hamming weight of rows in M;
• dSI: the distance between codewords of CSI;
• m: the number of errors to be corrected by a GTB code.

2.4 Construction of superimposed codes

 
Construction 1: Let Cq be a q-ary (q = ps is a power of prime

and p ≠ 2) conventional error correcting code with parameters
(nq, kq, dq)q. Each byte of Cq in GF (q) can be represented by a q-bit
binary vector with Hamming weight one. A superimposed code CSI
can be constructed by substituting every q-ary digit of codewords
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in Cq by its corresponding binary vector. The resulting m-
superimposed code CSI will have the following parameters [17]:

A = qnq,
N = qkq,
l = qkq − 1,
dSI = 2dq,

m = nq − 1
nq − dq

.

(2)

If Cq is a maximal-distance separable (MDS) q-nary code, for
which dq = rq + 1 and nq ≤ q, such as RS codes, then m can be
written as [15]

m = nq − 1
kq − 1 . (3)

The codewords of the m-superimposed code CSI form the columns
of an A × N matrix M. In every row there are exactly l 1's, and
every column exactly nq 1's.
 

Example 1: An extended ternary RS code has its parameters
(nq, kq, dq)q = (3, 2, 2)3. The codewords are

Cq = {(0, 0, 0), (0, 1, 2), (0, 2, 1), (1, 0, 2),
(1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0), (2, 2, 2)} .

Suppose 0, 1, 2 are substituted by 3-bit binary vectors (100),
(010), (001), respectively. According to (2), N = 9, A = 9, dSI = 4,
and m = 2. The code CSI is a 2-superimposed code.

Then the code CSI consisting of the following N = 9 codewords
can be listed as the columns of a 9 × 9 matrix M

M =

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 0 0 1 0 1 0
0 0 1 0 1 0 1 0 0
0 1 0 1 0 0 0 0 1

The superimposed codeword length A generated from Construction
1 is usually not the minimal according to the lower bound in
Section 2.2. Other constructions can achieve smaller A (e.g. the
approaches presented in [13, 14]), but will result in a higher
decoding complexity for GTB codes.

As Section 5 will show, with the low-density binary matrices
built for GTB codes by Construction 1, only a small number of
binary operations are needed for multi-byte error correction. The
construction makes GTB codes low computation complexity and
high speed in contrary to most popular non-binary ECCs.

3 GTB codes
The definition of GTB codes is based on the binary check matrices
M constructed by superimposed codes in Section 2. In order to
facilitate the introduction of GTB codes and their properties, we
define the notations below:

• Mi, *: the ith row of M;
• M*, j: the jth column of M;
• N: the length of a (N, K, D)Q GTB codeword V;
• K: the number of information bytes in a GTB codeword;
• R: the number of redundant bytes in a GTB codeword;
• b: the number of bits in each byte of a Q-ary GTB codeword,

where Q = 2b and b ≥ 1;

• λ: the maximal number of 1's in common between any two
columns in M [18]. Then we have M*, i ⋅ M*, j ≤ λ for
i, j ∈ {1, 2, …, N}, i ≠ j, where ⋅ is bitwise AND;

• ⊕: the bitwise XOR operator;
• Block: M can be partitioned into nq sub-matrices, such that each

one has exactly q rows. Each sub-matrix is called a block Bt – a
set of q rows where Bt = {Mi, * ⌈i/q⌉ = t}, t ∈ {1, 2, …, nq}.
Each row in a block has exactly l 1's and each column has
exactly one 1.

3.1 Definition of GTB codes

We now define GTB codes based on the binary check matrix
constructed in Section 2.
 

Definition 4: Let M be an A × N binary matrix whose columns
are the codewords of an m-superimposed code constructed in
Construction 1. V is called a GTB code if

V = {v M ⋅ v = 0}, v ∈ GF(QN), (4)

where v is any codeword of the GTB code V.
 

Remark 1: Since the check matrix M of a Q-ary GTB code is a
binary matrix regardless of the value of Q, the syndrome
computation M ⋅ v will be as simple as a number of additions in
GF(2b), namely bitwise XORs (denoted by ⊕). No multiplications
or inversions in finite filed GF(2b) are involved in the decoding
procedures. Moreover, the number of XORs performed in M ⋅ v is
determined by the number of 1's in M, which is always a low-
density matrix by Construction 1.

For the optimal construction of GTB codes to be introduced in
the following sub-section, the fraction of 1's in M can be as low as
N−0.5.

3.2 Optimal construction of GTB codes

As discussed in Remark 1, the complexity of GTB codes’ decoding
procedure is closely related to the number of 1's in M, which is
also the number of bitwise XORs required to compute the
syndrome.
 

Definition 5: A GTB code is optimal if the number of 1's in its
check matrix M is minimum. Since there are A rows in M and each
row has l 1's, the total number of 1's in M can be calculated by Al.

Construction 1 shows that M can be constructed from any
conventional q-ary error correcting codes. One of the most popular
multi-byte ECCs is the Bose–Chaudhuri–Hocquenghem (BCH)
code and it owns many fine properties. RS code as another choice
is a special case of BCH code. We compare the two codes in terms
of Al to suggest a proper choice for the optimal GTB codes.

Given N and m, the properties of BCH code [19] are

nq = kq + rq;
kq = logq N;

rq = (dq − 2)i + 1,
(5)

where nq = qi − 1. With (2), the parameters of the BCH code-based
GTB code are

m = nq − 1
nq − dq

;

l = qkq − 1;
A = qnq = (kq + (dq − 2)i + 1)q;

Al = (kq + (dq − 2)i + 1)qkq .

(6)
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RS code is a special case of BCH codes when i = 1. The RS code
is a MDS code where dq = rq + 1. Therefore, for RS codes the
above equations can be rewritten as

nq = kq + rq;
kq = logq N;
rq = rq = dq − 1.

(7)

With (2), the parameters of the RS code-based GTB code are

m = nq − 1
kq − 1 ;

l = qkq − 1;
A = qnq = (kq + dq − 1)q;

Al = (kq + dq − 1)qkq .

(8)

By (6) and (8), to correct the same number of errors in codewords
of the same length, RS code-based GTB codes have smaller A and
Al the BCH code-based, as shown in Fig. 1. Therefore, we will use
RS as the base code to construct the check matrices for GTB codes.

 
Remark 2: Since RS codes are MDS codes, it has maximal dq.

Under the same nq, it is able to generate larger m than other non-
MDS codes by [20]

m = nq − 1
nq − dq

.
We now specify the parameters of the RS codes achieving the

minimal Al.
 

Theorem 1: Given N the length of GTB codewords and m the
number of errors to be corrected, the optimal Q-ary GTB code and
its check matrix with minimal Al can be constructed by the RS
code with the following parameters:

(nq, kq, dq)q = (m + 1, 2, m)q; (9)
Then by (2), we have

N = q2;
A = q(m + 1);
l = q .

(10)

The minimal syndrome computation complexity is then

Al = (m + 1)q2 = (m + 1)N . (11)

The proof of Theorem 1 is given in Appendix 1.
There are also cases when a GTB code needs to be designed by

given K and m. In this scenario based on Theorem 1, we are able to
compute the optimal q to construct its check matrix.

 
Corollary 1: If K and m are given, then the optimal qopt

minimising Al will be [21]

qopt = (m + 1) + (m + 1)2 + 4(K − m)
2 ps

, (12)

where ps stands for the nearest power of prime that is larger than
the value inside ⌈ ⌉.

The proof of the corollary is given in Appendix 2.

