EC500

Design of Secure and Reliable Hardware

Lecture 5

Mark Karpovsky

Linear Codes

Let Z_q^n be an *n*-dim space over GF(q). q is a power of prime. Code $C \subseteq Z_q^n$ is <u>linear</u> iff C is a <u>subspace</u>. $(x, y \in C \rightarrow x + y \in C, a \in GF(q), x \in C \rightarrow ax \in C)$

If C is a k-dim subspace of \mathbb{Z}_q^n , then we will write that C is a (n,q^k) code. $(|C|=q^k)$ Then, C has k information digits and r = n - k check digits.

Examples:

- 1. Repetition codes are linear
- Parity codes are linear
- ISBN code is linear

Code distance = smallest of weights of the non-zero codewords. For linear codes, $d(x,y) = ||x + y|| \rightarrow$

Consider (n,q^k) code $C\subseteq Z_q^n,$ C is a k-dim subspace in Z_q^n . Let $v_1,v_2,\cdots,v_k\in C$ for a basis for C. Consider

the matrix
$$G = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_k \end{bmatrix} k$$
. G is known as a generating matrix for C . The same code C can have many n

generating matrices.

Example: q = 2, n = 5

Linear Vector Spaces over Finite Fields

Let q be a prime, consider GF(q) and Z_q^n . $x=(x_1,\cdots,x_n)\in GF(q)$ iff $x_i\in GF(q)$.

- 1. $x + y = (x_1 + y_1, \dots, x_n + y_n) \pmod{q}$
- 2. $ax = (ax_1, ax_2, \dots, ax_n), a \in GF(q) \rightarrow a \text{ scalar}$
- 3. a(x + y) = ax + ay, $a \in GF(q)$
- 4. a(bx) = (ab)x, $a, b \in GF(q)$

 \mathbb{Z}_q^n is a $n\text{-dimensional linear vector space over }GF(q). Let <math display="inline">V\subseteq \mathbb{Z}_q^n$ and if

- 1. $x, y \in V, x + y \in V$ 2. $a \in GF(q), x \in V, ax \in V$

Then V is a <u>subspace</u> of \mathbb{Z}_q^n .

Let $v_1, v_2, \dots, v_r \in \mathbb{Z}_q^n$. Consider a linear combination $a_1v_1 + a_2v_2 + \dots + a_rv_r$, $a_i \in GF(q)$. v_1, v_2, \dots, v_r are <u>linear dependent</u> iff $\exists a_1, a_2, \dots, a_r$ not all equal 0 such that $a_1v_1 + a_2v_2 + \dots + a_rv_r = 0$. Otherwise v_1, v_2, \cdots, v_r are <u>linearly independent</u>.

A linear independent set of vectors are called basis iff all linear combinations of these vectors form the subspace and all these linar combinations are different.

Examples: q = 2, n = 4

- 1. $\{0001,0010,0100,1000\}$ is a basis for \mathbb{Z}_2^4
- 2. $\{0011,0010,1100,1000\}$ is a basis for \mathbb{Z}_2^4
- 3. $\{0011,0110,1100,1001\}$ is <u>not</u> a basis for \mathbb{Z}_2^4

Let v_1, v_2, \cdots, v_r be a basis for $Z_q^n,$ then: $v_i \in Z_q^n$

- 1. r = n
- 2. Any vector $x \in \mathbb{Z}_q^n$ can be represented in a unique way as $a_1v_1 + a_2v_2 + \cdots + a_nv_n = x$.

Remark:

 \mathbb{Z}_q^n is a *n*-dimentional space over GF(q) iff q is a prime or power of prime.

