# EC500

Design of Secure and Reliable Hardware

Lecture 7

Mark Karpovsky

### Concurrent Checking of Linear Devices

A device is linear if it can be implemented by <u>XOR</u> gates and <u>FFS only</u>.

Linear <u>combinational</u> devices:



 $z(t) = y(t) \cdot A$ , all computations mod 2 (For q-ary devices all the computations mod q)

*Example*: Network computing syndromes for  $(M = 2^m - 1, 2^m - m - 1, d = 3)$  Hamming code

Linear Sequential devices:

$$D(t+1) = D(t)A \oplus y(t+1) \qquad \qquad D(t), y(t), z(t) \text{ are $n$-bit vectors} \\ z(t+1) = D(t+1) \qquad \qquad A \text{ is } (n \times n) \text{ binary matrix}$$

$$y(t+1)$$
  $\nearrow$   $X$   $Y(t+1)$ 

D(t) internal state

Select code C of length t to protect a linear device (C is a (t,k) code, r=t-k). A generating matrix of C can always be presented as G=(I:P), where I is the  $(k\times k)$  identity matrix and P is a  $k\times (t-k)$  matrix.

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ & & & & & P \end{bmatrix} \Rightarrow P = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$(v_1,\cdots,v_k,v_{k+1},\cdots,v_t)\in \mathcal{C} \text{ iff } R(v_1,\cdots,v_k)=(v_{k+1},\cdots,v_t)=(v_1,\cdots,v_k)P$$
 \(\sim \text{redundant bits in a codeword}\) \(\sim \text{encoding}

Example: For the above (7,4) code

$$(1 \quad 0 \quad 0 \quad 1) \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = (1 \quad 0 \quad 0) \text{ and } (1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0) \text{ is a codeword.}$$

Thus for combinational linear machines we have for redundant outputs, R(z(t)) = y(t)AP = y(t)A' where A' is  $A \cdot P$  and z(t) = y(t)A

Example: Let the original linear combinational device be defined as:

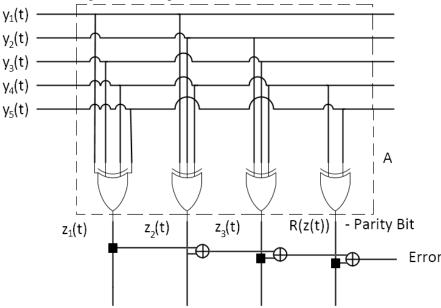
$$z(t) = y(t) \qquad \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}, n = 5, k = 3$$

If we want to protect it with (4,3) 1-dim parity, then we have for the parity bit  $P = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$ 

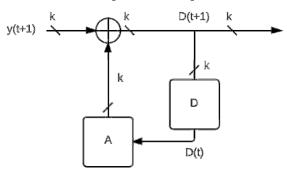
$$R(z(t)) = y(t)A' = y(t) \cdot \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = y(t) \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

If  $y(t) = (y_1(t), y_2(t), y_3(t), y_4(t), y_5(t))$ , then  $R(z(t)) = y_4(t) \oplus y_5(t)$ .

# Network for the previous example



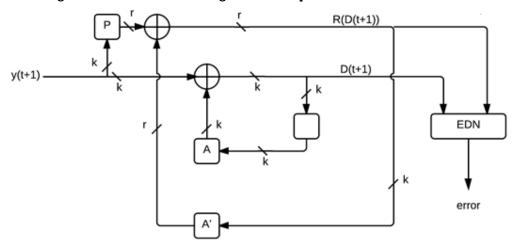
### Concurrent Checking of Linear Sequential Devices



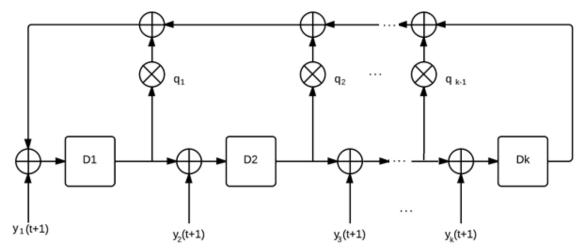
$$\begin{split} D(t+1) &= D(t)A \oplus y(t+1), \\ A \text{ is a } (k \times k) \text{ binary matrix.} \end{split} \qquad D(t), y(t) \in GF(2^k)$$

For concurrent checking by the code C with k information bits with G = (I : P), we have  $R(D(t+1)) = R(D(t)A) \oplus R(y(t+1))$ =  $D(t)AP \oplus y(t+1)P$ =  $D(t)A' \oplus y(t+1)P$ ,  $A' = A \cdot P$ 