3.3 Parameters of optimal GTB codes

With the RS parameters presented above, we show that the GTB
codes have the following properties.
 

Theorem 2: If a Q-ary GTB code V of length N is defined by
V = {v M ⋅ v = 0}, v ∈ GF(QN), where M is generated by
Construction 1 and Theorem 1, then V has the following
parameters:

(N, K, D)Q = (q2, q2 − q(m + 1) + m, 2m + 2)Q,

where N is the length of any GTB codeword, K the number of
information bytes, and D the distance of the code.

Such a code is able to detect up to 2m + 1 errors and correct up
to m errors.

The proof of Theorem 2 is given in Appendix 3.
 

Remark 3: By Theorem 2, there are two advantages of GTBs
over most other ECCs:

1. The check matrix and optimal parameters of an (N, K, D)Q m-
error correcting GTB codes do not depend on Q. It indicates
that the increase of Q will not negatively affect the decoding
complexity or code rate of a GTB code;

2. The distance of an m-error correcting GTB code is
D = 2m + 2, while for most other ECCs it is 2m + 1. The
larger distance provided by GTB code enables it to have higher
error detection capability.

 
Corollary 2: The rate of GTB codes is

K
N = 1 − A − m

N = 1 − (m + 1)q − m
q2 . (13)

It is obvious that when

N = q2 → ∞ and m
q → 0,

we have

K
N → 1.

 
Remark 4: We note that Construction 1 also provides the trade-

offs between syndrome computation complexity (Al) and code
rates. For a GTB code based on a (nq, kq, dq)q = (kq + m − 1, kq, m)q
RS code, if kq > 2, then this GTB code will have parameters
(N, K, D)Q = (qkq, qkq − (kq + m − 1)q + kq + m − 2, 2m + 2)Q.
Although its Al will be larger than what has been given in Theorem
1, its code rate will be better.

4 Encoding
Since the rows in the check matrix of a GTB code are not all linear
independent, to acquire the encoding matrix, the check matrix M
needs to be transformed into the row canonical form. The row
canonical form and the standard encoding matrix are very similar,

Fig. 1  Al comparison between GTB codes constructed from RS codes and
BCH codes under the same N and m. As N grows larger, the RS code-based
GTB has larger advantage over the BCH-based
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except the order of a few columns. Similar to its decoding, the
encoding of GTB codes requires no finite field computations but
bitwise XORs.
 

Definition 6: A matrix M is said to be in row canonical form or
reduced row echelon form [22] if the following conditions hold:

• All zero rows, if any, are at the bottom of the matrix;
• Each first non-zero entry in a row is to the right of the first non-

zero entry in the preceding row;
• Each pivot (the first non-zero entry) is equal to 1;
• Each pivot is the only non-zero entry in its column.

 
Corollary 3: If an A × N matrix M is a binary check matrix

generated from an m-superimposed code for a (N, K, D)Q GTB
code V, then it can be transformed to a row canonical form M′,
with A − m non-zero rows. In M′ all the A − m columns with the
pivots represent the locations of redundant bytes, and the
remaining N − A + m columns the information bytes.

We now show an example of GTB code encoding, which is very
similar to conventional binary ECC encoding.
 

Example 2: A GTB code V over GF(Q), Q = 23, has N = 9
information digits and is able to correct single-digit errors.
According to Theorem 1 its check matrix M can be constructed
from the (nq, kq, dq)q = (2, 2, 1)3 RS code. Then code V has the
parameters of (N, K, D)Q = (9, 4, 4)23 and for this code

M =

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

By Corollary 3, after transforming M into row canonical form,
we have

M′ =

1 0 0 0 1 1 0 1 1
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

M′ indicates that in a codeword (message) v = (v1, v2, v3, v4, v5, v6,
v7, v8, v9), the redundant bytes are v1, v2, v3, v4, v7, and the
information byte v5, v6, v8, v9.

If v5 = (011), v6 = (101), v8 = (110), v9 = (111), then the
codeword can be encoded by M′ as

v1 = v5 ⊕ v6 ⊕ v8 ⊕ v9 = (111);
v2 = v5 ⊕ v8 = (101); v3 = v6 ⊕ v9 = (010);
v4 = v5 ⊕ v6 = (110); v7 = v8 ⊕ v9 = (001) .

So v = (111, 101, 010, 110, 011, 101, 001, 110, 111).

5 Decoding: error locating and correction
The decoding procedure of GTB codes consists of three parts:
syndrome computation, error locating, and error correction.

5.1 Syndrome computation for GTB codes

 
Definition 7: For a GTB code V = {v M ⋅ v = 0} over GF(QN),

where M is an A × N binary matrix, if a codeword
v = (v1, v2, …, vN) is distorted by an error e to v~ = v ⊕ e,
v~, v, e ∈ GF(Q), then the syndrome

S = M ⋅ v~ = M ⋅ e .
There are A digits in S = (S(1), S(2), …, S(A)), and S(i) ∈ GF(Q).
Then the support of syndrome Ssup = (Ssup(1), Ssup(2), …, Ssup(A)) is
defined as

Ssup(i) = 0, S(i) = 0;
1, S(i) ≠ 0.

The A-bit binary syndrome Ssup is used for error locating, and the A-
digit Q-ary syndrome S for error correction.

The syndrome computation of GTB codes only involve bitwise
XORs, and its complexity can be minimised as shown in Theorem
1.

5.2 Error locating

The GTB codes’ m-error locating algorithm is generated by the
following algorithm.
 

Algorithm 1: Let the columns of an A × N binary matrix M be
the set of all codewords of an m-superimposed code constructed by
Construction 2.1 from a (nq, kq, dd)q RS code Cq. Let
Ssup = (Ssup(1), Ssup(1), …, Ssup(A)) be the A-bit binary vector
representing the support of syndrome S = M ⋅ v~ = M ⋅ e, and
v~ = (v~1, v~2, …, v~N), v~ j = vj ⊕ ej. Let u = (u1, u2, …, uN) be the N-bit
error locating vector for GTB codes such that

uj = ∑
{i Mi, j = 1}

Ssup(i) = m + 1 ?1:0.

If uj = 1, then v~ j = vj ⊕ ej, and ej ≠ 0.
Note: through this paper, c = (a = b)?1:0 denotes

c = 1, if a = b;
0, otherwise .

The proof of Algorithm 1 is given in Appendix 4.
 

Remark 5: It is notable that if Mi, * ⋅ e = 0 and e ≠ 0, then the
corresponding Ssup(i) = 0. This can result in uj = 0 even if ej ≠ 0.
We call the mis-detection error masking, as multiple errors can
mask each other from being revealed, whose probability is Q−1.
Therefore, Algorithm 1 provides an error locating and correction
probability close to 1 as Q is relatively large. This algorithm can be
modified to achieve error locating and correction probability of 1
in important practical cases, such as m = 1 and m = 2 in Section 7.

In Section 6, we develop a 1-step threshold decoding algorithm,
which for any m it provides a trade-off between the error correction
probability and redundancy R. We show that by increasing R to at
most a factor of 2, the error correction probability achieves exactly
1.

5.3 Error correction

For any located m-error, it always can be corrected by the
algorithm presented by the following algorithm.
 

Algorithm 2: Let a codeword v over GF(Q) be distorted by an
m-digit error to v~ = v ⊕ e. e is located by the error locating vector
u = (u1, u2, …, uj, …, uN), where if uj = 1, ej ≠ 0. Also let S be the
A-digit syndrome where S = M ⋅ v~ = M ⋅ e and
S = (S(1), S(2), …, S(i), …, S(A)), S(i) ∈ GF(Q). For any non-zero
error digit ej in e, there must exist at least one row Mi, * in M, such
that

∑
{ j Mi, j = 1}

uj = 1.

