EC500

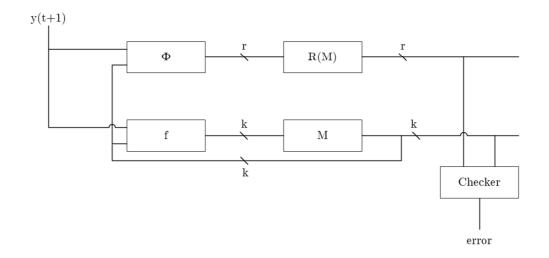
Design of Secure and Reliable Hardware

Lecture 15

Mark Karpovsky

1 Protecting Sequential Devices with Systematic Codes

For the original device, we have D(t+1) = f(y(t+1), D(t)) and Z(t+1) = D(t+1). We design the predictor to be $R(D(t+1)) = R(f(y(t+1), D(t))) = f(y(t+1), D(t)) \cdot P = \varphi(y(t+1), D(t))$, where $D(t) \in \{0,1\}^k$, $R(D(t)) \in \{0,1\}^r$.



1.1 Sequential Fault-Tolerant Networks (Abstract synthesis)

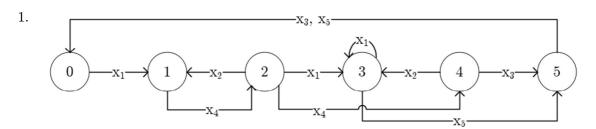
State assignment for internal states by codewords of error correcting/detecting codes.

Example

Correction of single errors $l_c = 1$

We denote the number of redundant FFS as r, where $r \ge \log_2(k+r+1)$, and n_a as the number of internal states, where $k = \lceil \log_2(n_a) \rceil$.

Inputs assumed to be fault-free.



$$H = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}, \ G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}, \ k = 3, \ r = 3$$

State Assignment -

0 - 000 000

 $1 - 100\ 011$

 $2 - 010\ 101$

 $3 - 110 \ 110$

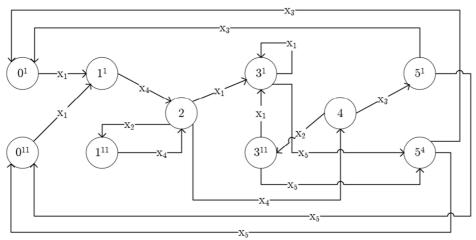
 $4 - 001 \ 110$

 $5 - 101\ 101$

 $6 - 011\ 011$

2. Splitting Internal States

Redundancy at the abstract level (the same example)

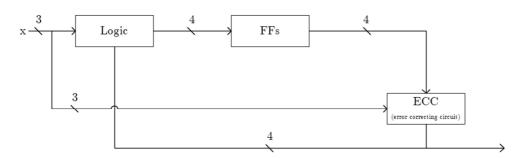


State Assignment -

$$\begin{array}{l} 0^1 - 0000 \\ 5^1 - 0111 \end{array} \} \ {\rm For} \ x_3 \\ 0^{11} - 0001 \\ 5^{11} - 0110 \end{cases} \ {\rm For} \ x_5 \\ 1^1 - 0010 \\ 3^1 - 0101 \end{cases} \ {\rm For} \ x_1 \\ 1^{11} - 0100 \\ 3^{11} - 0011 \end{cases} \ {\rm For} \ x_2 \\ 2 - 1000 \\ 4 - 1111 \end{cases} \ {\rm For} \ x_4$$

Total number of FFs is 4.

Block Diagram for 2):



3. Partial Splitting of Internal States

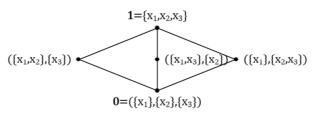
Select the following grouping of inputs $\lambda_0 = (\{x_1, x_2\}, \{x_3, x_5\}, \{x_4\})$. Then the state assignment is as follows:

$$\begin{cases}
0 - 000 \\
5 - 111
\end{cases} \text{ For } \{x_3, x_5\} \\
1 - 001 \\
3 - 110
\end{cases} \text{ For } \{x_1, x_2\} \\
2 - 010 \\
4 - 101
\end{cases} \text{ For } \{x_4\}$$

Total number of FFS is 3. Optimal number of FFs is the same as for the case when there were no error correction. The same block-diagram as in 2). For 3) we split only those internal states which are reachable by inputs from different blocks of the grouping (no splitting for λ_0).

2 Minimization of the Number of FFS by Optimal Selection of a Grouping of Inputs

Denote $\mathbf{1} = \{x_1, x_2, x_3, x_4, x_5\}$, $\mathbf{0} = (\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\})$. For two groupings λ_1 and λ_2 , we denote $\lambda_1 \geq \lambda_2$ if blocks of λ_2 are subsets of blocks of λ_1 ($\{x_1, x_2, x_3\}, \{x_4, x_5\}$) $\geq (\{x_1, x_2\}, \{x_3\}, \{x_4, x_5\})$. For any λ : $\mathbf{0} \leq \lambda \leq \mathbf{1}$. Set of groupings λ form a partially ordered set called a lattice. We denote this lattice as L_x . For 3 inputs, x_1, x_2, x_3 :



Denote $n(\lambda)$ as the total number of FFs required for grouping λ . For the previous example,

λ	1	0	λ_0
$n(\lambda)$	6	4	3

For $l_c=1,$ $n(\mathbf{1})=\lceil \log_2 n_a \rceil + r$ where $r \geq \log_2 \left(\lceil \log_2 n_a \rceil + r + 1 \right)$.

Problem: Find $\min_{\lambda \in L_r} n(\lambda)$

Minimization of a function defined on the lattice L_x . For this example, $\min_{\lambda \in L_x} n(\lambda) = n(\lambda_0) = 3$.

4