Arithmetical Codes.

Detection and Correction of errors In Arithmetical Channels (Adders, Multipliers, etc)

Let $S=\{0,1,...,2^n-1\}$ and C is a subset of S. We will call C arithmetical code.

For any a,b from S we denote the **arithmetical distance** between a and b as d(a,b), where d(a,b) is a minimal number of terms $+2^i$ or -2^i in representation of la-bl, where i<n. Norm lal of a is d(0,a)

For example, for n=4 we have d(2,9)=2, since $9-2=+2^3-2^0$. (171=2)

The (arithmetical) **distance d(C) of a code C** is a minimal distance between any two different elements of the code.

If y is distorted into y'=y+e, then the multiplicity of error e is lel.

Code C detects t errors iff $d(C) \ge t+1$. C corrects t errors iff $d(C) \ge 2t+1$.

AN-Codes

C={0, A, 2A,...,(K-1)A} where (K-1)A \leq 2ⁿ-1. For any v from C we have residue of v modulo A res_Av is equal to 0. (res_Av=0, compare to Hv=0 where H is a check matrix of a linear code)

Error detection: verify that the output v' of the Arithmetical Device (AD) belongs to C (verify that $res_A v' = 0$)

Error correction: For an output v find nearest (in terms of arithmetical distance) codeword v

Single Error Detecting Arithmetical codes with distance 2:

A=3 Since res $_3$ 2^i is NOT equal to 0 . Modulo 3 check.

Number of codewords K≤(2ⁿ-1)/3

Single Error Correcting (SEC) Arithmetical Codes with distance 3.

Any single error e is in the form $+2^{i}$ or -2^{i} (i=0,1,...,n-1)

To correct single errors by AN-code we need that syndromes $res_A e$ should be all different and not equal to 0.

Example 1. n=5, A=11. Then res
$$_{11}$$
 2⁰=1, res $_{11}$ (-2⁰)=10, res $_{11}$ 2¹=2, res $_{11}$ (-2¹)=9, res $_{11}$ 2² =4, res $_{11}$ (-2²)=7, res $_{11}$ 2³=8, res $_{11}$ (-2³)=3, res $_{11}$ 2⁴=5, res $_{11}$ (-2⁴)=6 (mod11)

All numbers $+2^{i}$ and -2^{i} (i=0,1,2,3,4) are different modulo 11 and we have 11N single error correcting code C={0,11,22}.

Hamming Bound

Let $V_A(n,t)$ number of errors with multiplicity t for $S=\{0,1,...,2^n-1\}$ (Volume of an **arithmetical** ball with radius t)

Since for error correction by AN code any 2 errors e and $e^{'}$ should have different syndromes $(res_Ae^{\neq}res_Ae^{'})$ we have

A≥V_A(n,t)

(Compare to $2^{n-k}=2^r \ge V_H(n,t)$ where $V_H(n,t)$ is volume of the Hamming ball of radius t for algebraic codes)

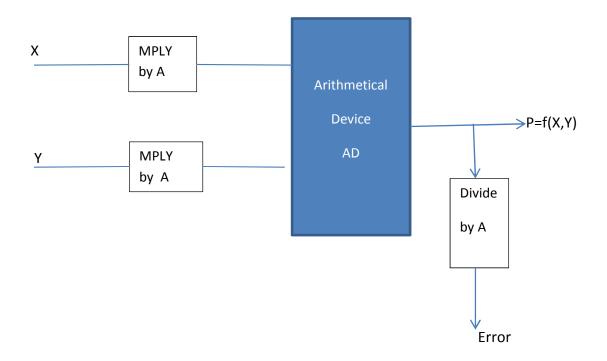
Code is **perfect** iff $A=V_A(n,t)$

For single errors (t=1, d=3) $V_A(n,1)=2n+1$

SEC code is **perfect** iff A=2n+1. The 11N code from the Example is perfect.

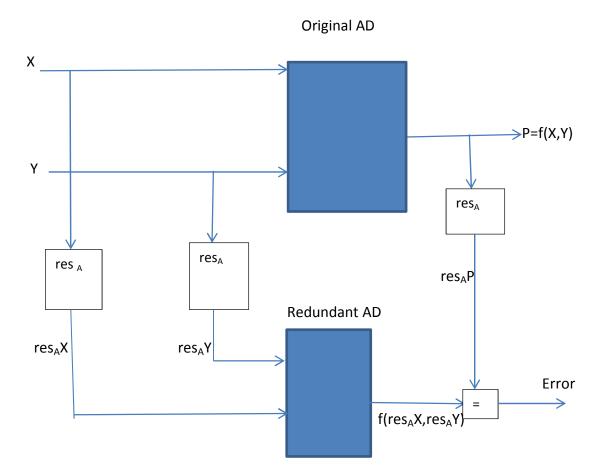
Theorem. AN code is perfect SEC code iff 2 is primitive modulo A.

Hardware Implementations of Nonsystematic Arithmetical Codes



Hardware Implementations of Systematic Arithmetical Codes

Codewords in the form (P,res_AP) (P is k bits , res_AP is $r=log_2A$ bits)



Low cost AN codes

division is not required to compute resaX

Denote: q=A-1. Represent X with radix q

$$X = \sum_{i=0}^{m} X_i q^i$$
 where X_i belongs to $\{0,1,...,q-1\}$.

Then $res_AX = res_AX_0 + res_AX_1 + ... + res_AX_m = X_0 + X_1 + ... X_m$ since $res_AX_i = X_i$

Or

q=A+1. Represent X with radix q

$$X = \sum_{i=0}^{m} X_i q^i$$
 where X_i belongs to $\{0,1,...,q-1\}$.

Then $res_AX = res_AX_0 - res_AX_1 + res_AX_2 - res_AX_3 + ... + res_AX_m = X_0 + X_1 + ... X_m$ where $res_AX_i = X_i$ if $X_i < q-1$, $res_AX_i = 0$ if $X_i = q-1$

For $q=2^s$

 $A = 2^{s} + 1 \text{ or } A = 2^{s} - 1.$

If $A = 2^{s} + 1$ then $res_{A}(2^{s}) = -1$ and If $A = 2^{s} - 1$ then $res_{A}(2^{s}) = 1$

Example1 . A=31, s=5, n=15

Let
$$X = \sum_{i=0}^{14} x_i 2^i = \sum_{i=0}^4 x_i 2^i + 2^5 \sum_{i=5}^9 x_{i+5} 2^i + 2^{10} \sum_{i=10}^{14} x_{i+10} 2^i = X_0 + 2^5 X_1 + 2^{10} X_2$$
 where X_0, X_1, X_2 belong to $\{0, 1, ..., 31\}$

Then

$$res_{31}X = res_{31}X_0 + res_{31}X_1 + res_{31}X_2$$
 (mod31). $res_{31}X_i = X_i$ if $X_i < 31$, and $res_{31}X_i = 0$ if $X_i = 31$

Example 2. A=33, s=5, n=15

Let
$$X = \sum_{i=0}^{14} x_i 2^i = \sum_{i=0}^4 x_i 2^i + 2^5 \sum_{i=5}^9 x_{i+5} 2^i + 2^{10} \sum_{i=10}^{14} x_{i+10} 2^i = X_0 + 2^5 X_1 + 2^{10} X_2$$
 where X_0, X_1, X_2 belong to $\{0, 1, ..., 31\}$

Then

$$res_{33}X = res_{33}X_0 - res_{33}X_1 + res_{33}X_2 = X_0 + X_1 + X_2 \pmod{33}$$