Then S(i) = Mi, * ⋅ v~ = Mi, * ⋅ e = ej. So v~ j can be corrected by

vj = v~ j ⊕ ej = v~ j ⊕ S(i) .
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The proof of Algorithm 2 is given in Appendix 5.
To summarise, the decoding procedure consists of the following

fine-grained steps: calculating the syndrome, converting it to the
support of the syndrome, error locating, finding the m × m identity
sub-matrix corresponding to the m-digit error, and error correction.
With parallelisation, the procedure can be combined to two steps:
error locating and error correction.
 

Example 3: A Q-ary GTB code has Q = 23 = 8 and parameters
(N, K, D)Q = (9, 2, 6)8. The distorted codeword
v~ = (1, 2, 3, 6, 6, 2, 2, 3, 1)8.

Since D = 6, we can do double-error correction with this code.
First by Theorem 3.1, we have

q = N = 3; dq = m = D − 2
2 = 2;

kq = 2; nq = m + 1 = 3.

Thus, the check matrix can be constructed by a
(nq, kq, dq)q = (3, 2, 2)3 RS code

M =

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 0 0 1 0 1 0
0 0 1 0 1 0 1 0 0
0 1 0 1 0 0 0 0 1

The syndrome and the support of the syndrome are

S = M ⋅ v~ = (0, 2, 0, 5, 7, 0, 0, 7, 5);
Ssup = (0, 1, 0, 1, 1, 0, 0, 1, 1) .

By Theorem 5.1, the double error is located as

u = (0, 0, 0, 1, 1, 0, 0, 0, 0) .

Knowing that e = (0, 0, 0, e4, e5, 0, 0, 0, 0), (e4 ≠ 0, e5 ≠ 0), by
Theorem 5.2 the identity sub-matrix corresponding to e4 and e5 is

M8, 4 M8, 5

M9, 4 M9, 5
= 0 1

1 0 .

Hence

v4 = v~4 ⊕ S(8) = 3;
v5 = v~4 ⊕ S(9) = 1;
v = (1, 2, 3, 3, 1, 2, 2, 3, 1)8 .

6 Generalised 1-step threshold decoding
The error correcting algorithm introduced in the previous section
requires that for any ej ∈ e, ej ≠ 0, there are nq digits of the
syndrome affected by it. However, if there exists one or more than
one row Mi, * in M such that
S(i) = Mi, * ⋅ v~ = Mi, * ⋅ e = ej ⊕ ek ⊕ ⋯ ⊕ ez = 0, and
ej, ek, …, ez ∈ e, then uj = 0 and so ej cannot be located. We will
refer to this case as error masking in position i.

For a Q-ary GTB code, Q = 2b, it is obvious that the upper
bound on the probability of having at least one error masking is
Q−1. Also for any ej in an m-digit error e, it will at most affect
nq = m + 1 digits of the syndrome, out of which there can be at
most m − 1 error maskings since λ = 1. Therefore, we have the
probability Pcorr of no error masking for ej ≠ 0 lower bounded by

Pcorr ≥ (1 − Q−1)m − 1 . (14)

Given m, the larger the Q (or b = log Q) is, the greater the Pcorr is
as shown in Fig. 2. It is expected that as m grows, the error
correcting probability decreases. However, if b is large enough,
(14) can still provide a satisfying Pcorr. Without loss of generality,
we examine the error correction probability under 1 ≤ m ≤ 10 and
b = {4, 8, 16, 32, 64} in GTB code
(N, K, D)Q = (625, 360, 22)Q. 

This means for a GTB codeword consisting of 16-bit bytes or
larger, it can always locate and correct up to m errors with
probability close to 100%.

Moreover, Pcorr can be enhanced by increasing the redundancy
of the GTB code, as shown in the following algorithm.
 

Algorithm 3: Let CRS be a (nq, kq, dq)q = (m + 1 + Δ, 2, m + Δ)q
RS code and M is the check matrix of a GTB code VΔ of
(N, K, D)Q = (q2, q2 − q(m + 1 + Δ) + m + Δ, 2(m + Δ) + 2)Q, then
for VΔ we have

Pcorr ≥ (1 − Q−1)m − 1 − Δ . (15)
And

Pcorr → 1 when Δ → (m − 1) .

So the error locating vector u = (u1, u2, …, uN) can be re-written as

uj = ∑
{i Mi, j = 1}

Ssup(i) ≥ m + 1 ?1:0.

If uj = 1, then v~ j = vj ⊕ ej, and ej ≠ 0.
The proof of Algorithm 3 is given in Appendix 6.
As an example, Algorithm 3 we can improve the error

correcting probability in Fig. 2 through increasing Δ. Taking
m = 10 as an example, if 0 ≤ Δ ≤ 9, the updated Pcorr are graphed
in Fig. 3. 

It can be found that under different b, the Pcorr goes to 1 in
different velocity. When Δ = m − 1, no matter what b is, the Pcorr is
always 100%. At this point, the GTB code can be decoded by
simple majority voting through threshold gates, and Algorithm 3
becomes 1-step threshold decoding.

However, it is notable that as Δ increases, the code rate
decreases. For instance, when Δ = m − 1 = 9 and Pcorr = 1, the
original (N, K, D)Q = (625, 360, 22)Q code becomes
(625, 144, 40)Q.
 

Example 4: By (14), a (N, K, D)Q = (25, 12, 6)28 GTB code V0 is
able to correct double errors at a probability of 99.6%. The
columns of its check matrix are generated by all the codewords of a
(nq, kq, dq)q = (3, 2, 2)5 RS code (see equation below)

To make it capable of correcting all double errors at a
probability 1, we select Δ = m − 1 = 1 and so the new matrix will

Fig. 2  As b increases over 8, the error correction probability Pcorr always
remains close to 1. The increase of m has little negative impact when
b ≥ 16
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be generated from the codewords of a (nq, kq, dq)q = (4, 2, 3)5 RS
code (see equation below) By substituting 0, 1, 2, 3, 4 with
(10000), (01000), (00100), (00010), (00001), the check matrix M
can be constructed. So the parameters of the new GTB code V1 will
be a (N, K, D)Q = (25, 8, 10)28 code and it can correct all double
errors with probability 100% by the 1-step threshold decoding
introduced in Algorithm 3.
 

Remark 6: For 1-step threshold decoding, if m = 1, then by (27)
we always have Pcorr = 1. When m ≥ 2, by increasing at most
m − 1 blocks the GTB codes can achieve Pcorr = 1 at the cost of
decreasing the code rate. For this case, the code parameters will
change from (N, K, D)Q = (q2, q2 − 3q + 2, 6)Q to
(q2, q2 − 4q + 3, 8)Q.

In the following section, we will introduce a procedure to
achieve Pcorr = 1 for m = 2 GTB codes without reducing the code
rate. For the rest of the paper we always assume Δ = 0.

7 Single- and double-byte error correcting GTB
codes
Single and double errors are most commonly seen in error
corrections. The GTB codes can always achieve 100% error
correcting probability in both cases.