Equivalent Transformations of Linear Codes

Two codes are equivalent iff: they can be obtained by

- Permutation of digits
 Multiplication of all digits in the same position by a scalar

Example: q = 3, n = 3, k = 20 1 2 2 2 0 0 2 1 1 1 0 2 0 1 1 0 2 1 0 0 2 2

 C_1 and C_2 are equivalent (columns 1 and 3 are transposed and column 2 multiplied by $2 \mod (3)$)

- **T.** Two $(k \times x)$ matrices generate equivalent (n, q^k) codes over GF(q) if one matrix can be obtained from another by the sequence of operations of the following types:
 - (R1) Permutation of rows
 - (R2) Multiplication of a row by a non-zero scalar
 - (R3) Addition of a scalar multiple of one row to another
 - (C1) Permutations of columns
 - (C2) Multiplication of a column by a non-zero scalar
- **T.** Get G to be a generating matrix of (n, q^k) code $(G \text{ is a } (k \times x) \text{ } q\text{-ary matrix})$. Then using $(R1) \div (R3)$ and (C1), (C2), G can be transformed into a standard form.

$$G = [I : P]$$

 $I = (k \times k)$ identity matrix

$$P \qquad (k \times (n-k)) \text{ matrix}$$

Parity Check Matrices Syndrome Decoding

Let
$$u=(u_1,\cdots,u_n)\in Z_q^n$$

 $v=(v_1,\cdots,v_n)\in Z_q^n$

$$\langle u, v \rangle = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

$$\langle u, v \rangle = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

 $\langle u, v \rangle \in \mathbb{Z}_q^n - \text{scalar product of } u \text{ and } v$

If $\langle u, v \rangle = 0$ then $u \perp v$, u is orthogonal to v

Example:

$$(2011,1210) = 0$$

$$\langle 1212,2121 \rangle = 2$$

T.
$$\langle u, v \rangle = \langle v, u \rangle$$

T.
$$w, u, v \in \mathbb{Z}_q^n$$
, $\lambda, \mu \in \mathbb{Z}_q$
 $\langle \lambda u + \mu v, w \rangle = \lambda \langle u, w \rangle + \mu \langle v, w \rangle$

Let \mathcal{C} be a (n,q^k) code, $\mathcal{C}\subseteq \mathbb{Z}_q^n$. Then \mathcal{C}^\perp (orthogonal to \mathcal{C} or dual to \mathcal{C}), $C^{\perp} = \left\{ v \in \mathbb{Z}_q^n \middle| \langle v, u \rangle = 0 \text{ for all } u \in C \right\}$

Examples:

1.
$$q = 2, n = 4$$

$$C = \begin{matrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{matrix} \Rightarrow C^{\perp} = C, \ C \text{ is self-dual}$$

2.
$$q = 2, n = 3$$

$$C = \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{matrix} \rightarrow G_C = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \Rightarrow k_c = 2, \ C^{\perp} = \begin{matrix} 0 & 0 & 0 \\ 1 & 1 & 1 \end{matrix} \Rightarrow k_c = 1$$

T.
$$(C^{\perp})^{\perp} = C$$

T. Let G_c be a generating matrix, then $v \in C^{\perp} \iff G_c v = 0$

T. If dim $C = k_c \Rightarrow \dim C^{\perp} = k_{C^{\perp}} = n - k_C$ and C^{\perp} is a (n, q^{n-k_c}) code

Consider a generating matrix for C^{\perp} , $H=G_{C^{\perp}}$. We will call H a <u>parity check</u> matrix for C.

T.
$$HG^{TR} = 0$$
 – matrix of all zeros

For any $v \in \mathcal{C}$, Hv = 0 – vector of all zeros

Any code C can be defined by its generating matrix G or check matrix H. $C = \{v \in Z_a^n | HV = 0\}$

$$\begin{aligned} & \text{For } C = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}, \ C^{\perp} = C \rightarrow G = H = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \\ & 1 & 1 & 1 & 1 \\ v \in C \rightarrow H \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = 0 \rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = \begin{bmatrix} v_1 + v_2 \\ v_3 \\ v_4 \end{bmatrix} = 0 \rightarrow \begin{cases} v_1 + v_2 = 0 \\ v_3 + v_4 = 0 \end{cases} \Rightarrow \underline{\text{parity checking equations}}$$