# Block Diagram for Concurrent Checking of Linear Sequential Devices



Example: Let the sequential device by MISR:



$$x^k+q_{k-1}x^{k-1}+\cdots+q_1x+q$$

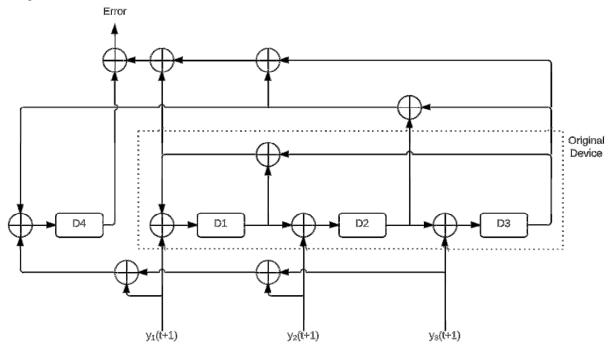
$$\text{Then, } A = \underbrace{\begin{bmatrix} q_1 & 1 & 0 & 0 & \cdots & 0 \\ q_2 & 0 & 1 & 0 & \cdots & 0 \\ q_3 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ q_{k-1} & 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}}_{k} k = \begin{bmatrix} q_1 & & & & & \\ q_2 & & I_{k-1} & & & \\ \vdots & & & & & \\ q_{k-1} & & & & & \\ 1 & 0 & \cdots & 0 \end{bmatrix}$$

Select 
$$(k+1,k)$$
 code to protect this MISR, then  $P = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$  and  $A' = AP = \begin{bmatrix} \bar{q}_1 \\ \bar{q}_2 \\ \vdots \\ \bar{q}_{k-1} \\ 1 \end{bmatrix}$ ,  $\bar{q}_i = 1 - q_i$ . For binary

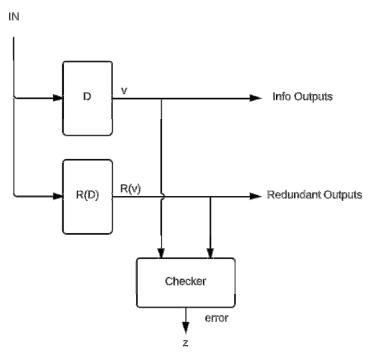
$$\bar{q}_i=1\oplus q_i$$

$$\begin{array}{l} y(t+1)P = \bigoplus_{i=1}^k y_i(t+1) \\ D(t)A' = \bigoplus_{i=1}^k D_i(t)\bar{q}_i \oplus D_k(t) \end{array}$$

# Example: k = 3



 $\underline{ \textbf{Self Checking Checkers}}_{\text{(Self-checking decoders for error detecting/correcting codes)}}$ 



 $x = \big(v, R(v)\big) \in X - \underline{\text{input code}} \text{ range of } z(x) \text{ for fault-free } v, R(v)$ z(x) – output

Z domain of z(x) for fault-free v, R(v), z output code

Consider class F of faults in the checker

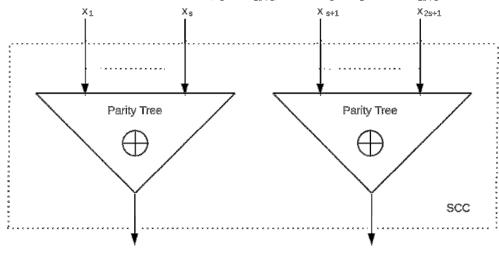
 $\underline{Ex}$ . F is SSFS.

$$Z(x)$$
  $\uparrow$   $Z_f(x), f \in F$   
Fault  $f$  in the checker

- **Def 1.** Checker is <u>fault-secure</u> iff for  $\forall x \in X$  and  $\forall f \in F$ ,  $z_f(x) \notin Z \to$  fault is detected by the checker
- **Def 2.** Checker is self-testing iff for  $\forall f \in F \ \exists x \in X: \ z_f(x) \notin Z$ 
  - $\therefore$  there exists at least one fault-free input which provokes a fault  $f \in F$  in the checker and distorts the outputs of the checker.
- **Def 3.** A circuit is a <u>checker</u> iff for any  $x \notin X$ ,  $z(x) \notin Z$  and  $x \in X$ ,  $z(x) \in Z$  (This is also known as the <u>codedisjoint</u> property)
- Def 4. A checker is self-checking iff fault-secure and self-testing
- ${f T1.}$  A self-checking checker needs to have at least two output lines, each of which must take values 1 and 0 during normal operation.