7.1 Single-byte error correction

According to Construction 1, single-byte error correcting GTB
codes can be generated from (nq, kq, dq)q = (2, 2, 1)q RS codes,
which will result in (N, K, D)Q = (q2, q2 − 2q + 1, 4)Q GTB codes
for m = 1 with A ⋅ l = 2q2 = 2N. A check matrix of this code with
q = 3 is given in Example 2. For single errors, Algorithms 1 and 2
always detects and corrects the errors with probability of 1.

Another way to generate single-error correcting GTB codes is
to construct it based on a binary Hamming check matrix.
 

Definition 8: A Q-ary GTB code Y with following parameters
(N, K, D)Q = (N, N − ⌈log2(N + 1)⌉, 3)Q is defined by y ∈ Y  if
y = {y M ⋅ y = 0}, where M is a binary Hamming check matrix. If
a codeword y is distorted by a single error to y~ = y ⊕ e and the
syndrome S = M ⋅ y~, then the support of the syndrome Ssup is the
error location, and e = S(i), if S(i) ≠ 0.

From the above definition it is obvious that this Hamming
based GTB code Y has better code rate, namely smaller redundancy
(R = log2(N + 1)) than that of RS based GTB code V
(R = 2 N − 1).

However, code Y has larger syndrome computation complexity
by

Al = (N + 1)
2 log2(N + 1);

while for a regular GTB code V

Al = 2N .

7.2 Double-byte error correction

Double-byte errors usually cost much more time and space to be
located and corrected than single-byte errors. However, for GTB
codes it is still very time and cost efficient to correct double errors.

An example of correcting double error has been given in
Example 3. However, if there is an error masking, meaning e4 = e5,
then u4 = u5 = 0. In this case, the double error cannot be guaranteed
to be located and corrected. Therefore, we propose the customised
algorithm below to achieve 100% double error correction
probability.
 

Algorithm 4: Let the columns of matrix M in size A × N be the
set of all non-zero codewords of a 2-superimposed code
constructed by Construction 1 from a (nq, kq, dd)q RS code Cq. Let
Ssup be the A-bit binary vector representing the support of syndrome
S = M ⋅ v~ = M ⋅ e, where e is a double error and causes one error
masking in S. Let w = (w1, w2, …, wN) be the error locating vector
for GTB codes such that

wj = ∑
{i Mi, j = 1}

Ssup(i) . (16)

If wj = m + 1 = 3, then ej ≠ 0.
If there is no wj = m + 1 = 3, there will be some j such that

wj = m = 2 which indicate error location candidates.
Denote W = {wj wj = m} as the set of error location

candidates. If there is a row Mi, * such that

(wj = 2) ∧ S(i) = 0 = 1, (17)

then ej = 0, and the remaining items in set W are error locations.
The proof of Algorithm 4 is given in Appendix 7.

 
Example 5: A GTB code V with the same parameters and the

same legal codeword v as Example 3. It is now distorted by a
double error at digits 4 and 5 that causes error masking

e = (0, 0, 0, 7, 7, 0, 0, 0, 0) .
Then

S = M ⋅ v~ = (0, 0, 0, 7, 7, 0, 0, 7, 7);
Ssup = (0, 0, 0, 1, 1, 0, 0, 1, 1);

w = (1, 2, 1, 2, 2, 1, 2, 1, 1);
W = {w2, w4, w5, w7} .

Fig. 3  Probability of successfully correcting 10 errors in a
(N, K, D)Q = (625, 360, 22)Q GTB code when Δ increases

 

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
0 4 3 2 1 4 3 2 1 0 3 2 1 0 4 2 1 0 4 3 1 0 4 3 2

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
0 1 2 3 4 2 3 4 0 1 4 0 1 2 3 1 2 3 4 0 3 4 0 1 2
0 3 1 4 2 2 0 3 1 4 4 2 0 3 1 1 4 2 0 3 3 1 4 2 0
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The sub-matrix of M consisting of columns indexed by W and the
syndrome vector are

1 0 0 0
0 1 1 0
0 0 0 1
0 1 0 1
1 0 1 0
0 0 0 0
0 0 0 0
0 0 1 1
1 1 0 0

S =

0
0
0
7
7
0
0
7
7

It is not hard to find out that for M1, *, (w2 = 2) ∧ (S(1) = 0) = 1,
and for M3, *, (w7 = 2) ∧ (S(3) = 0) = 1. Then e2 = e7 = 0.

Therefore, the double error is e = (0, 0, 0, e4, e5, 0, 0, 0, 0) where
e4 = 7 and e5 = 7. Similarly to Example 4, they can be corrected by
Theorem 2.

8 Code rate comparison
Sections 8, 9, and 10 are evaluation sections. The GTB codes are
assessed by comparing with conventional popular ECCs such as
RS code known by its minimum redundancy, and interleaved
OLSC known by its low decoding complexity. The comparisons
are made in the important aspect of ECCs: code rate, error
detection and correction capability, and hardware cost.

8.1 Code rate comparison with RS and interleaved OLSC
codes

Code rate, calculated by K /N, is a metric often used for evaluating
the transmission efficiency of an ECC.

By Theorem 1, given N and m, the redundancy of a GTB code
is

qGTB = N;
RGTB = (m + 1)qGTB − m .

(18)

With the same N and m, for interleaved OLSCs the redundancy is

qOLSC = K;
ROLSC = 2mqOLSC .

(19)

For RS codes

RRS = 2m . (20)

It is obvious that RS codes always achieve the best code rate. GTB
codes have better code rate than interleaved OLSCs. Without loss
of generality, we examine the code rates of the three ECCs under
1 ≥ m ≤ 11 with fixed codeword length N = 625, as shown in
Fig. 4. 

As expected, RS codes as MDS codes always have the best
code rate over all others. When m is relatively small, the code rates
of GTB and OLSCs codes are similar. As m grows larger, GTB
codes have increasingly better rate than OLSCs. When m = 1, both
code rates of GTB and OLSC are around 90%. When m = 11, GTB
codes is still able to have the rate at 53.8%, while OLSCs only in
its 10% at 5.0%.

8.2 Code rate comparison with the low-density codes’ lower
bound

The check matrix by Construction 1 indicates that the GTB code
also belongs to the family of low-density codes. We now examine
its performance versus the theoretical code rate lower bound of
low-density codes.

For a class of error locating Q−ary codes with row density q−1

in the binary check matrix (the fraction of 1's in a row), denote the
number of total error locations as Le, the minimum number of bits
in Ssup as R, and the probability of one or more errors revealed in
one non-zero syndrome bit as re. For example, for m = 1,
re = q/(q2 + 1) ≃ q−1, and for m = 2

re = q + (q2 − q)q

1 + q2 + q2

2

≃ 2
q + 1 .

Then we have the following lower bound for R for any low-density
Q−ary code

R ≥ ⌈log2Le⌉
H(re)

, (21)

where H() is the binary entropy function.
Fig. 5 shows the comparison made at m = 1 and m = 2 between

GTB code rate and the theoretical lower bound. 

9 Potentials of GTB codes’ error detection and
correction capability
For any m-error correction ECC, it is able to correct up to m and
detect up to 2m random errors. However, it is also known that for
such an ECC, at some probability it has certain potential to correct
and detect errors beyond the m and 2m limitation. This potential is
determined by the weight distribution and uniqueness of the
syndromes. In this section, we compare such potentials among the
GTB and interleaved OLSCs because of their similar weight
distributions.