Example:

Consider $(n,2^{n-1})$ binary parity code. For this code $\mathcal{C},$

$$v \in \mathcal{C} \Leftrightarrow v_1 + v_2 + \dots + v_n = 0 \Leftrightarrow H = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \end{bmatrix}, r = n - k = 1$$

T. Let C be a (n, q^k) code and $G = [\overbrace{I_k : P}] k$ is the generating matrix for C. Then

 $H = \left[\overline{-P^{TR} : I_{n-k}} \right] n - k$. $-P^{TR}$ is P transposed multiplied by (-1). $H = \left[-P^{TR} : I_{n-k} \right]$ is a standard form for the check matrix.

4

Example: q = 2, n = 7, k = 4

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}, \text{ then } H = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \text{ (For the binary case } \ominus = \oplus \text{)}$$

Example:

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\uparrow \text{ codeword of } C$$

Detection of Single Errors (Parity Checking)

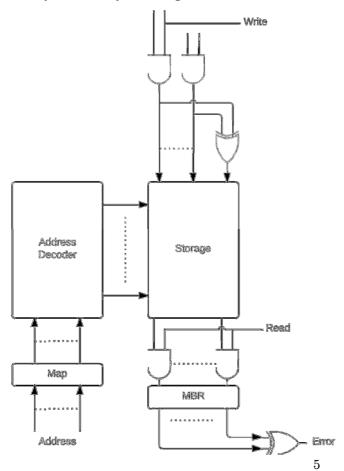
$$d(U) = 2$$

One equation
$$(r=1)$$
: $(v_1,\cdots,v_n)\in U$ if $v_1\oplus v_2\oplus\cdots\oplus v_n=0$ $k=n-1$

Detects all errors of odd multiplicities used for memories and buses

Examples: n = 4, k = 3

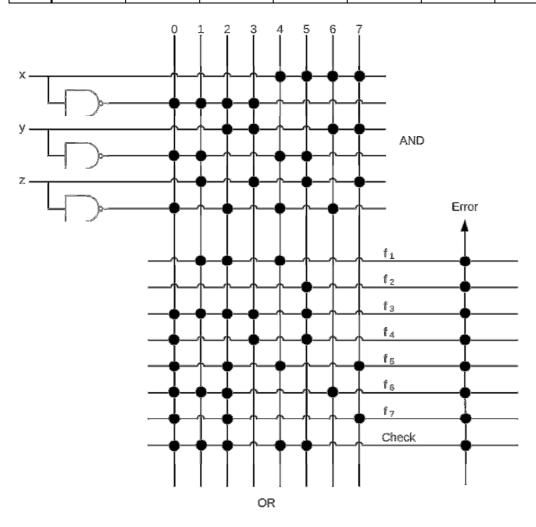
Memory with Parity Checking



Parity Prediction for PLAs

Example: m = 3, k = 7, r = 1

	f_1	f_2	f_3	f_4	f_5	f_6	f_7	Check
0	0	0	1	1	1	1	1	1
1	1	0	1	0	0	1	0	1
2	1	0	1	0	1	1	1	1
3	0	0	1	1	0	0	0	0
4	1	0	0	0	1	0	0	0
5	0	1	1	1	0	0	0	1
6	0	0	0	0	0	1	0	1
7	0	0	0	0	1	0	1	0



Detection of Single Errors 1. Duplication

- 2. 1-*d* parity
- 3. Dual rail design \rightarrow Also Detects: Power analysis attacks

Electromagnetic emission attacks

Power consumption is independent of data

Represent
$$0 - 01$$

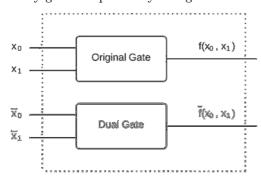
 $1 - 10$

Every wire is replaced by two wires. Let $f(x_0, \cdots, x_{n-1})$ be a Boolean function. Then $\varphi(x_0, \cdots, x_{n-1})$ is dual to $f(x_0, \cdots, x_{n-1})$ if $\varphi = f^D \to \varphi(x_0, \cdots, x_{n-1}) = \bar{f}(\bar{x}_0, \cdots, \bar{x}_{n-1})$. If $\varphi = f$ then f is self dual.