# Examples of Self Checking Checkers (SCC)

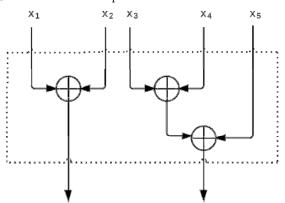
X is an odd parity code of odd length  $(x_1,\cdots,x_{2s+1})\in X$  iff  $x_1\oplus x_2\oplus\cdots\oplus x_{2s+1}=1$ 



F is a set of SSFS.

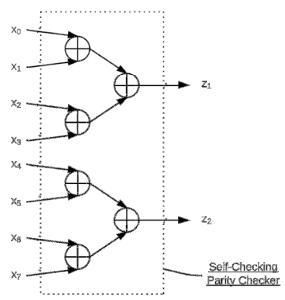
$$Z = \{01,10\}$$

S = 2 number of outputs of the checker



(Self-checking checkers for several codes can be found in: Pradhan, Fault Tolerant Computing Vol 1, Ch 5.)

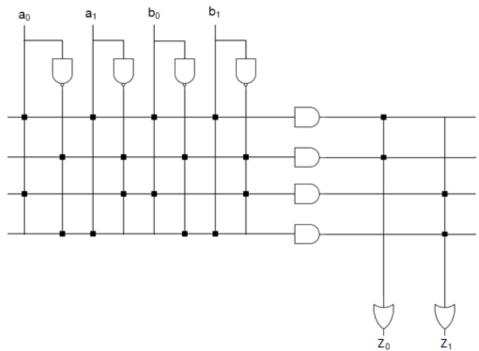
 $\underline{Example}$ : m = 8



- 1) If  $x \in V$  and no faults in the checker  $\Rightarrow z_1 = z_2$ 2) If  $x \notin V$  (odd number of ones in x) and no faults in the checker  $\Rightarrow z_1 \neq z_2$ 3) If  $x \in V$  and there is a SSF in the checker, then  $z_1 \neq z_2$

# **Totally Self-Checking Match Detector**

$$\begin{aligned} k &= 2, \ a = (a_0, a_1), \ b = (b_0, b_1) \\ a, b &\in X = C_{In} \Leftrightarrow a = b, \ Z = C_{Out} = \{01, 10\} \end{aligned}$$



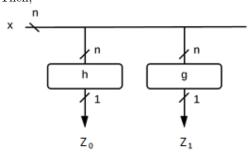
$$Z_0 = 1, \ a_0 = b_0 = a_1 = b_1$$
  
 $Z_1 = 1, \ a_0 = b_0 \neq a_1 = b_1$ 

# Design of Totally Self-Checking Checkers (TSCC)

Let 
$$f(x) = 1 \Leftrightarrow x \in C_{ln}$$
 – Input code  $x \in \{0,1\}^n$ 

Represent f as  $h(x) \oplus g(x)$ , then the following is a TSCC with  $C_{out} = \{01,10\}$  iff  $C_{In}$  is a test set for Single Stuck-at Faults (SSFS) in networks implementing h and g.

Then,



is a TSCC with  $C_{out} = \{01,10\}$  iff  $C_{ln}$  is a test set for SSFS in networks implementing h and g.

# <u>Dual-Rail Design of TSCC with</u> $Z = C_{Out} = \{01, 10\}$

Let 
$$f(x) = 1 \Leftrightarrow x \in C_{ln}$$
,  $x \in \{0,1\}^n, X = C_{ln} \subseteq \{0,1\}^n$ 

Denote  $\varphi(x) = \bar{f}(\bar{x})$ ,  $\bar{x}$  – componentwise negation of x

 $\varphi(x)$  is called dual to  $f(x) \to \varphi(\bar{x}) = \bar{f}(x)$ 



 $X=C_{ln}$  is a test for SSFs in f and  $\varphi, f$  and  $\varphi$  have the same complexity.

This approach is better than replication (duplication) of f (duplication does <u>not</u> provide for self-testing)

 $\underline{Example}\!.$  Totally Self Checking Checker for  $(3,1,3)_2$  repetition code

$$X = C_{In} = \{000,111\}$$
  
 $Z = C_{Out} = \{01,10\}$ 

$$f(x_1, x_2, x_3) = \bar{x}_1 \bar{x}_2 \bar{x}_3 + x_1 x_2 x_3 = \bar{x}_1 \bar{x}_2 \bar{x}_3 \oplus x_1 x_2 x_3$$