9.1 2m + 1 error detection probability comparison

Denoting p as the probability of a byte being distorted, the number
of codewords with Hamming weight i as Ai, the more precise error
detection probability using codeword weight distribution is [23]

Fig. 4  Code rate comparison among RS, interleaved OLSC, and GTB
codes as m increases

 

Fig. 5  Comparison between the actual GTB code's redundancy R1 and R2

for m = 1 and m = 2, and the theoretical lower bound RA1 and R2.
Particularly, R1 is very close to RA1
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Pdet = 1 − ∑
i = 1

N
Aipi(1 − (Q − 1)p)N − i . (22)

Under the same m, it is fair to compare among codes of similar
length. If the code length differs largely, then the weight
distribution will also differ largely. Therefore, under the same N, m,
and p, we select GTB and OLSCs for comparison. The error
detection potential of GTB codes over OLSCs is defined as
follows:

Improvement = PGTB − POLSC
POLSC

. (23)

Fig. 6 shows the improvement between the error detection potential
PGTB of GTB codes and POLSC of OLSCs, when both of them
attempt to detect beyond 2m errors. 

The reason why GTB performs drastically better than the
OLSCs in its detection beyond 2m errors, is because its larger
codeword distance under the same N and m. As explained in
Remark 3 and proven in Appendix 3, an m-error correcting GTB
code has distance D = 2m + 2, while most conventional m-error
correcting ECCs only have D = 2m + 1.

As expected, the larger the bit distortion rate p is, the larger the
error detection improvement will be. When p = 10−1, GTB codes’
error detection probability is as much as over 80% more than
OLSCs. Even as p decreases to nearly 0, and both error detection
probabilities increase to almost 100%, GTB codes still perform
better.

Fig. 7 is a zoom-in of Fig. 6, indicating the larger Q is, the
better improvement of error detection potential will be. 

9.2 m + 1 error correction probability comparison

For a code with distance D = 2m + 1 or D = 2m + 2, it is able to
correct all m-byte errors. However, it usually is also capable of
correcting more than m errors with a certain probability.
Particularly, for an m-error correcting code, it is very likely to be
able to correct most m + 1 errors.

As long as the syndromes S = M ⋅ v~ of different error patterns
are unique, it is possible to decode those errors, at least
theoretically.

Taking the same parameters as in Section 9.1, when both GTB
and OLSC have the same N and m, the probability of correcting
m + 1 errors are all over 90%. To make the comparison more
obvious, we compare the error missing probability defined as
follows:

Pmiss = 1 − number of unique syndromes
number of total syndromes (24)

Fig. 8 compares the error mis-correction probability under the
same setting of Fig. 6. 

It is also notable that OLSCs only provide error correction on
the information bytes, not redundant bytes. In contrary, GTB codes
correct errors on both.

10 Hardware implementation and complexity
comparison
In Section 5, the algorithms of error locating and correction are
introduced in Algorithms 1 and 2. The hardware decoder module
consists of five components: syndrome computation, support of
syndrome conversion, error locating, finding the identity matrix for
error magnitude, and error correction. Since all the five
components are combinatorial networks, their latency altogether is
negligible.

10.1 GTB codes’ decoding complexity estimation

In this subsection, the hardware cost of the decoder is estimated in
the number of equivalent 2-input gates.

1. Syndrome computation:

S = M ⋅ v~ = M ⋅ e;

Hardware cost:

bA(l − 1)
2. Support of syndrome conversion:

Ssup(i) = 0, S(i) = 0
1, S(i) ≠ 0

Hardware cost:

A(b − 1)
3. Error locating:

uj = ∑
{i Mi, j = 1}

Ssup(i) = m + 1 ?1:0;

Hardware cost:

Fig. 6  Error detection improvement of GTB codes over OLSCs under the
same N and m. For every p the three bars are, respectively, Q = 2, 4, and 8.
Both codes are attempting to detect 2m + 1 errors

 

Fig. 7  Zoom-in of Fig. 6, which shows the trend of improvement with the
increase of Q under all p

 

Fig. 8  Although this figure does not reveal any trend or error mis-
correction as Q increases, it does show that GTB codes have less missed
errors in all cases
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mN
4. Finding the identity matrix for error magnitude:

Row(i) = ∑
{ j Mi, j = 1}

uj = 1 ?1:0;

Hardware cost:

A(2.5l + log l − 1)
5. Error correction:

ej = ∨
{i Mi, j = 1}

Row(i) ⋅ S(i),

where ∨ is the bitwise OR for all elements in its subscript.

Hardware cost:

Nb(m + 1) + b(A + N)

Summing all the five hardware cost estimation together and
denoting the overall decoding complexity as L, we have

L = bA(l − 1) + A(b − 1) + mN
+ A(2.5l + log l − 1) + Nb(m + 1) + b(A + N)
≃ b(Al + mN)

Since Al ≃ mN

L ≃ b(Al + mN) ≃ 2mNb . (25)

Thus from (25), it follows that the decoding complexity of GTB
codes is linear to its codeword length N, byte size b = log Q, and
the number of errors to be corrected m.

The schematic diagram of this decoding system is shown in
Fig. 9. 

All five components are simple circuits: bitwise XOR gates,
bitwise OR gates, nq-bit and m-bit adders. Comparing with other
non-binary error correcting codes which require finite field
multipliers or even inverters, it is of higher cost-efficiency.

Moreover, the circuit in Fig. 9 is a combinational network. It
takes almost no time in decoding. In contrast, many other popular
ECCs require decoders working in serial under a relatively large
latency, which is proportional to the codeword length N and
number of errors to be corrected m.

10.2 Hardware decoder module comparison

In this subsection, we verify the hardware cost of GTB codes by
FPGA implementation.

Since single and double errors are most common cases in
hardware distortions [24], the comparison is made among decoders
of m = 1, and m = 2, with codeword length b = 512 bits.

10.2.1 Single-byte error decoder comparison: The major
competitors of GTB codes when m = 1 are non-binary Hamming
codes, RS codes [25], and interleaved/parallel binary Hamming
codes [10, 26].

For the experiment of protecting a 512-bit data vector, we select
the parameters m = 1, b = {4, 8, 16, 32, 64}, K = 512/b for GTB
codes. The decoders of four different codes are implemented for
comparison on a Xilinx Virtex4 XC4VFX60 FPGA board. The
decoding complexity is the sum of both decoder's and redundancy's
hardware costs in terms of CLBs on FPGA.

From Fig. 10, the GTB decoding costs the least amount of
FPGA resources, and then the interleaved/parallel Hamming codes.
Their decoding complexity is almost the same. GTB codes achieve
more saving in syndrome computing by the optimal construction in
Section 3.2, and interleaved Hamming codes are better in
redundancy. Other decoders consume 70–150% more resources
than them. 

10.2.2 Double-byte error decoding complexity
comparison: The major competitors of GTB codes when m = 2
are RS codes and interleaved OLSC [27].

Similar as the previous implementation, the codes’ parameters
are m = 2, b = {4, 8, 16, 32, 64}, K = 512/b. The decoders of three
different codes are implemented for comparison. Their decoding
complexity including both the redundancy and decoder hardware
costs are shown in Fig. 11. 

When m = 2, the interleaved OLSC decoder costs five times
more than GTB codes, and RS costs almost 50 times more. As b
increases, GTB codes achieve more savings from the RS codes,
which need to operate over larger finite fields.