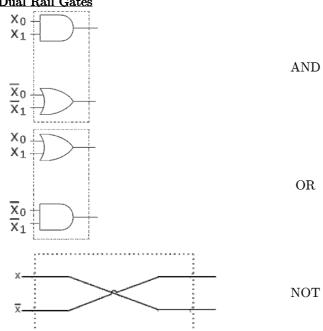
Example: $f(x_0, x_1, x_2) = x_0 \oplus x_1 \oplus x_2$

Original	Dual	
AND	OD	
AND	OR	
OR	AND	
NAND	NOR	
NOR	NAND	
XOR	XNOR	
NOT	NOT	

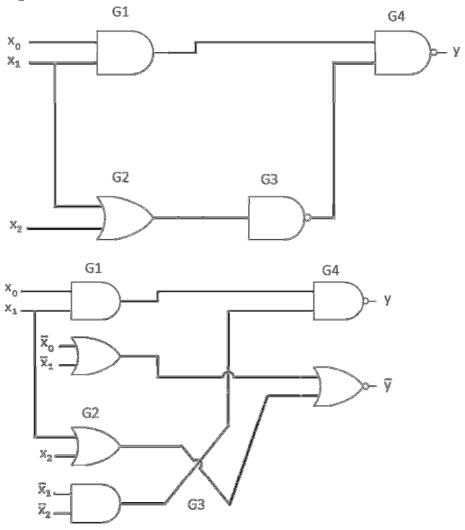
Every gate is replaced by two gates



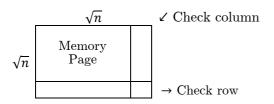
Dual Rail Gates



Example of Dual Rail Design Original Network:



Two-dimensional Parity Checking



 $\frac{Correct:}{Detect}. \ all \ single \ errors \\ \underline{Detect} \ all \ single, \ double, \ and \ triple \ errors$

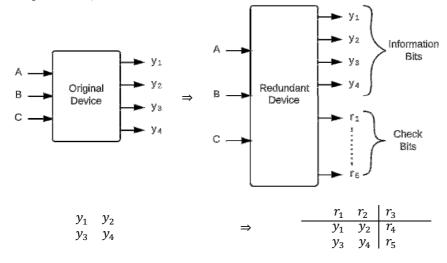
Example:

 \checkmark Check column 1 1 \rightarrow Check row

$$d(V) = 4$$
, $n = k + 2\sqrt{k} + 1$
e.g. $k = 64 \rightarrow n = 81$

Detection of Single, Double, and Triple Errors by Two-Dimensional Parity Check Codes

Example: k = 4, $r = 2\sqrt{k} + 1 = 5$



$$r_1 \oplus r_2 \oplus r_3 = 0, r_3 = r_1 \oplus r_2$$

 $y_1 \oplus y_2 \oplus r_4 = 0, r_4 = y_1 \oplus y_2$
 $y_3 \oplus y_4 \oplus r_5 = 0, r_5 = y_3 \oplus y_4$

Row checks

 $\begin{array}{l} r_1 \oplus y_1 \oplus y_3 = 0, \quad r_1 = y_1 \oplus y_3 \\ r_2 \oplus y_2 \oplus y_4 = 0, \quad r_2 = y_2 \oplus y_4 \\ r_3 \oplus r_4 \oplus r_5 = 0, \quad r_3 = r_4 \oplus r_5 \end{array}$

Column checks

Example: (Ctd) Implementation