11 Application examples
In this section, we introduce three possible applications of the GTB
codes. While reliable memory design is a natural area for GTB

Fig. 9  Five-stage decoder of GTB codes. The bit width of each bus is
labelled

 

Fig. 10  Hardware cost comparison among four codes when m = 1. As b
increases, the GTB codes demonstrate more savings than the non-binary
Hamming and RS codes. Another cost-efficient choice for m = 1 is the
interleaved/parallel Hamming codes. When b = 64, RS or non-binary
Hamming decoders implementation becomes impractical due to large finite
field size

 

Fig. 11  Hardware cost of the three codes’ decoding procedure for m = 2.
When b = 64, RS or non-binary Hamming decoders implementation
becomes impractical due to large finite field size
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codes, we also propose two novel applications that GTB codes may
contribute to.

11.1 GTB codes for memories

The use of GTB codes on error correction for memories is
straightforward. As shown in Section 10.2, it is able to achieve a
lower decoding complexity at the cost of redundancy (memory
storage). Therefore at the design stage, the redundancy equation
(18) and decoding complexity estimation equation (25) have to be
evaluated and compared with the actual memory parameters
plugged in.

11.2 GTB codes for coded computation

Another application for GTB codes is on coded computation which
aims to restore missing data or tolerate stragglers. The general
assumption is that part (one or a few bytes) of the information is
missing, instead of being faulty. Therefore, data regeneration,
rather than error correction, becomes the goal. The situation is
often seen in a distributed system, where each node is carrying out
a share of the task. A few slower nodes (stragglers) can have
negative impact on the entire system by making all others wait for
them to finish before everyone can proceed [28]. Such a scenario is
often seen in heterogeneous clusters [29], storage systems [30],
machine learning acceleration [31], and so on.

An ECC capable of data regeneration is called an erasure code.
Among most erasure codes, the MDS codes such as RS codes are
generally adopted for their minimum redundancy. On the other
hand, codes such as OLSC cannot function as erasure codes
because of their incapability of error correction on redundant bytes.
An erasure ECC with distance D is able to correct up to
⌊(D − 1)/2⌋ errors, and regenerate up to D − 1 missing bytes.
Unlike error correction which uses the check matrix to restore the
codeword integrity, data regeneration usually leverages the
encoding matrix.

In this subsection, we show by an example that the GTB codes
can also be used as for coded computation. In this application,
GTB codes will require more redundancy than MDS codes, but its
data regeneration procedure has considerably less complexity and
latency. Similar as other erasure codes, for a (N, K, D)Q GTB code
where D = 2m + 2, it is able to regenerate up to D − 1 = 2m + 1
missing bytes.
 

Example 6: A distributed machine learning training system has
nine nodes for parallel matrix multiplication. Among the nine
nodes there can be no more than 30%stragglers. A straggler-
tolerance scheme can be designed by the framework of GTB codes.

First, a (N, K, D)Q = (16, 9, 4)Q GTB code is selected, which is
able to regenerate up to D − 1 = 3 bytes of missing or straggling
data. Among the N = 16 nodes, 9 of them are the original matrix
multiplication nodes, and 7 the redundant nodes to support data
regeneration. The decoding matrix can be generated by
Construction 1, and its encoding matrix can be derived by
Corollary 3 (see equation below) For a codeword v encoded by M′
where v = {v1, v2, …, vi, …, v16}, each vi stands for the output of a
matrix multiplication node. By M′ we have nodes {6, 7, 8, 10, 11,
12, 14, 15, 16} as the original matrix multiplication nodes, and the
rest can be coded as redundant. Assume that nodes 14, 15, 16 are
stragglers in a specific round of computation, and so
v = {v1, v2, …, v13, ?, ?, ?}.

By M′ we can simply derive that

v14 = v2 ⊕ v6 ⊕ v10;
v15 = v3 ⊕ v7 ⊕ v11;
v16 = v4 ⊕ v8 ⊕ v12 .

Therefore, the 3 bytes of missing data are regenerated.
 

Remark 7: For a similar straggler-tolerance system built by a
RS code, it will have (NRS, KRS, DRS)Q = (12, 9, 4)Q as the system
parameters. Although its required redundant nodes will be less than
the GTB-based system (only 3 needed for the RS code, while 7 for
the GTB code), its data regeneration has to involve matrix
inversion and matrix multiplication in finite fields. As Q can be
large in modern distributed systems (32-bit or 64-bit), those
operations will have to be carried out in a large field (GF(232) or
GF(264)), resulting in a non-negligible or even impractical
computation complexity and delay. As for the GTB codes, since its
encoding matrix is binary, only bitwise XOR operations are
necessary for data regeneration, making it more applicable to
realistic distributed systems.

11.3 GTB codes for group testing with neutralisation

Section 2 introduced the check matrix for GTB codes originated
from group testing. A conventional group testing scheme is able to
identify up to m targeted objects with a m-disjunct matrix, whose
rows are the group test patterns. Each column indexes an object in
the group, where the 1's in a column indicate which tests that
object is to participate. The OR of the m columns corresponding to
the targeted objects will form a syndrome vector. A 1 in the
syndrome vector is a positive test result (at least one targeted object
has participated in this test), and a 0 means negative (no targeted
objects in this test). By decoding the syndrome vector all targeted
objects can be identified. This technique is widely adopted in
applications such as locating the erroneous items in a system, or
identifying the poisonous solutions in a group of chemistry liquid.

However, such scheme is not applicable to the cases with object
neutralisation. For example, high level of acid or alkali in solutions
can both be considered as harmful (poisonous) to humans. For a
conventional group testing designed to identify the harmful
solutions in a group, it will return syndrome 0 at the tests which
both the acid and alkali solutions participate, since their mix will
be non-harmful salt and water.

The conventional group testing techniques are not able to
handle such cases when some targeted objects can neutralise each
other and result in negative test syndromes. Essentially, this is
because the conventional group testing syndromes are computed by
bitwise OR of m columns, which has no equivalence to
neutralisation. However, the syndrome computation of GTB codes
is based on XOR of the columns, enabling it to symbolise the
neutralisation phenomenon. We show this new feature by the
following example.
 

Example 7: There are nine solutions indexed by {1, 2, …, 9}
among which two are harmful to humans. One of the two
poisonous solutions is hydrochloric acid (HCl), and another sodium
hydroxide (NaOH). However, the indexes of the two poisonous
solutions are unknown. A group testing matrix to identify the two
harmful solutions is constructed as

M′ =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
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M =

1 2 3 4 5 6 7 8 9
a 1 1 1 0 0 0 0 0 0
b 0 0 0 1 1 1 0 0 0
c 0 0 0 0 0 0 1 1 1
d 1 0 0 1 0 0 1 0 0
e 0 1 0 0 1 0 0 1 0
f 0 0 1 0 0 1 0 0 1
g 1 0 0 0 0 1 0 1 0
h 0 0 1 0 1 0 1 0 0
i 0 1 0 1 0 0 0 0 1

,

where the column indexes of {1, 2, …, 9} correspond to the nine
solutions. Each row indexed by {a, b, …, i} is a group test pattern,
where the 1's in a row indicate which solutions are to be mixed for
a test.

Suppose after tests {a, b, …, i}, the syndrome vector is returned
as S = {0, 0, 0, 1, 1, 0, 0, 1, 1}. Therefore, we know that each of the
tests in {d, e, h, i} has involved at least one poisonous solution.

By the conventional group testing technique, it is not possible to
locate the two targeted solutions because there exist no i, j such
that

M*, i ∨ M*, j = S,

where ∨ is the bitwise OR operator.
However, by GTB decoding Algorithm 4, it can be found that

for i = 4, j = 5, we have

M*, i ⊕ M*, j = S,

where ⊕ is the bitwise XOR operator.
Therefore, the two poisonous solutions are identified by their

indexes 4 and 5. It can also be deduced that their neutralisation has
happened at test a, where the non-harmful salt and water are
produced.
 

Remark 8: For more complicated cases, such as multiple types
of neutralisations among multiple objects, non-binary GTB codes
can be leveraged to encode each neutralisation type accordingly.
However, this is beyond the scope of this paper.

With the proposed scheme, group testing can be made more
efficient, that within one group of tests, objects of multiple types
can be identified, even if there are neutralisations or maskings
among them.

12 Conclusion
As multi-byte errors become more probable with newer and faster
storage and compute systems, stronger protection against byte-
level distortions is highly demanded. Therefore, we propose a new
GTB multi-byte error correcting codes to address this issue. For
codewords with large bytes in Galois field GF(Q) where Q = 2b

and b ≥ 1, the proposed new code's decoding does not require any
multiplications or inversions in Galois fields. Instead, only bitwise
XORs and integer additions are necessary. The GTB codes achieve
much lower encoding and decoding complexity than other known
codes such as Hamming and RS codes. Comparing with the
competitors of low decoding complexity, such as bit-interleaved
codes, GTB codes have the advantage of better code rate.

The check matrices of GTB codes are generated from binary
superimposed codes, which enables low-complexity decoding with
mere binary or integer operations. The decoding complexity is as
low as O(mNb). As Q = 2b increases, the complexity only
increases proportionally to b. In contrast, popular codes relying on
finite field operations have complexity proportional to at least b2.
These characters make GTB codes a promising low-cost and high-
reliability ECC for the design of reliable systems.

Based on the GTB codes’ fast and low-complexity decoding,
we suggest that it can serve systems requiring high reliability, low
latency, and less demanding in redundancy [32].

13 Acknowledgments
This research is partially supported by the NSF grant nos.
CNS-1745808 and CNS-1012910. A bulk of this work was done
when Lake Bu was working at the Reliable Computing Laboratory.

14 References
[1] Wang, Z., Karpovsky, M.: ‘Reliable and secure memories based on algebraic

manipulation detection codes and robust error correction’. Proc. Int. Depend
Symp, Barcelona, Spain, 2013

[2] Fujiwara, E.: ‘Code design for dependable systems: theory and practical
applications’ (John Wiley & Sons, Marblehead, MA, USA, 2006), p. 264

[3] Umanesan, G., Fujiwara, E.: ‘A class of codes for correcting single spotty
byte errors’, IEICE Trans. Fundam. Electron. IEEE, 2003, 86, (3), pp. 704–
714

[4] Zhen, W., Karpovsky, M., Kulikowski, K.J.: ‘Replacing linear hamming codes
by robust nonlinear codes results in a reliability improvement of memories’.
IEEE/IFIP Int. Conf. Dependable Systems & Networks, DSN'09, Lisbon,
Portugal, 2009

[5] Schifra: ‘Schifra Reed-Solomon error correcting code library’, 2017.
Available at http://www.schifra.com/index.html

[6] Xilinx, Reed-Solomon Decoder v9.0, 2015
[7] Wu, Y.: ‘New list decoding algorithms for Reed-Solomon and bch codes’.

IEEE Int. Symp. Information Theory, 2007 (ISIT 2007), Nice, France, 2007
[8] Jeng, J., Truong, T.: ‘On decoding of both errors and erasures of a Reed-

Solomon code using an inverse-free Berlekamp-Massey algorithm’, IEEE
Trans. Commun., 1999, 47, (10), pp. 1488–1494

[9] Xilinx, LogiCORE IP Reed-Solomon Decoder, v8.0, ds862 ed., October 19,
2011

[10] Cui, Y., Zhang, X.: ‘Research and implementation of interleaving grouping
hamming code algorithm’. 2013 IEEE Int. Conf. Signal Processing
Communication and Computing (ICSPCC), Kunming, China, 2013, pp. 1–4

[11] Laendner, S., Milenkovic, O.: ‘LDPC codes based on Latin squares: cycle
structure, stopping set, and trapping set analysis’, IEEE Trans. Commun.,
2007, 55, (2), pp. 303–312

[12] Datta, R., Touba, N.A.: ‘Generating burst-error correcting codes from
orthogonal Latin square codes–a graph theoretic approach’. 2011 IEEE Int.
Symp. Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), Vancouver, Canada, 2011, pp. 367–373

[13] D'yachkov, A.G., Macula, A.J., Rykov, V.V.: ‘On optimal parameters of a
class of superimposed codes and designs’. IEEE Int. Symp. Information
Theory, Cambridge, MA, USA, 1998

[14] D'yachkov, A.G., Macula, A.J., Rykov, V.V.: ‘New applications and results of
superimposed code theory arising from the potentialities of molecular
biology’, in ‘Numbers, information and complexity’ (Springer, New York, NY,
USA, 2000), pp. 265–282

[15] Kautz, W., Singleton, R.: ‘Nonrandom binary superimposed codes’, IEEE
Trans. Inf. Theory, 1964, 10, (4), pp. 363–377

[16] D'yachkov, A.G., Rykov, V.V.: ‘Bounds for the length of disjunctive codes’,
Probl. Inf. Transm., 1982, 18, (3), pp. 7–13

[17] Luo, P., Lin, A., Zhen, W., et al.: ‘Hardware implementation of secure
Shamir's secret sharing scheme’. IEEE 15th Int. Symp. High-Assurance
Systems Engineering (HASE), Miami, FL, USA, 2014

[18] D'yachkov, A.G., Rykov, V.V.: ‘Optimal superimposed codes and designs for
Renyi's search model’, J. Stat. Plan. Inference, 2002, 100, (2), pp. 281–302

[19] Ling, S., Xing, C.: ‘Coding theory: a first course’ (Cambridge University
Press, Cambridge, UK, 2004)

[20] Wang, Z., Karpovsky, M.G., Bu, L.: ‘Design of reliable and secure devices
realizing Shamir's secret sharing’, IEEE Trans. Comput., 2015, pp. 2443–
2455

[21] Bu, L., Karpovsky, M.G., Wang, Z.: ‘New byte error correcting codes with
simple decoding for reliable cache design’. 21st IEEE On-Line Testing Symp.
(IOLTS), Halkidiki, Greece, 2015

[22] Meyer, C.D.: ‘Matrix analysis and applied linear algebra’ (Siam,
Philadelphia, PA, USA, 2000)

[23] Moreira, J.C., Farrell, P.G.: ‘Essentials of error-control coding’ (John Wiley
& Sons, Marblehead, MA, USA, 2006)

[24] Fog, A.: ‘The microarchitecture of Intel, AMD and VIA CPUs – an
optimization guide for assembly programmers and compiler makers’
(Technical University of Denmark, Lyngby, Denmark, 2014)

[25] Pontarelli, S., Reviriego, P., Ottavi, M., et al.: ‘Low delay single symbol error
correction codes based on Reed Solomon codes’, IEEE Trans. Comput., 2015,
64, (5), pp. 1497–1501

[26] Namba, K., Lombardi, F.: ‘High-speed parallel decodable nonbinary single-
error correcting (sec) codes’, IEEE Trans. Device Mater. Reliab., 2016, 16,
(1), pp. 30–37

[27] Yalcin, G., Islek, E., Tozlu, O., et al.: ‘Exploiting a fast and simple ECC for
scaling supply voltage in level-1 caches’. IEEE On-Line Testing Symp.
(IOLTS), Platja d'Aro, Spain, 2014

[28] Dean, J., Barroso, L.A.: ‘The tail at scale’, Commun. ACM, 2013, 56, (2), pp.
74–80

[29] Reisizadeh, A., Prakash, S., Pedarsani, R., et al.: ‘Coded computation over
heterogeneous clusters’, arXiv preprint arXiv:1701.05973, 2017

12 IET Comput. Digit. Tech.
© The Institution of Engineering and Technology 2018

http://www.schifra.com/index.html


[30] Lee, K.W.: ‘Speeding up distributed storage and computing systems using
codes’. Ph.D. dissertation, UC Berkeley, 2016

[31] Lee, K., Lam, M., Pedarsani, R., et al.: ‘Speeding up distributed machine
learning using codes’, IEEE Trans. Inf. Theory, 2018, 64, (3), pp. 1514–1529

[32] Ge, S., Wang, Z., Luo, P., et al.: ‘Secure memories resistant to both random
errors and fault injection attacks using nonlinear error correction codes’.
ACM Proc. 2nd Int. Workshop on Hardware and Architectural Support for
Security and Privacy, Tel-Aviv, Israel, 2013

15 Appendix
 
15.1 Appendix 1: Proof of the RS code parameters to
construct the check matrix for GTB codes

 
Proof: According to Construction 1 and (2), we have

A ⋅ l = q ⋅ nq ⋅ qkq − 1 = nqq
kq = nqN

Since N is given, it comes down to find the minimal nq. For RS
codes, we have

m = nq − 1
kq − 1

When m is given, the problem comes down to find the minimal kq,
which is obviously kq = 2.

Then by substituting it to all other equations

N = q2;
A = q(m + 1);
l = q .

Hence

A ⋅ l = (m + 1)N .

□

15.2 Appendix 2: Proof of the optimal q

 
Proof: Since N = K + R = qkq, R = A − m, and A = q ⋅ nq, by

substituting R and A into N, we have

qkq − q ⋅ nq − K + m = 0.
From Theorem 1 the optimal kq and nq are given as

kq = 2; nq = m + 1.

By solving the first quadratic equation, the optimal qopt when K and
m are given is (12). □

15.3 Appendix 3: Proof of the parameters of GTB codes

 
Proof: The redundancy R of a code is equal to the number of

linearly independent rows in its check matrix. By Construction 1
and the definition of blocks, M has nq blocks and the sum of all
rows in each block is always a vector of all 1's.
Therefore, we only need to remove any one row each of nq − 1
blocks to make the rest of the rows all linearly independent. Also
from (9), nq − 1 = m, so that

R = A − (nq − 1) = qnq − m = q(m + 1) − m;
K = N − R = q2 − q(m + 1) + m .

If M is constructed from an m-superimposed code, in every column
there are nq = m + 1 number of ones. In Section 3.1, λ is defined as

the maximal number of ones in common between any two
columns. From Construction 1

λ = nq − dq .

Since for RS codes ..

λ = nq − rq − 1 = kq − 1.

From Theorem 1 the optimal kq = 2, thus

λ = 1. (26)

For any two columns of M, since λ = 1, the bitwise XOR of them
can generate at most one 0 from two 1's in the same location of
these two columns. We call this a cancellation. For x columns, the

maximal number of cancellations is 
x
2 .

On the other hand, since each of these x columns has m + 1 1's,
the maximal number of 1's in all x columns is x(m + 1). For each
block there needs to be at least 1 cancellation to make their bitwise
XOR equal to zero. Therefore, the sum can have at most
x(m + 1) − (m + 1) 1's.

To make the number of cancellations greater than or equal to
the number of 1's in the sum of x columns, we have

x
2 ≥ (m + 1)x − (m + 1);

⇒ x2 − (2m + 3)x + 2(m + 1) ≥ 0.

Solving this quadratic equation, we have x ≥ 2m + 2. This shows
that for a matrix M constructed by an m-superimposed code with
the parameters from (9), it takes at least 2m + 2 columns to make
their bitwise XOR sum a vector of all zeros. Meaning for GTB
codes

D = 2m + 2.

Therefore, given N and m, the parameters of the corresponding
optimal GTB code are

(N, K, D)Q = (q2, q2 − q(m + 1) + m, 2m + 2)Q .

□

15.4 Appendix 4: Proof of the GTB code error locating
algorithm

 
Proof: Construction 1 indicates that for any column j in M,

there are exactly nq = m + 1 ones in M*, j. Therefore, if the error ej
affects all the nq bits of Ssup where vj participates in computation,
then reversely the location of ej can be found by summing up all
the affected support of the syndromes and comparing it with m + 1.
□

15.5 Appendix 5: Proof of the GTB code error correction
algorithm

 
Proof: According to Construction 1, in a matrix M whose

columns are codewords of an m-superimposed code, within any set
T of columns, T ≤ m + 1, for any column h, h ∈ T , there must
exist a row k in M, where Mk, h = 1 in column h, and Mk, j = 0 for
all j ∈ T , j ≠ h. Since this is true for all columns in T, there exists
an (m + 1) × (m + 1) identity sub-matrix in any given m + 1
columns.
The column indexes of m errors are given by u as in Algorithm 1.
The rows Mi, * for the identity sub-matrix can be easily identified
by checking if only one error participates in the computing of S(i).
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Meaning for any one out of m errors, where T = { j ej ≠ 0} is
the set of error locations, there exits at least one row Mi, *, where
only Mi, j = 1 and Mi, h = 0 for all h ∈ T , h ≠ j.

This m × m identity sub-matrix will provide the indexes of the
digits in syndrome S which are affected by each single error digit ej
only, such that

S(i) = Mi, * ⋅ v~ = Mi, * ⋅ e = ej .

Therefore, vj = v~ j ⊕ ej = v~ j ⊕ S(i). □

15.6 Appendix 6: Proof of 1-step decoding

 
Proof: If the number of digits in CRS codewords increases by Δ,

meaning the number of blocks in M increasing to nq′ = nq + Δ, then
the number of blocks without error masking will be increased by
Δ. So the number of digits without error masking in the syndrome
will increase by Δ. In this way, the lower bound in (14) can be re-
written as

Pcorr ≥ (1 − Q−1)m − 1 − Δ .
If Δ = 0, then (15) is equivalent to (14).

If Δ = m − 1, then Pcorr = 1. Meaning for any ej, among 2m
digits of the syndrome it affects, there are always at least
nq = m + 1 digits indicating that it is an error. This will be the same
as majority voting. Meaning all m errors can be located and
corrected with exactly the probability of 100%.

Since ∑Ssup(i) ≥ m + 1 ?1:0 can be simply represented as a
threshold gate, where m + 1 or more ones in the input produce a

binary 1 in the output, the procedure presented in Algorithm 3 can
be called 1-step threshold decoding. □

15.7 Appendix 7: Proof of double error correction algorithm

 
Proof: When m = 2, we have λ = 1. So there can be at most one

error masking in syndrome S. Therefore, if

wj = ∑
{i Mi, j = 1}

Ssup(i) = m;

Then it is possible that ej ≠ 0.
However, there can be more than two uj = 1. From Definition 2,

the bitwise OR of any two columns cannot cover another column.
Therefore, for any wj = m = 2, there must exit a row Mi, * such that

∑
{ j Mi, j = 1}

wj = 1.

However, since for double error correcting GTB codes
D = 2m + 2 = 6, any two syndromes of two different double errors
must be different. Therefore, for this row Mi, *, if

S(i) = 0;

Then in vj there cannot be an error. Because if there is an error in
vj, and ∑wj = 1, then S(i) = ej ≠ 0. □
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